
Diss. ETH No. 24002

Uni�ed Interference-free Parallel,

Concurrent and Distributed

Programming

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by
Mischael Schill

Master of Science ETH in Computer Science

born on
July 26th, 1984

citizen of
Winterthur, Switzerland and Austria

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Prof. Dr. Friedemann Mattern, co-examiner

Prof. Dr. Richard Paige, co-examiner
Dr. Piotr Nienaltowski, co-examiner

2016

Acknowledgments.

I want to thank all that helped and supported me during my studies that lead to this
work. First I thank my family: my parents, Gottfried and Maria, for supporting me
during my studies, and my wife, Simona, for encouraging me to pursue a PhD.

Bertrand Meyer, my supervisor, who welcomed me to his research group, sup-
ported me and created a fruitful environment for exciting research. His suggestions,
guidance and critique encouraged me made me come up and re-think ideas until per-
fection.

The people working at the legendary Chair of Software Engineering: Sebastian
Nanz, who taught me how to be a researcher. His gentle guidance helped me �nd my
area and bring ideas to paper. Chris Poskitt, who I worked with during my last year,
for the many late hours of work and encouragement. Claudia, for doing everything
to keep the Chair working, even things that were not her responsibility, and for the
many conversations during my last year. Benjamin Morandi, who supervised my
master thesis and whetted my interest for doing research. Marco T., with whom I
had many interesting and hilarious conversations. Carlo, Marco P., Scott, Stephan,
Andrey, Alexey, Max, Martin, Georgiana, Jason, Jiwon, and Juri.

Peter Müller for providing me with a nice place to �nish my thesis during the last
year, and all the people in CAB H66 for welcoming me.

Lastly, the examiners who took the time to read and evaluate my work: Friede-
mann Mattern, who kindly agreed to be my second supervisor, Richard Paige and
Piotr Nienaltowski.

Funding. The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC Grant agreement no. 291389.

i

Contents

1 Introduction 1

1.1 Background . 1
1.2 Uni�cation and its Challenges . 2

1.2.1 Safe usage of Shared Memory 2
1.2.2 High-Level Data Races . 3
1.2.3 Failure . 3

1.3 Hypotheses and Contributions . 3
1.3.1 Contributions . 3

1.4 Plan of the Thesis . 4
1.4.1 State of the Art . 4
1.4.2 A distributed, object-oriented programming model 4
1.4.3 Taking Advantage of Shared Memory 4

2 Distributed Object-Oriented Programming Models 6

2.1 Terminology . 6
2.1.1 Node . 6
2.1.2 Network Objects . 7
2.1.3 Processor . 7
2.1.4 Region . 7
2.1.5 Features, Calls and Application 7
2.1.6 Client / Supplier . 8
2.1.7 Communication . 8

2.2 Concurrency . 8
2.2.1 Asynchronous Calls . 9
2.2.2 Synchronous Calls . 9
2.2.3 Future Calls . 9
2.2.4 Asynchronous Replies . 9
2.2.5 Local/Remote Wait Condition 9

2.3 Principal Problems in Concurrency and Distribution 10
2.3.1 High-Level Data Races . 10
2.3.2 Failure . 11

2.4 Concurrent Programming Paradigms 11
2.4.1 Threads – Classic Shared Memory 12
2.4.2 Processes – Classic Message Passing 12
2.4.3 Active Objects . 12

2.5 Comparison of Network Object Languages 13
2.5.1 Evaluation . 13
2.5.2 Argus . 13

ii

2.5.3 Emerald . 14
2.5.4 Modula 3 . 15
2.5.5 CORBA . 15
2.5.6 Java RMI . 15

2.6 Comparison of Active Object Languages 16
2.6.1 Evaluation . 16
2.6.2 Failure . 17
2.6.3 Overview . 17
2.6.4 Actor Based Concurrent Language 19
2.6.5 Asynchronous Sequential Processes 20
2.6.6 MultiASP . 21
2.6.7 Creol . 21
2.6.8 (J)CoBox . 23
2.6.9 E . 23
2.6.10 AmbientTalk . 24
2.6.11 Scoop . 25

2.7 Conclusion . 25

3 Scoop 26

3.1 Regions and Processors . 26
3.1.1 References . 26
3.1.2 Expanded Classes . 28
3.1.3 Immutable Classes . 28
3.1.4 Processor Creation . 29
3.1.5 Passive Regions . 29

3.2 Control and non-interference . 29
3.3 Locking . 31

3.3.1 Control . 31
3.3.2 Lock Passing . 32

3.4 Blocking and Waiting . 32
3.4.1 Adaptive Synchronization . 32
3.4.2 Wait Conditions . 33
3.4.3 Attributes as Futures . 33

3.5 Agents . 33
3.6 Scoop Runtime . 34

4 Examples 36

4.1 Distributed Banking . 36
4.1.1 Architecture . 36
4.1.2 Initialization . 37
4.1.3 Classes . 38

4.2 Chat Server . 43
4.2.1 Architecture . 43
4.2.2 Initialization . 43
4.2.3 Classes . 45

4.3 Computing Cluster . 49
4.3.1 Architecture . 49
4.3.2 Initialization . 50
4.3.3 Classes . 50

iii

5 Distributed Scoop 52

5.1 From Network Objects to Distributed Scoop 52
5.2 The Distributed Scoop Framework . 55

5.2.1 Components . 55
5.2.2 Mechanisms . 55
5.2.3 D-Scoop Protocol. 58

5.3 Locking Remote Objects . 60
5.3.1 Lock Passing . 63

5.4 Compensating for Failure . 63
5.5 Wait Conditions . 66
5.6 Passive Regions . 66
5.7 Examples . 66

5.7.1 Chat System: Message Exchange 66
5.7.2 Distributed Banking: Message Exchange 68

5.8 Semantics . 71
5.9 Evaluation . 71
5.10 Future Work . 74

5.10.1 Creation of Remote Agents 74
5.10.2 Export . 74
5.10.3 Smarter Wait Conditions . 75
5.10.4 Explicit Synchronization . 75
5.10.5 Asynchronous Replies . 76
5.10.6 Exceptions and Compensations 76
5.10.7 Security . 77

5.11 Conclusion . 77

6 D-Scoop Semantics 78

6.1 Introduction . 78
6.2 Semantics and Implementation . 79
6.3 De�nitions and Support . 79

6.3.1 Cells . 80
6.3.2 Sets and lists . 83
6.3.3 De�nitions . 85

6.4 Con�guration . 85
6.4.1 Initial Con�guration . 88

6.5 Message Passing . 88
6.6 Appearance . 89
6.7 Lock Handling . 90

6.7.1 Acquiring Locks . 90
6.7.2 Releasing Locks . 92
6.7.3 Lock Passing . 94
6.7.4 Wait Conditions . 94

6.8 Execution . 96
6.8.1 Feature abstraction . 96
6.8.2 Making calls . 98
6.8.3 Enqueuing calls . 100
6.8.4 Feature application . 101

6.9 Exceptions . 101
6.10 Resilience . 104

6.10.1 Disappearance . 105

iv

6.10.2 Compensation . 105
6.11 Example . 108
6.12 Conclusion and Future Work . 119

7 Handling Parallelism in a Concurrency Model 120

7.1 Introduction . 120
7.2 Performance issues of race-free models 121
7.3 Array slicing . 122

7.3.1 Slices . 122
7.3.2 Views . 123

7.4 Performance evaluation . 124
7.4.1 Quicksort . 124
7.4.2 Matrix multiplication . 125

7.5 Related work . 126
7.6 Conclusion . 126

8 Immutable Classes 134

8.1 Motivation . 135
8.2 Abstract Syntax Tree . 136

8.2.1 Nodes and Lists . 136
8.3 General Statements . 141

8.3.1 Global Context . 141
8.3.2 Existence . 141
8.3.3 De�ned features . 142
8.3.4 Features of a Class . 142
8.3.5 Properties of features . 143

8.4 Conformance . 143
8.5 Resolving Features . 144

8.5.1 Adaptation . 144
8.5.2 Resolving Features . 145
8.5.3 Example . 148

8.6 Immutability as a Property of Classes 150
8.6.1 Mutable Classes . 151

8.7 Mutating Features . 151
8.7.1 Safe Features . 151
8.7.2 Private Features . 152

8.8 Immutating Features . 153
8.8.1 Ancestors . 153
8.8.2 Unde�ned Features . 154
8.8.3 Attributes . 154
8.8.4 Routines . 155
8.8.5 Once Features . 156
8.8.6 Invariants . 157

8.9 Instructions and Expressions . 157
8.9.1 Feature clauses . 158
8.9.2 Conditionals and Loops . 158
8.9.3 Feature calls . 158
8.9.4 Assignment . 159
8.9.5 Creation instruction . 159
8.9.6 Expressions . 159

v

8.10 Adherence of Programs to Immutability 159
8.11 Example . 160
8.12 Related Work . 161
8.13 Future Work . 161

9 Conclusion 162

vi

Abstract

Concurrency, the art of doing many things at the same time, is growing in importance
every year. For almost a decade, computers are no longer getting faster the same way
they have been before, but they gain the ability to do more work in parallel. Most
modern programs and their functionality rely on global distributed infrastructure:
communication between computers has become essential, distributed systems are be-
coming the norm, not the exception.

Although the integration of systems and programs becomes tighter and tighter,
two areas are still most often treated as separate: local concurrency and paralleliza-
tion, versus distribution. While there are concurrency programming models that can
operate in both areas, they are often a compromise: they rarely take full advantage
of shared memory available in a machine and, at the same time, give the developers
inadequate tools to handle complex atomicity violations. The result is that software is
often written using an unsafe multi-threading approach coupled with simple message
passing for communication between computers.

This work improves the current state of the art in two ways. First by addressing
the problem that these models often disregard the dependencies between requests,
resulting in atomicity violations similar to data races. Second by reconciling models
for concurrency and distribution with shared memory.

For the �rst, this work extends the Scoop concurrency model for distributed pro-
gramming. Scoop provides interference-freedom to minimize atomicity violations,
but is restricted to local computing only. With distribution, failure handling is im-
portant: we present a novel approach — compensations s— which are inspired by
transactions, to let supplier and clients both contribute to failure mitigation. The core
semantics of distributed Scoop, the result of this endeavor, is described formally us-
ing a transition semantics that can be used as a speci�cation for implementations.
A prototype of D-Scoop shows that interference-freedom can be achieved without
sacri�cing performance.

For the second, this work presents two techniques:

Slicing A technique for handling arrays
Immutable Classes A technique for handling complex immutable data

With our work on integration of shared memory computing and distribution we
combine local concurrency and parallelism with distribution to form a general model.

vii

Zusammenfassung

Nebenläu�gkeit, die Kunst viele Dinge gleichzeitig zu tun, wird wichtiger von Jahr zu
Jahr. Seit fast einem Jahrzeht werden Computer nicht mehr in dem Masse schneller
wie davor, aber sie erhalten die Fähigkeit mehr Arbeit parallel erledigen zu können.
Die meisten Programme und ihre Funktionalität stützen sich auf eine global verteilte
Infrastruktur: Die Kommunikation zwischen Computern wurde essentiell, verteilte
Systeme werden zur Norm.

Obwohl die Integration von Systemen und Programm immer enger und enger
wird, werden zwei Gebiete häu�g immer noch getrennt behandelt: Lokale Nebenläu-
�gkeit und Parallelität gegenüber Verteilten System. Während zwar Programmier-
modelle für Nebenläu�gkeit existieren, die für beide Gebiete geeignet sind, sind diese
häu�g ein Kompromiss: Sie ziehen selten das Maximum aus der Verfügbarkeit von
gemeinsamen Speicher einer Maschine, und geben gleichzeitig dem Entwickler nur
inadäquate Wekzeuge zur Vermeidung von komplexen Atomizitätsverletzungen zur
Hand. Das Resultat ist, dass Software oft noch immer mit einem unsicheren Prozess-
modell in Kombination mit einfachem Nachrichtenaustausch erstellt werden.

Diese Arbeit bringt den aktuellen Stand der Technik auf zwei Arten vorwärts: Sie
nimmt sich des Problems, dass solcherlei Modelle die Abhängigkeiten zwischen An-
fragen, welche zu Atomizitätsverletzungen führen, oft ignorieren sowie des Problems
der Vereinheitlichung von Nebenläu�gkeit und verteilten Systemen mit gemeinsamen
Speicher, an.

Für ersteres präsentiert diese Arbeit eine Erweiterung des Scoop Modells für die
Verwendung in verteilten Systemen. Scoop verfügt über ein Konzept der Interferenz-
freiheit um Atomizitätsverletzungen zu minimieren, aber es ist bis jetzt auf die Ver-
wendung als lokales System beschränkt. In verteilten Systemen ist die Handhabung
von Fehlern prioritär, darum präsentieren wir einen neuartigen Anzatz, Kompensa-
tionen, inspiriert von Transaktionssystemen, um den Befehlsempfänger sie auch den
Befehlssender an der Fehlerbehebung teilhaben zu lassen. Die Kernsemantik von ver-
teiltem Scoop, genannt D-Scoop, das Resultat dieses Vorhabens, wird formal beschrie-
ben mit einer Transaktionssemantik, welche als Spezi�kation für Implementationen
verwendet werden kann. Ein Prototyp von D-Scoop zeigt, dass Interferenzfreiheit oh-
ne Einbussen von E�zienz erreicht werden kann.

Für letzteres präsentiert diese Arbeit gleich zwei Techniken: Slicing, eine Technik
um Berechnungen über Felder zu parallelisieren; und Immutable Classes, eine Technik
um komplexe Datenstrukturen auf Unveränderlichkeit zu überprüfen.

Mit unserer Arbeit an der Integration von gemeinsamen Speicher und sicherem
verteilten Rechnen können wir lokale Nebenläu�gkeit und Parallelität mit verteilten
Systemen kombinieren um ein generelles Modell zu formen.

viii

Chapter 1

Introduction

Concurrency is an important part of modern application and system development. It
is a natural result of the capabilities and purposes of devices, and their need to com-
municate with each other. Depending on the situation, concurrency presents itself in
various forms, which includes parallelism and distribution. In the past, frameworks
and libraries focused on handling a particular form of concurrency while ignoring the
others. But regardless of the form, the problems an pitfalls are similar, and in many
systems all forms of concurrency coexist. With specialized approaches for the di�er-
ent forms of concurrency, the same problems need to be solved over and over again.
It is therefore important to look for an approach that can reasonably handle all forms
of concurrency to ease development and reduce the complexity of systems.

1.1 Background

Distributed programming. Inter-device communication is becoming ubiquitous,
and the number of connected devices is growing every day. With this ubiquity comes
an increasing demand for programmers to be able to write reliable distributed soft-
ware, yet this is no simple task.

Various language abstractions have been proposed to make it easier to write dis-
tributed programs. One such abstraction, natural for the object-oriented paradigm, is
network objects [6]: objects whose methods can be invoked over a network. By han-
dling communication in method calls, network objects allow for local and remote ob-
jects to be treated uniformly, without regard to their physical location. In principle an
elegant generalization; in practice, languages supporting them are often lightweight
on synchronization, leaving the user to manage it explicitly, and potentially exposing
them to synchronization errors such as data races.

Multi-threaded programming. Writing a multi-threaded program can have a va-
riety of very di�erent motivations [54]. Oftentimes, multi-threading is a functional
requirement: it enables applications to remain responsive to input, for example when
using a graphical user interface. Furthermore, it is also an e�ective program structur-
ing technique that makes it possible to handle nondeterministic events in a modular
way; developers take advantage of this fact when designing reactive and event-based
systems. In all these cases, multi-threading is said to provide concurrency. In contrast
to this, the multi-core revolution has accentuated the use of multi-threading for im-

1

proving performance when executing programs on a multi-core machine. In this case,
multi-threading is said to provide parallelism.

Programming models for multi-threaded programming generally support either
concurrency or parallelism. For example, the actor model [1] and various active
object-type languages [34] including Scoop are typical concurrency models: they are
optimized for coordination and event handling, and provide safety guarantees such as
absence of data races. Models supporting parallelism on the other hand, for example
OpenMP [16] or Chapel [12], put the emphasis on providing programming abstrac-
tions for e�cient shared memory computations, typically without addressing safety
concerns.

While a separation of concerns such as this can be very helpful, it is evident that
the two worlds of concurrency and parallelism overlap to a large degree. For example,
applications designed for concurrency may have computational parts the developer
would like to speed up with parallelism. On the other hand, even simple data-parallel
programs may su�er from concurrency issues such as data races, atomicity violations,
or deadlocks. Hence, models aimed at parallelism could bene�t from inheriting some
of the safety guarantees commonly ensured by concurrency models.

Since distribution shares many pitfalls with multi-threaded concurrent program-
ming, it is reasonable to look for a common solution. Several languages and libraries
attempt to make it easier and safer to write concurrent programs, providing their
users with high-level abstractions as diverse as transactional memory [63], block-
dispatching [22], actors, and active objects. Given the many shared synchronization
challenges, a number of these abstractions have been successfully applied across novel
distributed programming approaches, exempli�ed by languages such as Creol [31],
JCoBox [59], and AmbientTalk [17].

1.2 Uni�cation and its Challenges

From all the challenges in the area, the need for a uniform framework that works at the
scale of single cores equally well as in vast networks of nodes becomes apparent. This
system has to accommodate all the requirements while helping to avoid the critical
problems.

The Scoop programming model is a variant of the active object concept. It was
�rst introduced by Meyer [42] and stands out because it o�ers an integrated solu-
tion to high-level data races. However, it is currently restricted to operate on single
machines and does not take advantage of shared memory, and thus cannot compete
with the more liberal approaches for parallelism, such as multi-threading, in speed
and memory-e�ciency as well as distributed models.

In our search for a uni�ed model parallel, concurrent and distributed program-
ming, we focus on the following main challenges.

1.2.1 Safe usage of Shared Memory

While concurrency models such as active objects and Scoop reduce some concurrency
issues, they do so by avoiding the use of shared memory. However, sharing memory
helps reduce memory consumption and it is a fast bulk communication medium since
it avoids copying. Shared memory could be used safely for parallelizing computations
on arrays as well as handling immutable data.

2

1.2.2 High-Level Data Races

Data races, a form of atomicity violation, together with deadlocks, are the main prob-
lems a developer faces when developing a concurrent system. Deadlocks freeze parts
of the system, making it easy to �nd the circular dependencies, which, in compari-
son to data races, is the simpler problem to handle. Data races can cause corruptions
that become apparent at a time where the context in which the data race occurred is
already lost, making them notoriously di�cult to debug.

Modern approaches such as active objects eliminate low-level data races by elimi-
nation of shared memory. However, this is only su�cient in simple interactions; With
more complex interactions, data races are again a problem.

1.2.3 Failure

We expect that parts of a distributed system can fail without compromising the whole.
When this happens with active objects, a client is informed through exceptions or
other forms of errors, while a supplier has little to rely on for recovery, since it is
missing the context. In classic message passing systems, this is rarely a problem since
the supplier follows a strict process and is informed of the client’s disappearance.
Object-oriented approaches such as active objects forgo this to achieve greater �exi-
bility.

1.3 Hypotheses and Contributions

Our goal is a system that uni�es distribution, concurrency and parallelism with a
focus on the challenges above. We start by taking a concurrency model, Scoop, with a
promising approach for handling high-level data races, and extend it to also overcome
the other challenges. Therefore, our hypotheses are:

1. An object-oriented concurrency model based on message passing can be ex-
tended to a programming model for distributed systems with supplier-aware
failure mitigation while maintaining a competitive e�ciency

2. An object-oriented concurrency model based on message passing and shared
memory can be safely combined without complexity through annotations

We address hypothesis 1 by presenting an extension to Scoop for distribution with
a novel approach to failure mitigation that integrates the supplier.

We address hypothesis 2 by presenting two simple techniques: slicing and im-
mutable classes. These techniques can be applied to a wide range of object-oriented
concurrency models.

1.3.1 Contributions

We provide a programming model with interference-free and transaction-like reason-
ing for distributed objects, and a runtime that e�ciently handles the synchronization
including formal speci�cation of the runtime behavior and the protocol.

We provide a set of terms that can be used to describe these as well as a comparison
of current active object models.

We present two techniques for safe, e�cient and simple usage of shared resources:
First, we handle handle data-parallelism on arrays using a specialized API and a

technique called slicing.

3

Second, we handle shared immutable data through immutable classes by showing
how to prove this property without further annotations.

We provide extensions to make the model suitable for parallel and distributed
computing, including formal semantics for the distributed protocol as a guideline and
speci�cation for implementations.

1.4 Plan of the Thesis

The thesis can be divided into three parts. The �rst part is attributed to the introduc-
tion of existing work, while the other two parts contain the main contributions.

1.4.1 State of the Art

The �rst part starts with chapter 2 that de�nes a set of terms to describe concurrent
and distributed object-oriented models and uses it to give an overview of models suit-
able to ful�ll the hypotheses of the thesis.

The Scoopmodel From the models in the previous chapter we selected Scoop for
further investigation. We give an informal introduction to this model in chapter 3,
followed by two examples in chapter 4.

1.4.2 A distributed, object-oriented programming model

The second part of the thesis generalizes Scoop for distributed usage. While Scoop
is based on the actor model, its unique non-interference guarantee makes an e�-
cient distributed implementation di�cult. In addition, we extend the model with
transaction-like reasoning for supplier-aware failure mitigation.

TheD-Scoop framework. Chapter 5 introduces the distributed Scoop framework.
It explains the user-visible changes and the underlying network protocol. A compar-
ison with Java RMI shows that it maintains a competitive performance while main-
taining the Scoop guarantees.

TheD-Scoop protocol. Chapter 6 gives a formal speci�cation of the D-Scoop sys-
tem and protocol. The speci�cation comes in the form of an abstract transition se-
mantics, reducing its complexity while detaching it from the programming language
used. The semantics gives a deep insight into the workings of the protocol and allows
developers to check their implementations.

1.4.3 Taking Advantage of Shared Memory

The third part of the thesis focuses on taking advantages of shared memory while
working with a concurrency model that prevents data races. Scoop and most active
object models maintain a clear separation of memory regions. We can show that this
restriction can be relaxed in various situations without impacting the safety of the
model. The results are applicable to Scoop, but also to other concurrent programming
models.

4

Array Slicing. With a technique called slicing, presented in chapter 7, we con-
tribute a library-based abstraction that, while being strict in terms of safety as seen
and experienced by the programmer, enables the framework to use shared memory
where possible.

Immutable Classes. In chapter 8, we introduce a proof framework for immutable
classes in Ei�el that does not require annotations while allowing great �exibility in
the implementation. Instances of immutable classes can be safely accessed by all pro-
cessors since they are statically ensured to not be changeable after creation.

5

Chapter 2

Distributed Object-Oriented

Programming Models

Object-oriented distributed programming languages usually either have a distinct no-
tion of processes and communication or use an object-oriented abstraction for one
and/or the other. Approaches for such abstractions can be divided into network ob-
ject and active object approaches. The network object approaches go back to Modula-
3 [6] and are still used in widespread applications through middleware such as Java
RMI and CORBA. They use a distinct notion for processes, but employ feature calls
as an object-oriented abstraction for communication between machines. Although
their origin is di�erent, active object approaches share the communication abstrac-
tion with network objects but furthermore also use an object-oriented abstraction for
processes.

The purpose of this chapter is to give an overview of the various approaches
for object-oriented distributed programming with a focus on active objects. This
overview is separated into two parts. First, a common set of terms is established,
which by themselves present the various forms of handling concurrency and distribu-
tion. Second, a comparison of active-object based approaches gives an understanding
which combinations have been successfully used.

2.1 Terminology

The terminology used to describe a concurrency model di�ers from author to author,
making it di�cult to see commonalities. As a consequence, we introduce a terminol-
ogy for usage with distributed object-oriented models.

2.1.1 Node

A distributed system is made up of nodes, which themselves contain regions and pro-
cessors. Shared memory is generally only available within a node, and nodes commu-
nicate with each other using some form of message passing. A node can be a physical
machine or some abstraction thereof, for example a virtual machine, a container or
a (heavyweight) operating system process. It is also possible that multiple machines
form a node, for example to add reliability against hardware failure, but even then,
the node is perceived by the other nodes as a single entity.

6

2.1.2 Network Objects

A network object, is an object whose methods can be invoked remotely: over a net-
work. The abstraction is a simple but natural generalization of standard objects to
distributed contexts: the programmer interacts with their interfaces in the same way
as usual, without regard to where the objects are located. Communication is han-
dled through feature calls: the node where the object is located, the supplier node, is
executing the call, while the client node either stalls or continues execution.

The term network object �rst appeared in context of Modula-3 [6], and have
since strongly in�uenced Java’s Remote Method Invocation (RMI) API as well as the
Common Object Request Broker Architecture (CORBA) standard. However, earlier
systems such as Argus [37], Emerald [7] and distributed Smalltalk [3] already intro-
duced similar abstractions. Note that these models only support synchronous calls,
to mimic normal non-distributed calls, but we use network object as a general term
to refer to any objects whose features are available for remote calls, regardless of the
semantics. Therefore, our de�nition of network object extends to objects whose fea-
tures can be called asynchronously, such as active objects in models we present in
section 2.4.3.

2.1.3 Processor

There are various terms for describing the engine that executes code, for example:
processor, process, thread, actor or even just active object. For easier comparison, we
use the term processor as an abstraction for any form of execution engine, even if the
model does not separate the executing engine from the object(s) it is responsible for:
a processor, in our terminology, is not an object, but in some models, (active) objects
and processors have a one to one relationship or some objects are used to in�uence the
processors’ behavior. We chose this term because process, thread and actor all imply
a speci�c concurrency model. A processor may have some transient state such as a
local variables stack, message queues and an instruction pointer, which are essential
for its operation, but not the application logic or data. The term processor was coined
originally in relation to Scoop [42]. A concurrent or distributed system consists of a
variable number of processors running concurrently.

2.1.4 Region

A region is a set of objects. In most cases, regions are not overlapping, that is, an object
belongs to exactly one region. Objects belonging to di�erent regions are considered
separate to each other.

The processors that are allowed to access objects in a region can be restricted.
Shared memory is a region that is shared by multiple processors, that is, can be ac-
cessed by all of them concurrently.

The access policy of regions is a core de�ning criteria for concurrency models.
For example, multi-threading provides a large shared region that can be accessed by
all processors (threads) of a node, while active objects allow just one processor per
region to avoid low-level data races.

2.1.5 Features, Calls and Application

We use feature as a collective term for functions, procedures and attributes of an object
or class. Functions and procedures are also referred to as routines.

7

Feature call

A feature call is the request for application of a feature to a speci�c object. The calling
and the called processors may be di�erent, in which case it is a separate call. A query
call yields a result, so it is a request to apply a function or read an attribute, while a
command calls is to apply a procedure or write to an attribute. Some models refer to
this as sending a message to another process or object.

Feature application

We refer to the feature application as the actual execution of a feature due to a feature
call. The application is performed by the called processor, which may be di�erent
from the calling processor. We use the term non-separate if it is done by the same
processor, and separate for the other case, similar to the usage in Scoop [42].

2.1.6 Client / Supplier

A client is the object, processor or routine that issues a features call, while the supplier
is the recipient of the call. We use the more speci�c terms client/supplier object,
client/supplier processor or client/supplier routine where necessary.

2.1.7 Communication

There are two basic models for communication: message passing and shared memory.
Message passing means that processors are sending and receiving messages. A

client may wait for a supplier to read the message or even for the supplier to send
an answer. At the same time, a supplier may wait for a speci�c message to arrive.
Message passing can therefore be synchronous or asynchronous depending on the
speci�c concurrency model and the protocol. A more speci�c variation in object-
oriented models such as network objects and active objects uses messages to pass
separate feature calls, with many di�erent semantics as detailed in section 2.2.

With the right data structures, shared memory, that is, regions accessible by mul-
tiple processors, can be used as a medium for communication within nodes. However,
leveraging shared memory in such a way requires synchronization primitives such as
locks. Using shared memory as a communication medium has two advantages: �rst,
it is �exible regarding the form of communication. For example, message passing can
be realized with shared memory by using a queue and a monitor. Second, with shared
memory it is possible to send large amounts of data without the need to copy the data
to reduce memory requirements and increase e�ciency.

2.2 Concurrency

While there are many more variants of communication and sources of concurrency
with message passing and especially shared memory, we give speci�c de�nitions for
those relevant for object-oriented concurrency models as these are the focus of this
chapter.

8

2.2.1 Asynchronous Calls

A major source of concurrency in some object-oriented concurrency models is the
ability to make asynchronous calls. In this case, the client does not wait for the ap-
plication of a feature to �nish before continuing, but it may wait until the call was
received.

2.2.2 Synchronous Calls

For various reasons, not all calls can be asynchronous, so some models allow for syn-
chronous calls. In this case, the client waits until the supplier �nished the application
of a feature. This can be used as a form of synchronization to make sure all the previ-
ous asynchronous calls have been executed if the model ensures that calls are handled
in the order they have been issued. It may also be a solution if the call yields a result
needed by the client.

2.2.3 Future Calls

Instead of making all calls that yield a result synchronous, it is also possible to use
the concept of futures [67]. In this case, the call is asynchronous but instantly yields
a result, the future or promise. The future is a placeholder for the actual result. The
client can defer blocking until the result is actually needed. A future can also be used
with command calls as a way of synchronization, in which case the client can use the
future to wait until the associated feature application is �nished.

2.2.4 Asynchronous Replies

A third option for calls yielding a result is for the supplier, instead of simply returning
the result, to issue an asynchronous callback to the client. When making a separate
call, the client can declare a continuation or closure to be run when the callback ar-
rives. This allows the client to make the call asynchronous and completely �nish
its execution without waiting. A concurrency model that integrates asynchronous
replies therefore allows for complete asynchronous execution which in turn avoids
deadlocks by design.

While almost every model allows for this type of callback in some manual way,
only some models integrate it to give the programmer the ability to request callbacks
instead of replies regardless of whether the supplier is prepared for it or not. A varia-
tion of this allows for sending the result as an argument of a call to an object di�erent
from the client of the call.

2.2.5 Local/Remote Wait Condition

Remote wait condition allow clients to await state changes in a supplier before contin-
uing execution. For example, a consumer in the classic producer/consumer example
may await for the shared bu�er to not be empty. While it is possible to implement
wait condition using other forms of synchronization, some languages have explicit
support. The term general wait condition can be used if wait conditions are normal
programming language expressions without restrictions.

Another form of wait conditions are local wait conditions. In this case, the proces-
sor suspends the current call and starts processing further calls. When the condition

9

is satis�ed, the suspended call is continued. This implies that calls are not handled in
a strict order.

2.3 Principal Problems in Concurrency and Distri-

bution

While there are many di�erent possible problems associated with concurrency and
distribution, this work focuses on two: high-level data races and failure.

2.3.1 High-Level Data Races

The occurrence of a data race is typically de�ned, e.g. in [58], as follows: a data race
occurs when two processes access a shared resource and when

• at least one access is a write, and
• the processes use no explicit mechanism to prevent the accesses from being

simultaneous.

Many concurrency models do not allow shared memory or other shared resources,
which is often seen as a prerequisite for data races due to the de�nition above. We
use the term low-level data race for these data races. However, a form of higher level
atomicity violations can also best be described as a data race. For example: Assume we
have a network object of the bank account class in listing 2.1. Not that although the
listing uses Ei�el, it is not Scoop. We assume that only a single call can be executed
at a time, that is, the object acts as a monitor [29].

class
BANK_ACCOUNT

feature
balance: INTEGER

withdraw (a_amount: INTEGER)
require

a_amount <= balance
a_amount > 0

do
balance := balance - a_amount

end

deposit (a_amount: INTEGER)
require

a_amount > 0
do

balance := balance + a_amount
end

end

Listing 2.1: Bank account example

10

Now assume that a client issues the following instructions:

if account.balance > 100 then
account.withdraw (100)

end

We can see, that the intention is to withdraw something on the bank account.
However, these instructions cause two separate requests. With other processors in
the system, the following situation is possible:

Client 1 Account Client 2
balancebalance

result: 135 result: 135
withdraw (100)
withdraw (100)

This is very similar to a classic data race as the consequences are the same. In a
way, the request queue of the bank account is a shared resource with command calls
as write instructions and query calls are read instructions. With these de�nitions, the
situation above is correctly identi�ed as a data race, albeit a high-level one.

One might note that this data race can be avoided by modifying withdraw so that
it does not change the balance if the amount is higher. However, it might not always
be possible to easily adapt a supplier to the needs of a client.

High-level data races are often called atomicity violations. We use this term to
refer to both high and low-level data races.

2.3.2 Failure

A distributed system should be robust enough to keep on working even if some of
the nodes vanish. To achieve this, the program has to be able to mitigate the failure.
Mitigation in the client can simply be done by handling the appropriate exception.
Handling the failure in the supplier, however, is often di�cult.

For example, we assume two a bank accounts a and b like in listing 2.1 and a client
executing the following code:

if (a.balance > 100) then
a.withdraw (100)
b.deposit (100)

end

Apart from the data race, there is another problem that only shows up in a dis-
tributed context. Suppose that the client resides on a di�erent machine, and has al-
ready issued the withdraw call. Let us look at two possible scenarios.

In the �rst scenario, the machine where b resides crashes. The client is informed
of the problem by an exception and deposits the money back onto a.

In the second scenario, the client crashes, so the money is lost. This calls for a
mechanism that enables the supplier to mitigate failure if a client fails.

2.4 Concurrent Programming Paradigms

Below we give a short overview of the general paradigms for object-oriented concur-
rent and distributed programming models.

11

2.4.1 Threads – Classic Shared Memory

Threads are processors with a small exclusive region containing the thread local data,
and a big shared region where most objects live. Since these processors are able to ac-
cess all object in the shared region, synchronization measures such as locks are needed
to avoid data races. Some of these measures, such as signals with monitors, have a
message-passing semantics. However, shared memory models are usually not bound
to a speci�c communication medium. Most programming languages used in industry
support threads. Threads are a thin abstraction over the underlying architecture and
as such a good basis to build more elaborate models upon.

The threading model can be combined with network objects to form a distributed
system. The framework usually uses proxy processors to mimic the client in the sup-
plier node, and objects need to be exported before they are reachable from the net-
work. For transparency, separate calls are synchronous.

2.4.2 Processes – Classic Message Passing

Processes are a combination of processor plus an exclusive region. Communication
between the processes is realized through message passing. Processors may choose to
block until receiving a message matching a certain pattern, which allows synchronous
and asynchronous communication. Process calculi such as CSP [30] are examples, as
is the actor model [1] and many protocols such as IMAP [15].

This form of communication and concurrency requires strict speci�cation on how
interactions between individual components are handled, which can be done by us-
ing process calculi. This also results in less �exibility: every communication follows
a strict protocol. Furthermore, it treats communication completely orthogonal to the
object-oriented abstraction. Nevertheless, it is the most general form of distributed
communication and the basis for other distributed models. Note that network ob-
jects, although it follows the shared memory paradigm, is usually implemented over
message passing.

