
 1

Eiffel for .NET Binding for Db4o

Ruihua Jin, Marco Piccioni

ETH Zurich, Chair of Software Engineering

ETH Zentrum, RZ Building
CH-8092 Zurich, Switzerland

rjin@student.ethz.ch, marco.piccioni@inf.ethz.ch

Abstract. Db4o is an already established OODBMS solution for Java and
.NET, providing a powerful and easy-to-use solution for object persistence.
 It is therefore desirable to make it accessible to programmers that use Eiffel,
a well-known, pure object-oriented programming language offering features
like design by contract, multiple inheritance, genericity and agents.
 The effort that this paper describes is the implementation of the necessary
Db4o framework classes to make it usable within Eiffel applications.

Keywords: Db4o, Query-By-Example, SODA Queries, Native Queries, Eiffel
for .NET, multiple inheritance, genericity, agents

 2

1 Introduction

Eiffel is a pure object-oriented programming language that since a long time
implements features like design by contract, multiple inheritance, genericity and
agents. Though Eiffel participated to the birth of the .NET Framework and was
integrated in it from the very start, it is not trivial that db4o can flawlessly persist
Eiffel objects as well as, say, C# objects. The aim of the project is to identify
peculiarities of persisting Eiffel objects and to provide solutions so that Eiffel
developers can use db4o as seamlessly as possible.

In section 2 we give an overview of how Eiffel types are mapped to .NET types
without loosing the multiple inheritance hierarchy information. In section 3 we
discuss the three db4o querying mechanisms, showing how we can adapt them for
querying Eiffel objects. In section 4 we present our considerations on mapping Eiffel
generic types to .NET types, and in section 5 we draw some conclusions.

2 Mapping from Eiffel Types to .NET Types

Since the common language runtime of the .NET Framework only supports single
inheritance, the primary concern with the Eiffel integration was how to preserve the
multiple inheritance structure of Eiffel types. This issue was solved using the
“simulated” multiple inheritance structure of .NET interfaces. For example, if we
compile the Eiffel classes RHOMBUS, RECTANGLE and SQUARE, with SQUARE
inheriting from both RHOMBUS and RECTANGLE, we have three .NET types
generated for each effective (fully implemented) Eiffel class, say SQUARE: the
interface Square, the class Impl.Square which implements the interface
Square, and the class Create.Square whose static methods are used to create
and initialize instances of Impl.Square. The Square interface extends the two
interfaces Rhombus and Rectangle. As a matter of fact, in .NET all instances of
Eiffel types are related through interfaces and they don’t directly inherit from each
other. As a result of this special mapping strategy, when querying for Eiffel objects
we should always use interfaces as query extents to get correct results.

3 Querying for Eiffel Objects using db4o

Db4o supplies three querying systems: Query-By-Example, the SODA Query API
and Native Queries. We are now going to compare them from the point of view of
Eiffel applications.

3.1 Query-By-Example

Since in .NET all instances of Eiffel types are related through interfaces and they
don’t directly inherit from each other, Query-By-Example, which uses the .NET

 3

reflection mechanism to determine subclasses of a class, is only able to retrieve direct
instances of the template type. For example, the query

template_object := create {RECTANGLE}.make(10, 0)
query_result := object_container.get(template_object)

only returns direct instances of RECTANGLE of width=10, while SQUARE objects are
not returned.

Query-By-Example has several limitations, and only fits with very simple queries.
Although a wrapper class for Query-By-Example could be implemented which
returns not only the direct instances but also instances of subclasses, we are not going
to implement it because of its restricted functionalities.

3.2 SODA Query API

The SODA Query API provides Eiffel applications with an efficient, though type-
unsafe way to query for objects. When building a query graph, a SODA Query
descends to a field by specifying the field name, which the Eiffel compiler then
converts. The following query specifies the interface {RECTANGLE} as the query
extent to find all RECTANGLE (including SQUARE) objects whose width equals 10:

query := object_container.query
constraint := query.constrain({RECTANGLE})
subconstraint := query.descend(“$$width”).constrain(10)
query_result := query.execute

Apart from the ugly prepended “$$”, another issue with SODA queries originates
from renaming a feature in subclasses. In our example, if we rename the width
feature to side_length in the SQUARE class, then the above query will not return
SQUARE objects, because the Impl.Square class only has a field called
$$sideLength instead of $$width. To retrieve a correct query result, we have to
modify the query as follows:

query := object_container.query
constraint := query.constrain({RECTANGLE})
wcon := query.descend(“$$width”).constrain(10)
slcon := query.descend(“$$sideLength”).constrain(10)
subconstraint := wcon.or_(slcon)
query_result := query.execute

 To make SODA queries in Eiffel as easy as in other .NET applications, we are
implementing a wrapper for the SODA query API which does the field name
translation and gets the field constraints or-ed if the field is renamed in subclasses.