2.4.3 Active Objects

The concept of active objects is an application of the actor model [1] to the object
oriented paradigm. The idea behind active objects is to use objects for transparently
representing actors, and use feature calls for communication.

In classic active object models, regions contain a single active object and proces-
sors have access to exactly one region. Communication usually allows for synchro-
nous, asynchronous and future calls. In this case, the active object represents itself,
the region and the processor at the same time. Some recent models allow for multi-
ple active objects per region. This is more �exible, but requires the programmer to
di�erentiate between the object and the region.

Active object models are generally simple to apply to distributed systems their
communication medium is already based on messages.

Passive objects. A passive object, as opposed to an active object, cannot be refer-
enced from another region. As a consequence, separate calls cannot be targeted at
passive objects. References to passive objects in arguments of separate calls lead to
a deep copy1 of the passive object: the object and all passive objects it directly or

1A deep copy contains a copy of all the directly or indirectly referenced passive objects.

12

indirectly references are copied, but not the referenced active objects.
Some models, for example by using the active object design pattern [35] in a shared

memory environment, put passive objects in a shared region, where all processors can
access them, allowing for parallel access but requiring synchronization to avoid data
races.

2.5 Comparison of Network Object Languages

The number of languages intended for distributed computing is huge; an early attempt
at giving an overview over distributed programming languages in [2] from 1989 al-
ready listed 92 languages. Since this work focused on object-oriented distribution, we
only consider models that make use of network objects. While we acknowledge that
there are good actor-based languages, such as Erlang and Scala/Akka providing good
fault tolerance, we are not including them in the comparison, as they are examples of
classic process + message-passing communication, not network objects.

In this area, we can make a distinction between pure network object models, which
leave synchronization to the user, and active object models. In this section, we look
at the former models and refer for active object-based languages to section 2.6.

Many modern object-oriented languages o�er a method to use objects remotely. In
general, these concurrency models have one shared region per node that is accessible
for all processors. Every remote call, usually synchronous, is executed by another
processor on an object in the shared region. This means that multiple executions with
the same target can run in parallel if there is no manual synchronization employed.
For our comparison we chose a few important languages:

Modula-2 The language that coined the term network object and introduced the
garbage collection method still used by most network object languages.

Emerald A language best known for its ability to move objects.
Argus A language that integrates transactional and data integrity features of database

systems with a network object architecture.
Java RMI Remote execution support built into Java that also allows the transfer of

bytecode.
CORBA The standard for network objects across di�erent programming languages.

2.5.1 Evaluation

For the evaluation of the network object languages, we focused on the following prop-
erties:

1. What communication modes (synchronous, asynchronous etc.) does the lan-
guage support?

2. How does it ensure data integrity on failure, especially incomplete computa-
tions?

3. How does the system recover from failure?
4. What are the mechanisms for synchronization?

2.5.2 Argus

Argus [37] is a programming language built for reliability.

13

Argus objects are relatively heavy-weight and form regions. Every region has a
variable number of processors associated with it. These processors are only associated
with one region and can only access objects located there. Every region has a guardian
object that o�ers the features accessible from other regions. Objects in a region can
be stable, which means that their state is backed by nonvolatile memory, so that the
region can be recovered in case of a failure.

Argus supports transactions, that is, computations that are serializable and total.
Transactions are implemented using special atomic objects that provide the needed
support for synchronization and rollback of changes. Synchronization is pessimistic
using reader-writer locks.

Communication modes. Synchronous only.

Data integrity. Argus uses atomic objects to ensure totality: actions consiting of
multiple computations are either applied atomically in their entirety or not at all.

Failure Handling. Non-transient objects are synchronized with stable memory to
allow for automatic recovery. Recovery routines are automatically started when a
node needs to be restarted due to failure.

Synchronization / Data races. The transaction-like support in Argus can be used
to prevent data races.

2.5.3 Emerald

Emerald [] is a programming language thats support mobile objects and processes.
In Emerald, all object of a node are placed in a shared region, accessible by all

processes. So-called active objects, not to be confused with the term introduced by us
before, contain a process that is started when the objects has been created. However,
this process does not have exclusive access to its object, but it may invoke private
features that are not accessible by other objects. If the object is declared as a monitor,
all operations on the object are mutually exclusive.

Emerald supports mobile objects and processes: language constructs allow objects
to be moved and �xed to nodes. If an object with an associated process is moved, the
process is moved too.

Communication modes. Only synchronous communication.

Data integrity. None.

Failure Handling. No.

Synchronization / Data races. Emerald supports monitors together with condi-
tion variables. However, it is not possible for a client to explicitly acquire the lock, as
with the original monitor concept, feature calls enter and leave the monitor automat-
ically similar to synchronized methods in Java.

14

2.5.4 Modula 3

Modula 3 [6] shaped the way how network objects are handled by many distributed
frameworks, not through more features but rather less. It only supports synchro-
nous calls and the network object implementation is in general very lightweight. The
garbage collection algorithm used by network objects of Modula 3 [5] is still the most
widely used one. Most current implementation of network objects, including Java’s
RMI, CORBA and .NET remoting are all inspired by the approach of Modula 3.

Communication modes. Synchronous only.

Data integrity. None.

Failure Handling. No.

Synchronization / Data races. Only normal programming language constructs.

2.5.5 CORBA

The Common Object Request Broker Architecture [52] is a standard for inter-operable
network objects. The required core of the standard is limited, but contains many op-
tional parts and allows the system to be expendable. Since the available features de-
pend heavily on the implementation of the Object Request Broker and the service in
general, making absolute statements about CORBA’s features and limitations is di�-
cult. The main criticism of CORBA is its complexity [25], which lead to its declining
use outside of the embedded programming area.

Communication modes. Synchronous communication, but there exists an exten-
sion for asynchronous calls and replies [53].

Data integrity / Failure Handling. Optional: Depends on the speci�c Object Re-
quest Broker implementation, a speci�cation for fault tolerant CORBA exists [51].

Synchronization /Data races. It is possible to let only the main thread perform the
work, which then works similar to active objects. Otherwise the various constructs
of the programming language used by the supplier are available, but since they are
not meant for distributed use, they can usually not be used remotely.

2.5.6 Java RMI

While Java Remote Method Invocation is similar to CORBA as its concept, it is far
simpler designed. Current versions of RMI can use the same protocol as CORBA for
interoperability. A major advantage of RMI is its ability to transfer objects including
their implementation in form of bytecode. RMI also supports object activation, which
allows for network objects to be created and destroyed on an on-demand basis, that
is, only if a client actually has an active reference to the object.

Communication modes. Java RMI only supports synchronous communication.

15

Data integrity. None

Failure Handling. Limited (Object Activation, only for crashed JVMs)

Synchronization / Data races. Monitors and other programming language con-
structs. Not possible to acquire locks remotely.

Source: Java SE 8 RMI Speci�cation

2.6 Comparison of Active Object Languages

Although active object languages can be seen as a speci�c subtype of network ob-
ject languages, not all active object languages are distributed and would thus qualify.
Nevertheless, they share the abstraction of message passing by feature calls. Their
main advantages over other, usually more lightweight, network object languages is
the absence of low-level data races due to the separation of regions within a node
and that they use feature calls also as an abstraction for synchronization. However,
this advantage comes at the cost of having no access shared memory, which places an
overhead on many parallel algorithms.

As with the network object languages, we picked a few interesting and/or widely
used languages for a comparison. The presented languages together give a overview
of the current state of the art, even if they are sometimes decades old: we chose the
well-known pioneers. Not all these languages support distribution, but this does not
make them irrelevant. The selection is the following:

ABCL A set of languages that build upon the actor model and can be seen as the
predecessor to the modern active object approaches since it pioneered many
modes of communication.

ASP A calculus for active objects built upon ABCL.
MultiASP An extension to ASP to incorporate threading within an active object.
Creol A classic active object-language used as a basis for many extensions.
E The E programming language is unique due to is complete asynchronous, non-

blocking concept that avoids deadlocks and the sharing of processors.
AmbientTalk A language that builds upon the principles of E and extends them to

better support ad-hoc networks.
(J)CoBox An active object language that allows referable objects per region and the

nesting of regions.
Scoop A concurrency model with a particular focus on avoidance of data races.

2.6.1 Evaluation

For every model, a short introduction using the terms above is given before the eval-
uation. The evaluation consists of the following items:

Shared Processors. Can objects share their processor?

Synchronization. What modes of synchronization are available at the language
level?

16

Data races. Does the model avoid low-level data races? Is it providing the program-
mer with means to avoid high level data races? Is it reordering calls, therefore making
it di�cult for the client to rely on a speci�c state?

Sharedmemory. How can a programmer take advantage of available shared mem-
ory to increase performance without risking low-level data races?

Callbacks. How does the model handle callbacks avoid a deadlock? Is it important
for the client to know whether or not the supplier will send a callback?

Interruptions. How can an active process be interrupted, for example, to cancel an
operation?

2.6.2 Failure

While AmbientTalk tries to avoid failure due to intermittent disconnections, none of
the programming models o�ered an advanced mitigation strategy for failure. While
not an active-object language and therefore not part of this comparison, Argus [38]
o�ers atomic objects for this purpose.

2.6.3 Overview

Table 2.1 gives a brief overview on the �ndings of the evaluation.
The Synchronization column shows the di�erent types of feature calls and syn-

chronization methods possible. A and S are for basic synchronous and asynchronous
feature calls, while F and R indicate future calls and asynchronous replies. W stands
for remote and L for local wait conditions.

Data Races can be handled either basically, which just prevents low-level data
races without making it possible to make multiple calls that are all considered one
operation. Reordering indicates that message calls not need to be handled in the same
order as they arrived. Exclusive states that the languages supports clients making
multiple calls without interruptions. No means that the same pitfalls as with multi-
threading are also possible in the model.

Callbacks are either supported in general or realized by suspending the current
execution in favor of other calls until the message with the result arrives. A fourth
option, explicit, indicates that the client has to anticipate the exact callback message,
which is not �exible and basically amounts to no support for callbacks.

17

Model Shared Proc. Synchronization Data Races Shared Memory Callbacks Interrupt

ABCL No A,S,F,(R) Basic No Explicit Yes
ASP No A,(S),F Basic No Explicit No

MultiASP Noa A,(S),F No Yes Explicit No
Creol No A,S,F,L Reordering No Suspending No

(J)CoBox Yes A,S,F,L Reordering Nob Suspending No
E Yes A,R Basic No Supported No

AmbientTalk Yes A, R Basic No Supported No
Scoop Yes A,S,(F),W Exclusive No Supported Noc

aThe authors remark that it is possible to extend the calculus accordingly
bJCoBox’s compatibility with Java allows usage of libraries that are based on threads
cA mechanism called Duels [50] is proposed to allow interruptions, but has not surfaced yet

Table 2.1: Overview of capabilities of selected concurrent and distributed object oriented programming models

18

dormant active waiting

receive wait

�nish receive

Figure 2.1: Processor states in ABCL/1

2.6.4 Actor Based Concurrent Language

ABCL is a group of object-oriented concurrent programming languages. Lisp-based
ABCL/1 [67] combines many many aspects that are now common in active object
programming models, like asynchronous and future calls.

Object model

Every object in ABCL forms their own region, each with one processor. In ABCL/R,
the meta-objects serve as the processors for the objects they denote. ABCL/R2 in-
troduces meta-object groups to allow for more cooperation between the meta-objects
introduced in ABCL/R. Objects in ABCL, with exception of ABCL/C+, are not type
checked, which in the case of ABCL/R and ABCL/R2 allows objects to change their
features at runtime through their meta-objects. Note that due to ABCL (except AB-
CL/C+) being based on LISP, data structures other than objects are possible as values.

Processor state

Initially, a processor is dormant. If it receives a feature call in one of its queues, it
changes to active, where it stays until the request if �nished, in which case it goes
back to dormant, or waits, changing the state to waiting. The three states and their
changes are shown in �g. 2.1. Later active object languages often use similar states
for active objects.

Processing model

Every processor has two message queues for incoming calls: an ordinary and an ex-
press queue. If a call is received in the express queue while the processor is active, it
suspends the current operations and processes the express call before either continu-
ing with the ordinary call or aborting it. Messages originating from one processor are
received in the order they are sent. We do not qualify express messages as reordering
since the purpose of express messages are to interrupt a processor. In the well known
producer-consumer example, they could be used to stop a producer. As such, they can
be seen as a tool similar to exceptions.

Evaluation

Shared Processors. Objects have their own exclusive processor.

Synchronization. ABCL allows for asynchronous, synchronous and future calls.
A call can continue after the result is sent back. In addition, a call may await incom-
ing calls meeting a speci�ed constraint. For example, a shared bu�er’s get feature
may await the call of the put feature if the internal bu�er is empty. ABCL/C+ [19]

19

introduced the possibility to specify a recipient for the result of asynchronous calls,
mimicking asynchronous replies.

Data Races. There is no integrated approach for a client to ensure that its subse-
quent calls are not interrupted by other processors. No shared memory implies safety
against low-level data races.

Shared Memory. ABCL does not support shared memory.

Callbacks. A client can explicitly await incoming calls that match a speci�ed pat-
tern, which, among other things, allows for speci�ed callbacks from the supplier and
even incoming calls from other clients. The client needs to know exactly whether
the supplier will send a callback, it cannot simply wait just in case there might be a
callback. Callbacks during synchronous calls lead to deadlocks.

Interruptions. ABCL handles interruptions by separating ordinary from express
calls. The latter are handled by a separate queue and can interrupt the former. If an
express call arrives while an ordinary call is applied, the ordinary call is suspended and
the express call applied instead. After the express call(s) have �nished, the ordinary
call is either continued or aborted. The programmer has to be careful to avoid low-
level data races between ordinary and express calls.

2.6.5 Asynchronous Sequential Processes

The ASP calculus [10] is a calculus for active objects.

Object model

Objects are divided into active and passive objects. While active objects can be ref-
erenced from everywhere, passive object can only be referenced from objects within
the same region (called activity). Future references can be passed as arguments.

Processing model

Every region has its own processor and a single call queue. A call can yield execution
to later calls matching a speci�ed pattern. For example, a queue object could yield a
call to dequeue to a call to enqueue if the queue is currently empty. After a matching
call is processed, the original call continues execution.

Evaluation

Shared Processors. Regions have a single processor, but there is only one active
object in the region, all other objects are passive and cannot be referenced from out-
side their region.

Synchronization. Asynchronous and future calls; the latter can be used to emulate
synchronous calls.

20

Data Races. There is no integrated approach for a client to ensure that its subse-
quent calls are not interrupted by other processors. No shared memory implies safety
against basic data races.

Shared Memory. Not considered.

Callbacks. There is no direct support for callbacks, but a call can yield at some
point after the call for receiving a callback. However, since this mechanism blocks
until it receives the speci�ed call pattern, a client has to know in advance whether a
supplier will send a callback.

Interruptions. ASP does not allow interruptions.

2.6.6 MultiASP

MultiASP [26] extends ASP to allow handling multiple requests in parallel. This is
achieved by putting features in groups. Two features in the same group cannot be
processed in parallel.

Processing model

Every region has an in�nite number of processors. Processors eagerly process calls
from the calls queue as long as they belong to di�erent groups than the ones still being
computed.

Evaluation

Shared Processors. As in ASP.

Synchronization. As in ASP.

Data Races. Due to the possibility of executing multiple calls in parallel, low-level
data races can occur as in multi-threaded applications. The programmer has to choose
the correct groups for the features or correctly use synchronization measures such as
locks.

SharedMemory. Parallel processing takes advantage of shared memory at the cost
of annotations and/or explicit synchronization using locks.

Callbacks. As in ASP.

Interruptions. As in ASP.

2.6.7 Creol

Creol [32] is an object-oriented, distributed programming model designed with type
safety in mind, introducing a form of contract that not only speci�es the behavior of
the supplier, but also of the client.

21

Object model

All objects in Creol form their own region similar to ASP. Interfaces specify the be-
havior of an object as a set of contracts. A contract speci�es the supplier feature,
but can also require that the client adheres to a given interface, which can be used
for callbacks even if the client does not appear as an argument. While this is similar
to selective export of features in Ei�el, the availability of the client in the form of a
special variable is a new concept.

Contracts in Creol are not to be confused with contracts as in Design-by-Contract:
They only specify the argument types, not arbitrary pre- and postconditions. Inter-
faces can inherit from multiple other interfaces and subsume their behavior.

Like in most object-oriented programming languages, objects are de�ned by classes
that implement interfaces and can also inherit from other classes. Inheriting from a
class, however, does not imply adherence to the same interfaces. Variables in Creol
are typed based on the interface of the object.

Processor state

Processors in Creol are either active or inactive. A processor is active while it pro-
cesses a feature call, but feature calls can suspend execution. Any further call will
activate the processor again, and if this call is �nished, the original continues.

Processing model

Processors have a single incoming call queue, but may reorder calls via so-called
Method overtaking: a supplier may evaluate feature calls from a client in another order
than made by the client.

Evaluation

Shared Processors. Objects have their own exclusive processor.

Synchronization. Creol allows for asynchronous, synchronous and future calls.
A client can suspend the current execution until a (local) condition is satis�ed, for
example, until a future value is available. This allows for all other incoming future
calls to be executed, also from other processors than the current supplier.

Data Races. There is no integrated approach for a client to ensure that its subse-
quent calls are not interrupted by other processors. The possible reordering of re-
quests poses an additional risk. No shared memory implies safety against basic data
races.

Shared Memory. Creol does not support shared memory.

Callbacks. A client can suspend execution, which allows from callbacks from asyn-
chronous calls but also all other incoming calls. Callbacks during synchronous calls
lead to deadlocks.

Interruptions. Creol does not support interruptions.

22

2.6.8 (J)CoBox

The goal of CoBoxes [59] is to enable a better structuring of objects in a distributed
system. This model can be seen as an evolution of ABCL and Creol, with some con-
cepts taken from E and Scoop.

Object model

Similar to E and Scoop, regions contain multiple objects and every object can be ref-
erenced. However, regions can also be nested. Only objects on the topmost, the same
and one lower level can be referenced. A region is created when an object of a specif-
ically marked class is instantiated, similar to separate classes in early versions of
Scoop.

Processing model

Processors have a single incoming call queue. A call can await a future instead of
retrieving it to yield for waiting calls. Yielding is also possible explicitly to wait for
local state changes. It is not possible to restrict the calls to be executed while waiting,
so it is possible for later calls to �nish before other calls from the same client are
resolved.

Evaluation

Shared Processors. Objects are combined into regions that share a processor. Re-
gions can be nested.

Synchronization. CoBoxes supports asynchronous calls, future calls and with the
latter also synchronized calls through blocking. Tasks can yield to await local changes.

Data Races. There is no integrated approach for a client to ensure that its subse-
quent calls are not interrupted by other processors. No shared memory implies safety
against basic data races.

Shared Memory. CoBoxes do not take advantage of shared memory.

Callbacks. Only while yielding, which allows all other calls to proceed, not just
callbacks.

Interruptions. CoBoxes do not handle interruptions.

2.6.9 E

The E programming language [44] was designed for secure, capabilities based dis-
tributed computing. However, a very interesting property is the pure asynchronous
nature of the language, preventing all deadlocks.

23

Object model

All objects in E are active and can share processors. Objects can be di�erentiated
in near objects and far objects. Near objects share the same processor as the current
object, while far object have a di�erent processor. For security, E employs capabilities
to limit what other objects can do.

Processing model

Processors have a single incoming call queue. Synchronous calls are only possible to
near objects, so cannot be used as a synchronization mechanism. However, a client
can register a continuation for when a promise is ful�lled, enabling asynchronous
replies.

Evaluation

Shared Processors. Near objects share a processor.

Synchronization. E never synchronizes processors. The language allows for con-
tinuations when results become available or the supplier has a problem.

Data Races. There is no integrated approach for a client to ensure that its subse-
quent calls are not interrupted by other processors. No shared memory implies safety
against basic data races.

Shared Memory. E does not support shared memory.

Callbacks. Since feature calls in E are always completed without waiting, a supplier
can make callbacks that are normally enqueued and can be handled.

Interruptions. E does not support interruptions.

2.6.10 AmbientTalk

AmbientTalk [65] is a programming language intended for ad-hoc distributed net-
works. Its main focus is dealing with intermittent disconnections. It is based heavily
on the principles of the E programming language, but extends it with better support
for failure and support for �nding ambient resources.

The runtime handles intermittent disconnections transparently: a failure only oc-
curs if the recipient disappears permanently, that is, after a timeout.

Evaluation

AmbientTalk is identical to E in all evaluated aspects.

24

2.6.11 Scoop

The Simple Concurrent Object Oriented Programming model is discussed in more de-
tail in chapter 3. The main di�erentiating feature of Scoop in comparison to CoBoxes
is its unique control scheme to handle high-level data races and remote wait condi-
tions. This evaluation is based on Scoop, not the distributed variant D-Scoop pre-
sented in chapter 5.

Evaluation

Concurrency. SCOOP is an active object model, but multiple objects can share the
same processor, as in JCoBox and E.

Synchronization. Calls can be either asynchronous or synchronous. All query
calls (that is, yielding a result) are always synchronous; some commands may be syn-
chronous depending on the arguments to support callbacks. In addition to synchro-
nous calls, the model supports remote wait conditions in the form of preconditions.
While it does not have the notion of future calls, the common practice encourages that
intensive computations are done in procedures whose results are retrieved in query
calls. Since procedures are asynchronous and the query blocks until all previous calls
have been applied, this renders an integration of future calls redundant. This form of
future calls is only possible due to the non-interference guarantees.

Callbacks. Callbacks are possible for synchronous calls; this is achieved by a tech-
nique called lock-passing.

Interruptions. There are various proposals for interruptions in Scoop, an early
proposal is duels [50]. As of today, no integrated approach exists.

2.7 Conclusion

While the discussed languages di�er on synchronization principles, most of them do
not address safe usage of shared memory and their failure model is rather simple. The
only model that has a mechanism for shared memory and a more advanced failure
model is Argus. However, in Argus, this is limited to the special atomic objects.

We chose Scoop as a basis for improvements in this area since it already o�ers a
solution to high-level data races that includes handling of callbacks.

25

Chapter 3

Scoop

The simple concurrent object-oriented programming model, Scoop, comes in the form
of an active-object type programming language based on Ei�el [20], but its principles
are applicable to other programming languages.

This chapter informally introduces Scoop using the terminology de�ned in chap-
ter 2. Scoop was �rst introduced by Meyer [42], and a complete description of Scoop
was given in [49], with later formalization by Morandi [47]. However, with the in-
troduction of Queues-of-Queues [66], these semantics became partially obsolete. A
comparison between the old and the new, QoQ based semantics, was shown in [13]
using graph transformations.

The principal implementation of Scoop is based on Ei�el, in particular Ei�elStu-
dio. We assume basic familiarity with the Ei�el programming language and active-
object type languages. A complete tutorial for Scoop by Bertrand Meyer is available
online [4].

3.1 Regions and Processors

Regions in Scoop can contain multiple objects and is associated with one processor,
and every object in the region can be referenced from outside the region. Passive
regions, discussed, later, are regions without a processor. Ei�el and therefore Scoop
has a notion of expanded objects, which are treated as values and never referenced.

3.1.1 References

This section discusses properties of references in Scoop and does not apply to ex-
panded objects and immutable objects (chapter 8); it does, however, apply to slices
(chapter 7).

Separate Types

A central aspect of Scoop is that the type system re�ects the locality of referenced
objects. The system we use is static and divides references into two groups: non-
separate and separate. Regular references are of the former type, while references
with the keyword separate are of the latter. Non-separate references never point
to separate objects, while separate references can point to both separate and non-
separate objects.

26

target
source

separate non-separate Void

separate X X X
non-separate X X

Table 3.1: Type conformance for assignment

formal
actual

separate non-separate Void

separate X X X
non-separate 1 X

Table 3.2: Type conformance for reference argument passing to separate calls

ref1: separate C -- May reference separate and non-separate objects
ref2: C -- May only reference non-separate objects

Separateness is determined from the perspective of the object that holds the refer-
ence, that is, where the particular variable is de�ned, no matter whether the reference
is a local reference or argument of a routine, a result type of a feature or an attribute
of an object. This is especially relevant for arguments of feature calls, since a non-
separate formal argument of a feature call with a separate supplier is non-separate in
regards to the supplier, not the client, so passing a non-separate actual argument is
not possible.

Type Conformance

The special value Void, which represents a reference to no object, conforms to both
separate and non-separate types, but void-safety [43] still applies. References of an
expanded or immutable types, as presented in chapter 8, should never be marked
separate. For other references, we can distinguish the following cases:

Assignment. Type conformance between separate and non-separate types for as-
signment is simple and shown in table 3.1. Two types do not conform if the target type
is non-separate, that is, not annotated with the separate keyword, but the source type
is. The more expansive description of the Scoop type system in [49] also describes
so-called processor tags. However, the current Scoop reference implementation does
not support processor tags which is why we are not introducing them here.

Arguments. Type conformance of arguments is the same as for assignment, but it
is checked from the perspective of the supplier object, not the client. This makes a
di�erence if the target of the call is separate. We can translate the type conformance
rule to the perspective of the client in a separate call, which results in the rules in
table 3.2.

As a client, it is usually not possible to pass any reference2, with exception for Void
and immutable objects, for arguments that are non-separate from the perspective of
the supplier because the supplier expects a reference to an object living in the same
region, which, in the case of separate calls, cannot be statically ensured through the

2Expanded objects can be passed, but they are passed by value, not by reference.

27

result
target

separate non-separate

separate separate separate
non-separate separate non-separate

Table 3.3: Type combinations of separateness

type system without additional annotation such as the aforementioned processor tags.
If the compiler is able to infer that a given argument resides on the same processor, it
may allow it. However, the current reference implementation does not support this.

Type Combination

Table 3.3 gives an overview of the di�erent cases of target type and result type. If the
target of a call is separate and yields a value of a reference type as a result, the type
of the reference is always separate, regardless of the written result type. This is due
to the fact that if the result type is non-separate, the result points to an object within
the same region of the target object, not the client. If the target was separate, then so
is the result.

Object Tests

It is possible to use an object test to check at runtime whether a separate expression
points to a non-separate object:

if attached {MY_CLASS} separate_expression as l_non_separate then
...

end

3.1.2 Expanded Classes

Expanded classes have a copy-semantics: whenever their instances are assigned to a
variable, be it an attribute, an argument, a local variable or a result, they are copied.
The copy always resides in the same region as the object that holds the variable.
Therefore, variables of an expanded type can never point to a separate object and
should consequently not be marked separate. Examples for typical expanded classes
are: INTEGER, BOOLEAN and POINTER.

3.1.3 Immutable Classes

Immutable classes are an extension to Ei�el presented in chapter 8. Like expanded
classes, their instances are always considered non-separate. But unlike expanded ob-
jects, which are passed by value, immutable objects are passed by reference. This is
possible because they are statically proven to remain unchanged after creation. Typ-
ical candidates for immutable classes are strings, although the standard STRING class
of Ei�el is mutable. Their main advantage over expanded classes is that they can be
referenced and variables of immutable types are polymorphic3.

3Variables of expanded type can only hold instances of exactly this class, not a descendant.

28

3.1.4 Processor Creation

A new processor can be created by simply making an instance of an object of separate
type, for example through a create instruction on a variable with separate type:

local
l_var: separate C

do
create l_var.make
...

end

Or in the explicit form as in create {separate C}.make. Regardless of which
form of creation is used, the newly created processor is not controlled (see section 3.2)
afterwards.

3.1.5 Passive Regions

Passive regions4 [46] are regions with no associated processor. When a client proces-
sor requests calls to an object in a passive region, it adopts the region temporarily.
All calls to the region become e�ectively non-separate, which makes them synchro-
nous but also avoids some overhead, even though this can also be achieved by some
transparent optimizations [66].

Passive regions are a way to reduce the number of operating system threads the
program requires and are best suited for mutable data objects. Passive regions borrow
the operating system thread of the client for all executions, which implies that all calls
to objects in passive regions are synchronous.

3.2 Control and non-interference

An important Scoop concept is control. A call targeted at a separate reference is only
valid if the separate reference is controlled. A reference is controlled if the region
it points into is controlled by the current processor, that is, the handler of Current.
When execution of a feature starts5, all regions that hold at least one of the arguments
of the routine are controlled. More speci�cally, references are controlled if they are ar-
guments of the routine or if it can be statically inferred that the objects they reference
are located within the same region as an argument. The current Scoop implemen-
tation in Ei�elStudio is able to detect this for expression chains as in for example
x.f(a).g.h(b), but this could be extended to also detect whether a local variable is
controlled after assignment of a controlled reference to it.

Control is a static concept, a static property of a relationship between two proces-
sors at a speci�c point during the execution of a feature. The dynamic counterpart
to control is locking, discussed in section 3.3: a controlled region is always locked at
run-time, while a region that is locked at run-time may not be controlled. Or in other
words: the set of locked regions is a superset of the controlled regions at the same
point during execution.

To give an example for the correct use of control, we go back to the bank ac-
count example in the comparison, with an account class as in listing 2.1. We assume

4The original term passive processor is ambiguous
5This includes the execution of the precondition to check whether it holds.

29

that a client has a feature for transferring some money from one account to another.
The transfer feature shown below has three separate calls, balance, withdraw and
deposit, which are all valid since their targets, a_from and a_to are controlled due to
being arguments of the routine.

class CLIENT
feature

transfer (a_from, a_to: separate BANK_ACCOUNT; a_amount: NATURAL)
do

if a_from.balance >= a_amount then
a_from.withdraw (a_amount)
a_to.deposit (a_amount)

end
ensure

a_from.balance >= a_amount implies
a_from.balance = old a_from.balance - a_amount and
a_to.balance = old a_to.balance + a_amount

a_from.balance < a_amount implies
a_from.balance = old a_from.balance and
a_to.balance = old a_to.balance

end
end

As a counterexample, the transfer routine of the following class is not valid:

class BUGGY_CLIENT
feature

from_a, to_a: separate BANK_ACCOUNT

transfer (a_amount: NATURAL)
require

a_amount > 0
do

if from_a.balance >= a_amount then
from_a.withdraw (a_amount)
to_a.deposit (a_amount)

end
ensure

from_a.balance >= a_amount implies
from_a.balance = old from_a.balance - a_amount and
to_a.balance = old to_a.balance + a_amount

end
end

While control is limiting, it has a major bene�t: in between the two calls to a
controlled object, and in general to objects of the same region, no interfering call
from another processor can be executed. This is what makes the transfer feature of
our example safe: the balance cannot change in between querying it and withdrawing.
Also, we can be sure that the precondition still holds unless the client invoked directly
or indirectly a feature that invalidates it.

In addition to arguments, a separate block can be used to establish control:

30

l_amount := 100
separate account as c_account do

c_account.withdraw (l_amount)
end

The separate block uses the same mechanisms as a regular routine to gain con-
trol/lock the regions and can be seen as a simple short-hand notation for de�ning a
routine and calling it. However, unlike a routine de�nition, this construct does not al-
low for a wait condition. In addition, variables outside of the block can be used inside
the block.

Ei�el does not allow the same name for a local variable and a feature of a class.
To make sure that there are no con�icts when adding a feature, it is common practice
to prepend local variables with l_ and arguments with a_. The latter allows us to
name the argument of a setter procedure almost the same as the attribute to be set.
We propose a third pre�x for controlled variables: c_. This is to be used in separate
blocks as the controlled alias, that is, after the as. With these conventions, it is always
obvious which variables are controlled, namely the ones that start with either a_ or
c_.

3.3 Locking

To achieve non-interference, the Scoop system locks the regions of all the objects
passed as arguments. However, acquiring a lock does not necessarily mean that some
form of semaphore or monitor is used, although this was done in older implementa-
tions. In modern implementations of Scoop, and also in D-Scoop discussed in chap-
ter 5, it is possible that multiple processors can have a lock on the same region at the
same time. In Scoop, a lock is simply the right to send calls to a region. It is for the
runtime system to ensure that the calls are ordered so that no interference can occur.
This implies that an issued call might not be executed immediately, it rather could
take a long time if the region is still busy with calls from other processors. At the end
of a routine, all acquired locks are given back or unlocked to inform the system that
no more calls are to be expected. Execution of asynchronous calls might still happen
well after the client routine �nished and gave back its lock.

The runtime system ensures that the calls are ordered in a way that does not allow
another client to observe one supplier in the state before and one supplier in the state
after execution of all the calls. In other words, it ensures realizability of the whole
routine/separate block.

Locked. We say that a region is locked if the current processor has a lock on the
region. A reference the current processor holds is locked if it points into a locked
region.

3.3.1 Control

We mentioned before that the target of a call needs to be non-separate6 or controlled in
order for the call to be valid. All separate arguments of a routine are controlled, as are
all expressions for which it can be inferred that their result is within the same region

6A processor can be considered to always hold a lock on itself, so non-separate references are trivially
controlled.

31

as a controlled expression. There is a strong relationship between control and locks: a
controlled reference is always locked, but not all locked references are controlled. The
latter situation can occur due to lock passing or because a reference is not statically
ensured to be controlled while actually pointing into a locked region.

3.3.2 Lock Passing

A lock being simply a right for enqueuing calls also means that it can be passed to
another processor for the duration of a call. This is done for all synchronous calls
to avoid deadlocks: the calling routine might have a lock on a processor the called
routine needs. In this case, the called routine might request and receive a new lock
on the client, but all calls that are issued with this lock are executed after the calling
routine �nished. In turn, this might lead to a deadlock due to synchronization.

To avoid this problem, with every synchronous call, separate or non-separate, the
locks of the current execution frame are passed on. The called routine now only needs
to acquire the locks it needs in addition to the received locks. When a routine �nishes,
it gives back all locks it received and unlocks the ones it acquired itself.

Synchronous commands. As mentioned before, the Scoop implementation auto-
matically makes command calls which contain at least one locked argument synchro-
nous to avoid, through lock-passing, deadlocks. However, this introduces a new prob-
lem of making it di�cult and sometimes even impossible to decide statically whether
a call is asynchronous or not, which is the reason for the tool presented in [40]. With
this analysis tool, a programmer can assign variables with di�erent processors and
check whether, under these circumstances, a call is synchronous or asynchronous.
The description of Scoop by Nienaltowski [49] used the controlled instead of the
locked state of a reference to determine whether a command call is synchronous,
which is a more transparent mechanism than the current.

3.4 Blocking and Waiting

3.4.1 Adaptive Synchronization

Query calls that yield a result are synchronous, as are command calls where at least
one of the arguments is locked. So for a call to be asynchronous, the following has to
hold:

1. The target object is not in the same region as the client. As mentioned in sec-
tion 3.1.1, a variable of separate type may reference a non-separate object, so it
is possible that the call is actually non-separate at runtime.

2. The call is a command, not a query. If the call yields a result, the client waits
until it is available before continuing; this is called wait-by-necessity. It is not
valid to call a function or attribute like a procedure in Ei�el7, which makes it
impossible to make an asynchronous call to a routine yielding a result.

3. None of the arguments reside in a locked region. If one of the arguments is in a
locked region, and the region of the client is also considered to be locked, then
the lock passing mechanism is used so that the supplier can issue calls, barring
the client from using them at the same time, so it has to block. This is discussed
in section 3.3.2.

7Unless the call is encapsulated by an agent, which is similar to a closure.

32

3.4.2 Wait Conditions

All preconditions (require clauses) that involve at least one separate argument are
evaluated as wait conditions. This works as follows:

1. The client8 issues the call
2. The supplier acquires the missing locks
3. The supplier executes the precondition
4. If the precondition holds, then

(a) The supplier executes the body of the routine
(b) If the routine is a function, the supplier sends back the result

5. If the precondition does not hold, then
(a) The supplier releases all acquired locks
(b) The supplier restarts at 2

The runtime system can optimize when step 5b is applied. The current Scoop
implementation only restarts the process if at least one call9 to one of the supplier
was completed.

3.4.3 Attributes as Futures

Scoop does not have a built-in concept for future calls. However, due to its non-
interference guarantee, it encourages a split of long running functions into a com-
mand that calculates the result and an attribute to hold the result. This way, the client
can make an asynchronous command call, continue execution and retrieve the result
when needed. With lock passing, this also allows the client to let some other processor
retrieve the result.

3.5 Agents

The agent contruct of Ei�el is used to wrap features into objects. For example,
the expression agent t.compute (?, 5, var) creates an object of type FUNCTION or
PROCEDURE, which depends on whether compute is a function or procedure respec-
tively. This object can then be used to call the feature. The question mark in the
agent expression denotes an open argument, this argument has to be �lled when the
feature is called through the created agent object. The locality of the agent depends
on the locality of the target; if the target is separate, then so is the agent.

Agents forAsynchronousReplies. Agents are a useful method for allowing asyn-
chronous replies: The client �rst, through a distinct call, gives the supplier a reference
to the agent that should be called with the result. It then makes a second call that
triggers the computation. Once the supplier has �nished the computation, it uses the
agent to send back the result. The division into two calls is needed to make sure that
the computating call is asynchronous. The COMPUTER class in listing 3.1 is an example
of a supplier that supports both asynchronous as well as synchronous replies. Note
that when using an asynchronous reply, the calls from other processors to the client
might get applied before the result: this is the intention behind using asynchronous
replies in Scoop.

8Here client and supplier denotes the processors, not the objects.
9This call has to originate from another client since the waiting processor does not skip calls.

33

p0
p3 p2 p1

Figure 3.1: Three processors (p1, p2, p3) logging requests on another (p0)

3.6 Scoop Runtime

The concurrent programming abstractions presented rely on the existence of a run-
time that can correctly and e�ciently implement them. At the core of Scoop’s runtime
is a simple execution model for managing requests that are sent between processors.
Each processor is associated with a “queue of queues” [66], that is, a fifo queue con-
taining (possibly several) fifo subqueues for storing incoming requests. Each of these
subqueues represents a “private area” for some other processor to log requests, in
program text order, and without interference from other processors (since they have
their own subqueues). Figure 3.1 visualizes three processors (p1, p2, p3) simultane-
ously logging requests (green blocks) on another processor (p0). The processor p0 is
handling the subqueues one-by-one10 in the order that they were created, and handles
the requests within them in the order that they were logged there, hence ensuring the
Scoop reasoning guarantees.

Consider again the processor that calls transfer (acc1, acc2, 100) on two sep-
arate accounts, acc1 and acc2. Under the current runtime, the handlers of acc1 and
acc2 both generate a private subqueue on which the calling processor can log re-
quests (i.e. the balance queries and set_balance commands) without interruption
for the duration of the block. Should another processor also need to log requests on
an account, then a new private subqueue is generated for it and its requests can be
logged without waiting.

We remark that earlier versions of the Scoop runtime additionally provided tim-
ing guarantees by not allowing processors to enqueue requests concurrently [47]. A
formal comparison with the current semantics is given in [13].

10The client enqueues an unlock request when it no longer needs the queue, that is, unlocks the supplier.
The supplier starts with the next queue only after processing this request.

34

class COMPUTER
feature -- Access

callback: detachable separate ROUTINE[TUPLE[], INTEGER]
computed_result: INTEGER

feature
set_callback (a_callback: like callback)

do
callback := a_callback

ensure
callback = a_callback

end

compute (a_arg1, a_arg2: INTEGER)
do

...
computed_result := (...);
if attached callback as l_callback then

separate l_callback as c_callback do
c_callback.call (computed_result)

end
end

end
end

class CLIENT
...

feature
my_feature (a_arg1, a_arg2: INTEGER; a_computer: separate COMPUTER)

local
l_result: INTEGER

do
-- Synchronous reply
a_computer.compute (a_arg1, a_arg2)
next_step (a_computer.computed_result)
-- Asynchronous reply
a_computer.set_callback (agent next_step)
a_computer.compute (a_arg1, a_arg2)

end

next_step (a_result: INTEGER)
do ... end

end

Listing 3.1: Example: using agents for asynchronous callbacks

35

Chapter 4

Examples

This chapter contains three simple examples for distributed Scoop. They start with
a description and overview of the intended system, followed by the de�nition of the
important classes and their implementation. The following chapters refer to these
examples.

We chose the three examples because they represent the three most important
basic architectures of distributed systems. The �rst example, distributed banking, is
a peer-to-peer system: every bank communicates with the other bank at the same
level. The second example, a chat server, is a simple client-server model: the clients
communicate only with the server, which relays information to the other clients. The
third example is a search engine that uses worker processors to perform the actual
searches before combining them into a sorted result list. Note that in practice, systems
often use a combination of these communication principles.

For every example, we give a graphical depiction of a possible state. We use dashed
rectangles of various colors to form nodes, squiggly rectangles to form regions and
blue ovals for objects. Red arrows are used to denote references.

The examples in this chapter are reduced and simpli�ed for better understand-
ing. Additional features and classes are needed to turn them into full programs. It is
possible, due to the seamless integration of D-Scoop into Scoop, to understand the
basics of the examples by only knowing about Scoop, the D-Scoop initialization and
compensation mechanisms used in the examples are explained later in chapter 5.

4.1 Distributed Banking

The �rst example is an extension to the bank account example in chapter 2. It involves
bank agents that manipulate bank accounts in any of the branches of the bank, with
each branch handled by a di�erent node.

4.1.1 Architecture

The Distributed Banking system consists of nodes called branches. Each branch can
hold multiple agents which can make transfers between all accounts of the bank1. A

1Due to the �exibility of D-Scoop, there is not an actual requirement that agents share the node with
the other objects, but in our example they do. Also, these agents are not to be confused with the agent
construct in Ei�el.

36

REGISTER

BRANCHESACCOUNTS

AGENT AGENT

ACCOUNT

LEDGER

ACCOUNT

LEDGER

AGENT

AGENT

REGISTER

BRANCHES

ACCOUNTS

ACCOUNT

LEDGER

AGENT

AGENT

REGISTER

BRANCHES

Figure 4.1: Example state of the Distributed Banking system

branch provides an index object called the register, which contains a list of branches
and optionally list of accounts where all the accounts of the branch are listed. It is
possible that a branch does not manage any accounts, in which case it also does not
have an accounts object. Examples for those branches are automatic teller machines
or small satellite o�ces.

Every account has an associated list of withdrawals and deposits called the ledger.
Agents can transfer money from one account to another, which leaves a trace in the
ledgers of these accounts.

The agents themselves are suppliers for the di�erent user interfaces, which we
chose not to include in this example. Figure 4.1 shows the object structure of a very
simple banking system with three branches, where one branch has no accounts, an-
other branch has one account and the third branch has two accounts. Each branch has
two agents. The squiggly lines denote the processor boundaries, whereas the dashed
rectangles represent the nodes. The index object of each node is highlighted by the
bold ellipse.

4.1.2 Initialization

We assume that during startup, a branch receives the address of an available branch to
connect to. It can then populate its list of branches from the others, before announcing
to the other branches that it is online by sending them a reference to its register.

37

4.1.3 Classes

Below are the class de�nitions for our example. We omit the code for setting up
accounts and agents.

Account

The account class contains information about the account holder and a reference to
the ledger. An account is uniquely identi�ed by the branch plus account identi�ers:
two di�erent branches may have distinct accounts with the same account identi�er.

For the purpose of this example, the account is limited to only contain the identi-
�er and the reference to the ledger. The undo feature is only used for compensation
(see section 5.4), so it does not provide a compensation for itself. The compensate-
feature registers the undo as a compensation to be run if the client crashes or is dis-
connected before it unlocked the processor whose region the account object is located.

class ACCOUNT

create
make

feature {NONE} -- Initialization
make (a_acc_id: NATURAL)

do
create ledger
acc_id := a_acc_id

ensure
acc_id = a_acc_id
balance = 0

end

feature
ledger: LEDGER

-- A list of withdrawals and deposits
acc_id: NATURAL

-- The account number

withdraw (a_amount: INTEGER_64)
-- Deducts a_amount from the balance

require
a_amount > 0
balance >= a_amount

do
ledger.put_front (-a_amount)
balance := balance - a_amount
compensate (agent undo)

ensure
balance = old balance - a_amount
ledger.item = -1*a_amount

end

38

deposit (a_amount: INTEGER_64)
-- Add a_amount to the balance

require
a_amount > 0

do
ledger.put_front (a_amount)
balance := balance + a_amount
compensate (agent undo)

ensure
balance = old balance + a_amount
ledger.item = a_amount

end

balance: INTEGER_64
-- The current balance of the account

feature {NONE} -- Compensation

undo
-- Undo the last withdraw/deposit

do
balance := balance - ledger.first
ledger.start
ledger.remove

ensure
balance = old (balance - ledger.first)

end

invariant
balance >= 0
balance = ledger.balance

end

Ledger

The ledger is a list of positive and negative integers, representing deposits and with-
drawals. In a real system, it would contain many more pieces of information like the
date, a note, the receiving account etc.

class
LEDGER

inherit
LINKED_LIST[INTEGER_64]

feature
balance: INTEGER_64

-- The current balance as calculated from the ledger
do

across Current as iter loop

39

Result := Result + iter.item
end

end
end

Agent

The agent, called BANKING_AGENT to not confuse it with the agent keyword of Eif-
fel, can make transfers between two accounts. This is done with the two features
transfer and find_account. A transfer works by �rst looking up the accounts, then
checking the balance of the source account and �nally withdrawing the amount from
the �rst account and depositing it to the second account. If a transfer could not be
completed, the success attribute is set to false, otherwise it is set to true.

class
BANKING_AGENT

feature
register: separate REGISTER

success: BOOLEAN

transfer (
from_br, from_ac, to_br, to_ac: NATURAL;
a_amount: INTEGER_64

)
-- Transfers a_amount from one account to another
-- by account id

do
success := False
if

attached find_account (register, from_br, from_ac)
as l_from

and then
attached find_account (register, to_br, to_ac)

as l_to
then

separate l_from as c_from, l_to as c_to do
if (c_from.balance >= a_amount) then

c_from.withdraw (a_amount)
c_to.deposit (a_amount)
success := True

end
end

end
end

find_account (a_reg: separate REGISTER; a_br, a_ac: NATURAL):
detachable separate ACCOUNT
-- A helper function to retrieve an account from its

40

-- account number and bank branch
do

if attached a_reg.find_branch (a_br) as l_br then
separate l_br as c_br do

Result := c_br.find_account (a_ac)
end

end
end

end

Register

The register contains references to a list of branches and an optional list of accounts. It
provides a facade to these objects for easier retrieval of information. However, a client
may also directly use the lists, for example for iteration. The register also contains
the branch identi�er.

The register also contains the features necessary to connect it to the bank network.
For this, the connect_to feature has to be called with the address of one bank. The
branch then connects to this bank, retrieves a list of connected banks and announces
itself to this bank and all the others. This is possible because D-Scoop automatically
connects to the nodes of objects it received a reference to.

class
REGISTER

create
make

feature -- Access
branch_id: NATURAL
accounts: detachable ACCOUNTS
branches: BRANCHES

feature {NONE}
make

local
l_dscoop: DSCOOP
l_index: detachable separate ANY

do
create l_dscoop
l_dscoop.start_server (agent this_branch, 7000)
create branches.make

end

feature -- Branch management
connect_to (a_address: ISTRING)

-- Connects the branch to the network
local

l_dscoop: DSCOOP
l_index: detachable separate ANY

41

do
create l_dscoop
l_dscoop.connect (a_address, 7000)
l_index := l_dscoop.last_index_object
if attached {separate REGISTER} l_index as l_remote_branch then

branches.extend (l_remote_branch)
separate l_remote_branch as c_register do

across c_register.branches as l_iter loop
separate l_iter as c_iter do

branches.extend (c_iter.item)
separate c_iter.item as c_other_branch do

c_other_branch.announce (Current)
end

end
end
c_register.announce (Current)

end
end

end

announce (a_branch: separate REGISTER)
-- Announces the given branch to the current branch

do
branches.add (a_branch)

end

this_branch: REGISTER
-- Simply returns current

do
Result := Current

end

feature
lookup_branch (a_branch: NATURAL): detachable separate REGISTER

-- A helper feature to look up a branch
do

Result := branches[a_natural]
end

lookup_account (a_account: NATURAL): detachable separate ACCOUNT
-- A helper feature to look up an account

do
if attached accounts as l_acc then

Result := l_acc[a_account]
end

end
end

42

Branches and Accounts

These two classes are very similar, both are maps from identi�ers to their correspond-
ing references.

class
BRANCHES

inherit
HASH_TABLE[separate REGISTER, NATURAL]

end

class
ACCOUNTS

inherit
HASH_TABLE[separate ACCOUNT, NATURAL]

end

4.2 Chat Server

4.2.1 Architecture

The chat system uses a central chat server, running on its own node. Clients, also
on their own nodes, can connect to the server, where they get a session object. For
the duration of the session, the client holds a lock on the session. This creates a long
running transactiona and allows the server to clean up if a client disappears. The
server also has a shared list of messages. The clients can retrieve messages and add
new messages. By using wait conditions, the client can wait until new messages are
available.

The clients are implemented with four processors. Two lists called input and
output and reside in the region of one processor, represent what the user enters and
what is displayed on the screen. One processor that is not shown here synchronizes
the user interface with these two lists. One processor waits on new input in the input
list to send to the server and one processor waits on new messages on the server to
send it to the output list.

Aside from being a classic example for a typical architecture, this example also
shows that compensations (section 5.4) can be used for long-running transactions. It
is possible to use them to make sure some code is run even if the connection was
broken or the client is killed. While the example only prints a simple message, a
similar mechanism could be used to clean up resources such as �le descriptors or
database connections.

4.2.2 Initialization

The clients connect to the server and gets its own session object. The session object
contains a reference to the shared list of messages. The client does not start a D-Scoop
server since no node needs to connect to the client.

43

CLIENT FETCHER

INPUT OUTPUT

CLIENT FETCHER

INPUT OUTPUT

MESSAGES

SESSION

SESSION SESSION

CLIENT

OUTPUT

INPUT

FETCHER

Figure 4.2: Example state of the chat system

44

4.2.3 Classes

Client

The client is responsible for setting up the session and then accepting the input. It
creates the fetcher, which fetches new messages. The client sends a message that
the user entered the room. We want the fetcher to get all the messages starting with
this message; no more and no less. We can achieve this by acquiring the lock on the
messages list, starting the fetcher, which will remember the message count, and then
adding the new message. This ensures that no message from another client can slip
through.

Wait conditions are used to suspend execution until new input is available. The
client saves the last count of items, so that it can detect, through the wait condition,
that the count changed and then retrieve the new input. Note that due to the Scoop
semantics, the user interface can enqueue extend requests while the client is still
retrieving items.

ISTRING is an immutable (see chapter 8) version of STRING that automatically con-
verts2 from and to a mutable string.

class
CLIENT

create
make

feature {NONE} -- Initialization
make (a_input, a_output: separate LIST[ISTRING];

a_server_address: ISTRING)
-- Initializes the client

local
l_dscoop: DSCOOP
l_index: detachable separate ANY

do
create l_dscoop
l_dscoop.connect (a_server_address, 7000)

if
attached {separate SESSION} l_dscoop.last_index_object

as l_session then
session := l_session

end
end

feature
session: detachable separate SESSION

input, output: separate LIST[ISTRING]
-- These two lists represent input and output of the chat program

2This conversion can use the convert mechanism from Ei�el

45

last_count: INTEGER
-- The number of lines read from input

username: ISTRING

finished: BOOLEAN
-- Whether the client finished

run
-- Lets the client run

require
attached session

local
l_fetcher: separate FETCHER

do
check attached session as l_session then

separate l_session as c_session do
separate c_session.messages as c_messages do

create l_fetcher.make (username, c_messages, output)
c_session.enter (username)
c_messages.extend (username + " has entered the room.")
separate l_fetcher as c_fetcher do

l_fetcher.start
end

end

from
finished := False
last_count := 0

until
finished

loop
read (input)

end
end

end
end

read (a_input: like input)
-- Reads from input until there is no more to read

require
a_input.count > last_count

local
l_count: INTEGER

do
from

l_count := a_input.count
until

last_count = l_count or else
a_input[last_count] ~ "\bye"

46

loop
if attached session as l_session then

separate l_session.messages as c_messages do
c_messages.extend (

username + " says: " + a_input[last_count]
)

end
end
last_count := last_count + 1

end
if a_input.count > last_count then

c_messages.extend (username + " has left the room.")
finished := True

end
end

end

Fetcher

The fetcher fetches the messages from the server to be shown in the client, which
includes the messages sent by the client. It stops when it receives the message that
the client left the room; no more messages are fetched afterwards. Like the client, the
fetcher uses a wait condition based on the last observed count of items in the list.

class
FETCHER

create
make

feature {NONE} -- Initialization
make (a_username: ISTRING;

a_messages, a_output: separate LIST[ISTRING])
do

username := a_username
messages := a_messages
output := a_output
last_count := messages.count

end
feature

messages, output: separate LIST[ISTRING]
-- The remote messages an the list that
-- represents the user-readable output

username: ISTRING

last_count: INTEGER
-- The number of messages on the server
-- as seen the last time the fetcher checked

47

finished: BOOLEAN
-- Whether the fetcher finished

start
-- Lets the fetcher run

do
from

finished := False
until

finished
loop

read (messages, output)
end

end

read (a_messages, a_output: like output)
-- Reads from a_messages and puts it into
-- a_output a_messages contains no new message

require
a_messages.count > last_count

local
l_count: INTEGER

do
from

l_count := a_messages.count
until

last_count = l_count or else
a_messages[last_count] ~ (username + " has left the room.")

loop
a_output.extend (a_messages[last_count])
last_count := last_count + 1

end
if l_count > last_count then

a_output.extend (username + " has left the room.")
finished := True

end
end

end

Session

Every client receives its own session object. By holding onto a lock on the object
until the user logs out, the server is noti�ed if the connection breaks and can run
some clean up code.

class
SESSION

feature
messages: separate LIST[ISTRING]

48

WORKER

WORKER

SEARCHER WORKER

Figure 4.3: Example state of the search engine

username: ISTRING

enter (a_username: ISTRING)
-- Sets up the session

do
username := a_username
compensate (agent clean_up (messages))

end

feature{NONE} -- Compensations
clean_up (a_messages: like messages)

-- Notifies others if the client disconnected prematurely
do

a_messages.extend ("Connection lost to " + username + ".")
end

end

4.3 Computing Cluster

4.3.1 Architecture

The architecture of the search engine is the opposite of the chat server example, yet
similar: A single client, the search engine, has multiple suppliers, the workers. When-
ever the search engine has to perform a search, it sends the request to all connected
workers, waits for their results and then sorts the results according to their relevance.

This architecture is typical where distribution is used to speed up a calculation
by exploiting parallelism or if the memory requirements for the calculation force the
usage of multiple machines.

While it depends on the kind of work, compensation is often not required since
an incomplete transaction has no adverse e�ect. In our example, the only e�ect of a

49

search is that the found variable is set to the result.

4.3.2 Initialization

The search engine connects to all the workers and puts them into a list. The initializa-
tion code in this example does not start a server since it is not required for the engine
to work. However, a practical implementation would probably start a server to let
remote clients make search requests.

4.3.3 Classes

Search Engine

The search engine class acts as the front-end of our search-engine. When it is cre-
ated, it connects to the various workers that host the data. Its only accessible feature,
search, distributes the search over all the workers and then returns a sorted list of
results. The search engine class can act as a worker too, which allows for a more
hierarchical architecture.

class
SEARCH_ENGINE

inherit
SEARCH_WORKER

create
make

feature {NONE} -- Initialization
make (a_worker_addresses: LIST[STRING])

-- Creates a new search engine that uses the nodes
-- in a_worker_addresses

local
l_dscoop: DSCOOP
l_index: detachable separate ANY

do
create l_dscoop
create workers.make

across a_worker_addresses as l_iter loop
l_dscoop.connect (l_iter.item, 7000)
l_index := l_dscoop.last_index_object
if attached {separate WORKER} l_index as l_worker then

workers.extend (l_worker)
end

end
end

feature
search (a_text: ISTRING): LIST[SEARCH_RESULT]

-- Search for a_text in all connected workers

50

do
a_workers.start
Result := recursive_search (a_text: ISTRING)
sort(Result)

end

feature {NONE}
a_workers: ARRAYED_LIST[WORKER]

-- The databases that contain the data and
-- perform the actual search

recursive_search (a_text: ISTRING): LIST[SEARCH_RESULT]
-- Searches for a_text in a_workers

do
if not a_workers.after then

l_worker := a_workers.item
separate a_workers.item as c_worker do

a_workers.forth
c_worker.search (a_text)
Result := recursive_search (a_text, a_workers)
Result.append (c_worker.found)3

end
else

create {ARRAYED_LIST}Result.make
end

end

sort (LIST[SEARCH_RESULT])
do

...
end

end

Worker

The worker either performs the actual search using its indexes, or is a search engine
by itself. We only present a deferred class, since the actual search algorithm is outside
of the scope of this example.

deferred class
SEARCH_WORKER

feature
search (a_text: ISTRING): LIST[SEARCH_RESULT]

-- Search for a_text in the data source
deferred
end

end

51

Chapter 5

Distributed Scoop

The �rst hypothesis of the dissertation is that “a concurrency model based on message
passing can be used as a programming model for distributed systems with supplier-
aware failure mitigation while maintaining a competitive e�ciency".

This chapter demonstrates the hypothesis by describing a system, D-Scoop, that
integrates all Scoop guarantees while not relying on shared memory. D-Scoop stands
for distributed Scoop and is an application of network objects to the Scoop concur-
rency model. It uses a messaging protocol internally for all communication between
nodes.

We use the term D-Scoop for two things. First, D-Scoop is an extension to the
Scoop concurrency model for distributed computing by adding compensation and a
message-passing protocol to allow it to work over a network. Second, it is a prototype
implementation based on the Scoop support in Ei�elStudio. The latter supports the
presented semantics with the exception of object export1 due to limitations in the
Ei�el introspection support.

After introducing the necessary technical background of network objects and
Scoop (section 5.1), we show how their fusion is realized in D-Scoop, our distributed
programming model (section 5.2). We go into more depth on how objects are locked
to avoid interference (section 5.3) and how compensation helps in managing failure
(section 5.4). We then evaluate our prototype against Java RMI (section 5.9) before
discussing some potential topics for future work (section 5.10) and concluding (sec-
tion 5.11).

This chapter is based on the paper An Interference-Free Programming Model for
Network Objects [61] by the author of this dissertation.

5.1 From Network Objects to Distributed Scoop

Our work combines networks objects with Scoop. As mentioned in chapter 3, Scoop
provides a non-interference guarantee to avoid high-level data races. This section
describes an evolution of network objects to Scoop by exploring a simple example.

Our example focuses a transfer feature in an application dealing with bank ac-
counts, similar to the bank account example in chapter 4. It tries to move money from
one account to another; if the �rst account’s balance is not su�cient, it displays an

1This includes passing user-de�ned expanded types. However, the D-Scoop library provides an ex-
panded, immutable ESTRING class so that strings can be passed by value.

52

error message. Note that we use the separate keyword to make sure the code works
with Scoop, but we do not assume Scoop semantics at �rst.

transfer (s, t: ACCOUNT; am: NATURAL)
do

if s.balance >= am then
s.withdraw (am)
t.deposit (am)

else
-- Show error message

end
end

Listing 5.1: Bank account transfer feature in the client: sequential

Sequential Program. The sequential version of the example is shown in listing 5.1.
Assuming that there are no other threads in the system, the feature is correct.

transfer (s, t: ACCOUNT; am: NATURAL)
do

if s.id < t.id then
s.lock; t.lock

else
t.lock; s.lock

end
if s.balance >= am then

...
end
s.unlock; t.unlock

end

Listing 5.2: Bank account transfer feature in the client: multi-threaded

Multi-threaded Program. If the accounts can be accessed concurrently, then locks
or other measures are required to ensure the atomicity of transfer. A possible imple-
mentation is shown in listing 5.2: the accounts are doubling as locks and the transfer
feature uses them to ensure atomicity while avoiding deadlocks through a global order
based on the account ids.

Multi-threaded Program with Network Objects. Multi-threaded programs can
use network objects for distribution. This case is similar to one without network
objects. However, the implementation of lock is more complex as it has to ensure that
the lock is released if the client is disconnected before it issues unlock. Furthermore,
if the client dies before issuing the deposit statement, money is lost. There is no
simple solution to this without completely restructuring the program.

53

transfer (s, t: ACCOUNT; am: NATURAL)
do

if !s.transfer_to_if_sufficient (t, am) then
-- Show error message

end
end

Listing 5.3: Bank account transfer feature in the client: active objects

Active Objects. Active objects do not use locking for synchronization. Instead, ev-
ery call is handled atomically by the supplier just like a monitor. By restructuring
the program, we can adapt transfer to use with active objects. Listing 5.3 shows the
transfer feature after the restructuring. We see that instead of withdrawing and de-
positing, we have a special supplier function to transfer money to a target account.
This achieves atomicity and makes sure that the transfer is completed even if the client
crashes while the supplier processes the request. However, it also has two drawbacks:
It no longer separates queries from commands and it requires adaptation of the sup-
plier. In some cases, the supplier API cannot be adapted, which makes this solution
impossible. Note that this version also works in a multi-threaded environment with
accounts as monitors.
transfer (s, t: separate ACCOUNT; am: NATURAL)
do

if s.balance >= am then
s.withdraw (am)
t.deposit (am)

else
-- Show error message

end
end

Listing 5.4: Bank account transfer feature in the client: Scoop

Scoop. When implemented with Scoop, the transfer feature is almost indistinguish-
able from the sequential version. The Scoop version in listing 5.4 di�ers from the
sequential version in listing 5.1 only by the usage of the separate keyword. The im-
portant thing about this is that we can use the same reasoning that we used in the
sequential case for the concurrent case: no need to add synchronization primitives as
with multi-threading and no need to adapt the supplier as with active objects.

D-Scoop The goal of D-Scoop is that it is almost indistinguishable from regular
Scoop. Since regular Scoop has the goal to allow sequential-like reasoning, D-Scoop
makes it simple to to turn sequential programs into concurrent distributed programs
by �rst going to Scoop and then D-Scoop. In fact, the transfer feature is the same in
Scoop as in D-Scoop. Since distribution always involves failure, the client assumes
that the supplier is able to rollback changes if something happens to the client before
it �nished. Although this does require changes in the supplier, these changes are not
client-speci�c but rather a direct consequence of providing failure tolerance.

54

5.2 The Distributed Scoop Framework

In this section we present the D-Scoop framework, which combines network ob-
jects and the Scoop synchronization semantics into a single, distributed program-
ming model that maintains the simplicity of the original abstractions. We present
an overview of its architecture and communication protocol, and explain how sepa-
rate calls are generalized to potentially remote objects (sections 5.3 and 5.4 describe
in more detail how locking of remote objects is achieved in D-Scoop, and how the
system compensates for unresponsive clients).

A prototype implementation of the D-Scoop model is available online [18]. Our
prototype builds upon the Scoop support for Ei�el in Ei�elStudio [20], which imple-
ments the model using threads and shared memory. D-Scoop generalizes the imple-
mentation, allowing for multiple instances of potentially remote Scoop programs to
communicate, under-the-hood, by asynchronous message passing.

5.2.1 Components

D-Scoop consists of several components:

Compiler. D-Scoop requires a modi�ed compiler. The prototype compiler is built
upon the o�cial Scoop implementation in Ei�elStudio.

Runtime. A D-Scoop protocol needs some additional functionality provided by the
runtime environment, which is part of the compiler suite.

Library. Development with D-Scoop requires the interaction between the program
an the runtime for initialization and connection management. The D-Scoop library
provides classes for this purpose.

Protocol. The D-Scoop nodes communicate with each other using a protocol based
on simple message passing. Protocol handling is integrated into the D-Scoop runtime
and library.

Language. D-Scoop does not add additional constructs to the language, or modify
the language in another way. This is an important aspect of D-Scoop, as it simpli-
�es the step from concurrent to distributed computing. However, we propose a few
language extensions for Scoop that are particularly useful in D-Scoop.

5.2.2 Mechanisms

In principle, development in D-Scoop is the same as in plain Scoop as shown in chap-
ter 3, which was the intention, with some added mechanisms for handling failure.
When a program starts there is a single region with its processor, the root. More re-
gions/processors can be created, but all of them reside on the same node, just as it is
with regular Scoop.

55

Creation of nodes. An instance of a Scoop program turns into a D-Scoop node
when it connects to another D-Scoop node or starts a server that accepts incoming
connections. There is no built-in mechanism to create new nodes, instead, D-Scoop
operates by connecting existing nodes.

The reason behind this decision is that how nodes are created is highly dependent
upon the application, so the framework is not favoring any approach. Creating a new
node is basically starting a Scoop program which turns into a D-Scoop node.

Creation of remote objects. The reason why D-Scoop has no primitive for creat-
ing remote nodes is a technical one: A remote node runs on another machine. This
machine has to be started somehow and a process on this machine has to accept node
creation requests. There are many di�erent ways to achieve this and �nding one
that �ts all use cases is nigh impossible. Also, this can be wrapped in a library. This
library could start the machine using Wake-on-LAN and wait for it to start the pro-
gram. In many cases, the machines are started independently, for example a client
that is started by a user and then connected to the system.

While the reason for not having a primitive for starting nodes is mainly technical,
the reason not to allow remote creation of objects is due to security: it becomes very
di�cult for devising a security mechanism in the program if other nodes can freely
allocate objects. If the creation of remote objects is needed, the factory pattern can be
used with the factory object residing on the node where the new object should reside.
Furthermore, the usage of a factory allows the node to decide which exact version of
a class should be used, a very important prerequisite for upgrading a node in a system
without a complete shutdown of all nodes.

By using the D-Scoop library, a program can connect to another node and retrieve
a so-called index object. This object resides on the other node and through queries
can give access to other objects. This approach di�ers from RMI and CORBA, which
use so-called object registries. If this is needed, the index object can provide the func-
tionality. However, in many cases, simply using an appropriate index object is all that
is needed.

Connecting. A connection is established from one node to another. To do this, the
address and port of the other node is needed. The simplest way to make a connection
is to use the DSCOOP class as shown in listing 5.5.

local
l_dscoop: DSCOOP2

l_index: detachable separate ANY
do

create l_dscoop
l_dscoop.connect (a_server, 7000)
l_index := l_dscoop.last_index_object
...

end

Listing 5.5: Connection to a D-Scoop system

If the connection was not established, the resulting index object is Void. Note that
this connection is bi-directional, so the other node can make calls to objects it has

56

access to. However, in order for other nodes to access local objects, a server has to be
started, which will be explained shortly.

It is possible that a node does not provide an index object, typically if it is only a
service consumer. Explicitly connecting to such a node is usually not necessary since
D-Scoop manages connections automatically.

Autoconnect. It is possible that a node receives a reference to an object residing on
a node it has no connection to. D-Scoop then automatically establishes the connection
to enable communication with this object. This is completely transparent.

Autodisconnect. While it is possible to terminate a connection manually, the usual
way is to let D-Scoop handle it, since a premature termination might cause failures.
If a connection is no longer in use, that is, there is no reference to an object in any
region of the node at the other end and vice versa, D-Scoop terminates the connection
automatically.

Servers. To let other nodes connect to the local node, either because the local node
acts as a service provider or because it is a peer, the D-Scoop server is needed, as it
opens a port for incoming connections. Starting the server using the DSCOOP class is
shown in listing 5.6.

feature -- Server
run_server

-- Start the chat server
local

l_dscoop: DSCOOP
do

create l_dscoop
l_dscoop.start_server (agent index_object_factory, 7000)

end

index_object_factory: ANY
do

...
end

Listing 5.6: Starting a server in D-Scoop

The �rst argument is the index object factory feature which creates the objects
that should given, by reference, to connected processors inquiring about the index
object. If given a regular object, references to this exact object will be given upon
request for the index object. Void can also be given, in which case the clients cannot
retrieve the index object. Passing Void is useful if a node wants to allow other nodes
to autoconnect, but not to o�er services itself. This can occur in a client-server archi-
tecture where the clients can receive, from the server, references to objects on other
clients so that they can communicate directly.

Note that the term server as used here can be equated with the more technical
term of listening socket. As such, it does not only apply for a typical client-server
architecture, although it is impossible to implement a server in this sense without it

57

setting up a D-Scoop server. While a client, in the client-server sense, not necessarily
needs to set up a D-Scoop server, a peer as in peer-to-peer architecture3 needs one so
that other peers can connect.

Architecture. In D-Scoop, nodes are instances of Scoop programs4. A D-Scoop
system max contain nodes that stem from di�erent programs that share some classes,
that is, the classes used remotely. It is not necessary that a client has e�ective versions
of the supplier classes it wants to reference, a deferred su�ces. A node can open a
connection to another node through a network socket, which is then shared by all of
its processors. A node can request the index object of another node, which is a regular
object that acts as the entrace to the whole API of the node. For nodes implementing
simple services, this object may have all the features the node provides. It is also
possible let the index object implement some form of object registry that refers to
local and possibly remote objects providing services. There are no restrictions to
what features an index object exports, which makes it possible for the developer of a
system to use a class that exactly �ts his or her requirements for the node.

It is valid for a node to not supply an index object, typically if it is a client in a pure
client-server style setup. To be able to accept incoming connections from other nodes,
a node must start a server (see above). To provide an API for clients, the node typically
has to provide its own index object, or a factory that generates them. Every node in a
D-Scoop network has a unique identi�er (ID), which is independent of any other IDs
such as IP addresses. Object references in D-Scoop include this node ID, along with
their object and processor identi�ers (as in classical Scoop), with the latter important
for determining the number of processors involved in a separate block.