3.3 Native Queries

The most compelling plus of Native Queries is that they enforce a type-safe approach.
 In the .NET version of db4o the developer can use delegates as queries. As Eiffel
has its own powerful mechanism of modeling operations, called agents, we decided to

 4

integrate agents into the concept of Native Queries for Eiffel applications. An agent is
an encapsulation of a routine. A typical agent expression is of the form

agent c.my_function(?, a, b)

where a and b are closed arguments (set at the time of the agent’s definition),
whereas ? is an open argument, set at the time of any call to the agent. This agent is
closed on the target c. We can also define agents with an open target like

agent {C}.my_function(?, a, b)

where {C} denotes the class to which feature my_function belongs. We
introduced a class called EIFFEL_PREDICATE that inherits from PREDICATE, and
has to be initialized with an agent. The return value of its match method is equal to
the value of the agent. Suppose now that there is a Boolean function
diagonal_greater_than(INTEGER) in the RECTANGLE class, and we want
to query for all rectangles with diagonal greater than 20. Thanks to the agent
mechanism, we don’t need to define any new query method, but simply create an
EIFFEL_PREDICATE instance and initialize it with

agent {RECTANGLE}.diagonal_greater_than(20)

using an agent which is open on the target and closed on the argument. At run-time
the target of the agent will be the candidate object passed to the match method.
 Agents also fit in the situations where the related class does not have a Boolean
function corresponding to the query. In this case, we define a function in some class
MY_QUERY like

diagonal_greater_than(RECTANGLE; INTEGER): BOOLEAN

and initialize the EIFFEL_PREDICATE object with

agent a_query.diagonal_greater_than(?, 20)

, an agent which is closed on the target, open on the first and closed on the second
argument. The downside of Native Queries in Eiffel applications is that they cannot
be optimized. Since the match method in subclasses of PREDICATE is declared like

match(candidate: SOME_TYPE): BOOLEAN

and candidate becomes of an interface type SomeType at run-time, db4o cannot
optimize interface method calls in the match method body, because has to instantiate
objects of SomeType, run the code and then decide the query result. Furthermore, if
the developer uses EIFFEL_PREDICATE for the convenience of agents, he must
endure some performance overhead caused by running agents. It was measured that
EIFFEL_PREDICATE queries with open target agents run slower than PREDICATE
queries (that is queries that just inherit from PREDICATE without using agents) by a
factor of 1 – 3, and EIFFEL_PREDICATE queries with closed target agents run
slower than PREDICATE queries by a factor of 2 – 4.

 5

4 Genericity

An Eiffel generic type is mapped to the .NET types as follows:

class class GlistReference
 GLIST[G] {
feature object item;
 item: G }
end

As GLIST[STRING] and GLIST[RECTANGLE] would both become of type
GlistReference at run-time, the two would conform to each other from the point
of view of the .NET run-time system, and this is the reason why GLIST[STRING]
objects would also be returned for a query for GLIST[RECTANGLE] objects.
 To solve this issue, we implemented a helper class which understands whether two
(generic) objects conform to each other according to Eiffel’s conformance rule, which
states that a type U conforms to a type T only if the base class of U is a descendant of
the base class of T; also, for generically derived types, every actual parameter of U
must (recursively) conform to the corresponding formal parameter in T.

5 Conclusions and future work

Eiffel applications can use all db4o features. While in case of querying for non-
generic objects, SODA and Native queries return objects according to the Eiffel’s
conformance rule, in case of querying for generic objects, developers must take over
the task of filtering out non-conforming objects using the helper class we
implemented. A wrapper for SODA Queries, taking care of all the aforementioned
issues, is also under development. Using agents for Native Queries makes db4o very
appealing to Eiffel developers, though the performance overhead may sometimes be
significant. The db4o team is making a big effort to optimize Native Queries so that
they can be run against indexes. Eiffel applications, however, cannot take advantage
of the optimization algorithms yet. The open question is therefore whether and how
Native Queries in Eiffel applications can be optimized to be run against indexes.

References

1. Meyer, B.: Object-Oriented Software Construction, 2nd edition. Prentice Hall, 1997.
2. Smacchia, P.: Practical .NET2 and C#2. Paradoxal Press, 2005.
3. .NET Developer Center, http://msdn2.microsoft.com/en-us/library/aa139615.aspx
4. Simon, R., Stapf, E., Meyer, B.: Full Eiffel on the .NET Framework,

http://msdn2.microsoft.com/en-us/library/ms973898.aspx
5. Db4o documentation, http://developer.db4o.com/Resources/view.aspx/Documentation
6. Project web site: http://developer.db4o.com/ProjectSpaces/view.aspx//Defcon