Garbage Collection. Within nodes, we rely on existing mechanisms of Scoop for
garbage collecting local objects and processors. D-Scoop however must also account
for objects used by multiple nodes. To achieve this, we use a distributed garbage
collection algorithm similar to that of Birrell et al. [5].

5.2.3 D-Scoop Protocol.

The nodes in D-Scoop networks communicate, via their connections, using an asyn-
chronous message-passing scheme. Messages conform to a protocol and can be one
of two types: a request5 or a reply. Requests are sent from a client node to a supplier,
de�ning work for the supplier to do. Replies are sent back from the supplier to the
client to indicate the outcome of a request. Note that some type of requests do not
cause a reply, for example the �� ��Pass request presented below.

Messages in the D-Scoop communication protocol have subjects which convey
their intended semantics. Messages that are requests can have one of many di�erent
subjects which we outline in the following. Replies however only indicate success
(�� ��OK) or failure (�� ��FAIL), sometimes with additional arguments, such as the result of a
query call.

The simplest request subjects are �� ��Hello , �� ��Ping and �� ��Index , which respectively initial-
ize a connection between nodes, test whether an existing one is still alive, and request

3See the distributed banking example in chapter 4 as an example of a peer-to-peer architecture. Also,
as architectures can be combined, a client can also be a peer to other clients of the same server if they
communicate directly with each other.

4In Ei�elStudio, these are called processes
5Note that these are distinct from the requests used for inter-processor communication in Scoop.

58

the index object of the supplier node (which typically provides an API of features for
retrieving more objects).

A number of requests are required to realize a separate block involving remote
objects. A �� ��Prelock request announces that a processor in a client node wishes to log
calls on one or more processors in a supplier node. When a supplier is ready, the client
can issue a �� ��Lock request to announce it is now entering the separate block, upon which
the supplier sends back a handle that can be used to log calls. Following this, it can
issue requests corresponding to asynchronous feature calls (�� ��ACall) and synchronous
calls (�� ��SCall), which includes queries. In case of the latter, if a lock needs to be passed,�� ��Pass messages need to be sent, before the call itself, to the locked suppliers. Both
types of call requests cause replies, in the case of asynchronous calls immediately, for
synchronous calls when they are completed. To announce leaving the separate block,
the client sends an �� ��Unlock request. (We describe in more detail how these requests
acquire locks in section 5.3.)

Requests with the subjects �� ��Share and �� ��Release are respectively used for obtaining
and revoking permission for given object references to be shared with third party
nodes. They are also used by D-Scoop for garbage collecting.

Finally, �� ��Await and �� ��Ready requests are used to implement condition synchronization
on remote objects. In short: if the condition does not hold, the client processor issues
an �� ��Await request before going to sleep. This instructs the supplier to wake it up with
a �� ��Ready request once the state of the remote objects changes, so that the condition can
be checked again.

Detailed description of the messages and their arguments are provided together
with the detailed semantics in chapter 6.

Message Handling. Incoming messages are handled by the request handlers of D-
Scoop nodes in multiple stages, depending on their subjects. If an incoming message
has the subject �� ��Hello , �� ��Ping , �� ��Share , or �� ��Release , then it is handled directly. If a message is
a reply, then it is relayed to the appropriate processor within the node.

For messages concerning separate blocks and condition synchronization, a more
careful treatment is required. In D-Scoop, every node has specially designated proxy
processor per active connected processor for handling incoming lock and call requests,
as well as to provide a region for proxy objects, which are surrogates (or placehold-
ers) for actual remote objects, holding references to them. Proxy processors are only
needed for remote processors that either currently have or seek a lock on a local pro-
cessor, or for remote regions that contain an object a local processor has a reference
to. This additional layer is used to catch special contexts in which calls are treated
di�erently, including separate callbacks (see [49]), and a Scoop extension for data ob-
jects (see [46]). The latter are regions without a processor, requiring the usage of the
client’s processor for execution of any requests. Since the client processor is located
on another node that does not share memory with the supplier, this is not possible
without the use of a proxy processor on the supplier’s node.

To minimize the overhead of proxy processors and objects, they are created only
when needed and destroyed when they are not. For example, if not existing already,
receiving a �� ��Prelock request with some given processor identi�ers will trigger the cre-
ation of a proxy processor on that node. Or when receiving a result from a separate
call with a reference to a remote object, a proxy object is created and if necessary, a
proxy processor and region to hold it. When proxy objects are no longer in use by
local processors, they can be collected by the local Scoop garbage collectors, which

59

. . .

. . .

C N1 N2 Nn

Tim
e

Prelock
OK

Prelock
OK

Prelock
OK

LockLockLock

OKOKOK

Figure 5.1: Prelock phase: a processor on nodeC is entering a separate block involving
separate objects on remote nodes N1, . . . Nn

in turn may cause the associated proxy region and processor to be removed.

Remote Calls in Separate Blocks. The communication protocol presented is ul-
timately the glue that allows for network objects to be used within the Scoop frame-
work. Our aim was to make the fusion of these concepts as seamless as possible:
programmers should not need to be aware of the communication protocol for net-
work objects, and the core abstractions of Scoop should not need to be fundamentally
reinvented to accommodate the extension.

In D-Scoop we were able to maintain the original abstractions provided by sepa-
rate blocks, while also providing a natural generalization to support objects residing
on other nodes. When a processor needs to make a call on a separate object, there
are now three cases to distinguish. If the target object shares the same processor (and
thus the same node), the call is executed immediately—as in Scoop. If the target ob-
ject has a distinct processor but on the same node, the processor logs a request in a
private subqueue for the caller (see Section 5.1)—as in Scoop. If the target object has a
distinct processor on a remote node, however, the D-Scoop communication protocol
comes into play, and a �� ��ACall or �� ��SCall message is sent to to the remote node.

5.3 Locking Remote Objects

We have presented an overview of the D-Scoop architecture, its messaging proto-
col, and its generalization of separate blocks to support calls on remote objects. In
this section, we describe how locking of remote objects and thus distributed separate
blocks are achieved.

In D-Scoop, separate blocks are handled in three phases: (i) the prelock phase,
for ensuring a correct ordering; (ii) the issuing phase, for enqueuing calls; and (iii)
the execution phase, for executing calls. The issuing phase happens strictly after the
prelock phase. While the execution phase cannot start before the issuing phase, the
two can otherwise overlap due to asynchronicity.

Prelock Phase. In standard Scoop, if a processor enters a separate block, the pro-
cessors handling the separate objects generate private subqueues for logging calls
(see Section 5.1 and Figure 3.1). In D-Scoop however, if a processor enters a separate
block involving separate objects on remote nodes, messages must be sent to trigger
the generation of subqueues in a way that preserves the usual reasoning guarantees.
We refer to this messaging phase as the prelock phase.

60

A client node seeking to enter a separate block involving remote objects must �rst
announce its intention by sending �� ��Prelock requests to the nodes they reside on. This is
done in a �xed order (a global order based on node IDs) to avoid deadlocks, and one-
at-a-time; an �� ��OK reply must be received before the next �� ��Prelock is sent. Once the last
such request is successful, the client node announces that it is entering the separate
block and will start issuing calls. This announcement is made via �� ��Lock requests, which
can be sent asynchronously in any order. By replying with �� ��OK , the supplier nodes are
acknowledging that the involved processors have created private subqueues and are
ready to enqueue calls from the client. Figure 5.1 exempli�es this phase for a client
node C that wishes to enter a separate block involving remote objects on supplier
nodes N1, . . . Nn. Here, an arrow denotes the transmission of a message, with its
subject given at the end (additional parameters are not visualized).

When multiple nodes are entering prelock phases involving common supplier
nodes, blocking must occur in order to maintain the separate block order guaran-
tees. In particular, if a �� ��Prelock message is sent but the supplier is already involved
in the prelock phase of a competing node, then the system blocks on that message.
Instead of blocking for the whole of the competing node’s separate block, D-Scoop
permits a more �ne-grained and e�cient solution. In particular, it only blocks until
the competing node leaves its prelock phase and starts issuing calls. That is to say,
D-Scoop only blocks while “setting up” the subqueues in a correct order; competing
issuing phases can otherwise safely run concurrently.

Note that the seamless integration of D-Scoop in Scoop entails that local clients
are treated the same as remote clients to avoid deadlocks and starvation, even if they
do not send messages over the network. Also, the prelock protocol ensures that all pri-
vate queues are put into the queue-of-queues atomically. Earlier publications might
imply that the insertion of the private queues are done independently, which would
introduce deadlocks in some cases and the possibility for a client to observe one sup-
plier as it was before the execution of a separate block from another client and a
second supplier as after the execution of the same block. The current Scoop imple-
mentation in Ei�elStudio already ensures the atomicity of private queue insertion,
and D-Scoop keeps this guarantee.

Issuing and Execution Phases. The prelock phase ends and the issuing phase be-
gins when the �nal �� ��Lock request is successful. At this point, the processors handling
all the involved remote objects are ready to enqueue calls. In most circumstances,
commands on remote objects are requested via asynchronous �� ��ACall messages, and
queries are requested via synchronous �� ��SCall messages. The supplier nodes enqueue
commands and immediately reply with an �� ��OK , but the client is not required to wait
for the �� ��OK before continuing. When a query is received, however, the supplier node
enqueues it, but only replies once it has been executed (passing the result in an addi-
tional parameter of the �� ��OK message).

The execution phase begins with the execution of the �rst logged call. If all the
calls are asynchronous, it can take place strictly after the issuing phase. The issuing
phase ends on sending the �� ��Unlock message; the execution phase ends on processing it.

Example Communication. We return to our running bank account example, to
which we add a simple feature withdraw_from (listing 5.7) for withdrawing a given
amount from a given account that we assume to be remote. The feature �rst syn-
chronously queries the remote object to check that the balance is su�cient, before

61

withdraw_from (s: separate ACCOUNT; am: NATURAL)
do

if s.balance >= am then
s.withdraw (am)

else -- Notify user
end

end

Listing 5.7: Client feature to withdraw money from a account

C1 A1 A2 C2

Tim
e

PrelockPrelock
OK

Lock
OKOK

SCall
OK

Prelock
OK

LockLock
OKOK

SCall

ACall

Unlock
OKOK

OK
ACallACall

OK

UnlockUnlock

OKOKOK

Figure 5.2: All three phases: a processor on C1 calls transfer on A1 and A2; a pro-
cessor on C2 concurrently calls withdraw on A1

asynchronously decreasing the balance.
Suppose we have a running D-Scoop system with two bank accounts on di�erent

nodes (A1, A2). Suppose now that a client node (C1) is trying to transfer an amount
from A1 to A2, while another client node (C2) is trying to withdraw an amount from
A1. Recall that the bodies of both features are separate blocks (involving, respectively,
separate accounts on A1, A2 and A1). Figure 5.2 visualizes the messages exchanged
in one possible behavior.

Observe that both clients initially send a �� ��Prelock request to A1. The request from
C2 is received �rst and is therefore answered immediately; meanwhile, C1 blocks.
Since C2 only tries to lock a processor on A1, it proceeds to send a �� ��Lock request, thus
completing its prelock phase and generating its private subqueue on A1. This allows
C1 to unblock and its �rst �� ��Prelock request �nally succeeds.

Since the prelock phase of one client can take place in parallel to the issuing and
execution phases of another, C2 already starts issuing calls before C1 concludes its
prelock phase. In particular, it requests the balance query (via �� ��SCall) which is exe-
cuted synchronously (and the balance amount returned). Following this,C1 requests a�� ��Prelock onA2 (which is uncontended), before completing its prelock phase by sending�� ��Lock requests to A1 and A2.

At this point,C1 issues a balance query as it is evaluating its conditional guard. At

62

the same time, C2 requests an asynchronous command (�� ��ACall) to update the balance,
and, upon receiving the �� ��OK , exits its separate block via an �� ��Unlock request. Since C2

completed its prelock �rst, its private subqueue on A1 is ahead of the subqueue for
C1, and so its call is executed �rst. Once acknowledged, C2 knows that the whole
transaction (balance and then set_balance) was successful, and its e�ects become
visible to other clients. Once the �� ��OK corresponding to its earlier �� ��SCall arrives, C1

can resume issuing the remaining calls in its separate block before exiting via �� ��Unlock
requests to A1 and A2.

Note that the reasoning guarantees of the separate blocks have been maintained.
The calls are executed in program text order and without intervening calls from other
nodes: within a separate block, multiple balance calls in sequence thus always return
the same result. The combination of the prelock phase and the underlying queue of
queues semantics prevents the possibility of interleavings that break this.

5.3.1 Lock Passing

A powerful mechanism in Scoop is lock passing, explained in [49]: clients let the
supplier use their locks on synchronous calls to avoid deadlocks. Otherwise, if the
completion of the synchronous call includes a synchronous call to one of the proces-
sors locked by the client, a deadlock occurs. The �� ��SCall message includes a list of locks
that the supplier can use, including one on the client for issuing separate callbacks.
This is possible because a lock in Scoop is merely a right to enqueue calls. However,
to do this, a client has to send �� ��Pass messages to all other remote suppliers, notifying
them of the change of ownership of the lock. Conversely, the supplier receiving the
locks has to send �� ��Unlock messages to pass the lock back. Locks can be passed multiple
times. An example for lock passing is given later in section 5.7.

D-Scoop also supports callbacks: On a separate synchronous call, the client cre-
ates a new subqueue at the front of its queue of queues and sends a lock on this queue
along with the call. The supplier can now use this subqueue for callbacks. Before
returning the synchronous call, the supplier also unlocks this queue.

5.4 Compensating for Failure

Our presentation of D-Scoop has thus far focused on the challenge and intricacies of
combining the network objects abstraction with a concurrency model and runtime.
In this section, we turn our attention to a topic that cannot be ignored in the setting
of distributed computing: coping with failure.

While failure can often be managed simply, failure in the middle of a separate
block, when only some of the commands with side-e�ects have been issued, needs
a more elaborate solution. We introduce compensation, D-Scoop’s mechanism for
reacting to such failure, and demonstrate its use on our running example.

Compensation. In D-Scoop, upon failure of a supplier, the client is informed using
exceptions, and can react to it appropriately in a rescue-clause, as per normal Ei�el
exception handling, which is similar to exception handling in other object-oriented
languages. However, the suppliers in separate blocks are in general oblivious to the
status of the client. Our solution is to introduce compensation, a supplier-side mecha-
nism for reacting to client nodes that become unresponsive or disconnect prematurely.

63

The technique registers user-provided closures on suppliers that, before releasing ob-
jects locked by disconnected clients, are executed to restore consistency.

The basic technique is adapted from the well-established usage in transactions,
in particular, for recovering from long-running transactions or transactions with side
e�ects [9]. It �ts naturally with the D-Scoop model, given that features and separate
blocks are transaction-like in the sense that other clients cannot observe separate
objects in intermediate states. One can think of a �� ��Lock and �� ��Unlock pair as marking
the beginning and end of a transaction; after �� ��Unlock is processed, all changes become
visible.

The scope of compensation is the issuing phase, and encompasses all executed
calls on processors that have been acquired during the prelock phase (and only those
processors). In the case of nested separate blocks, the outer block has to take into
account that the e�ects of the inner block on arguments not locked by the outer
block are already visible if an �� ��Unlock was issued. This is di�erent to most de�ni-
tions of nested transactions, in which the inner transaction always �nishes together
with the outer transaction. This behavior is required to a�ect the outside world in
long-running transactions, for example to give updates on the status. The traditional
behavior would lead to more complexity and break with the Scoop model, which we
want to avoid.

De�ning Compensation. Compensation closures are provided by the user by call-
ing compensate with the closure as an argument6. It is possible to de�ne them in the
client or the supplier. A client-de�ned compensation closure is registered before the
call to the feature to be compensated (and is ignored by the supplier if no request
follows). A supplier-de�ned compensation closure is provided within the called fea-
ture. The latter comes with the advantage that compensation is de�ned together with
the feature, but the former allows for more �exibility: di�erent compensations can be
de�ned depending on where the call is made, which is particularly useful for features
that do not always need compensation.

Consider the simple feature withdraw for bank account objects (Listing 5.8) which
deducts an amount from the balance of an account. The listing also includes examples
of how to make it compensable. On the left is a snippet of the body of transfer, now
annotated with client-de�ned compensation before the call7. On the right is supplier-
de�ned compensation, provided at the beginning of the feature body. In both cases,
the compensation will restore the old balance if called.

Implementing Compensation. Upon receiving a �� ��Lock request, a supplier node
stores the IDs of the newly requested processors in a stack. This stack is mainly used
to identify which processors need to be released upon �� ��Unlock . Each of the processor
entries also contains a reference to a list of compensation closures. This list is popu-
lated with the closures (agents) registered for compensation. Whenever a processor
is unlocked normally (i.e. not due to premature disconnection) the respective list is
cleared. However, if a client node disconnects prematurely, the closures in all lists
associated with the client are executed in reverse order.

Figure 5.3 shows the call stack caused by a remote client calling the feature a and
then h. The targets of a, b, c, d and h are owned by processor P1, while the targets of
the calls e, f, and g are owned by processor P2. During the execution of c, P1 locks

6We remark that closures are given with the Ei�el keyword agent, and can refer to existing features
7The current prototype does not yet support client-de�ned compensation, see section 5.10.

64

(a) Client-de�ned compensation

transfer (s, t: separate ACCOUNT;
am: NATURAL)

do
if s.balance >= am then

s.compensate (agent
s.deposit (am))

s.withdraw (am)
t.compensate (agent

t.withdraw (am))
t.deposit (am)

else -- Notify user
end

end

(b) Supplier-de�ned compensation

withdraw (am: NATURAL)
require

am > 0
do

compensate (agent
deposit (am))

balance := balance - am
end

deposit (am: NATURAL)
require

am > 0
do

compensate (agent
withdraw (am))

balance := balance - am
end

Listing 5.8: Adding compensation to the transfer example

a

cb d

fe g

hP
1

P
2

Ca
ll

st
ac

k

Figure 5.3: Example call stack

P2 to execute. After a is �nished, the client sends another request to execute h before
releasing P1.

We now take a look at three failure scenarios, all of them due to a premature dis-
connect by the client. If the client disconnects before a is executed, nothing happens.
The client’s lock on P1 is simply lifted. The second case is more complex: if the client
disconnects while a is executing, the calls a, b, . . .g are all executed as requested. Since
P1 is issuing the �� ��Unlock request to P2 before �nishing itself, the changes done by e, f,
g are visible. The disconnect then causes the compensation closures of d, c, b, a to be
executed before the lock on P1 is released. Consequently, the compensation of c has
to deal with the fact that the changes due to e, f, g are already visible.

If the client issued the call to h but got lost before sending the �� ��Unlock request,
the situation is similar, with the one di�erence being that the compensation of h is
executed before the others.

Compensation and Exceptions. The avid reader may ask whether there is a con-
nection between compensations and exceptions, and indeed there is. Not only are
exceptions and compensation two sides of the same coin, exception handling can be
seen as a special case of compensation: the rescue clause can be seen as a closure,
registered at the start of a routine, with the only di�erence that the closed over state is

65

the state when an exception is received, not the state when the closure was registered.
With this in mind, it would be possible to replace or supplement exception handling
with a compensation mechanism: compensations are registered as normal, but in ad-
dition to compensations, checkpoints are added, for example by using the restart
instruction. If an exception occurs, all previously registered compensations are run
until the last checkpoint. Normal execution then continues with the instruction di-
rectly following the restart instruction. Nevertheless, on a premature disconnect, all
compensations need to be run that are registered due to the disconnected client.

5.5 Wait Conditions

A client8 can issue an �� ��Await message instead of �� ��Unlock to unlock a processor. In this
case, the supplier will send a �� ��Ready message to the client when its state changed. This
allows the client to re-evaluate the wait condition only if there is a chance it may
succeed.

The simplest implementation and the one used in our prototype sends the �� ��Ready
messages whenever a client sent �� ��Unlock . This assumes that wait conditions do not
change state or at least not in a way that triggers other wait conditions.

5.6 Passive Regions

Passive regions [46]9 have no processor of their own. If a client issues a call to an
object residing in a passive region of another node, the proxy processor applies the
call, which causes asynchronous calls to not be synchronized as if the target was on
the same node. We chose to do this because it is di�cult for a remote client to know
whether a region is passive, as this is something that is determined at region creation.
Clients may not create remote objects, and therefore also no remote regions, so the
information whether a region is passive lies solely with the node that contains the
region. With this behavior, a client can assume that all remote regions are active.

5.7 Examples

To give a more complete illustration of the D-Scoop protocol, we present a possible
exchange of messages based on the examples in chapter 4.

5.7.1 Chat System: Message Exchange

We assume that two chat partners, yellow and green, connect to a server with color
cyan. After a few messages, the yellow client loses its connection. Upon seeing that,
the green client also leaves. Due to space constraints, we omitted the input and output
processors and their communication.

8In this case, the client is the processor of the region that holds the object with the feature that has the
wait condition which failed.

9Not to be confused with term passive objects as used by some active object models — in Scoop for
Ei�el, expanded objects are the closest thing to a such a passive object, that is, an object passed by value to
other processors.

66

Client Fetcher Session Messages Session Fetcher Client
Prelock

OK
Lock

OK
SCall

OK

Prelock
OK

Lock
OK

SCall
OK

PrelockPrelock
OK

Lock
OK OK

Lock
OK

Prelock
OK

Lock
OK

PASS PASS
SCall

SCall
OK

Unlock Unlock UnlockOK
Unlock

Prelock
OK

Lock
OK

PASSPASS
SCall

SCallACall
OK

ACall
OK

Prelock
OK

Lock
OK

ACall
OK

Unlock Unlock
OK

Unlock Unlock Unlock
OK

Unlock

ACall
OK

ACall
OK

Prelock
OK

Lock
OK

ACall
OK

UnlockUnlock

Figure 5.4: Chat server: Exchanged messages – Entering

Entering. The exchanged messages of the �rst part of the example are shown in
�g. 5.4. Both clients connect to the server simultaneously. They receive their own
session objects, which have independent processors. Both clients acquire a lock on
the session and query it for a reference to the messages list, which they immediately
try to lock. The yellow client gets its �� ��Prelock message in �rst, so it also is �rst to
receive the �� ��OK . The following �� ��Lock request from the yellow client allows the green
client to continue, while the yellow client acquires a lock on the fetcher processor
to create the new fetcher object. The creation call is synchronous because it passes
the locks on both the session and the messages processors. The creation call uses the
passed lock on the messages processors to make a synchronous call for the current
count before sending the �� ��Unlock requests to all its locks. Meanwhile, the green client

67

does the same, but the green fetcher’s synchronous call request is stalled because the
messages processor is still processing the frame created by the �� ��Lock request of the
yellow client: the �� ��Unlock request from the fetcher was only undoing the lock passing,
not closing the frame.

Before this happens, the yellow client still needs to do some things. The �rst is
to release the lock on its fetcher. It then calls enter on the session, which is asyn-
chronous. Another asynchronous request to messages adds the announcement. Fi-
nally, the client acquires a lock on the fetcher again to call start, before unlocking
the fetcher and the messages.

Now the green fetcher and client can continue. They take the same steps as the
yellow client and fetcher before.

Chatting. Figure 5.5 presents the message exchange for a simple chatting sequence.
It can be seen as a direct continuation from �g. 5.4.

Both fetchers try to gain a lock on the messages list. The yellow is slightly faster
with sending its �� ��Prelock message and goes �rst. Both then issue the synchronous
calls for checking the precondition, since yellow was faster during prelock, it receives
an answer immediately. It fetches the count again and then two messages from the
list before unlocking, upon which the green fetcher continues and does the same.
Immediately after unlocking, the yellow fetcher requests a lock again, with which it
checks the precondition. Since there has been no change, the yellow fetcher issues an
await, which unlocks the messages.

Now the clients come into play. They both lock the messages, but this time green
goes �rst. It adds a single message and unlocks. However, the yellow client can do
the same at the same time since adding a message is an asynchronous call. While the
asynchronous call is executed, the message list sends the �� ��Ready message to the yellow
fetcher, which causes it to lock the messages, and then fetch the new arrivals.

Disconnect. The last part of the execution is disconnecting, which is shown in
�g. 5.6. Both fetchers check the messages list for new messages. The yellow fetcher
goes �rst, but disappears together with the yellow client, which is detected by the
messages processor. It reacts by letting the green fetcher continue. The session pro-
cessor for the yellow client also detects the failure, upon which it locks the messages
to add a noti�cation about the disappearance. However, it takes the green fetcher a
second round to also get this message, since the actual execution of the asynchronous
call that adds the message is deferred until the green fetcher unlocks. The green client
now makes a clean exit, which the green fetcher notices.

5.7.2 Distributed Banking: Message Exchange

We assume a system like in �g. 4.1 with three branches:

1. The yellow branch located in the upper left corner,
2. the green branch located in the upper right corner, and
3. the lower magenta branch.

Our focus is a transfer operation by one of the magenta agents from a yellow to the
green account. Figure 5.7 shows a possible message exchange between the di�erent
processors.

68

Client Fetcher Session Messages Session Fetcher Client

PrelockPrelock
OK

Lock
OK OK

Lock
OK

SCallSCall
OK

SCall
OK

SCall
OK

SCall
OK

Unlock
OK

SCall
OK

SCall
OK

SCall
OK

Unlock
Prelock

OK
Lock

OK
SCall

OK
Await

PrelockPrelock
OK

Lock
OKOK

Lock
ACall

OK OK
Ready

ACall
Unlock
Prelock

OK
Lock

OK
SCall

Unlock
OK

SCall
OK

SCall
OK

SCall
OK

Unlock

Figure 5.5: Chat server: Exchanged messages – Chatting

The execution of transfer starts by calling find_account. We assume that the lock
on the register was not acquired already, so the agent sends �rst a prelock and then a
lock message to the processor of the register.

The �rst query to the register is to look up the �rst account. Since the account
is located on another branch, yellow, the register of the magenta branch has to send
a query to the yellow register. To do this, it �rst needs to acquire a lock, which is
achieved through the prelock protocol. When the magenta register receives the result,
it unlocks the yellow register and returns it to the agent, which in turn unlocks the

69

Client Fetcher Session Messages Session Fetcher Client

PrelockPrelock
OK

Lock
OK OK

Lock
OK

SCall
OK

SCall

OK
Prelock

OK
Lock

OK
ACall

OK
Unlock
SCall

OK
SCall

OK
Unlock
Prelock

OK
Lock

OK
SCall

OK
SCall

OK
SCall

OK
Unlock

Prelock
Prelock

OK
Lock

OK
OK

Lock
OK

SCall
ACall

OK
Unlock

Unlock
OK

SCall
OK

SCall
OK

Unlock

Figure 5.6: Chat server: Exchanged messages – Disconnect

magenta register. The same procedure is done for the yellow account.
With references to both accounts, the agent acquires locks on their processors. It

then sends a query to the yellow account for checking its balance. Assuming that the
balance is su�cient, two asynchronous calls, one for deposit, one for withdrawal, are
sent before unlocking the processors of the accounts.

70

M-Agent M-Register Y-Register G-Register Y-Account G-Account
Prelock

OK
Lock

OK
SCall

Unlock
OK

Prelock
OK

Lock
OK

PASS SCall
Unlock Unlock

OK
UnlockUnlock

Prelock
OK

Lock
OK

SCall
Unlock

OK
Prelock

OK
Lock

OK
PASS SCall

Unlock Unlock
OK

UnlockUnlock

Prelock
OK

Prelock
OK

SCall
Unlock

OK
ACallACall

UnlockUnlock

Figure 5.7: Distributed Banking: Exchanged messages

5.8 Semantics

Due to their complexity, the formal semantics for the D-Scoop system, especially the
protocol, are presented separately in chapter 6.

5.9 Evaluation

We evaluated D-Scoop against Java RMI to gauge its performance against a well-
established and widely used approach based on network objects. We sought to collect
evidence towards answering two questions. First, is there a performance overhead
associated with the automatic synchronization in D-Scoop, and does it become in-
commensurate with the e�ort to manually write synchronization code? Second, do
the language abstractions of D-Scoop facilitate simpler code?

71

0 20 40 60 80 100 120 140

Commands

Queries

Lock/Command

Lock/Query

Philosophers

Logging

Pipeline

time (s)

D-Scoop
Java RMI

Figure 5.8: Benchmark results: each run involved several thousand iterations

Example Selection. D-Scoop and Java RMI di�er in many aspects: not only in
the model, but also in terms of the underlying programming languages (Ei�el and
Java) which have many points of variation regarding performance and compilers. In
this context, we devised a set of four microbenchmarks geared towards comparing
the performance of calls: (i) command call, in which a single client sends a series of
command calls to the supplier; (ii) query call, analogous, but with query calls; (iii)
locking and command call, in which a few clients compete to lock a supplier object
and send a single command call; and (iv) locking and query call, analogous, but with
a single query call.

In addition to microbenchmarks, we also evaluated D-Scoop against Java RMI on
three larger examples. First, dining philosophers, a classical example where multiple
objects (forks) are repeatedly locked. For this benchmark, all philosophers and forks
reside on di�erent nodes, and we assume that eating, using the fork, and thinking take
no time. A second, more practical example: a log server, in which various events are
logged. Here, there are multiple log servers for redundancy, meaning that copies of
logs can still be retrieved if one fails. To ensure a consistent ordering across servers, a
client must lock all of them before adding the entries. In our benchmark, three clients
repeatedly generate a simple log message, gain locks across the servers, and then
place it. Third, a pipeline representing distributed services. Each stage waits until the
previous stages are ready before retrieving data and processing it. Each stage provides
one operation of the well known formula

√
a2 + b2. We measured the time the �nal

stage needed for a speci�c number of calculations.
For Java RMI, explicit locking was used to establish a comparable �exibility in the

clients. Furthermore, the Java code explicitly orders the locks so as to avoid dead-
locks. The source code of the examples and of D-Scoop itself can be found on our
supplementary material webpage [18]. We did not compare the performance of local
suppliers, since such a comparison would be skewed: local suppliers in D-Scoop au-
tomatically use shared memory for communication. In Java RMI, the communication
still goes through the network stack, which adds signi�cant delay. If, in the other
hand, Java RMI would be entirely skipped and the supplier object used directly, Java
RMI would be signi�cantly faster, but this is no longer a distributed system.

Performance. Overall, we found that despite the potential overhead of automatic
synchronization, D-Scoop’s performance is competitive with—and can be superior

72

Table 5.1: Code complexity

Classes Features Instructions
RMI D-Scoop RMI D-Scoop RMI D-Scoop

Microbenchmarks 3 2 8 6 19 13
Dining philosophers 3 2 6 3 18 10
Logging 6 3 16 9 23 10
Pipelines 2 1 10 16 62 42

to—explicit locking-based synchronization in Java RMI. The results of the perfor-
mance evaluation are listed in �g. 5.8 and are the averages of 30 runs; we used two
o�-the-shelf laptops connected by an ethernet cable. The microbenchmarks show
that the performance of both D-Scoop and Java RMI is similar when just issuing com-
mands or queries. D-Scoop commands are a bit quicker than D-Scoop queries due
to them being asynchronous, whereas in RMI both are synchronous. When it comes
to the locking microbenchmarks, the built-in synchronization in D-Scoop allows for
a more signi�cant improvement in speed, both for synchronous and asynchronous
calls. However, the synchronization overhead prevents the asynchronous advantage
of Lock/Command translating into faster performance than Lock/Query.

For both the dining philosophers and the logging example, the fact that the prelock
phase can be done in parallel with the issuing and execution phase of another client
proves to be a signi�cant advantage in comparison to RMI10. In addition, the logging
example shows the advantage of asynchronous calls in D-Scoop. The underlying se-
mantics make it possible to ensure locking of multiple nodes and have multiple clients
issuing asynchronous calls at the same time. The pipeline example has less conges-
tion around the synchronized objects; here, the advantage of D-Scoop lies solely in
slightly fewer messages sent due to more powerful synchronization mechanisms.

Simplicity. Our second question asked whether the language abstractions also yield
simpler code. For our seven benchmarks, we recorded: (i) the number of classes in-
volved, excluding primitive types, classes, and strings, and ignoring the RMI remote
interface; (ii) the number of features (i.e. attributes and routines), ignoring the Java
“getters” in RMI since they just return an otherwise counted attribute; and (iii) the
number of written instructions, excluding boilerplate code. This ensures that the dif-
ferences are only due to synchronization. Table 5.1 lists the results.

As can be seen, the solutions in D-Scoop are much more compact across the three
measurements. In the case of advanced techniques such as condition synchronization
— an in-depth discussion is omitted for brevity — the complexity of RMI increases
further still. Note that not included in the RMI examples are compensation and the
automatic releasing of locks, since they are di�cult to achieve in that framework.
Also, although the usage of a lock or semaphore is counted as a class, its features are
not counted in the feature column since they are already provided by the library. We
remark that these numbers only indicate that D-Scoop programs are more compact
than their RMI counterparts. What we leave to future work is a study of users them-
selves to determine whether the D-Scoop abstractions are easier to read and program
with, regardless of their compactness. (An existing Scoop study is encouraging [48].)

10This is similar to the e�ect of using Queues-of-Queues in comparison to the old Scoop semantics.

73

5.10 Future Work

There are still areas for improvement in D-Scoop and Scoop in general.

5.10.1 Creation of Remote Agents

At the moment, the agent expression does not work with a remote target, since the ex-
pression produces a local object that then gets relabeled to the target processor. With
a remote target, the agent should be created on the target node instead, or exported
after creation. Without the creation of remote agent, the usefulness of client-side
compensations is limited.

5.10.2 Export

Object export can be seen as the client equivalent to object import, a Scoop pattern
introduced by Schmocker et al. [62]. With object export, the client sends the object by
value instead of by reference, the latter being the default for non-expanded objects.
The object and all objects directly or indirectly reachable through non-separate ref-
erences are copied to the receiving processor, even if it is the same processor as the
current processor.

Transparent and explicit export. We can distinguish two forms of export: trans-
parent and explicit. Transparent export is used when passing expanded or immutable
(chapter 8) objects.

By not following separate references, the export mechanism is not the same as a
deep copy. If the object refers to an object through both a separate and a non-separate
reference, the non-separate reference points to the copy but the separate reference
keeps pointing to the original. Object export is especially important for distribution
since it avoids sending unnecessary messages required by object import.

For example, we assume that the put_integer_array feature of a class called
MATH_FORMATTER takes a separate array of integers as an argument:

feature
put_integer_array

(a_arr: separate ARRAY[INTEGER])
deferred
end

Now a client wants to give the formatter such an array for printing. The reference
to the formatter is separate, so simply passing the array would cause callbacks for
every item in the array. The client therefore decides to export the array:

feature
data: ARRAY[INTEGER]
print (a_format: separate MATH_FORMATTER)

do
a_format.put_integer_array(export data)

end

A similar mechanism named deep import was introduced by Nienaltowski for han-
dling non-separate references in expanded types [49]. The advantage of an explicit

74

export is that the supplier can be implemented in a more generic fashion: with deep
import, it has to accept an expanded argument that wraps the array.

Object export also allows the client to call a feature that expects a non-separate
argument with a, which is, except for passing Void or a reference the compiler can
statically infer to reside on the target processor, otherwise impossible. In other words:
when the argument is exported, it conforms to both separate and non-separate formal
arguments. The export keyword on an expression of expanded type is redundant, as
expanded objects are always exported.

5.10.3 Smarter Wait Conditions

A way to reduce the amount of redundant wait condition evaluations is to replace
the simple mechanism to evaluate when to send a �� ��Ready message with one where
processing an �� ��Unlock or �� ��Await message triggers �� ��Ready message if the executed code
made at least one attribute assignment to an existing object. A further step is then to
record the accessed attributes before an �� ��Await and trigger the �� ��Ready message if one
of these attributes changed. It has to be evaluated whether the recording of accessed
and modi�ed attributes outweighs the bene�ts of fewer retries.

5.10.4 Explicit Synchronization

In section 3.3 we mentioned a list of conditions for asynchronous calls. This behav-
ior of automatically deciding whether a call is synchronous or asynchronous has the
drawback that it cannot be decided statically in all cases. A tool that helps in this
case was presented by Meier [40], and it is obvious from the complexity that this is
a real problem. It is therefore useful to have a mechanism that ensures that a call
is asynchronous by never performing lock passing even if the arguments are locked.
While the runtime environment of D-Scoop is ready for this, it requires a language
change, for which we propose using the exclamation mark instead of the dot to ensure
asynchronicity:

target!asynchronous_call (...)
target.regular_call (...)

The regular syntax using a dot would not be a�ected. A problem arises if the
target is non-separate, in which case the call cannot be asynchronous. We see three
possible solutions of this problem:

1. The call is executed synchronously
2. An exception is raised
3. The call is added for execution later

While the �rst one is simplest, it again some ambiguity. The other two are conse-
quences on the decision whether asynchronous self-calls should be valid. The second
is the result of making it invalid, while the third is the result of allowing it. Note that it
is possible to perform a self-call by bouncing it back from another processor by using
an agent, and this is presented as a pattern in [62]. The third gives the programmer
a simple mechanism to make asynchronous self-calls. Asynchronous self-calls can be
used for processing the calls from other clients before continuing. As an example,
we assume the features in listing 5.10 are part of a producer of a producer-consumer
relationship. It is possible to implement produce with a loop, this would make the

75

producer unstoppable: while the loop is executing, a stop request cannot be applied
to �ip stopped and the loop executes until the stopped �ag is not set the loop keeps
executing. From a practical point of view, having a lightweight method, that is, one
that does not require an additional processor just to bounce back the call, for asyn-
chronous self-calls is useful.

feature
stopped: BOOLEAN

produce (a_buffer: separate BUFFER)
require

stopped_or_can_produce: stopped or else not a_buffer.is_full
do

if not stopped then
a_buffer.put (create {ITEM})
Current!produce (a_buffer)

end
end

stop
do

stopped := True
end

Listing 5.10: Example: asynchronous self-call in a producer

5.10.5 Asynchronous Replies

It is possible to integrate asynchronous replies in D-Scoop by leveraging agents. This
enables completely asynchronous behavior which is useful in some settings, espe-
cially if the latencies are high. For example, the following code

supplier.run_query (argument) then agent recipient.a_command (?)

would request the handler of supplier to apply the query run_query and then invoke
the agent recipient.a_command with the result as an argument. This could even
be chained using multiple then clauses. The asynchronous reply construct implies
that the original request is always asynchronous, that is, no lock passing takes place.
Combined with the suggestion above, this means that the dot on the left hand side
should always be replaced by an exclamation mark for consistency.

The call on the right hand side could then either be in the context of the call on
the left, which includes lock passing, or independent. The �rst would use the dot, the
second an exclamation mark.

5.10.6 Exceptions and Compensations

As mentioned in section 5.4, compensations can be seen as a generalization of excep-
tions. We drafted a mechanism to use compensations as a replacement or an alterna-
tive to exceptions and, in the future, would like to explore this possibility.

76

5.10.7 Security

The basic design of D-Scoop avoids some security issues: by leveraging information
of the garbage collection, only clients that received a reference from a trusted source
can issue calls to the associated object. This is complemented by not allowing the
creation of remote object except through application-de�ned factories. However, the
current prototype does not yet include more advanced security mechanisms such as
encryption and certi�cates, all of which are an important measure when D-Scoop is
used outside of a trusted network. Since the focus of this work is on showing the
distributed application of the Scoop model, we leave the security considerations as
future work.

5.11 Conclusion

This chapter presented D-Scoop, a distributed programming model obtained by com-
bining the network objects abstraction with the runtime semantics of the object-
oriented concurrency model Scoop. We presented an e�cient two-phase locking
protocol that generalized the strong reasoning guarantees of Scoop to network ob-
jects, allowing for interference-free and transaction-like reasoning on (potentially
multiple) remotely located objects, without the programmer having to explicitly man-
age their synchronization. Furthermore, we proposed a compensation mechanism by
which D-Scoop programs can recover from failure. The evaluation of our prototype
implementation [18] suggested that D-Scoop remains competitive against—and can
outperform—explicit locking-based synchronization in Java RMI, a well-established
realization of network objects, with the automatic synchronization mechanisms also
allowing for more compact code.

77

Chapter 6

D-Scoop Semantics

6.1 Introduction

The previous chapters introduced Scoop and the basic extensions for distribution in
an informal way. The focus was on the perspective of a developer using D-Scoop
and the general architecture of the system. What remains is to explain how D-Scoop
works internally, which is the purpose of this chapter.

While it is possible to specify a protocol by giving speci�cations for every message
type, it becomes di�cult to describe dependencies between messages if the protocol is
partly asynchronous. For example, the IMAP protocol [15] allows parallel processing
of commands, if no ambiguity exists. A reason for the �rst revision of the IMAP 4
speci�cation was the problem of identifying ambiguity, for which IMAP4rev1 gives
a few examples. The issue can be avoided completely by giving an abstract formal
speci�cation de�ning what messages can be sent in parallel in what situation.

The following sections describe the semantics of D-Scoop independently of the
underlying programming language. This is achieved through abstraction of the state
of a processor: classes, objects and their state are not modeled. In consequence, the
e�ects of the application of a call are non-deterministic, similar to internal choices
in CSP [30]. Internal operations that only change the state of objects are completely
omitted. Since only further calls have an e�ect on the abstract state of a processor,
the e�ects of the application of a call are limited to further calls and the registration
of compensation calls. Without an underlying programming language, there is no
abstract syntax tree. Therefore, the semantics does not take the form of a regular
operational semantics [56].

Aside from a speci�cation of the internal D-Scoop system, the semantics can be
used to show that a speci�c exchange of messages is valid. From this perspective, the
D-Scoop semantics is a form of context-sensitive grammar for a language composed
of messages on a timeline.

The state of a D-Scoop system, even without taking into account objects, is fairly
complex. We developed a system based on the concept of cells, together with lists
and sets to structure the state of the system in a compact, yet intuitive from. The
necessary formal rules are described in section 6.3. Section 6.4 presents the structure
of the state. The rules for state transitions are covered in sections 6.5 to 6.10. These
sections start with the basic message passing system, handle locking and execution,
and �nally end with describing failure cases using exceptions and compensation.

78

i ∈ N Value
cell ::= <c∗> Cell
c ::= cell | i | ε Cell Content[

L
]

::=
[
l(L)

]
List

l(L) ::= L | l(L); l(L) | ε List Content

Figure 6.1: Syntax for cells and lists

The sections contain small examples; two large examples are presented in chap-
ter 4, which also makes a connection between concrete Ei�el D-Scoop code, ex-
changed messages and the semantics presented here.

6.2 Semantics and Implementation

The actual implementation in form of a prototype based on Ei�elStudio di�ers slightly
due to the fact that multiple processors share a node. This situation is used in the
prototype to optimize communication between local processors. Rather than sending
messages, these processor directly manipulate the other processor’s state while using
locks to avoid data races. Nevertheless, the e�ects are the same and local processors
are in no way treated preferably to remote processors: the usage of shared memory
is limited to optimization without impact on the semantics.

Also, if messages, such as �� ��PRELOCK or �� ��LOCK , are sent to multiple processor residing
on the same node, they are merged into one message. We acknowledge that the se-
mantics of the �� ��SHARE and �� ��RELEASE messages cannot be described using the abstraction
given in this chapter, but we refer to [5] for the description of the garbage collection
mechanism that these two message types are used for.

After reading through the semantics, the reader will notice that processors often
have a non-deterministic choice between acting on a message in their in-box, han-
dling prelock or executing an instruction. In practice, these things can be handled by
two threads in parallel. The role of threads1 behind the proxy processors is to handle
the in-boxes and prelock queues of all the suppliers of the client it is proxy of. This
design allows for a seamless integration of D-Scoop into Scoop without preferential
treatment of local processors and no performance regression if no remote processor
is involved. Furthermore, it also allows the node to only allocate as much proxy pro-
cessors, and thereby threads, as currently needed.

6.3 De�nitions and Support

In order to structure the state of a D-Scoop system in a compact and understandable
way, we need to introduce some concepts. Although a complex state can be structured
using abstract data types [39], we chose to introduce a system of cells, lists and sets
which o�ers a more intuitive representation.

1we use the term thread here as this is how processors in Scoop and D-Scoop are based upon

79

6.3.1 Cells

Informal de�nition

Our goal is to make the inference rules as concise as possible in order to make the se-
mantics easily understandable. Since the state of a D-Scoop system is complexScoopA
stated design goal of Scoop was that much of the complexity of writing concurrent
systems should be part of the runtime environment and the compiler instead of the
program. This carries over to D-Scoop., we needed a method to abstract away state
that is not relevant to the given rule. For this, we introduce cells, which is a concept
inspired by the K framework [28]. A cell has a label for identi�cation and can contain
other cells or values. We use angular brackets to frame the cell. A concrete cell with
two inner cells of which one contains two more may look like this:

<<5>B<<4>X<4>Y>C>A

In contrast to tuples, the order of the contents in a cell has no signi�cance, making
cells similar to sets. For clarity, a cell contains either a single value, such as a number
or a tuple, or a various number of cells, but never multiple values or a mix of values
and cells. The syntax of cells is shown in �g. 6.1.

Informally, we can say that for applying a rule that has a cell A in its conclusion,
this rule can be applied using an e�ective cell B if every component of A matches a
distinct component in B with the same label. Note that this relationship is not sym-
metric: A can match B even if B has some components not in A: this is intentional
to omit components in rules that have no e�ect on whether the rule can be used or
not. If there is a component inAwith a label that no component inB shares, the two
cells are not matching. For example, the following inference rule would match the
cell given above:

x > 2
example rule 1

<<x>B<<y>Y>C>A → <<x>B<<y + 1>Y>C>A

Whereas, since X is not a tag of the outer cell, the following one would not match:

example rule 2
<<<y>Y>X>A → <<<y + 1>Y>X>A

Also, components of a cell not listed on the right hand side of an inference rule
are not changed if the rule is applied. Therefore given the cell above and the rule
example rule 1, the resulting cell would be:

<<5>B<<4>X<5>Y>C>A

In addition, if a rule does not need all the context, it is possible to leave out the sur-
rounding cells. If we simplify matching accordingly, we can write it more concisely
by removing the surrounding A-cell:

x > 2

<x>B<<y>Y>C → <x>B<<y + 1>Y>C

80

Of course, this simpli�cation might make the rule apply in more situations than in-
tended.

Another simpli�cation allows for constant cells to be mentioned only once. In the
above rule, the cell B is mentioned so that the x > 2 condition can be checked. The
cell does not change, so we have to mention it only once. We use the ` symbol to
delimit the common part from the changing part.

x > 2

<x>B ` <<y>Y>C → <<y + 1>Y>C

We can remove cell C to get a very concise rule, but note that the rule can now
be applied in more cases:

x > 2

<x>B ` <y>Y → <y + 1>Y

Formal De�nition

Figure 6.2 shows the inference rules that realize the mechanisms given above. The
rules Take out 1 and Take out 2 are used to separate a cell common to both left and
right. The rules strip 1 and strip 2 are used to remove outer cells, but only apply if
there is a single cell in the non-common part of the rule. This is to reduce ambiguity.

In order to mention only the components the rule a�ects or requires, the other
components are hidden. This is a three step process: �rst, the rule extract 1 is used
to extract one of the components of the cell. This can be repeated with extract 2
until the cell with the components we want to hide is on the left, with a series of
cells delimited by n on the right. The n symbol represents insertion: The cells on
the left are put into the cell on the right. The cell hide rule then removes one of the
components of the cell. The rules insert 1 and insert 2 re-pack the cells until there
is no n symbol.

The ε symbol is a neutral element within cells and symbolizes no component. It
allows for partitioning of cells with just one component, e. g.: <5>A = <XY >A, X =
ε, Y = 5.

In general, a variable in a cell may stand for multiple cells, not just a single one.
So <<>B<>C>A may be matched by <XY >A with either X = <>B, Y = <>C or X =

<>B<>C, Y = ε or X = ε, Y = <>B<>C.

Limitation. Due to the possibility to hide cells, a rule cannot check for the absence
of a speci�c cell within a cell: This rule would match even if the cell exists, as the cell
could simply be hidden. This limitation does not apply if a cell is in a set or a list. Lists
and sets are explained below.

Cells can be added or removed. Hiding of content is not possible in either case,
since only content that is the same on both sides of the transition is allowed. This is
intuitive for adding of cells, but for removal it is not, at least at �rst. However, removal
of cells is like adding of cells if a rule is applied in reverse.2

2A careful reader will notice that some of the rules introduced later are not adhering to this: for sake
of readability and brevity, we ommitted some cell content during removal where it is clear which cell is
removed from the context.

81

<A>a ` B → B′
take out 1

<A>aB → <A>aB′

<A>ab ` C → C ′
take out 2

<A>a ` bC → bC ′

A→ A′
strip 1

<A>l → <A′>l
A ` B → A ` B′

strip 2
A ` l → A ` <B′>l

An l → A′ n <B′>l extract 1
<AB>l → <A′B′>l

An l nX → A′ n <B′>l nX ′
extract 2

<A B>l nX → <A′ B′>l nX ′

l nX → <B′>l nX ′
cell hide

<A B>l nX → <A B′>l nX ′

<A B>l nX → <A′ B′>l nX ′
insert 1

An l nX → A′ n <B′>l nX ′

<A B>l nX → <A′ B′>l nX ′
insert 2

An l nX → A′ n <B′>l nX ′

Figure 6.2: Rules for simplifying cells

82

6.3.2 Sets and lists

In addition to cells, our notation also employs sets and lists. Sets use curly braces and
a comma for delimiting its entries. Sets can be empty, for which we use the normal
symbol for an empty set, ∅. We only use sets of tuples or scalar values, so we omit
inference rules and simply use standard set operations, like for example the union
operator ∪, which is generally used for partitioning sets in rules. There is no rule that
allows parts of a set be hidden, otherwise the /∈ operator would become meaningless.

Lists are written between brackets and use semicolons as delimiter. The semicolon
is an associative operator, enabling matching at the front ([a; q]), the end ([q; a]) and
somewhere in the middle ([q1; a; q2]) of the list. If used as a queue, new entries are
added from the right as a convention, and taken out from the left. As a stack, the
items are added and removed from the left. Empty lists is written as [ε]. The epsilon
symbol ε is also the neutral element of the semicolon operator, so that the following
holds:

[a; b] = [a; ε; b]

[a] = [ε; a] = [a; ε]

The usage of a neutral element enables rules like:

a ∈ N
[a; q]→ [q]

to match lists with a single item like [15], which would be reduced to [ε] by this rule.

Hiding in lists

Informal De�nition When dealing with lists, ellipses can be used to hide parts of
lists. For example, the following rule removes an integer value from a list in cell C if
it is on the left of the list and greater than �ve:

a > 5

<[x...]>C → <[...]>C
We mentioned before that cells either contain an arbitrary amount of other cells or a
single value. The latter includes lists and sets. For readability and convenience, if a
cell contains a list, the angular brackets of the cells are omitted, so only the brackets
of the list remain. The same is done for a set in a cell, where the curly braces remain.
By applying this de�nition given in �g. 6.4 to the inference rule above, we derive the
following rule:

a > 5[
x...
]
C →

[
...
]
C

83

An [H; �;T] nX → A′ n [H; �;T] nX ′ � /∈ [H;A;T]
list extract

[H;A;T] nX → [H;A′;T] nX ′

[H;A;T] nX → [H;A′;T] nX ′
list insert

An [H; �;T] nX → A′ n [H; �;T] nX ′

[A . . .] n C → [A′ . . .] n C ′
list hide 1

[A;T] n C → [A′;T] n C ′

[. . . A] n C → [. . . A′] n C ′
list hide 2

[H;A] n C → [H;A′] n C ′

[. . . A . . .] n C → [. . . A′ . . .] n C ′
list hide 3

[H;A;T] n C → [H;A′;T] n C ′

[. . .] n C → [A′ . . .] n C ′
list prepend

[T] n C → [A′;T] n C ′

[. . .] n C → [. . . A′] n C ′
list append

[T] n C → [T ;A′] n C ′

[A . . .] n C → [. . .] n C ′
list chop left

[A;T] n C → [T] n C ′

[. . . A] n C → [. . .] n C ′
list chop right

[H;A] n C → [H] n C ′

[. . . A . . .] n C → [. . .] n C ′
list remove

[H;A;T] n C → [H;T] n C ′

Figure 6.3: Rules for simplifying lists

84

<A B>lbl =<B A>lbl
<A ε>lbl =<A>lbl

[A; ε] = [A] = [ε;A]

[A; ε;B] = [A;B]

<[A]>l =
[
A
]
l

<{A}>l =
{
A
}
l

Figure 6.4: De�nitions for cells and lists

Formal de�nition. Figure 6.3 shows the rules that deal with simpli�cation of lists.
The rule list extract works similar to its counterparts for cells, extract 1 and
extract 2. It allows an item to be extracted out of a list so that some of it can be hid-
den using another rule before it is re-inserted into the same position by list insert.
It uses the � symbol is a placeholder so that the modi�ed sub-list is inserted at the
right spot.

Apart from the already discussed cell hide rule, there are many rules to hide
parts of a list. The three list hide rules hide the head, the tail or both from a list by
replacing them with an ellipsis. list prepend allows a variable number of new items
denoted by A′ to be added on the left of a list, whereas list append does the same
on the right. The two rules list chop left and list chop right are the counterparts
to the rules mentioned before: instead of adding, they remove items from the left or
right of the list. Finally, list remove can be used to remove a part from somewhere
in the list.

6.3.3 De�nitions

There are multiple ways to write down a set, list or cell. To describe the equivalent
notations, we use a small set of de�nitions for cells, lists and sets shown in �g. 6.4.
The �rst de�nition makes the ordering of components in cells irrelevant, that is, the
implicit delimiter of components in cells is commutative. The second rule introduces
ε as a neutral element.

The next two de�nitions establish that a list with an ε at the left or right of a list
is equal to the list without ε. The other rule establishes that an ε in the middle of a list
is also irrelevant. These two rules together introduce ε as a neutral element in lists.

The last two de�nitions introduce a short-hand notation of lists and sets in cells,
as mentioned in the previous section.

6.4 Con�guration

A con�guration of the D-Scoop semantics consists of a set of processors and its syntax
is described in �g. 6.5. For the purpose of the semantics, every processor is considered
to be on a separate node. While in practice a node may hold multiple processors3, for
our abstraction this makes no di�erence since semantically, D-Scoop does not di�er-
entiate between local and remote processors. The messages that have no meaning

3In fact, new processors are created on the same node as the creating processor.

85

p ∈ N Proc. Id
c ∈ N Client Id
s ∈ N Supplier Id
f ∈ N Frame Id
m ∈ N Message Id
S ::= <

{
p
}

Ps P∗>C State

P ::= <<p>Pi
[
F
]
El
[
R
]
Pl
{
N
}

Ns <W>W[
Mm

]
Ib
[
Mm ↑ p

]
Ob >P Processor

F ::= <<f>Fi<T>T
[
I
]
Il
[
p
]
Ol
[
C
]
Cl
{
L
}

As
{
L
}

Is>F Frame
R ::= (c,m) | c Prelock
N ::= (c,m) Subscriptions
W ::= N | R |Wm Wait State
T ::= L | C | S Frame Type
L ::= (s, f) Lock
I ::= πc | υ | ξ | Ω | m ↓ s | ↓ V

| ACall s, {s} | SCall s, {s} | Pass {L} , s
| Exec {s} , {L} , {L} , {s} | Notify {W}
| Unlock {s} | Return c, f | Await {s}
| Revert | Retract {s} Instructions

M ::=
�� ��Prelock c |

�� ��Lock c |
�� ��Pass c, f, p |

�� ��Unlock c, f

|
�� ��ACall c, f, {s} |

�� ��SCall c, f, {s} , {L}

| �� ��Retract c | �� ��Revert c, s | �� ��Await c

| �� ��OK | �� ��OK L | �� ��FAIL Messages
C ::=

([{
s
}]
, c
)

Compensation

Figure 6.5: Syntax of D-Scoop con�guration

86

in this abstract semantics are �� ��Hello , �� ��Ping , �� ��Index , �� ��Share and �� ��Release . While the �rst two
are only used for technical reasons, the latter three are meaningless in the abstract se-
mantics for another reason: the described semantics has no concepts of objects, values
and classes. As a consequence, we do not need to model the heap, the type system
and all operations except calls. This is possible since the locking mechanism is only
dependent on the processors involved in a call, not the actual objects. In addition, this
generalizes the semantics to apply to non-object-oriented programming languages, or
languages that use a di�erent object system. Calls can therefore be modeled simply by
a client processor, a supplier processor, and a possibly empty set of argument proces-
sors. Also, modeling the type system is redundant as it is already described in detail
in section 3.1.1 and in previous publications such as [49].

As a convention, the second letter in the label indicates an identi�er (i), a set (s)
or a list (l). The only exceptions are the in- and out-box for messages.

A processor consists of the following:

1. the identi�er of the processor Pi
2. the execution list El
3. the prelock list Pl
4. the message in-box (a list) Ib
5. the message out-box (also a list) Ob
6. and the noti�cation set Ns

Every processor has a globally unique identi�er (Pi). The execution list is used as both
a stack (in case of synchronous calls) and as a queue (for incoming lock requests).
The prelock list is used as a stack. The message lists are used as queues. Queues
are processed from front (left) to back (right), with new items appended at the back.
These lists can often make progress independently from each other, yielding some
intra-processor parallelism. This is exploited by the implementation as explained in
section 6.2 using proxy processors.

Execution list. The execution list (El) contains the execution frames4 (F) and can
be considered the core of the processor. Only instructions from the active frame are
processed, which is always the leftmost in the execution list. Note that the locking
token for receiving messages is not considered an instruction and can be removed
even if it is not in the active frame5. Frames are added to the execution list from both
the left and the right, depending on the circumstances.

Each frame has a unique identi�er (Fi). The most important component of a frame
is the instruction list (Il), which contains the instructions for the processor to execute.
Instructions can change the state of the current processor, including putting messages
in the out-box. No instruction accesses the state of other processors directly. Execu-
tion of an instruction may replace the instruction with one or more further instruc-
tions. Incoming requests from other processors are always appended to the right of
the instruction list, while only the instructions on the left are processed. Details of
the various instructions are explained in the following sections.

The frame also contains the owners list (Ol), which is used as a stack with the
current owner on top, that is, on the left. The compensation and client list (Cl) is

4While the implementation presented before uses the terms queue of queue and subqueue as a reference
to West [66], these semantics merge this concept into the execution frames: there is no reason to keep the
two apart, it only adds complexity.

5The token can be seen as a variable that receives a value once the matching message arrives, and the
position of the token represents the point where the processor waits until this variable has received a value.

87

<<∅>Ps>C

Figure 6.6: Initial D-Scoop con�guration

used for rollbacks in case of failure, and is discussed in section 6.10.2. Finally, the two
lock sets As and Is track the locks currently held by the processor while this frame is
active. The �rst tracks the acquired locks, that is, the lock acquired through locking,
while the second tracks the locks inherited through separate or non-separate lock
passing.

Prelock list. The prelock list (Pl) contains information about the current prelock
state of the processor and is required for the prelock protocol as introduced in sec-
tion 5.3. Section 6.7.1 gives more detail about the exact usage of this data structure.

Message lists. The message lists are used for sending and receiving messages. They
are used as queues and discussed in section 6.5.

suppliers (L) = {s | ∃i : (s, i) ∈ L} (6.1)

Extracting Suppliers

The function suppliers (L) de�ned through eq. (6.1) is used to transform a set of locks
into a set that only contains the supplier identi�ers. This is used to compare the set
of required locks with the set of locks already acquired: the former consists of scalar
values, while the other contains tuples.

6.4.1 Initial Con�guration

Initially, a D-Scoop system contains just the set of processor identi�ers. This con�g-
uration is shown in �g. 6.6. Processors can appear in the system via the rule appear
presented in section 6.6.

6.5 Message Passing

As mentioned in section 5.2, D-Scoop is built on top of a simple asynchronous message
passing system: messages are divided into requests and replies. Every message has
a subject, in the case of replies it is either �� ��OK or �� ��FAIL . Under normal circumstances,
all replies are �� ��OK ; the usage of �� ��FAIL is discussed in section 6.10. Sending a message
is done by placing it in the out-box of the sending processor. As a separate step, the
message is put into the in-box of the receiving processor by transmit, which is the
only rule apart from spawn in the semantics that involves two processors. If it is an
expected reply, the rules recv. ok and recv. value are handling the message from
there, by removing or replacing the blocking ↓ symbol. Handling requests is done by
matching and removing the �rst message directly in the associated inference rule.

88

transmit
<
[
mi ↑ r...

]
Ob>P<<r>Pi

[
...
]
Ib>P → <

[
...
]
Ob>P<<r>Pi

[
...mi

]
Il>P

recv. ok[
...<
[
...i ↓ s...

]
Il>F...

]
El
[�� ��OK i...

]
Ib

→
[
...<
[
...ε...

]
Il>F...

]
El
[
...
]
Ib

recv. value[
...<
[
...i ↓ s...

]
Il>F...

]
El
[�� ��OK v i...

]
Ib

→
[
...<
[
... ↓ v...

]
Il>F...

]
El
[
...
]
Ib

Figure 6.7: D-Scoop messaging rules

fresh (f) ∧ o /∈ P ∧ p /∈ P
appear

<P>Ps →
<P ∪ {p}>Ps <p>Pi[

<<f>Fi<S>T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, o
)]

Cl <∅>As<∅>Is>F
]
El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob <∅>Ns

P

fresh (p)
spawn

<P>Ps
[[<[Spawn...

]
Il>F...

]
El
]
P

→
<P ∪ {p}>Ps

[[<[...]Il>F...
]
El
]
P[

<p>Pi
[
ε
]
El
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob <∅>Ns

]
P

Figure 6.8: Inference rules for appearance and spawning of processors

6.6 Appearance

The spawn and appear rules shown in �g. 6.8 govern the addition of processors to
the system.

New Processors can appear in the D-Scoop system. This is due to an external
event, for example if a person starts a D-Scoop program and connects it to the system.
This spontaneous appearance is governed by the appear rule. An appearing processor
has always some initialization code, represented by an initial frame with an Ω. Note
that the compensation list contains a client identi�er that is not used by any processors
in the system. This indicates that the reason for executing this frame is external. It
could be due to a processor that joins the system by additional applications of appear

Creation of new processors is also caused by the Spawn instruction and the spawn
rule. In our implementation, spawn corresponds to the creation of a processor using
create. It creates a new processor cell. The processor has a new, unique identi�er,
which is also added to the set of identi�ers in the Ps cell. None of the lists and sets in
the new processor contain any items.

Note that it is up to the client to gain a lock on the new processor in order to issue
any creation procedures for new objects. Without a representation of objects, it is not

89

possible to give a rule when a processor can be discarded, as we do not track which
processors have references to each other.

6.7 Lock Handling

The handling of locks is the central aspect of D-Scoop, and it is the di�erentiating
feature of D-Scoop compared to other distributed active object models. It naturally
occupies the majority of the semantics, and part of its complexity in D-Scoop is due
to the presence of failure and the compensation mechanism. The latter interacts in a
complex way with the concept of lock passing, which not only gives processors the
ability to pass locks, but also obliges them to take responsibility for everything the
suppliers do with the locks.

6.7.1 Acquiring Locks

Lock

A lock is a combination of a processor identi�er and a frame identi�er, written as a
tuple. The frame identi�er is needed for sending requests to the correct frame, as it
is possible that the same processor has multiple locks on the same other processor
through repeated lock passing, but on di�erent frames.

The exec instruction

Before the body of a call can be executed, the required processor locks need to be
acquired. The Exec R,O,P instruction is taking care of acquiring the locks. The three
arguments of this instruction are:

Required locks. The �rst argument of this instruction is the set of required locks.
This is the set of processor identi�ers from the arguments of the call that are not yet
locked due to lock passing. The current processor is implicitly locked, so this set does
not include it. Unlike implied by its name, the set only contains identi�ers, not lock
tuples, since the frame identi�er is not yet known.

Obtained locks. The second argument is the set of obtained locks. These are
the locks that have been passed from another processor through a separate synchro-
nous call. In the case of non-separate or asynchronous calls, this set is always empty,
whereas in the other case it will contain at least a lock on the client.

Prelocked processors. The last argument is used to identify the processors where
the �� ��Prelock message has already been sent. It contains only processor identi�ers.

Rules

Figure 6.9 contains the rules for acquiring locks. At �rst, unless there is no lock to be
acquired, the only rule that can be applied is the prelock rule. It appends to the last
argument, the prelocked processors, of the Exec instruction with the processor with
the lowest identi�er. But it also sends a �� ��Prelock message and adds a receive token in
front, so that the instruction queue is blocked until the appropriate response has been
received. Since the messages are sent in a global order based on the identi�ers, the

90

R \ P = {s} ∪X
∀x ∈ X : s < x

fresh (i)
prelock

<c>Pi `[
<
[
Exec R,O, P...

]
Il <A>As<I>Is>F...

]
El[

...
]
Ob
→[

<
[
i ↓ s; Exec R,O, P ∪ s...

]
Il <A>As<I>Is>F...

]
El[

...
�� ��Prelock c i ↑ s

]
Ob

R \ suppliers (A ∪O) = {s} ∪X
fresh (i)

lock
<c>Pi `

[
<
[
Exec R,O,R...

]
Il <A>As>F...

]
El
[
...
]
Ob →[

<
[
i ↓ s; Exec R,O,R...

]
Il <A>As>F...

]
El
[
...
�� ��Lock c i ↑ s

]
Ob

add lock[
<
[
↓ l; Exec R,O,R...

]
Il <A>As>F...

]
El →[

<
[
Exec R,O,R...

]
Il <{l} ∪A>As>F...

]
El

prelock enqeue[
...
]
Pl
[�� ��Prelock c i...

]
Ib <N>Ns →[

... (c, i)
]
Pl
[
...
]
Ib <N \ {c}>Ns

prelock reply[
(c, i) ...

]
Pl
[
...
]
Ob →

[
c...
]
Pl
[
...
�� ��OK s i ↑ c

]
Ob

fresh (f)
lock reply

<s>Pi `[
...
]
El
[
c...
]
Pl
[�� ��Lock c i...

]
Ib
[
...
]
Ob

→[
...

<<f>Fi<S>T
[
ε
]
Il
[
c
]
Ol
[[([

ε
]
, c
)]

Cl
]
Cl <∅>As<∅>Is>F

]
El[

...
]
Pl
[
...
]
Ib
[
...
�� ��OK s, f

i
↑ c
]
Ob

Figure 6.9: Inference rules for locking

91

prelock protocol does not deadlock. In an implementation with nodes, such as our
prototype, the processor identi�er should consist of a globally unique node identi�er
plus a (locally) unique processor identi�er. The ordering would then be �rst by node
identi�er, then by processor identi�er. With this identi�cation scheme, the prelock
requests for processors residing on the same node can be merged into one message.

On the supplier side, the prelock message is put into the prelock queue according
to prelock enqeue). The prelock queue contains either scalar identi�er values, or
tuples of identi�ers. The latter contains the message id of the original prelock request
alongside the client identi�er, whereas the former is only the client identi�er. Sending
of the reply is done by prelock reply, which only sends a reply if the leftmost item
in the prelock list is a tuple from where it retrieves the appropriate message identi�er.
Afterwards, only the client identi�er remains, ensuring that replies are only sent once.

The sequence of prelock→ prelock reply→ prelock etc. is repeated until the
prelock rule cannot be applied anymore as there is no identi�er in the required locks
set that is not in the prelocked processors sets. Note that the acquired set As is always
empty while prelock messages are sent.

The client now sends the �� ��Lock messages to all prelocked processors6. Sending is
done by lock, while the reply is sent by lock reply. Application of the latter rule
appends a new frame at the back of the execution list of the supplier processor. The
new frame always starts with the client as the initial owner and the instruction list
containing a π symbol to re�ect that the following instructions are sent by the client.
Both the lock set and the compensation list are empty.

The reply contains a lock on the new frame, which is used by add lock to add the
lock to the set of acquired locks.

The sequence of lock→ lock reply→ add lock→ lock etc. is repeated until
the lock rule cannot be applied anymore as there is no identi�er in the required locks
set that is not a supplier in either the acquired or the obtained locks set. Only then
can the rule exec, listed in �g. 6.17, be applied to invoke the feature body.

6.7.2 Releasing Locks

Releasing locks in D-Scoop is as simple as sending �� ��Unlock messages to all the sup-
plier by applying unlock and at some point unlock finished. When processing the�� ��Unlock message through unlock ok, the supplier is removing the current owner of
the indicated frame and adds a υ symbol to the instruction list. When this symbol is
processed by one of the pop client rules, the e�ects depend on the type of the frame
and the compensation list:

1. If the compensation list has multiple entries, then the lock was passed back.
The top two items of the compensation list are merged, and the frame is kept.

2. The frame is a result of a lock request. The frame is removed and the compen-
sations are discarded.

3. The frame was created for separate callbacks. The frame is removed and the
compensation lists are merged.

4. The frame was created for a local call. The frame is removed and the compensa-
tion lists are merged. Also, pending exceptions are propagated to the underlying
frame.

6While in practice this is done in parallel, we decided to make it sequential so that it can be explained
with fewer, simpler rules.

92

fresh (i)
unlock 1

<c>Pi `[
<
[
Unlock...

]
Il <{(s, f)} ∪A>As>F...

]
El
[
...
]
Ob

→[
<
[
Unlock...

]
Il <A>As>F...

]
El
[
...
�� ��Unlock c, f

i
↑ s
]
Ob

fresh (i)
T 6= L

unlock 2
<p>Pi `

[
<<T>T

[
Unlock...

]
Il <{(s, f)} ∪ I>Is>F...

]
El
[
...
]
Ob

→[
<<T>T

[
Unlock...

]
Il <I>Is>F...

]
El
[
...
�� ��Unlock p, f

i
↑ s
]
Ob

I = ∅ ∨ T = L
unlock finished

<p>Pi `[
<<T>T

[�� ��Unlock ...
]
Il <∅>As<I>Is>F...

]
El

→[
<<T>T

[
...
]
Il <∅>As<I>Is>F...

]
El

unlock ok[
...<<f>Fi

[
...
]
Il
[
c...
]
Ol>F...

]
El
[�� ��Unlock c, f

m
...
]
Ib

→[
...<<f>Fi

[
...υ
]
Il
[
...
]
Ol>F...

]
El
[
...
]
Ib

pop client 1[
<
[
υ...
]
Il
[([
C
]
, c
)

;
([
D
]
, p
)
...
]
Cl>F...

]
El

→
[
<
[
...
]
Il
[([
C;D

]
, p
)
...
]
Cl>F...

]
El

pop client 2[
<<S>T

[
υ...
]
Il
[([
C
]
, c
)]

Cl>F...
]
El →

[
...
]
El

pop client 3
<p>Pi `

[<<C>T
[
υ...
]
Il
[([
C
]
, c
)]

Cl>F;

<
[([
D
]
, q
)
...
]
Cl>F...

]
El

→[
<
[([
C;D

]
, q
)
...
]
Cl>F...

]
El

pop client 4
<p>Pi `

[<<L>T
[
υ;E

]
Il
[([
C
]
, p
)]

Cl>F;

<
[
...
]
Il
[([
D
]
, q
)
...
]
Cl>F...

]
El

→
[
<
[
E; ...

]
Il
[([
C;D

]
, q
)
...
]
Cl>F...

]
El

Figure 6.10: Inference rules for unlocking

93

fresh (j)
pass

<c>Pi `
[
<
[
Pass {(l, i)} ∪ L, s...

]
Il>F...

]
El
[
...
]
Ob

→[
<
[
Pass L, s...

]
Il>F...

]
El
[
...
�� ��Pass c, i, s

j
↑ l
]
Ob

pass finished[
<
[
Pass ∅, s...

]
Il>F...

]
El →

[
<
[
...
]
Il>F...

]
El

pass ok[
<
[
...
]
Il
[
c...
]
Ol>F...

]
El
[�� ��Pass c, i, s ...

]
Ib

→
[
<
[
...πs

]
Il
[
s, c...

]
Ol>F...

]
El
[
...
]
Ib

push client[
<
[
πc...

]
Il
[
...
]
Cl>F...

]
El →

[
<
[
...
]
Il
[([
ε
]
, c
)
...
]
Cl>F...

]
El

Figure 6.11: Inference rules for lock passing

There is also a Retract instruction. This instruction can be used to retract the
prelock from a supplier. This is useful is situations where the locking process fails for
some reason, and a use case is presented in section 6.10. The retract rules are similar
to the lock rules explained in section 6.7.1 but without a reply and the creation of a
new frame.

6.7.3 Lock Passing

Lock passing is an important part of synchronization. As mentioned in section 3.3.2,
lock passing avoids deadlocks in nested synchronous calls. The Pass instruction sends
messages (rule pass) to all suppliers informing them that the lock on the given frame
has been passed to another processor. Receiving the message pushes the owner list,
which is always used as a stack, with the given processor identi�er (rule pass ok)
and adds a pass marker π. The last argument of the synchronous call message �� ��SCall
presented in section 6.8.1 is a set of locks the supplier can use. When processed by
push client, the symbol pushes the new lock holder onto the compensation list. Since
compensations are applied in reverse, the compensation list is treated like a stack.
The π symbol can be seen as a counterpart to the υ symbol: on unlock, υ reduces
the owners list again, as stated above in section 6.7.2. This information is used for
recovering from failure, which is discussed in section 6.10.

6.7.4 Wait Conditions

It is possible to model wait condition through regular lock→ check→ unlock cycles
until the condition matches. However, this implies a polling-type strategy which is
ine�cient. What should happen is that the wait condition is only re-evaluated if the
state of at least one supplier changes. The rules that specify how wait conditions are
evaluated in a pushed fashion are shown in �g. 6.12.

There are three wait states of a processor. The �rst, N for neutral, is used if the
processor is not waiting for a noti�cation. The second, Ww for waiting, awaits a

94

next notify[
<
[
Ω...
]
Il>F...

]
El →

[
<
[
Notify; Ω...

]
Il>F...

]
El

fresh (w)
next await[

<
[
Ω...
]
Il <A>As>F...

]
El →

[
<
[
Await A,w...

]
Il <A>As>F...

]
El

W 6= G
await 1[

<<f>Fi
[
Await R,w...

]
Il <{(s, f)} ∪A>As>F...

]
El

<W>Ws
[
...
]
Ob

→[
<<f>Fi

[
Await R...

]
Il <A>As>F...

]
El

<Ww>Ws
[
...
�� ��Await c, f

w
↑ s
]
Ob

await 2
<G>Ws `[

<<f>Fi
[
Await R,w...

]
Il <{(s, f)} ∪A>As>F...

]
El
[
...
]
Ob →[

<<f>Fi
[
Await R...

]
Il <A>As>F...

]
El
[
...
�� ��Unlock c, f

w
↑ s
]
Ob

retry[
<
[
Await R,w...

]
Il <∅>As>F...<R>Ws

]
El →[

<
[
Exec R, ∅, ∅...

]
Il <∅>As>F...<N>Ws

]
El

o ∈ N
await ok[

...<<f>Fi
[
...
]
Il
[
c
]
Ol>F...

]
El <N>Ns

[�� ��Await (c, f)
w
...
]
Ib

→
[
...<<f>Fi

[
...υ
]
Il
[
ε
]
Ol>F...

]
El <N ∪ {(c, w)}>Ns

[
...
]
Ib

notify[
<
[
Notify...

]
Il>F...

]
El <N ∪ {(c, w)}>Ns

[
...
]
Ob

→[
<
[
Notify...

]
Il>F...

]
El <N>Ns

[
...
�� ��Ready

w
↑ c
]
Ob

notify fin.
<∅>Ns `[

<
[
Notify...

]
Il>F...

]
El →

[
<
[
...
]
Il>F...

]
El

ready[�� ��Ready
w

; ...
]
Ib <Ww>Ws →

[
...
]
Ib <R>Ws

W 6= Ww ignore
<W>Ws `

[�� ��Ready w
w

; ...
]
Ib →

[
...
]
Ib

Figure 6.12: Inference rules for wait conditions

95

noti�cation with identi�er w. The third, R for ready, signals a received noti�cation
and allows the processor to resume, which will put it back to N.

Due to routine abstraction (see section 6.8.1), the state change is not observable,
but the noti�cation is. Therefore, Ω can produce the Notify instruction which noti�es
waiting processors by sending �� ��Ready messages according to notify and notify fin..
These messages are sent to clients that registered for noti�cation by sending an �� ��Await
message instead of an �� ��Unlock message. This causes the client to be added to the noti�-
cation set in the Ns cell. This is done by await rules processing the Await instruction
produced by Ω through next await. These two rules are very similar to the unlock
and next unlock rules. In the client, the W cell tracks whether the processor is cur-
rently waiting; the cell is reset when receiving a �� ��Ready message and applying ready.
The await 2 rule is used if the processor was already noti�ed but did not yet send all
the �� ��Await messages. In this case, the noti�ed processor sends regular �� ��Unlock messages
to the remaining processors instead of further �� ��Await messages. If a �� ��Ready message ar-
rives after the processor was already noti�ed, the message is simply ignored through
rule ignore.

If a supplier receives a �� ��Prelock message from a client that is in the noti�cation set,
this set entry is removed.

6.8 Execution

6.8.1 Feature abstraction

As mentioned before, the semantics of the actual feature execution is abstract. We
assume that a feature can take the following actions:

• make an internal action
• make a non-separate call
• make a separate synchronous call
• make a separate asynchronous call
• spawn a new processor
• register a compensation call
• throw an exception
• unlock and �nish

The internal action subsumes all decision-making within the feature as well as all
changes to the internal, not represented state. This has no in�uence on the visible
state, which is why there is no inference rule for internal actions. However, this ab-
straction also removes the possibility to infer, from the current state, what action a
feature is taking next, making this decision nondeterministic. To model this nonde-
terminism, the symbol Ω abstractly represents the feature: it can be seen as a yet
unknown list of actions. This symbol produces non-deterministically the di�erent
actions a feature can take as listed above.

The possible actions are represented as inference rules in �g. 6.13. By applica-
tion of next spawn, a feature can create a new processor. The rule next unlock
represents the end of a feature execution by replacing the Ω symbol with an instruc-
tion to unlock the supplier frames. Compensation and exceptions are discussed in
section 6.10.

96

s ∈ suppliers(A ∪ I)
R ⊆ P

next acall
<P>Ps `

[
<
[
Ω...
]
Il <A>As<I>Is>F...

]
El

→[
<
[
ACall s,R; Ω...

]
Il <A>As<I>Is>F...

]
El

R ⊆ P
next scall 1

<P>Ps<c>Pi `[
<
[
Ω...
]
Il>F...

]
El →

[
<
[
SCall c,R; Ω...

]
Il>F...

]
El

(s, i) ∈ A ∪ I
S = (A ∪ I) \ {(s, i)}

R ⊆ P
next scall 2

<P>Ps `
[
<
[
Ω...
]
Il <A>As<I>Is>F...

]
El →[

<
[
Pass S, s; SCall s,R; Ω...

]
Il <A>As<I>Is>F...

]
El

next spawn[
<
[
Ω...
]
Il>F...

]
El →

[
<
[
Spawn; Ω...

]
Il>F...

]
El

next unlock[
<
[
Ω...
]
Il>F...

]
El →

[
<
[
Unlock...

]
Il>F...

]
El

Figure 6.13: Inference rules for routine abstraction

call

asynchronous synchronous

separate non-separate

Figure 6.14: Call categories

97

Generating calls

Calls can be divided into two general categories: synchronous and asynchronous calls.
Synchronous calls have the property that the locks are passed along to the target pro-
cessor. Client and supplier processor of a synchronous call can be the same, in which
case we use the term non-separate call. Section 6.8.1 illustrates this categorization.
Handling of calls di�ers based on whether the call is (separate) asynchronous, sepa-
rate synchronous or non-separate synchronous.

A feature can make calls, which is represented by the application of one of the
rules next scall 1, next scall 2 or next acall. In all three cases, the arguments are
a subset of the processors in the system. But there are also some subtle di�erences
for these calls. An asynchronous call uses a di�erent instruction symbol, ACall, to
indicate that the call is not blocking. The supplier cannot be the current processor, of
which there is never a lock in the locks set, since an asynchronous call is always sepa-
rate. There is also a distinction between non-separate and synchronous calls: separate
lock-passing, through the instruction Pass, happens only in the case of separate syn-
chronous calls and not for non-separate synchronous calls. Note that the lock on the
supplier is not sent with lock passing, but a new lock on the client is.

This is only the generation of the calls. Handling of the generated call is discussed
in the next section.

Locked arguments and lock passing. Note that the Scoop model and the con-
crete D-Scoop system described in chapter 3 and chapter 5 specify that lock passing,
and therefore a synchronous call, happens whenever an argument of a call to a sep-
arate target is locked. This is a programming language decision that is not strictly
required: in fact, in [49], the decision to pass locks is based on whether the argument
is controlled, not whether it is locked. In section 5.10, we propose a simple language
change to force an asynchronous call. So semantically, an asynchronous call may in-
volve arguments, that is, needed locks, that are held by the caller. Conversely, the
semantics allows that a separate command call can have no required locks and still be
synchronous, which represents command calls to passive regions or possible future
language extensions to force a synchronous call or lock passing.

6.8.2 Making calls

The di�erent types of calls need to be handled i di�erent ways. This is achieved by
the rules shown in �g. 6.15.

Non-separate calls. Non-separate calls are always synchronous, which is why they
are represented by the SCall instruction. According to the rule scall 1 shown in
�g. 6.15, non-separate calls are executed by creating a new frame with the corre-
sponding Exec instruction. Non-separate lock passing is silent: the suppliers are not
noti�ed when it happens and also do not get an �� ��Unlock message. Also, the locks are
immediately put into the inherited set, so the second argument of the Exec instruction
is empty.

Asynchronous calls. Asynchronous calls are always separate, that is, the supplier
is di�erent from the client. Such a call is, according to the rule acall, handled by
sending a �� ��ACall message to the supplier containing the client, the identi�er of the
frame in the lock on the supplier and the arguments. No changes are made to the set

98

fresh (i)
scall 1

<c>Pi `
[
<
[
SCall c,R...

]
Il <I>Is<A>As>F...

]
El

→<
[
Exec R \ (I ∪A ∪ {c}), ∅, ∅; υ

]
Il[

i
]
Fi
[
ε
]
Ol
[([
ε
]
, c
)]

Cl <I ∪A>Is<∅>As>F
; <
[
...
]
Il <I>Is<A>As>F

El

(s, i) ∈ I ∪A
fresh (m)

acall
<c>Pi `

[
<
[
ACall s,R...

]
Il <I>Is<A>As>F...

]
El
[
...
]
Ob

→[
<
[
m ↓ s...

]
Il <I>Is<A>As>F...

]
El
[
...
�� ��ACall c, i, R

m
↑ s
]
Ob

fresh (i, j)
(s, f) ∈ I ∪A

P = (I ∪A ∪ {(c, i)}) \ {(s, f)}
scall 2

<c>Pi `
[
<
[
SCall s,R...

]
Il <I>Is<A>As>F...

]
El
[
...
]
Ob

→[<[i]Fi
[
ε
]
Il
[
s
]
Ol
[[([

ε
]
, s
)]

Cl
]
Cl <∅>Is<∅>As>F

; <
[
j ↓ s...

]
Il <I>Is<A>As>F...

]
El[

...
�� ��SCall c, f, R, P

j
↑ s
]
Ob

Figure 6.15: Inference rules for calls

99

R = N \ (supplier (O) ∪ {s})
enq. scall

<s>Pi `[
...<<i>Fi

[
...
]
Il
[
c...
]
Ol>F...

]
El
[�� ��SCall c, i, N,O

j
...
]
Ib

→[
...<<i>Fi

[
...Exec R,O, ∅; Return c, j

]
Il
[
c...
]
Ol>F...

]
El[

...
]
Ib

enq. acall
<s>Pi `[

...<<i>Fi
[
...
]
Il
[
c...
]
Ol>F...

]
El[�� ��ACall c, i, N

j
...
]
Ib
[
...
]
Ob

→[
...<<i>Fi

[
...Exec N \ {s} , ∅, ∅

]
Il
[
c...
]
Ol>F...

]
El[

...
]
Ib
[
...
�� ��OK j ↑ c

]
Ob

return 1[
<
[
Return c, i...

]
Il>F...

]
El
[
...
]
Ob

→[
<
[
...
]
Il>F...

]
El
[
...
�� ��OK i ↑ c

]
Ob

Figure 6.16: Inference rules for enqueuing of calls

of locks, the supplier needs to acquire all necessary locks for the call. The rule sends
the message and blocks the client until it gets the �� ��OK from the supplier, which is sent
when the call has been successfully enqueued, but not necessarily when it has been
executed. This has a practical reason: if the supplier is unreachable because of failure,
the client gets noti�ed immediately. If the message was sent and the processor does
not wait for the response, a failed supplier is only detected with the next synchronous
call, if there is one.

Synchronous separate calls. Synchronous separate calls are more complex than
other types of calls and are handled by rule scall 2. Note that before this rule is ap-
plied, the Pass instruction, detailed in section 6.7.3 has been handled. On a synchro-
nous call, the client blocks and sends along all its locks to the supplier. For supporting
direct or indirect callbacks, the client adds a new execution frame in front of the ex-
ecution list, and passes the lock on it to the supplier alongside the other locks. The
new frame is the same as the one in lock reply mentioned in section 6.7.1, so it has
an empty lock set, which ensures that asynchronous callbacks do not have access to
the set of locks. As in the case of asynchronous calls, the �� ��SCall message is sent and
the client blocks until it gets a reply. However, unlike asynchronous calls, the reply is
sent when the feature has �nished execution.

6.8.3 Enqueuing calls

While non-separate calls are executed in place (see section 6.8.1), incoming requests
for asynchronous and synchronous execution are enqueued in the corresponding in-

100

R ⊆ suppliers (A)
exec[

<
[
Exec R,O,R...

]
Il <I>Is<A>As>F...

]
El

→[
<
[
Ω...
]
Il <I ∪O>Is<A>As>F...

]
El

Figure 6.17: Inference rule for execution

struction queue of the supplier. In D-Scoop, the message queue does not also serve
as the request queue, as opposed to Queue-of-Queues.

The rules for enqueuing call requests, enq. scall and enq. acall in �g. 6.16, are
very similar: they both enqueue an Exec instruction in the instruction queue. The �rst
argument of the instruction is the set of processors of the arguments of the call, that
is, the set of needed locks; the second argument is the set of passed locks. The latter
is empty in the asynchronous case and has at least one element in the synchronous
case. Note that the request is only enqueued if the owner matches. This is required in
the case that a processor disappears, so that the compensation code is executed before
more requests are enqueued. This can happen in the following case:

Processor A acquires a lock on processor C. It then passes it to processor B. Pro-
cessor B disappears. Processor A notices this and assumes that it can again use the
lock. It then issues a call to processor C. However, processor C did not yet notice that
processor B disappeared and therefore did not clean up by running compensations
and adding a υ, as we can see in section 6.10. If it enqueues the call from A, the call
would end up being treated as if it was from B.

The reader might argue that keeping the message in the in-box may cause a dead-
lock, but this is not the case since the rule for missing clients immediately removes the
owner and does not involve the in-box. So when the message is stuck in the in-box,
the owner can be removed which then allows the message to be handled.

Asynchronous call requests are replied to immediately, whereas synchronous call
requests append a Return instruction for sending back the result via return 1 later.
Since objects have no representation in D-Scoop semantics, the FIXME message has
no arguments, it just unblocks the waiting client.

6.8.4 Feature application

Feature application is handled by the exec rule in �g. 6.17, which removes the instruc-
tion with the same name and replaces it with Ω. The symbol represents the observable
actions of the feature explained in section 6.8.1.

6.9 Exceptions

Routine abstraction, as explained in section 6.8.1, also encompasses the execution of
a rescue or catch clause. However, the semantics needs to de�ne how exceptions are
propagated, especially across the network. Exceptions and asynchronous execution
have been investigated in [45]. We apply the results of this paper in our semantics for
exceptions with respect to the underlying message-passing mechanism.

In addition to regular exceptions raised by the software or the operating system,
D-Scoop also introduces exception due to broken connections. For example, if the

101

ξ ξ[
<
[
ξ; ξ...

]
Il>F...

]
El →

[
<
[
ξ...
]
Il>F...

]
El

ξ π[
<
[
ξ;πc...

]
Il>F...

]
El →

[
<
[
πc; ξ...

]
Il>F...

]
El

ξ υ[
<
[
ξ; υ...

]
Il>F...

]
El →

[
<
[
υ; ξ...

]
Il>F...

]
El

ξ retract[
<
[
ξ; Retract L...

]
Il>F...

]
El →[

<
[
Retract L; ξ...

]
Il>F...

]
El

ξ unlock[
<
[
ξ; Unlock L...

]
Il>F...

]
El →[

<
[
Unlock L; ξ...

]
Il>F...

]
El

ξ revert[
<
[
ξ; Revert c...

]
Il>F...

]
El →

[
<
[
Revert c; ξ...

]
Il>F...

]
El

next ξ[
<
[
Ω...
]
Il>F...

]
El →

[
<
[
ξ...
]
Il>F...

]
El

catch[
<
[
ξ; Ω...

]
Il>F...

]
El →

[
<
[
ξ; Ω...

]
Il>F...

]
El

cancel call[
<
[
ξ; Exec R,O,A, P...

]
Il>F...

]
El →[

<
[
Retract P ; Unlock O; ξ...

]
Il>F...

]
El

ξ return[
<
[
ξ; Return c, i...

]
Il>F...

]
El
[
...
]
Ob →[

<
[
...
]
Il>F...

]
El
[
...
�� ��FAIL i ↑ c

]
Ob

next qeue 2[
<
[
ξ
]
Il
[
ε
]
Ol>F...

]
El →

[
...
]
El

recv. fail[
...<
[
...i ↓ s...

]
Il>F...

]
El
[�� ��FAIL i...

]
Ib

→
[
...<
[
...ξ...

]
Il>F...

]
El
[
...
]
Ib

Figure 6.18: Inference rules for exceptions

102

target processor of a call is no longer available, an exception is raised. But also if a
lock on a processor cannot be acquired due to connection problems, the equivalent of
a precondition violation exception is raised, which also precludes the execution of the
body. Although there are similarities to a failed contract, exceptions due to technical
problems are not considered as such since they can occur in a correct system, whereas
a contract violation always indicates an error in speci�cation or implementation. The
following paragraphs gives an overview of those situations.

Asynchronous calls. An exception occurs if the target processor disappears before
the message was processed. Absence of this exception, however, is not a guarantee
that the call has been �nished or even started. Exceptions due to application of the call
either due to problems arising during locking or due to internal behavior are stored
within the frame on the supplier. If the supplier frame contains an exception, the
processor is dirty and all further asynchronous calls are dropped silently.

Synchronous calls. In addition to the cases described for asynchronous calls, ex-
ceptions arising due to the application of synchronous calls are propagated to the
client, as are exceptions stored in the supplier frame from previous asynchronous
calls. In this case, the synchronous call is not applied, instead, the stored exceptions
are propagated to the client while removing them from the supplier. Therefore, after a
synchronous call, a processor is no longer dirty. Note that in the case of lock passing,
the stored exception is not removed and will be propagated to the client of the client
if and when it issues a synchronous call.

Syntax. We use the symbol ξ to denote exceptions, and they appear only in the
instruction list and as an argument to a �� ��FAIL message.

Semantics. The �rst few rules in �g. 6.18 are simple interactions with other symbols
in the instruction list. If two exceptions end up next to each other, for example due
to multiple failures in the system or a failure during revert, they are merged into one.
Locking and unlocking, as well as their supplier counterparts, the π and υ symbols,
are not a�ected by exceptions.

Exceptions can be raised by the program itself, which is represented by next ξ.
A running routine may catch an exception and remove it from the instruction list.
An application of catch immediately followed by next ξ indicates that the routine
simply forwarded the exception without taking any observable measures.

As mentioned above, the rule cancel call removes a pending execution from
the instruction list. Already acquired prelocks are Retracted and obtained locks
are unlocked. Note that this rule will not apply for non-separate calls, as it is not
possible for an Ω to produce anything if it is behind a ξ. Also, the Return instruction
of a synchronous call is not dropped, as it is added after the Exec instruction if a
synchronous call request is processed (see �g. 6.16).

ξ return sends a �� ��FAIL message. An interpretation of this message is that it con-
tains the exception, which is removed from the instruction list. Since this is a syn-
chronous call, the client cannot have added more calls. Due to the rule recv. fail, the
exception is propagated to the client, which is therefore aware of the error and choses
its further calls accordingly.

The next qeue 2 rule allows for a frame to be removed if it contains an exception
but does not have a client anymore. The exception is silently dropped since the client

103

disappear
<P ∪ {p}>Ps<<p>Pi>P → <P>Ps

s /∈ P
send error

<P>Ps `
[
M ↑ s...

]
Ob →

[
...
]
Ob

s /∈ P
recv. error

<P>Ps `
[
...<
[
...i ↓ s...

]
Il>F...

]
El →

[
...<
[
...ξ...

]
Il>F...

]
El

c /∈ P
I = ε ∨ I = ξ

client missing
<P>Ps

[
ε
]
Ib `

[
<
[
I
]
Il
[
([C], c)...

]
Cl
[
c...
]
Ol>F...

]
El

→[
<
[
Revert; ξ

]
Il
[
([C], c)...

]
Cl
[
...
]
Ol>F...

]
El

c /∈ P
prelock abort

<P>Ps `
[
c...
]
Pl →

[
...
]
Pl

retract
<c>Pi `

[
<
[
Retract {p} ∪ P...

]
Il>F...

]
El →[

<
[�� ��Retract c ↑ p; Retract P...

]
Il>F...

]
El

retract fin.[
<
[
Retract ∅...

]
Il>F...

]
El →[

<
[
...
]
Il>F...

]
El

retract ok[�� ��Retract c m...
]
Ib
[
c...
]
Pl →

[
...
]
Ib
[
...
]
Pl

Figure 6.19: Inference rules for disappearance.

of the next frame does not have the context to deal with it. This is in line with [45].

6.10 Resilience

Until now, the semantics of D-Scoop is based on the assumption that processors are
always available. This is not the case in many distributed settings, so the semantics
needs to deal with failures. This section extends the core semantics with rules han-
dling the scenario when a node disappears. In this case, both client and supplier need
to be informed. For the client, this can be done through exceptions, while the supplier
needs a more advanced mechanism7.

7Compensation could serve as an alternative to classic exception handling — which is essentially a form
of goto instruction — as proposed in section 5.4.

104

6.10.1 Disappearance

Nodes can disappear at any time, which is described by the rule disappear in �g. 6.19.
The rule removes the entire processor cell from the con�guration and the processor
identi�er from the set of all processor identi�ers. The latter step is needed so that
rules can check for absence of processors as it is impossible to check for the absence
of a cell, as explained in section 6.3.1.

Since all interactions between processors except spawning is through message
passing, there are two main scenarios where a missing processor is relevant: when
sending a message to the missing processor and when waiting for a reply from the
same. But there are also more subtle cases: First, if a client of a processor disappears
without unlocking its frame, the supplier would be stuck forever. And second, if a
processor disappears during prelock, other processors might be barred from acquiring
locks. The D-Scoop semantics handles these cases.

Disappearance of a processor does not need to be a failure scenario. In many
distributed systems, it is perfectly normal for nodes to shut down. Also, some pro-
cessors, once they ful�lled their purpose, are no longer needed. However, a processor
that does an orderly shut down should never have locks on, or frames owned by, other
processors.

Semantics

If the recipient of a message in the out-box of a processor is no longer available, the
message is simply dropped because of send error. The reason for this behavior is
simple: if the request was asynchronous then the context of this request is already
lost, but if it was synchronous, the error is handled by recv. error the same as if
the processor disappeared after receiving the request but before replying. The rule
client missing starts the compensation mechanism (discussed in the next section)
if a client disappeared. Finally, prelock abort simply removes prelocks of missing
processors.

6.10.2 Compensation

Errors in a supplier are handled as exceptions in the client, which is the mechanism
in Scoop as well as many other common object-oriented languages. However, with
distributed systems it is possible that a client disappears. Instead of simply cleaning
up and continuing with the next execution frame, D-Scoop uses a more advanced
technique: compensation.

The client has the complete context in which it requires services from the supplier.
It waits for the call to succeed or fail, and is prepared for the latter. In the case of
failure, it can mitigate the problem. The role of the supplier is to receive and execute
calls, it is not aware of the context and purpose of the calls. The only information the
supplier has is whether the client is still interested in sending more requests: whether
the client has unlocked the frame or not.

Transactions

For D-Scoop, we interpret the frame as a means to ensure non-interference, as in
Scoop. While systems such as Software Transactional Memory [27] use transactions
for optimistic locking, the Scoop locking scheme is pessimistic. We therefore also use
transactions only for mitigating failure and not for concurrency control. A D-Scoop

105

transaction starts with the insertion of a new frame and ends when the frame is re-
moved. This is an over-simpli�cation since e�ects, and therefore the compensations,
of callbacks are merged back when the frame is removed. The occurrence of π symbols
and υ mark sub-transactions that can be reverted selectively to only undo the changes
from one client, not from the others that owned the frame before. Exceptions do not
cause a transaction to revert.

This interpretation is based on the assumption that a client has a goal that it tries
to achieve with a series of calls. If a call is missing due to a disappearing client, the
supplier is left in an unwanted intermediate state and should recover. If the missing
client was itself a supplier and received the lock with lock passing, the changes that
were caused before the lock was passed should be preserved, that is, not compensated.

Compensations

If the client disappears before it unlocks, the supplier can take corrective measures
appropriate for the calls that it already executed within the frame. Usually, these
measures are supposed to revert the changes stemming from the execution of the
calls, hence the name compensations. It di�ers from rescue clauses in that they are
executed outside of the feature context. At this point, the supplier has no locks, so
the compensations take the form of synchronous non-separate calls.

Upon detecting that a client disappears, the supplier executes the registered com-
pensations. Note that when compensations are executed, the lock set is empty, which
is why the Register instructions have no target: the call is always non-separate but
may include separate arguments. As discussed in section 6.8.1, Ω produces register
instructions nondeterministically. Execution of the registered compensations is done
in reverse order of their registration. This is required since a compensation that is
registered later might require a state that is reverted by a compensation registered
earlier.

While it is possible that the programming language allows or even requires the
programmer to manually write the code for the compensations, it is also possible to
generate compensations automatically to revert all changes in memory. This can be
a variation of Software Transactional Memory [27], where there is only a write-set
and no read-set, or by using a copy-on-write memory model, which is intuitive for
functional paradigms. We chose not to assume automatic reversal since rollback of
already visible changes cannot be automated as it is very application-speci�c, and this
approach subsumes automatic and manual compensation.

Data Structures

Compensations are added to a list of tuples called the compensation list, which is part
of the frame. The tuple contains the list of compensation for the current transactional
frame, as well as the identi�er of the client. Both lists are accessed as a stack, that is,
items are appended and removed from the left. The usage of two stacks is necessary
in the presence of lock passing, where it makes sense to do partial rollbacks: only the
top part of the stack of compensations is used for the rollback, so that a possible client
of the failed client does not have its e�ects on the supplier reverted. Every time the
lock on the queue is passed, a new stack is put on top. If a queue is unlocked, the two
topmost stacks are merged: the actions of the supplier are merged with the actions of
the client.

106

A ⊆ P
next register[

P
]
P `[

<
[
Ω...
]
Il>F...

]
El

→[
<
[
Register A; Ω...

]
Il>F...

]
El

register[
<
[
Register A...

]
Il
[
(
[
C
]
, c)...

]
Cl>F...

]
El

→[
<
[
...
]
Il
[
(
[
A;C

]
, c)...

]
Cl>F...

]
El

revert
<s>Ps `[

<
[
Revert...

]
Il
[
(
[
{A} ;C

]
, c)...

]
Cl>F...

]
El

→[
<
[
SCall s, {A} ; Revert...

]
Il
[
(
[
C
]
, c)...

]
Cl>F...

]
El

revert finished[
<
[
Revert...

]
Il
[
(
[
ε
]
, c)...

]
Cl>F...

]
El

→[
<
[
υ...
]
Il
[
(
[
ε
]
, c)...

]
Cl>F...

]
El

Figure 6.20: Inference rules for compensation

For example, we assume a very simple system. We have a remote processor called
A that holds a cell containing an integer. There is a processor B that is currently
a client of A, that is, has a lock on it. It sets the cell to some value. Afterwards, it
makes a synchronous call to yet another processor C . During the execution of C ,
which received the lock on A from B, processor C queries A for the value of the cell
and then puts the incremented value into B. Processor C then fails before unlocking
A. Processor A now undoes the increment action by C . Processor B receives an
exception because of the failure of C . It can now assume that the state of A is that
immediately before the call to C , so the cell still contains the value set by B.

If all changes would have been rolled back, B would have to re-do those. These
changes might be far removed from the feature that made the call to C and has the
rescue clause that mitigates the failure from the client side. It might even be possible
that the changes were caused by a client of B and B received the lock on A through
lock passing. In this case, B has no way of knowing that the compensation caused
by C puts A into a state from before its own execution, this state might also vio-
late preconditions that held before. Rolling back all the way to the beginning of the
transaction would require all failure to cascade back to the root.

Semantics

If a routine produces a Register instruction through the application of next register,
its arguments are added as a set to the top compensation stack by the rules register
and pass. Section 6.10 already introduced a rule that produces the Revert instruction
which is handled by the rules revert and revert finished. These rules take one reg-

107

istered compensation after another and produce the corresponding Exec instructions
for their execution.

6.11 Example

The exchange shown in �g. 5.7 can be constructed with the D-Scoop semantics. De-
riving the whole execution of the example would be overly long and mostly repetitive.
Instead, we focus on two interesting portions, which are marked in the �gure.

For easier reading, we used the symbols AM , RM , RY , RG, AY and AG instead
of natural numbers as the identi�ers of: the magenta agent, the magenta register, the
yellow register, the green register, the yellow account and the green account proces-
sors. For most of the steps, we will omit cells that are not a�ected by the rule, and the
extraction/hiding rules.

First exchange

The processors involved in the �rst excerpt of the exchange are the magenta agent, the
magenta register and the yellow register. The current state of the involved processors
is as follows:

{
AM , RM , RY , RG, AY , AG

}
Ps

< <AM>Pi < <4>Fi
[
L
]
T
[
SCall AM , {RY } ; Ω; υ

]
Il[

ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is

{
(RM , 7)

}
As>F;

<<3>Fi
[
L
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F;

<<2>Fi
[
S
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F

El[

N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RM>Pi[
<<7>Fi

[
S
]
T
[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RY >Pi[
ε
]
El[

N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns>P

We can see that the agent has three frames. The original frame and two frames
from the non-separate calls, one for transfer and one for find_account. The topmost
frame has a lock on the magenta register processor’s frame number 7. This frame’s
owner and client is the agent processor, and its instruction list is empty.

The code to be executed is the separate block in find_account. A separate block
is e�ectively a non-separate call with access to the local stack variables. As stated be-
fore, local variables are not in the scope of the D-Scoop semantics, so a separate block
is treated like a regular non-separate call. This is represented by the SCall AM , {RY }
instruction at the head of the instruction list of frame 4.

A local call is handled by scall 1, which adds a new frame for the execution of
the feature.

108

fresh (11)
scall 1

<AM>Pi `[
<
[
SCall AM , {RY } ...

]
Il <∅>Is<(RM , 7)>As>F...

]
El

→< <11>Fi<L>T
[
Exec {RY } , ∅, ∅; υ

]
Il[

ε
]
Ol
[([
ε
]
, AM

)]
Cl <(RM , 7)>Is<∅>As>F;

<
[
...
]
Il <∅>Is<(RM , 7)>As>F...

El

As we can see, the application of the call passes the acquired lock on the magenta
register to the new frame. For the execution, a lock on the yellow register processor
needs to be acquired. To achieve this, the agent processor, according to the prelock
rule, sends a �� ��Prelock message.

{RY } \ ∅ = {RY } ∪ ∅ ∀x ∈ ∅ : RY < x
prelock

<AM>Pi `[
<
[
Exec {RY } , ∅, ∅...

]
Il>F...

]
El
[
...
]
Ob

→[
<
[
12 ↓ RY ; Exec {RY } , ∅, {RY } ...

]
Il>F...

]
El[

...
�� ��Prelock AM 12

↑ RY

]
Ob

The frame is blocked due to the 12 ↓ RY instruction, which waits for the �� ��OK
message with the identi�er 12. The message is moved to the other processor through
transmit.

transmit
<
[�� ��Prelock AM 12

↑ RY ...
]
Ob>P<<RY >Pi

[
...
]
Ib>P

→
<
[
...
]
Ob>P<<RY >Pi

[
...
�� ��Prelock AM 12

]
Ib>P

The register now enqueues the prelock request in the prelock list.

prelock enqeue[
...
]
Pl
[�� ��Prelock AM 1

2...
]
Ib →

[
... (AM , 12)

]
Pl
[
...
]
Ib

Since the prelock list was empty before, the register can immediately send the �� ��OK
message the agent is waiting for.

prelock reply[
(AM , 12) ...

]
Pl
[
...
]
Ob <∅>Ns →[

AM ...
]
Pl
[�� ��OK 12 ↑ AM ...

]
Ob <∅>Ns

The next step is to transmit the reply, but we skip it for brevity. The agent can
now unblock the instruction list by applying recv. ok.

recv. ok[
...<
[
12 ↓ RY ...

]
Il>F...

]
El
[�� ��OK 12...

]
Ib →

[
...<
[
...
]
Il>F...

]
El
[
...
]
Ib

The last argument of the Exec instruction matches the �rst; this means that the
prelocking phase is over and the locking phase starts. Accordingly, the agent sends
the �� ��Lock request.

109

{RY } = {RY } ∪ ∅
fresh (13)

lock
<AM>Pi `[

<
[
Exec {RY } , ∅, {RY } ...

]
Il <∅>As>F...

]
El
[
...
]
Ob

→[
<
[
13 ↓ RM ; Exec {RY } , ∅, {RY } ...

]
Il <∅>As>F...

]
El[

...
�� ��Lock AM 13

↑ RM

]
Ob

We skip the transmit step again and immediately continue with lock reply.

fresh (14)
lock reply

<RY >Pi `[
...
]
El
[
AM ...

]
Pl
[�� ��Lock AM 13

]
Ib
[
...
]
Ob →[

<<14>Fi<S>T
[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F...

]
El[

...
]
Pl
[
...
]
Ib
[
...
�� ��OK (RY , 14)

13

]
Ob

Another skipped transmission and the agent is ready to add the new lock to its set
of acquired locks. But the value �rst needs to move from the in-box to the instruction
list.

recv. value[
...<
[
13 ↓ RY ...

]
Il>F...

]
El
[�� ��OK (RM , 14)

13
...
]
Ib

→[
...<
[
↓ (RY , 14) ...

]
Il>F...

]
El
[
...
]
Ib

add lock[
<
[
↓ (RY , 14) ; Exec {RY } , ∅, {RY } ...

]
Il <∅>As>F...

]
El

→[
<<4>Fi

[
Exec {RY } , ∅, {RY } ...

]
Il
{

(RY , 14)
}

As>F...
]
El

With all the required locks in place, the execution of the separate block can start
and the Exec instruction can �nally be consumed.

{RY } ⊂ {RY } exec[
<
[
Exec {RY } , ∅, {RY } ...

]
Il <(RY , 14)>As<(RM , 7)>Is>F...

]
El

→[
<
[
Ω...
]
Il <(RY , 14)>As

{
(RM , 7)

}
Is>F...

]
El

The state of the involved processors is now:

110

< <AM>Pi
< <11>Fi

[
L
]
T
[
Ω; υ

]
Il[

ε
]
Ol
[([
ε
]
, AM

)]
Cl
{

(RM , 7)
}

Is
{

(RY , 14)
}

As>F;

< <4>Fi
[
L
]
T
[
Ω; υ

]
Il[

ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is

{
(RM , 7)

}
As>F;

<<3>Fi
[
L
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F;

<<2>Fi
[
L
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F

El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RM>Pi[
<<7>Fi

[
S
]
T
[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RY >Pi[
<<14>Fi

[
S
]
T
[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

The agent processor now has an additional frame, 11, which has an inherited lock
on the magenta register and an acquired lock on the yellow register. The inherited lock
is due to the non-separate call rule, which copies all acquired locks of the previous
frame to the inherited lock set of the new frame. The new frame is about to call
lookup_account of the yellow register, so we apply next scall 2:

(RY , 14) ∈ {(RY , 14) , (RM , 7)}
{(RM , 7)} = {(RY , 14) , (RM , 7)} \ {(RY , 14)}

∅ ⊂ {AM , RM , RY , RG, AY , AG}
next scall 2{

AM , RM , RY , RG, AY , AG

}
Ps <AM>Pi `[

<
[
Ω...
]
Il
{

(RY , 14)
}

As
{

(RM , 7)
}

Is>F...
]
El

→[
<
[
Pass {(RM , 7)} , RY ; SCall RY , ∅; Ω...

]
Il{

(RY , 14)
}

As
{

(RM , 7)
}

Is >F...
]

El

For execution of the lookup_account feature of the yellow register, the (inherited)
lock on the magenta register will be passed on. This is because the call is synchronous
and the agent still holds the lock of the magenta register. Had the feature not had the
register as an argument, and instead used another separate block that was closed
before the second call, then it would have released the lock on the magenta processor
before and not cause lock passing. So instead of immediately discarding the Pass
instruction, we apply pass �rst:

fresh (15)
pass

<AM>Pi `[
<
[
Pass {(RM , 7)} ∪ ∅, RY ...

]
Il>F...

]
El
[
...
]
Ob

→[
<
[
Pass ∅, RY ...

]
Il>F...

]
El
[
...
�� ��Pass AM , 7, RY 15

↑ RM

]
Ob

The processor signaled the passing of a lock, so we remove the instruction with
pass fin.

111

pass fin.[
<
[
Pass ∅, RY ...

]
Il>F...

]
El →

[
<
[
...
]
Il>F...

]
El

The call message, produced by scall 2, includes both the lock on the magenta
register as well as a new lock on the agent processor, on a newly created frame:

fresh(16, 17)
(RY , 14) ∈ {(RM , 7) , (RY , 14)}

{(RM , 7) , (AM , 16)} = {(RM , 7) , (RY , 14) , (AM , 16)} \ {(RY , 14)}
scall 2

<AM>Pi `[
<
[
SCall RY , ∅...

]
Il
{

(RM , 7)
}

Is
{

(RY , 14)
}

As>F...
]
El
[
...
]
Ob

→[<<16>Fi<C>T
[
πRY

]
Il
[
RY

]
Ol
[
ε
]
Cl <∅>Is<∅>As>F;

<
[
17 ↓ RY ...

]
Il
{

(RM , 7)
}

Is
{

(RY , 14)
}

As>F...

]
El[

...
�� ��SCall AM , 14, ∅, {(RM , 7) , (AM , 16)}

17
↑ RY

]
Ob

After the transmission of the two messages in the out-box of the agent processor,
the involved processors are in the following state:

< <AM>Pi
<<16>Fi<C>T

[
πRY

]
Il
[
RY

]
Ol
[
ε
]
Cl <∅>Is<∅>As>F;

< <11>Fi<L>T
[
17 ↓ RY ; Ω; υ

]
Il[

ε
]
Ol
[([
ε
]
, AM

)]
Cl
{

(RM , 7)
}

Is
{

(RY , 14)
}

As>F;

<<4>Fi<L>T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is

{
(RM , 7)

}
As>F;

<<3>Fi<L>T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F;

<<2>Fi<S>T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F

El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RM>Pi[
<<7>Fi<S>T

[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

ε
]
Pl
[�� ��Pass AM , 7, RY 15

]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RY >Pi[
<<14>Fi<S>T

[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

ε
]
Pl
[�� ��SCall AM , 14, ∅, {(RM , 7) , (AM , 16)}

17

]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

Even though the magenta register processor has not yet processed the �� ��Pass mes-
sage, the yellow register processor can start application of the call with enq. scall.

∅ = ∅ \ {RM , AM , RY } enq. scall
<RY >Pi `[

...<<14>Fi
[
...
]
Il
[
AM ...

]
Ol>F...

]
El[�� ��SCall AM , 14, ∅, {(RM , 7) , (AM , 16)}

17
...
]
Ib

→...< <14>Fi[
...Exec ∅, {(RM , 7) , (AM , 16)} , ∅;

Return AM , 17

]
Il

[
AM ...

]
Ol>F...

El[

...
]
Ib

112

Without any separate arguments, there are no additional locks needed. The yellow
register can start execution:

∅ ⊆ {RM , AM} exec[
<
[
Exec ∅, {(RM , 7) , (AM , 16)} , ∅...

]
Il <∅>Is<∅>As>F...

]
El

→[
<
[
Ω...
]
Il <∅>Is<∅>As>F...

]
El

The magenta register is making some non-separate calls to look up the correct
value. We omit them — they produce no messages and the state is the same afterwards
— and instead let the Ω of the register produce an Unlock instruction.

next unlock[
<
[
Ω...
]
Il>F...

]
El →

[
<
[
Unlock...

]
Il>F...

]
El

The Unlock instruction is sending an �� ��Unlock message to the agent processor
through application of unlock 2.

RY 6= AM

fresh (18)
unlock 2

<RY >Pi `[
<

[
Unlock...

]
Il

<{(AM , 16)} ∪ {(RM , 7)}>Is
[([
ε
]
, AM

)
...
]
Cl>F...

]
El[

...
]
Ob
→[

<
[
Unlock...

]
Il

<{(RM , 7)}>Is
[([
ε
]
, AM

)
...
]
Cl>F...

]
El[

...
�� ��Unlock RY , 16

18
↑ AM

]
Ob

But since it also got passed a lock on the magenta register, it also needs to unlock
this one.

RY 6= AM

fresh (19)
unlock 2

<RY >Pi `[
<

[
Unlock...

]
Il

<{(RM , 7)} ∪ ∅>Is
[([
ε
]
, AM

)
...
]
Cl>F...

]
El[

...
]
Ob
→[

<
[
Unlock...

]
Il

<∅>Is
[([
ε
]
, AM

)
...
]
Cl>F...

]
El[

...
�� ��Unlock RY , 7

19
↑ RM

]
Ob

Now the Unlock instruction can be removed through unlock finished

∅ = ∅ ∨RY = AM unlock finished
<RY >Pi `[

<
[
Unlock...

]
Il <∅>As<∅>Is

[([
ε
]
, AM

)
...
]
Cl>F...

]
El

→[
<
[
...
]
Il <∅>As<∅>Is

[([
ε
]
, AM

)
...
]
Cl>F...

]
El

113

Then the yellow register sends the result to the magenta agent by processing the
Return instruction through return.

return
<
[
Return AM , 17...

]
Il>F

[
...
]
Ob

→
<
[
...
]
Il>F

[
...
�� ��OK 17 ↑ AM

]
Ob

After a triple application of transmit, the state of the two processors is now:

< <AM>Pi
<<16>Fi

[
πRY

]
Il
[
RY

]
Ol
[
ε
]
Cl <∅>Is<∅>As>F;

< <11>Fi
[
17 ↓ RY ; Ω; υ

]
Il[

ε
]
Ol
[([
ε
]
, AM

)]
Cl
{

(RM , 7)
}

Is
{

(RY , 14)
}

As>F;

<<4>Fi
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is

{
(RM , 7)

}
As>F;

<<3>Fi
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F;

<<2>Fi
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F

El[

ε
]
Pl
[�� ��Unlock RY , 16

18
;
�� ��OK 17

]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RM>Pi[
<<7>Fi

[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

ε
]
Pl
[�� ��Pass AM , 7, RY 15

;
�� ��Unlock RY , 7

19

]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RY >Pi[
< <14>Fi

[
ε
]
Il
[
AM

]
Ol[([

ε
]
, AM

)]
Cl <∅>As<{(RM , 7) , (AM , 16)}>Is>F

]
El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

The agent processor can process the �� ��Unlock message through unlock ok.

unlock ok[
...<<16>Fi

[
...
]
Il
[
RY ...

]
Ol>F...

]
El
[�� ��Unlock RY , 16

18
...
]
Ib

→[
...<<16>Fi

[
...υ
]
Il
[
...
]
Ol>F...

]
El
[
...
]
Ib

After unblocking the second frame with an application of recv. ok, which we
do not show here, the agent processor consumes the υ using pop client 3, since the
frame was for separate callbacks.

pop client 3
<AM>Pi `[

<<C>T
[
υ...
]
Il
[([
ε
]
, RY

)]
Cl>F; <

[([
ε
]
, AM

)]
Cl>F...

]
El

→[
<
[([
ε; ε
]
, AM

)]
Cl>F...

]
El

The magenta agent now has the information it needs, so we use next unlock to
exit the separate block.

next unlock[
<
[
Ω...
]
Il>F...

]
El →

[
<
[
Unlock...

]
Il>F...

]
El

The processor needs to release the lock on the yellow register.

114

RY 6= AM

fresh (20)
unlock 1

<AM>Pi `[
<<11>Fi

[
Unlock...

]
Il
{

(RY , 14) ∪ ∅
}

As>F...
]
El
[
...
]
Ob

→[
<<11>Fi

[
Unlock...

]
Il <∅>As>F...

]
El
[
...
�� ��Unlock AM , 14

20
↑ RY

]
Ob

It can then remove the Unlock instruction with unlock finished and process
the υ symbol with pop client 4, which handles frames for non-separate calls.

{(RM , 7)} = ∅ ∨AM = AM unlock finished
<AM>Pi `[

<
[
Unlock...

]
Il <∅>As

{
(RM , 7)

}
Is
[([
ε
]
, AM

)
...
]
Cl>F...

]
El

→[
<
[
...
]
Il <∅>As

{
(RM , 7)

}
Is
[([
ε
]
, AM

)
...
]
Cl>F...

]
El

pop client 4
<AM>Pi `[<<L>T

[
υ; ε
]
Il
[([
ε
]
, AM

)]
Cl>F;

<
[
...
]
Il
[([
ε
]
, AM

)
...
]
Cl>F...

]
El

→[
<
[
ε; ...

]
Il
[([
ε; ε
]
, AM

)
...
]
Cl>F...

]
El

The magenta processor has two messages waiting in its in-box. It �rst processes
the �� ��Pass message.

pass ok[
<
[
...
]
Il
[
AM ...

]
Ol>F...

]
El
[�� ��Pass AM , 7, RY 15

...
]
Ib

→[
<
[
...πRY

]
Il
[
RY ;AM ...

]
Ol>F...

]
El
[
...
]
Ib

It can then immediately add the υ symbol through unlock ok.

unlock ok[
<<7>Fi

[
...
]
Il
[
RY ...

]
Ol>F

]
El
[�� ��Unlock RY , 7

19
...
]
Ib

→[
<<7>Fi

[
...υ
]
Il
[
...
]
Ol>F

]
El
[
...
]
Ib

The magenta register now �rst pushes the yellow register through push client.

push client[
<
[
πRY

...
]
Il
[
...
]
Cl>F

]
El →

[
<
[
πRY

...
]
Il
[([
ε
]
, RY

)
...
]
Cl>F

]
El

And then removes it again with pop client 1.

pop client 1[
<
[
υ...
]
Il
[([
ε
]
, RY

)
;
([
ε
]
, AM

)
...
]
Cl>F...

]
El

→[
<
[
...
]
Il
[([
ε; ε
]
, AM

)
...
]
Cl>F...

]
El

115

The yellow register can also process its �� ��Unlock message through unlock ok and
remove the frame with pop client 2. Afterwards, the system is back in the same state
as before the separate block.

{
AM , RM , RY , RG, AY , AG

}
Ps

< <AM>Pi < <4>Fi
[
L
]
T
[
SCall AM , {RY } ; Ω; υ

]
Il[

ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is

{
(RM , 7)

}
As>F;

<<3>Fi
[
L
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F;

<<2>Fi
[
S
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F

El[

N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RM>Pi[
<<7>Fi

[
S
]
T
[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <RY >Pi[
ε
]
El[

N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns>P

Second exchange

The second excerpt focuses on the asynchronous calls and the compensation mea-
sures. We assume that the agent checked the balance of the yellow account, and the
balance is su�cient. The processors involved are the magenta agent, the yellow and
the green account. The state of these three processors is:

< <AM>Pi < <35>Fi
[
L
]
T
[
Ω; υ

]
Il[

ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is

{
(AY , 38) , (AG, 40)

}
As>F;

<<3>Fi
[
L
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F;

<<2>Fi
[
S
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F

El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <AY >Pi[
<<38>Fi

[
S
]
T
[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

< <AG>Pi[
<<40>Fi

[
S
]
T
[
ε
]
Il
[
AM

]
Ol
[([
ε
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

The agent produces the call with next acall.

AY ∈ {AY , AG}
∅ ⊆ {AM , RM , RY , RG, AY , AG} next acall[
AM , RM , RY , RG, AY , AG

]
Ps `[

<
[
Ω...
]
Il <∅>Is

{
(AY , 38) , (AG, 40)

}
As>F...

]
El

→[
<
[
ACall AY , ∅; Ω...

]
Il <∅>Is

{
(AY , 38) , (AG, 40)

}
As>F...

]
El

116

As with synchronous separate calls, a message is produced. However, no callback
frame is provided for the supplier. Even though the call is asynchronous, the client
still waits until the supplier enqueues the request.

(AY , 38) ∈ {(AY , 38) , (AG, 40)}
fresh (44)

acall
<AM>Pi `[

<
[
ACall AY , ∅...

]
Il <∅>Is

{
(AY , 38) , (AG, 40)

}
As>F...

]
El
[
...
]
Ob

→[
<
[
44 ↓ AY ...

]
Il <∅>Is

{
(AY , 38) , (AG, 40)

}
As>F...

]
El[

...
�� ��ACall AM , 38, ∅

44
↑ AY

]
Ob

We skip the transmission to the yellow account processor and let it enqueue the
request.

enq. acall
<AY >Pi `[

...<<38>Fi
[
...
]
Il
[
AM ...

]
Ol>F...

]
El[�� ��ACall AM , 38, ∅

44
...
]
Ib
[
...
]
Ob

→[
...<<38>Fi

[
...Exec ∅, ∅, ∅

]
Il
[
AM ...

]
Ol>F...

]
El[

...
]
Ib
[
...
�� ��OK 44

]
Ob

After the transmission, the agent makes the request to the green account. This is
very similar to the one before, so we do not show it here. The agent has enqueued the
two requests. It does not need to wait for unlocking the two accounts, so it proceeds
with next unlock.

next unlock[
<
[
Ω...
]
Il>F...

]
El →

[
<
[
Unlock...

]
Il>F...

]
El

To ful�ll this instruction, two �� ��Unlock messages are produced, which are transmit-
ted and then handled with unlock ok. For brevity, we only write the steps down
once, for the yellow register, without transmission.

fresh (46)
unlock 1

<AM>Pi `[
<
[
Unlock...

]
Il <{(AY , 38)} ∪ (AG, 40)>As>F...

]
El
[
...
]
Ob

→[
<
[
Unlock...

]
Il <(AG, 40)>As>F...

]
El
[
...
�� ��Unlock AY , 38

46
↑ AG

]
Ob

unlock ok[
<<38>Fi

[
...
]
Il
[
AY ...

]
Ol>F

]
El
[�� ��Unlock AY , 38

46
...
]
Ib

→[
<<38>Fi

[
...υ
]
Il
[
...
]
Ol>F

]
El
[
...
]
Ib

Then, unlock finished �nishes the separate block.

∅ = ∅
unlock finished[

<
[
L
]
T
[
Unlock...

]
Il <∅>Is<∅>As>F...

]
El

→[
<
[
L
]
T
[
...
]
Il <∅>Is<∅>As>F...

]
El

117

For the agent, the work is �nished now. It can return from the call to transfer.
However, the two accounts still need to process their requests. Even though the re-
quests are to di�erent features, they are essentially the same, so we only show the
�rst one. The yellow register start execution of the feature, for which it does not need
to acquire additional locks.

∅ ⊆ ∅
exec[

<
[
Exec ∅, ∅, ∅...

]
Il <∅>Is<∅>As>F...

]
El

→[
<
[
Ω...
]
Il <∅>Is<∅>As>F...

]
El

It makes an uninteresting non-separate call, which we do not show here, and then
registers a compensation for reverting the last change.

∅ ⊆ ∅
next register[

AM , RM , RY , RG, AY , AG

]
Ps `[

<
[
Ω...
]
Il>F...

]
El

→[
<
[
Register ∅; Ω...

]
Il>F...

]
El

register[
<
[
Register ∅...

]
Il
[([
ε
]
, AM

)
...
]
Cl>F...

]
El

→[
<
[
...
]
Il
[([
∅; ε
]
, AM

)
...
]
Cl>F...

]
El

It �nishes the call with next unlock and unlock finished. We skip both and
instead take a look at the following application of pop client 2.

pop client 2[
<<S>T

[
υ...
]
Il
[([
∅
]
, AM

)]
Cl>F...

]
El →

[
ε
]
El

We can see that the compensation code, which was an agent that represents a call
to undo, is discarded. This is because the frame was correctly closed by the client, the
banking agent. After the other account also processed its instructions, the state of the
processors is now:

< <AM>Pi[<<3>Fi
[
L
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F;

<<2>Fi
[
S
]
T
[
Ω; υ

]
Il
[
ε
]
Ol
[([
ε
]
, AM

)]
Cl <∅>Is<∅>As>F

]
El[

N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

<<AY >Pi
[
ε
]
El
[
N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns>P

<<AG>Pi
[
ε
]
El
[
N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns>P

Aborted Transaction

What if the agent processor disappears after sending the withdraw command to the
yellow account? There is never a υ enqueued, so at some point, the processor would
be in the following state:

118

{
RM , RY , RG, AY , AG

}
Ps

<<AY >Pi
[
<<38>Fi

[
S
]
T
[
ε
]
Il
[
AM

]
Ol
[([
∅
]
, AM

)]
Cl <∅>As<∅>Is>F

]
El[

N
]
W
[
ε
]
Pl
[
ε
]
Ib
[
ε
]
Ob
[
ε
]
Ns >P

With the agent no longer in the set of processors and no pending message in the
in-box, the client missing rule can be applied.

client missing{
RM , RY , RG, AY , AG

}
Ps
[
ε
]
Ib `[

<
[
ε
]
Il
[([
∅
]
, AM

)
...
]
Cl>F...

]
El

→[
<
[
Revert; ξ

]
Il
[([
∅
]
, AM

)
...
]
Cl>F...

]
El

The Revert instruction now starts to revert the changes. It takes the compensa-
tion registered last and executes it like a regular non-separate call.

revert
<AY >Pi `[

<
[
Revert...

]
Il
[([
∅; ε
]
, AM

)
...
]
Cl>F...

]
El

→[
<
[
SCall AY , ∅; Revert...

]
Il
[([
ε
]
, AM

)
...
]
Cl>F...

]
El

We do not show the execution of the call here. If there were more compensations
on the stack, they would now be executed too, one after another. Since there are none,
the Revert instruction is removed through revert finished.

revert finished
<AY >Pi `[

<
[
Revert...

]
Il
[([
ε
]
, AM

)
...
]
Cl>F...

]
El

→[
<
[
υ...
]
Il
[([
ε
]
, AM

)
...
]
Cl>F...

]
El

The instruction made way for a υ, which now can remove the frame as if the call
were successful.

6.12 Conclusion and Future Work

In chapter 5 we showed that the non-interference guarantees can be integrated into
the language without an impact on e�ciency compared to manual methods for syn-
chronization. The semantics proposed for D-Scoop shows it is possible to integrate
the complex features of Scoop, non-interference and lock-passing, with the concept
of compensations in a model relying purely on message passing.

In the future, we want to look into using the semantics together with a model
checker to be able to automatically reproduce message exchanges. Furthermore, we
want to integrate the semantics in the existing executable frameworks for Scoop [13,
47].

119

Chapter 7

Handling Parallelism in a

Concurrency Model

Programming models for concurrency such as Scoop are optimized for dealing with
nondeterminism, for example to handle asynchronous events. To shield the devel-
oper from data race errors, such models may prevent shared access to data altogether.
However, this restriction makes them unsuitable for applications that require data
parallelism.

We present an API for permitting parallel access to arrays that internally circum-
vents the restrictions while preserving the safety guarantees of the original model.
When applied to Scoop, the approach exhibits a negligible performance overhead
compared to ordinary threaded implementations of two parallel benchmark programs.

The content of this chapter is based on the paper Handling Parallelism in a Con-
currency Model [60].

7.1 Introduction

Slicing is an API approach for parallel processing of shared-memory arrays as part of
the framework of a concurrency model. To achieve this, the data structure is extended
with features to obtain slices, i.e. contiguous data sections of the original data struc-
ture. These data parts can be safely used by multiple processors, and the race-freedom
guarantee for the original data structure can be preserved.

The approach is applied to Scoop. A performance evaluation using two bench-
mark programs (parallel Quicksort and matrix multiplication) shows that the ap-
proach is as fast as using threads, and naturally outperforms the original no-sharing
approach. While Scoop lends itself well to our approach, the basic idea can be helpful
for providing similar extensions to active object-based models.

Since a distributed system such as D-Scoop does not provide shared memory be-
cause of technical rather than safety reasons, the presented API does not o�er any
performance advantage. However, the API is designed in a way that it can fall back
to an approach that uses copying, for example through the export mechanism sug-
gested in chapter 5 or immutable objects in chapter 8. By doing so transparently, the
programmer does not need to be concerned whether the processors are local or re-
mote. For the rest of the chapter, we concentrate on the case where the processor
have access to shared memory.

120

The technique focuses on arrays, but it shows an approach for controlled access
to shared memory that can be applied to other divisible data structures, such as hash
tables or trees. In comparison to immutable objects, it allows for sharing mutable data
structures safely.

The remainder of the chapter is structured as follows. Section 7.2 describes the
problem and the rationale of our approach. Section 7.3 presents the slicing technique.
Section 7.4 provides the results of the performance evaluation. Section 7.5 describes
related work and section 7.6 concludes with thoughts on future work.

7.2 Performance issues of race-free models

To help conquer the complexity of nondeterministic multithreading, programming
models for concurrency may provide safety guarantees that eliminate common er-
rors by construction. The Scoop model, and therefore also D-Scoop, does not allow
sharing of memory between its regions that are handled by a single processor. More
speci�cally, every object in Scoop belongs to exactly one processor, its handler. Only
the handler has direct access to the state of the object: all other processors have to
communicate with the handler if they want to interact with the object. This prevents
low-level data races, and the control mechanisms of Scoop can be used to avoid high-
level data races.

Unfortunately, the strict avoidance of shared memory has severe performance dis-
advantages when trying to parallelize various commonplace computational problems.
As an example, listing 7.1 shows an in-place Quicksort algorithm written in Scoop.
Every time the array is split, a new worker is created to sort its part of the array. The
workers s1 and s2 and the array data are denoted as separate, that is, they are refer-
ences to objects that may have a di�erent handler. By creating a separate object, a new
processor is spawned. Each processor can only be controlled by one other processor
at a time, thereby ensuring freedom from data races.

The execution of this example exhibits parallel slowdown: a sequential version
outperforms the algorithms for most workloads. This has two main reasons:

1. Every call to the data array involves adding the call to the private queue, remov-
ing the call from the private queue, and sending back the result; this creates a
large communication overhead.

2. Only one of the workers at a time can execute the get and swap features on
the array because they require control of the processor handling the array; this
serialization prevents the algorithm from scaling up.

The same issues occur in a broad range of data-parallel algorithms using arrays.
E�cient implementations of such algorithms are impossible in active object concur-
rency models such as Scoop. Any viable solution to the problem has to get rid of the
communication overhead and the serialization. There are three general approaches
to this problem:

1. Weaken the concurrency model to allow shared memory without race protec-
tion, or interface with a shared memory language. The programmers are re-
sponsible to take appropriate synchronization measures themselves.

2. Use immutable data structures and work on copies.
3. Enable shared memory computations, but hide it in an API that preserves the

race-freedom guarantees of the concurrency model.

121

The �rst approach trades the safety guarantees of the model for unrestricted access
to shared memory, partially undermining the e�ort of using the model in the �rst
place. Still, it is the most common approach. The second approach is safe, but may
require di�erent algorithms and requires more memory. If this is a viable alternative,
the immutable classes presented in chapter 8 can �ll the gap. In case it is not viable,
we present here a solution based on the third approach, in particular o�ering both
race protection and shared memory performance.

7.3 Array slicing

To allow the implementation of e�cient parallel algorithms on arrays, two types of
array manipulation have to be supported:

• Parallel disjoint access: each processor has read and write access to disjoint parts
of an array.

• Parallel read: multiple processors have read-only access to the same array.
The array slicing technique presented in this section enables such array manipulations
by de�ning two data structures, slices and views, representing parts of an array that
can be accessed in parallel while maintaining race-freedom guarantees.
Slice Part of an array that supports read and write access of single threads.
View Proxy that provides read-only access to a slice while preventing modi�cations

to it.
In the following, we give a speci�cation of the operations on slices and views.

7.3.1 Slices

Slices enable parallel usage patterns of arrays where each thread works on a dis-
joint part of the array. The main operations on slices are:

Slicing Creating a slice of an array. It transfers some of the data of the array into
the slice. If shared memory is used, the transfer can be done e�ciently using
aliasing of the memory and adjusting the bounds of the original array.

Merging The reverse operation of slicing. Merging two slices requires them to be
adjacent to form an undivided range of indexes. The content of the two adjacent
slices is transferred to the new slice, using aliasing if the two are also adjacent
in shared memory. Merging ore than two slices can be done in multiple steps
that merge two slices each1.

Based on this central idea, an API for slices can be de�ned as in listing 7.2. Note
that this is a simpli�ed API; the actual API uses inheritance to give a common interface
to both slices and views. The letter T refers to the type of the array elements.

After creating a new slice using make, the slice can be used like a regular array us-
ing item and put with the indexes ranging from lower to upper, although modifying
it is only allowed if is_modifiable is true, which is exactly if readers is zero.

Internally, the attribute area is a direct pointer into memory which can be ac-
cessed like a 0-based array. The base represents the base of the slice, which is usually
1 for Ei�el programs, but may di�er when a merge results in a copy. The operations
freeze and melt increment and decrement the readers attribute, which in�uences
is_modifiable, and are used by views (see section 7.3.2).

1In principle, the API could also provide a merge feature that accepts an arbitrary number of slices

122

Slicing. Like any other object, a reference to the slice can be passed to other pro-
cessors. A processor having a reference to a slice can decide to create a new slice by
slicing from the lower end (slice_head) or upper end (slice_tail). By doing this,
the original slice transfers data to the new slice by altering the bounds and referenc-
ing the same memory if possible. Freedom from race conditions is ensured through
exclusive access to the disjoint parts.

Listing 7.3 shows an implementation of the slice_head creation procedure, taking
advantage of shared memory. It copies the lower bound, the base and the memory
reference of the slice a_original. It also sets the upper bound according to the size n
of the new slice and increases the lower bound of the original slice by n.

Merging. If a processor has two adjacent slices (the lower index of one slice equals
the upper index of the other plus one), calling merge creates a new combined slice.
This transfers all the data from the old slices to the new one, making the old ones
empty. If the two slices are located next to each other in memory, the transfer simply
adjusts the bounds; otherwise, it copies the data into a new slice.

The implementation of merging (see listing 7.4) sets the bounds according to the
arguments. It then checks whether the two parts are actually next to each other in
memory by checking whether the area and the base are the same. In this case, it
copies the base and the memory reference. Otherwise, it allocates new memory and
copies all the data of the two arguments. In the end, it empties the two arguments,
setting their count to 0 by making lower = 1 and upper = 0.

Strategies for slicing. The most common choice for disjoint index subsets are sets
with contiguous indexes. Those subsets can be identi�ed by their lower and upper
index and resemble a normal array. A rarer case is to create the disjoint subsets ac-
cording to another principle. This warrants a di�erent implementation, which is pos-
sible by using inheritance. However, current cache architectures limit the usefulness
of chunks with a size smaller than a cache line.

7.3.2 Views

Views enable read-only access to arrays. The di�erence between views and immutable
classes is that a view is a thin layer over a slice, so it shares the same data. The main
operations on views are de�ned as follows:

Viewing Creating a view from a slice copies the bounds and the memory reference
into the view. The original slice is no longer modi�able.

Releasing The reverse operation of viewing. If no other views on the same slice
exist, it is modi�able again. Also, the view is no longer usable.

The API for views is shown in listing 7.5. A processor is able to read the slice in
parallel by creating a view using the make creation procedure. The original slice is
then available as the original query. This also prevents all further modi�cations of
the array unless the view is released with the free procedure. All the other features
of views behave exactly like their counterparts in the slices.

Viewing. Creating a view basically copies the bounds and the memory reference
into the view. By increasing the view counter (readers) using the freeze operation
of the slice a_original, the original slice is no longer modi�able (see listing 7.6). By

123

Number of cores
1 2 4 8 16 32

Quicksort Slicing 157.4 147.1 81.9 66.4 59.9 59.2
Threads 158.6 145.1 82.8 68.0 61.5 59.8

Matrix multiplication Slicing 184.8 95.0 51.2 24.0 14.1 7.3
Threads 178.0 91.7 46.6 23.6 12.6 7.3

Table 7.1: Mean running times (in seconds)

calling free on a view, the view loses its reference to the memory of the slice and the
original slice is noti�ed through melt that there is one less reader.

Releasing. The free procedure redirects the area to 0 and sets lower to 1 and upper
to 0. Therefore no access is possible at any index. In addition, the number of readers of
the original is decremented by a call to melt. This causes the original to be modi�able
again if the number of readers falls to zero. Because of its simplicity we chose not
to show the code here. Note that if the garbage collector collects a view, the view is
also released. Since garbage collection is, unless manually started, non-deterministic,
relying on this mechanism is not recommended.

7.4 Performance evaluation

To assess the performance of our approach, we apply it to two benchmark problems:
to determine how well our approach works in a divide-and-conquer scenario, we
choose a parallel in-place Quicksort algorithm; to determine the raw performance,
we use parallel matrix multiplication. In both cases, the extension of Scoop with the
slicing technique is compared with implementations in Ei�el using only threads and
without synchronization except a join at the end.

For the performance tests we used a server with four 8-core Intel Xeon E7-4830
processors and 256 GB of RAM. We ran every program 20 times and report the mean
value of the running times in table 7.1. The source code of the benchmarks is available
online2 as well as the support for slicing in Scoop3. In the following we discuss both
benchmarks and their results in detail.

7.4.1 Quicksort

Listing 7.7 shows the Quicksort example implemented using slices instead of regular
arrays (compare section 7.2). We omitted the actual sorting code to focus on slicing
and merging. The main di�erence is the usage of slice_head and slice_tail instead
of storing the bounds in variables. The implementation of sort can stay the same,
although there is no need for storing the bounds and extra features for swapping and
retrieving since data is no longer separate.

For the performance measurement, the Quicksort benchmark sorts an array of
size 108, which is �rst �lled using a random number generator with a �xed seed.

2https://bitbucket.org/mischaelschill/array-benchmarks
3https://bitbucket.org/mischaelschill/scoop-library

124

https://bitbucket.org/mischaelschill/array-benchmarks
https://bitbucket.org/mischaelschill/scoop-library

12 4 8 16 32
50

100

150

Number of cores

Ti
m

e
(se

co
nd

s)

Slicing
Threads

Figure 7.1: Quicksort: scalability

12 4 8 16 32
0

50

100

150

200

Number of cores

Ti
m

e
(se

co
nd

s)

Slicing
Threads

Figure 7.2: Matrix multiplication: scalability

The benchmarked code is similar to listing 7.7, but also adds a limit on the number
of processors used. As evident from �g. 7.1, the performance characteristics of the
slicing technique and threading is almost identical.

7.4.2 Matrix multiplication

Listing 7.8 shows a class facilitating parallel multiplication of matrices, using a two
dimensional version of slices and views (SLICE2 and SLICE_VIEW2, implemented in a
very similar fashion to the one-dimensional version discussed in section 7.3.1). The
worker is created using make which slices o� the �rst n rows into product. The
multiply command �lls the slice with the result of the multiplication of the left and
right matrices. Afterwards, the views are decoupled using free. Dividing the work
between multiple workers and merging the result is left to the client of the worker.

For the performance measurement, the matrix multiplication test multiplies a 2000
to 800 matrix with an 800 to 2000 matrix. Figure 7.2 shows again similar performance
characteristics between slicing and threads.

125

7.5 Related work

We are not aware of any programming model supporting slicing while avoiding race
conditions. However, similar means to create an alias to a subset of an array’s content
are common in most programming languages or their standard library. For example,
the standard library of Ei�el [21] can create subarrays. Perl [55] has language support
for slicing arrays. Slices and slicing are a central feature of the Go programming
language [23]. However, these slicing solutions were not created with the intention
of guaranteeing safe access: the portion of memory aliased by the new array/slice
remains accessible through the original array, which can lead to race conditions if
two threads access them at the same time.

Enabling many processors to access di�erent parts of a single array is a corner-
stone of data parallel programming models. OpenMP [16] is the de-facto standard
for shared-memory multiprocessing. Its API o�ers various data parallel directives for
handling the access to arrays, e.g. in conjunction with parallel-for loops. Threading
Building Blocks [57] is a C++ library which o�ers a wide variety of algorithmic skele-
tons for parallel programming patterns with array manipulations. Chapel [12] is a
parallel programming language for high-performance computation o�ering concise
abstractions for parallel programming patterns. Data Parallel Haskell [11] implements
the model of nested data parallelism (inspired by NESL [8]), extending parallel access
also to user-de�ned data structures. In contrast to our work, these approaches focus
on e�cient computation but not on safety guarantees for concurrent access, which is
our starting point.

The concept of views is an application of readers-writers locks, �rst introduced
by Courtois, Heymans and Parnas [14], tailored to the concept of slices.

The introduction of passive regions into Scoop by Morandi et al. [46], as well as
optimizations by West [66], reduce the communication overhead of shared data struc-
tures, but does not permit parallel access.

7.6 Conclusion

While programming models for concurrency and parallelism have di�erent goals,
they can bene�t from each other: concurrency models provide safety mechanisms
that can be advantageous for parallelism as well; parallelism models provide perfor-
mance optimizations that can also be pro�table in concurrent programming. We have
taken a step in this direction by extending Scoop with a technique for e�cient parallel
access of arrays, without compromising the original data-race freedom guarantees of
the model. An important insight from this work is that safety and performance do not
necessarily have to be trade-o�s: results on two typical benchmark problems show
that our approach has the same performance characteristics as ordinary threading.

In future work, we want to investigate whether views can be marked as immutable
so that they can be passed to other processors without creating another view. Another
point of interest is a more direct integration of slices into the D-Scoop runtime to
improve the performance especially when slices are used together with distribution.

126

data: separate ARRAY[T]
lower, upper: INTEGER

make (d: separate ARRAY[T]; n: INTEGER)
do

if n > 0 then
lower := d.lower
upper := d.lower + n - 1

else
upper := d.upper
lower := d.upper + n + 1

end
data := d

end

sort
local

tmp, i, j: INTEGER
s1, s2: separate SORTER[T]

do
if upper > lower then

pivot := get (data, upper)
from i := lower; j := lower until i = upper loop

separate data as c_data do
if c_data[i] < pivot then

tmp := c_data[i];
c_data[i] := c_data[j];
c_data[j] := tmp;
j := j + 1

end
i := i + 1

end
separate data as c_data do

tmp := c_data[upper];
c_data[upper] := c_data[j];
c_data[j] := tmp;

end
create s1.make (data, j - lower)
create s2.make (data, j - upper)
separate_sort(s1, s2)

end
end

separate_sort (s1, s2: separate SORTER[T])
do

s1.sort
s2.sort

end

Listing 7.1: SORTER: In-place Quicksort in Scoop

127

frozen class
SLICE[T]

create -- Creation procedures (constructors)
make, slice_head, slice_tail, merge

feature {NONE}
make(n: INTEGER)

-- Create a new slice with a capacity of ‘n’
slice_head(n: INTEGER; slice: separate SLICE)

-- Slice off the first ‘n’ entries of ‘slice’
slice_tail(n: INTEGER; slice: separate SLICE)

-- Slice off the last ‘n’ entries of ‘slice’
merge(a, b: separate SLICE)

-- Create a new slice by merging ‘a’ and ‘b’

feature -- Queries
item(index: INTEGER): T

-- Retrieve the item at ‘index’
indexes: SET[INTEGER]

-- Indexes of this slice
lower: INTEGER

-- Lowest index of the index set
upper: INTEGER

-- Highest index of the index set
count: INTEGER

-- Number of indexes: ‘upper - lower + 1’
is_modifiable: BOOLEAN

-- Whether the array is currently modifiable, i.e.\ ‘readers = 0’
readers: INTEGER

-- The number of views on the slice

feature -- Commands
put(value: T; index: INTEGER): T

-- Store ‘value’ at ‘index’
freeze

-- Notifies the slice that a view on it is created by incrementing ‘readers’
melt

-- Notifies the slice that a view on it is released by decrementing ‘readers’

feature {NONE} -- Internals
area: POINTER

-- Direct unprotected memory access
base: INTEGER

-- The offset into memory

Listing 7.2: API for slices

128

slice_head (a_original: separate SLICE[T]; n: INTEGER)
require -- Precondition

within_bounds: n > 0 and n <= a_original.count
a_original.is_modifiable

do
lower := a_original.lower
upper := a_original.lower + n - 1
base := a_original.base
area := a_original.area
a_original.lower := a_original.lower + n

ensure -- Postcondition
a_original.count = old a_original.count - n
a_original.lower = old a_original.lower + n
a_original.upper = old a_original.upper
lower = old a_original.lower
upper = a_original.lower - 1
count = n
-- "forall i in indexes : item(i) = old a_original.item(i)"

end

Listing 7.3: Slicing

merge (a_one, a_another: separate SLICE[T])
require

a_one.is_modifiable
a_another.is_modifiable
one.is_adjacent (a_another)

do
lower := a_one.lower.min(a_another.lower)
upper := a_another.upper.max(a_one.upper)
if a_one.area = a_another.area and a_one.base = a_another.base then

area := a_one.area
base := a_one.base

else
base := lower
-- "Copy data from the a_one and a_another to area"

end
a_another.empty; a_one.empty

ensure
lower = old a_one.lower.min(a_another.lower)
upper = old a_one.upper.max(a_another.upper)
a_one.count = 0 and a_another.count = 0
-- "forall i in old a_one.indexes : item(i) = old a_one.item(i)"
-- "forall i in old a_another.indexes : item(i) = old a_another.item(i)"

end

Listing 7.4: Merging

129

class
VIEW[T]

create
make

feature {NONE} -- Creation procedures (constructors)
make(slice: separate SLICE[T])

-- Create a new view on ‘slice’

feature -- Queries
original: separate SLICE[T]

-- Slice this view references
indexes: SET[INTEGER]

-- Indexes of this view
item(index: INTEGER): T

-- Retrieve the item at index
lower: INTEGER

-- Lowest index of the index set
upper: INTEGER

-- Highest index of the index set

feature -- Commands
free

-- Disconnects the view from the slice

feature {NONE} -- Internals
area: POINTER

-- Direct unprotected memory access
base: INTEGER

-- Offset into memory

Listing 7.5: API for slice views

130

make (a_original: separate SLICE[T])
do

a_original.freeze
original := a_original
lower := a_original.lower
upper := a_original.upper
base := a_original.base
area := a_original.area

ensure
lower = a_original.lower
upper = a_original.upper
not a_original.is_modifiable
-- "forall i in indexes : item(i) = a_original.item(i)"

end

Listing 7.6: Viewing

131

class SLICE_SORTER[G -> COMPARABLE]

create
make, slice_top, slice_bottom

feature {NONE}
make (a_data: SLICE[G]; a_workers: INTEGER)

-- Sorts ‘a_data’ using ‘a_workers’ workers
do workers := a_workers; data := a_data end

make_head (a_data: separate SLICE[G]; n, a_workers: INTEGER)
do workers := a_workers; create data.slice_head (n, a_data) end

make_tail (a_data: separate SLICE[G]; n, a_workers: INTEGER)
-- Similar to slice_top

feature
workers: INTEGER
data: SLICE[G]
sort

local
middle: INTEGER
separate_sorter1, separate_sorter2: separate SLICE_SORTER[G]

do
if data.count > 1 then

middle := data.count // 2 + data.lower
-- Quicksort partitioning and swaps
...
if workers > 1 then

create separate_sorter1.make_head
(data, middle - data.lower, workers // 2)

create separate_sorter2.make_tail
(data, data.upper - middle, workers // 2)

separate
separate_sorter1 as c_separate_sorter1,
separate_sorter2 as c_separate_sorter2

do
separate_sorter1.sort
separate_sorter2.sort
create data.merge (data, separate_sorter1.data)
create data.merge (data, separate_sorter2.data)

end
else -- Sort sequentially, code omitted
end

end
end

end

Listing 7.7: Quicksort algorithm using slices

132

left, right: SLICE_VIEW2[T]
product: SLICE2[T]

make (l, r, p: separate SLICE2[T]; n: INTEGER)
do

create left.make(l); create right.make(r)
create product.slice_top (n, p)

end

multiply
local

k, i, j: INTEGER
do

from i := product.first_row until i > product.last_row loop
from j := product.first_column until j > product.last_column loop

from k := left.first_column until k > left.last_column loop
product[i, j] := product[i, j] + left[i, k] * right [k, j]
k := k + 1

end
j := j + 1

end
i := i + 1

end
left.free; right.free

end

Listing 7.8: Matrix multiplication worker using slices and views

133

Chapter 8

Immutable Classes

Immutable objects never change. Immutability is a useful property: it helps reasoning
and enables optimizations. If, for example, a string object is immutable, then a supplier
that receives a reference to a string can keep it without risking a change to the string
afterwards. With mutable strings, the supplier needs to make a copy of the string to
make sure it cannot be changed. Since oftentimes the mutable string would not be
changed afterwards, these copies are often super�uous.

In the context of Scoop, immutable objects can always be treated as non-separate:
without the ability to change their state, no data races are possible. This is especially
useful for large objects like strings or matrices, where duplication through import
or export requires signi�cant processor time and memory. With the expansion of
Scoop to D-Scoop, immutable objects can be transparently copied over to other nodes
without impact on the semantics.

Furthermore, in cases of restricted memory capacities, immutable objects with the
same state can be merged; a prime candidate for this are strings.

Our formal approach is based on judgments over the program text. This is equal
to the static part of an operational semantics [56]. Whereas for most operational
semantics the static part is mainly concerned with type checking and type checking is,
in comparison with immutability checking, simple, our approach needs signi�cantly
more judgments.

The chapter starts with a motivating example in section 8.1 before it goes into the
technical details. These start with a description of the abstract syntax tree that is used
for structural induction in section 8.2. Section 8.3 then continues with some general
judgments and rules that are used later. Section 8.4 introduces conformance as used
by this framework, which is a simpli�ed version of the full Scoop conformance rules,
but it is su�cient to show immutability. The multiple inheritance scheme employed
by Ei�el requires a complex logic to resolve features and their actual context. Since
it is important for our approach to resolve features, we describe the functions and
judgments related to resolving features in section 8.5. Sections 8.6 to 8.10 describe the
high level properties together with the associated judgments and inference rules. At
last, section 8.12 concludes with a comparison to other approaches.

134

8.1 Motivation

We use a compiler as a motivating example, more speci�cally, the abstract syntax
tree constructed by the parser and used throughout the process. The tasks in our
hypothetical compiler are the following:

1. The input is parsed to create abstract syntax trees.
2. Creation of various indexes for classes, features etc.
3. Type checking takes place.
4. Other static analyses are run.
5. Code is optimized.

Although these tasks are dependent upon previous tasks to be, at least partially,
completed, the tasks themselves o�er many opportunities for parallelization. Since
computers used by developers usually have multiple cores, this is an important aspect.

The abstract syntax trees and the indexes are large and complex data structures
used by most tasks. A simple solution is to put the indexes and the AST’s on di�erent
processors, however, this basically serializes all access to the data structures. With
transparent optimizations, this serialization, on a shared memory machine, the seri-
alization can be done using simple locks. However, it still represents a bottleneck on
systems with a large number of cores, especially since accesses are very frequent.

We can observe that it is possible to restrict access to the index to reads only:
The output of the various tasks does not need to be put into the data structures of
the input. From a software engineering perspective, this has the added advantage of
keeping the classes of the abstract syntax tree small.

With this observation, we can argue that we can make copies of the whole struc-
ture and provide the worker processors with one copy each. Since we do not neces-
sarily need signi�cantly more workers than cores in the machine, this is a reasonable
solution. Once the copies are created, the bottleneck is removed. However, this re-
quires a signi�cant increase in memory usage and, at the same time, adds some com-
putational overhead and complexity. The latter mainly stems from the fact that it is
not possible to create expanded classes for this purpose since expanded variables are
not polymorphic and there is no expanded version of an array1.

If look at this problem from a distance, we can see that we only copied the data
because of the Scoop rules. Since we do not modify the shared data structures, there is
no risk of data races and the Scoop rules are overbearing. We could introduce a built-
in mechanism similar to slicing as discussed in chapter 7 for more data structures.
Another possible solution, the one this chapter is dedicated to, is to have a mechanism
for statically proving data structures, or more generally object, to be immutable and
then adding an exception to the Scoop rules that allows parallel access to these objects.
The same way that expanded objects, due to their semantics, are exempt from the
Scoop typing rules, immutable objects can be exempt.

The gentle reader might ask what immutable objects have to contribute to D-
Scoop. While any improvements to Scoop by extension also bene�t D-Scoop, the
possibilities for optimizations with immutable objects also directly a�ect D-Scoop.
Immutability not only allow safe parallel access, it also allows for copies to be in-
distinguishable from the original. It is therefore possible to transparently copy an
immutable object that is an argument or result of a remote call to the recipient. It is

1More speci�cally, the SPECIAL class

135

often more e�cient to copy a large data structure if it means that a few remote calls
are thereby avoided.

In the context of our example, computationally expensive optimizations could be
delegated to remote workers. In fact, distributed compilation is used in practice, the
distcc2 program can be used for distributed C compilation. While the export mecha-
nism suggested in chapter 5 can achieve the same e�ect, immutable objects can make
this transparent. Furthermore, if all copies are identi�ed correctly, redundant copies
can be avoided if the same object gets passed back and forth between nodes.

8.2 Abstract Syntax Tree

To introduce the framework, we use a simpli�ed version of Ei�el but without omit-
ting constructs that a�ect the validity of our reasoning. In particular, we retain the
full multiple inheritance system of Ei�el since it is one of the more di�cult parts for
reasoning and it a�ects immutability.

Table 8.1 shows the syntax we use. Every node has a (possibly empty) list of chil-
dren, which are ordered in the same way as in the concrete syntax. We use modi�ers
?, * and | as they are used in regular expressions, but instead of using parentheses, we
underline the scope of the modi�er if it does not apply just to the symbol immediately
preceding it. Figures 8.1 and 8.2 give a graphical overview of the abstract syntax tree.

Some node types, such as body, are virtual nodes, which is indicated through the
usage of an italic font and a grey background the graphical tree. They are a placeholder
for other nodes; in the case of body, this would be do, once, attribute or deferred. This
means that in the actual abstract syntax tree of a program, in places where there is
a virtual node in the syntax description, one of these actual node is placed. In other
words, the children of a virtual node replace their parent in the actual abstract syntax
tree.

We assume correct programs under the rules of Ei�el as in [41].

8.2.1 Nodes and Lists

As mentioned above, every node has a list of children. We use the symbol ε to indicate
an empty list, and lists are formed according to the following principle, with l being
a list and i an item:

l := il|ε

The �rst item of a list corresponds to the �rst child node occurring in the program
text, the second item to the second and so on.

As an example, we look at a short instruction list with an assignment and a com-
mand that corresponds to the following excerpt:

a := 15;
f (a);

This is equivalent to this abstract syntax tree:
assign[name[a] int[15]] uc[name[f] name[a]]

2https://github.com/distcc

136

AST Node Concrete Form Description

prog cls* Program

cls
c�ag
name [param ; param*]? inh* feat* inv*
end

Class

c�ag deferred class | expanded class | class Class Flag
param name <- type? Parameter

inh
inherit type
rename* export* undef* redef* select* end? Inheritance

type name [type , type*]? Type
rename rename name as name Rename clause
export export {name} name Export clause
undef undefine name Unde�ne clause
redef redefine name Rede�ne clause
select select name Select clause
feat feature visib name args : separate? type?

req? local? body? ens? Feature
visib { name } ? Visibility
args (var ; var*)? Arguments
var name : separate? type Variable
req require else? exp* Precondition

local local var* Locals
body do | once | attribute | deferred Feature Body
do do instr* rescue?) Routine body

deferred deferred Deferred body
once once oscope? instr* rescue? Once routine body

attribute attribute instr* rescue? Attribute initializer
oscope ("PROCESS" | "THREAD" | "OBJECT") Once scope
rescue rescue instr* Rescue clause

ens ensure then? exp* Postcondition
inv invariant exp Invariant
instr qc | uc | assign | createi | cond | loop Instruction
qc exp.name (exp , exp*)? Quali�ed call
uc name (exp , exp*)? Unquali�ed call

assign name := exp Assignment
createi create name . name (exp , exp*)? Create instruction
cond if exp then instr* elseif* else? end Conditional
elseif elseif exp then instr* Else-if branch
else else instr* Else branch
loop until exp vari? inv? loop instr* end Loop
vari variant exp Loop variant
exp qc | uc | createe | char | str | int | real | bool Expression

createe create { name }. name (exp , exp*)? Create expression

Table 8.1: Simpli�ed Ei�el Abstract Syntax Tree

137

prog

cls*

c�ag?

name

param*

name

type?

inh

type

rename*

name

name

export*

name

name

undef*

name

redef*

name

select*

name

feat*

visib?

name

args

var*

type?

req?

exp*

local?

var

body

do

instr*

deferred

attribute

instr*

once

oscope?

instr*

ens?

exp*inv?

type

name

type*

var

name

type

Figure 8.1: Ei�el syntax: classes and features

138

instr

qc

uc

assign

name

exp

createi

name

name

exp*

cond

exp

instr*

elseif*

exp

instr*

else?

instr*loop

instr*

exp

vari?

exp

inv?

exp

instr*

exp

qc

uc

createe

name

name

exp*

char

str

int

real

qc

exp

name

exp*

uc

name

exp*

Figure 8.2: Ei�el syntax: instructions and expressions

139

Variable typing

Variables can substitute AST nodes and lists of AST nodes. We assert the admissible
content of a variable with the following judgment, where v is a variable and t is an
AST node type, with n ∈ N:

v o t0, t1, ..., tn (8.1)

Note that v above cannot be a list, although variables may contain lists of nodes.
To allow v to be a list of the given types as well as ε, we use the following notation:

v o∗ t0, t1, ..., tn (8.2)

We also introduce a short-hand notation for single AST node types by adding them
as a superscript to variables in the conclusion:

vt as equivalent to v o t
v

In the same fashion, we de�ne the short-hand notation
vt∗ for v o∗ t

v

Filtering

We introduce a �lter operator O that extracts only nodes of speci�c types from a list.

(i l)Oj = i (lOj) ⇐⇒ i o l (8.3)
(i l)Oj = lOj ⇐⇒ i 6 o l (8.4)

εOj = ε (8.5)

List content

We use the symbol ∈ to assert that the node on the left appears in a list on the right.
This is de�ned as follows, with i, j being nodes and l a list.

i ∈ (j l) ⇐⇒ i = j ∨ i ∈ l (8.6)

We also de�ne /∈ for asserting that the item on the left is not in the list on the
right.

i /∈ (j l) ⇐⇒ i 6= j ∧ i /∈ l (8.7)

Furthermore, we de�ne the functionH for extracting the head of a list, or an empty
list if the list is empty.

H(t...) = t (8.8)
H(ε) = ε (8.9)

Existential quanti�cation

We often need to existentially quantify a node or a list that is present but not referred
to again. We use the question mark symbol (?) as a placeholder for a single node and
an ellipsis (...) for a list which may also be empty.

140

List concatenation

We use the symbol + to denote list concatenation. For its de�nition, we use a helper
operator +̄.

a+ b = (a+̄ε)+̄b (8.10)
(i, l)+̄b = l+̄(i, b) (8.11)

ε+̄b = b (8.12)

Basic nodes and naming

We assume the following basic nodes for simple values:

int Integer constant
real Floating point constant
char Character constant
str String constant

Alphanumeric identi�ers in the program text are referred to as names. Nodes for
names are written as name[t] with t being the name written in the text.

For example, the program text a := 15 is equivalent to assign[name[a] int[15]].
For conciseness, we use the special class names ANY, NONE and IMMUTABLE with-

out the surrounding node, so these are equivalent to name[ANY], name[NONE] and
name[IMMUTABLE]. In the same fashion, Result stands for name[Result].

8.3 General Statements

Due to the richness of Ei�el, we require signi�cantly more judgments to show that a
class is immutable than for simple type checks. Also, we are formally de�ning every
judgment, whereas some literature may omit what they seem obvious. To simplify
understanding and reading, we use natural language instead of symbols for the judg-
ments. Since this leads to longer judgments, we write the premises atop instead of
next to each other if the space does not permit the latter.

Before we introduce the judgments, rules and properties related to immutability,
we need to establish some more general judgments and functions.

8.3.1 Global Context

All the described judgments contain the local context in which they are true, given
that the program does not change. This allows us to add every derivable judgment to
the global context by using the following structural rule, which allows for deriving a
judgment early:

Γ ` ∆ Γ,∆ ` Θ

Γ ` Θ

8.3.2 Existence

The program and all its classes exist. This is the general context of the derivation and
represented by the judgment

c exists. (8.13)

141

where c is a class or a program, that is, a list of classes. From the existence of a list of
classes, we can derive the existence of every class in the list:

Γ ` pprog exists. Γ ` c ∈ p
Γ3 ` cclass exists.

8.3.3 De�ned features

Similar to the existence of classes, we can assert the existence of a feature with a
speci�c name in a given class. The judgment

f feat is feature nname of cname. (8.14)

states that the feature node f is de�ned in class c as n. Resolving features given a
speci�c context is a di�erent matter discussed in section 8.5. This judgment can be
derived from the existence of the class:

Γ ` cls
[

?, n, c
]

exists. feat
[
v, f, b

]
∈ c

Γ ` feat
[
v, f, b

]
is feature fname of nname.

8.3.4 Features of a Class

The judgment

nname* features of Aname. (8.15)

declares that the set of names n is the de�ned and inherited features of class A. The
variation

nname* features of iinh*. (8.16)

declares that the set of names n is the de�ned and inherited features due to the in-
heritance clauses i. We de�ne a function E that extracts the names from a list of
features.

E(feat
[

?, n...
]
, l) = {n} ∪ E(l) (8.17)

E(ε) = ∅ (8.18)

With this function, the rules for the judgment can be de�ned as:

Γ ` cls
[

?, n, c
]

Γ ` b features of cOinh.
Γ ` E(cOfeat) ∪ b features of nname.

Γ ` a features of p.
Γ ` Ac(a) features of inh

[
type

[
p...

]
, c
]
, l.

The function A in the judgment above adapts a syntax tree according to inheri-
tance sub-clauses. With a list of names, it only applies renaming. The de�nition of
this function is given in section 8.5.1.

Γ ` ∅ features of ε.

142

8.3.5 Properties of features

We need to distinguish attributes and once features from other features, as they have
di�erent semantics. This is stated by the following three judgments:

{A} .f is attribute. (8.19)

{A} .f is once. (8.20)

{A} .f is other. (8.21)
This can be achieved by looking at the clauses of the feature:

Γ ` feat
[

?, f, b
]

is feature A of f . bOdo,once,deferred = ε

Γ ` {A} .f is attribute.

Γ ` feat
[

?, f, b
]

is feature A of f . bOdo,deferred 6= ε

Γ ` {A} .f is other.

Γ ` feat
[

?, f, b
]

is feature A of f . bOonce 6= ε

Γ ` {A} .f is once.

8.4 Conformance

We describe rules to establish conformance. We only need a very simple form of
conformance: whether a class inherits from another class or not. We write

c1 l c2 (8.22)
if class c1 is conforming to class c2, that is, c1 equals c2 or is a descendant. Non-

conformance is similar:

c1 6l c2 (8.23)
These judgments are supported by the following rules.

Re�exivity

Γ ` nl n

Transitivity

Γ ` n1 l n2 Γ ` n2 l n3
Γ ` n1 l n3

Direct descendants

Conformance can be shown by splitting the inheritance structure established by the
inherit clauses according to the transitivity rule above and the following rule show-
ing conformance for direct descendants.

Γ ` cls
[

?, n1, c
]

exists. inh[typ[n2 ...]...] ∈ c
Γ ` n1 l n2

143

Non-conformance

Showing non-conformance is traversing the graph upwards, which is required since
it is neither transitive nor re�exive. To achieve this, we allow the n1 in the n1 6l n2
judgment to be a list of inheritance clauses. This variation of the judgment is the
consequence of the following rules:

Γ ` l 6l n Γ ` p 6l n

Γ ` inh
[

type
[
p...

]
...
]
, l 6l n

Γ ` ε 6l n

Non-conformance can thus be shown according to the following rule:

Γ ` cls
[

?, n1, c
]

exists. Γ ` cOinh 6l n2

Γ ` n1 6l n2

8.5 Resolving Features

Resolving features in Ei�el is complex due to multiple inheritance. It can be split into
two steps. First, the actual name of the feature in the dynamic type of the object is
determined. Second, the corresponding implementation is looked up, together with
the necessary adaptation for names and types. Fortunately, we are only concerned
with resolving unquali�ed calls, that is, calls without an explicit target, so we can
concentrate on these. For the �rst part, we need to prove that the particular feature
name is along the selected path of inheritance. As part of this, we also need to adapt
the feature name, so we start by de�ning adaptation of names.

8.5.1 Adaptation

It is not su�cient to just retrieve the feature node when resolving a feature. We need
to adapt it to the context; an important part of this is renaming. Also, if a feature
is unde�ned or rede�ned, its body is thrown away. Adaptation of types is handled
separately. Note that this function is not su�ciently de�ned for adapting features for
execution: we limited it to adapt only the parts we are interested in.

144

B = {name, str, int, real} (8.24)
Ac(α[a], r) = b,Ac(r)

⇐⇒ rename
[
α[a], b

]
∈ c ∧ α ∈ B

(8.25)

Ac(α[a], r) = α[a],Ac(r)

⇐⇒ rename
[
α[a], ?

]
/∈ c ∧ α ∈ B

(8.26)

Ac(α
[
a
]
, r) = α

[
Ac(a)

]
,Ac(r) ⇐⇒ α /∈ B ∪ {feat} (8.27)

Ac(feat
[
v, f, b

]
, r) = feat

[
Ac(v, f, b)

]
,Ac(r)

⇐⇒ unde�ne
[
Ac(f)

]
/∈ c ∧ rede�ne

[
Ac(f)

]
/∈ c

(8.28)

Ac(feat
[
v, f, b

]
, r) = feat

[
Ac(v, f, bOvar, req, ens)

]
,Ac(r)

⇐⇒ unde�ne
[
Ac(f)

]
∈ c ∨ rede�ne

[
Ac(f)

]
∈ c

(8.29)

Ac(ε) = ε (8.30)
Ac(g) = f ⇐⇒ Ac(f) = g (8.31)

The core of adaptation is the adapt function Ac. This function adapts its argument
according to the clauses in c, which are the rename, export, rede�ne and unde�ne
clauses. The select clause has no impact on adapting, it is solely used for resolving
the correct descendant. The function is recursive and applies the rename clauses to
all names as shown in eqs. (8.25) and (8.26). These two equations and eq. (8.27) use
α as a placeholder for the node name to avoid creating a version of the equation for
every a�ected AST node type. Note that eq. (8.25) only applies to name nodes, as it is
not possible to put other basic nodes in a rename node. The nodes not a�ected by the
replacement are the basic nodes B and the feat node, which is handled by eqs. (8.28)
and (8.29). These remove the local, do, once and attribute clauses if the feature is
unde�ned or rede�ned. Adaptation does not include the export status.

We also de�ne Ac as the inverse function of Ac. This is only used to adapt names.

8.5.2 Resolving Features

Resolving features is giving an answer to the question: “If f is called with a target that
is of static type A and of dynamic type B, which feature in B is executed?"

The answer to this question can be found in the program text, but is di�cult to
obtain due to renaming and selection. The right answer can only be proven true by
showing that it is a descendant feature in B of the feature f and it is along the selected
path.

Selection. Selection solves the problem of choosing the right version of a feature
if the context is ambiguous. A class in Ei�el can inherit from multiple classes. Every
feature of a class has a unique name that can be changed in descendant classes with
renaming. Suppose that class A de�nes feature do_a and feature do_t. The latter calls
the former. The classes B and C both inherit from A and rename and rede�ne feature
do_a to do_b and do_c respectively. Class C inherits from both A and B. If feature do_t
is with an object of type D as a target, which feature is called? The original feature in
A, the one rede�ned in B or the one in C? To solve this problem, a programmer has
to select one of either do_b or do_c in the inherit clause, which is then called in the
case above.

145

As stated above, the programmer needs to select a feature only if there is an am-
biguity. It is therefore possible that the inheritance path of the correct feature does
not contain a select clause, or that another path does also contain one. This makes
it di�cult to prove directly that the given answer is correct since it involves proving
that all other candidates are not selected.

However, we can avoid using universal quanti�cation by asserting that at every
point in the hierarchy, the chosen feature was the one selected or the last one remain-
ing. For this, we de�ned several functions:

Mc(a, r) = a,Mc(r) ⇐⇒ select
[
a
]
/∈ c (8.32)

Mc(a, r) = a,Mc(r) ⇐⇒ select
[
a
]
∈ c (8.33)

Mc(ε) = ε (8.34)
S(a, r) = S(r) ⇐⇒ r 6= ε (8.35)
S(a, r) = a, ε (8.36)
S(a, ε) = a, ε (8.37)
S(ε) = ε (8.38)

(8.39)

Mc marks the selected features in a list of names by underlining it.
S returns the (�rst) marked feature or the last feature in the list if none are marked4.

Type conversion

Due to inheritance, it is possible that a generic parameter of a class can be constrained
further due to the context. For example, suppose a program contains the two classes
in listing 8.1.

class A [T]

feature
attr: T

end

class B [T <- IMMUTABLE]

inherit
A[T]
IMMUTABLE

end

Listing 8.1: Adapting generics in immutable types

It is obvious that class A cannot be immutable: The generic parameter T is uncon-
strained and may or may not be immutable, which violates the immutability rule for

4In a valid Ei�el programs it is only possible to mark no features if this list contains just one kind of
name. This property could be used to check whether the programmer has to select a feature.

146

attributes. However, class B is valid, since it constrains the generic parameter T to
classes that inherit from IMMUTABLE. An analysis that checks the immutability of attr
in context of class B therefore needs to take into account the constraint: it needs to
convert the type in A using information from B.

The function C is essential in doing so:

Cpparam

c (t) (8.40)

This function augments the type t in context of type cwhere p is the list of parameters
of the class that c points to. The generic variables in t are replaced by the constraints
inferred from context and class parameters, with unconstrained parameters defaulting
to ANY.

To come back to the example above, the term C
param

[
T

]
type

[
A, IMMUTABLE

](type
[
T
]
)

would yield type
[
IMMUTABLE

]
as a result.

C is de�ned as follows:

Cp
c(type

[
nname, p

]
, l) = type

[
n,Cp

c(p)
]
,Cp

c(l) ⇐⇒ param
[
n...

]
/∈ p (8.41)

Cp
c(type

[
nname, ε

]
, l) = Lp

c(n),Cp
c(l) ⇐⇒ param

[
n...

]
∈ p (8.42)

Cp
c(ε) = ε (8.43)

L
param

[
n...

]
,l

type
[

?, t...
] (n) = t (8.44)

L
param

[
n...

]
,l

type
[
c, t, r

] (m) = Ll

type
[
c, r

](m) ⇐⇒ n 6= m (8.45)

The function C complements a list of types given the context type and class and
uses Lp

c(n) to look up the corresponding �eld in the context type c based on the
position of the name n in the list of generic parameters p.

Judgments

Finally, we can put everything together. We say that a certain call resolves to the
following feature name by writing

g is {A} .f in B. (8.46)

This judgment states that a call to f of class A on an object of type B is directed
to the feature in B with the name g. A variant of the judgment operates on inherit
clauses as B instead of a type, and a list of feature names instead of f .

Rules

Γ ` f is {A} .f in type
[
A...

]
.

For the recursive step, the answer is the selected feature in the list g, which can
be obtained by deriving Mc for all adapted inherit clauses of B.

Γ ` cls
[

?, B, c
]

exists. Γ ` g is {A} .f in cOinh.
Γ ` S(g) is {A} .f in type

[
B...

]
.

147

USABLE

CAR RESTAURANT

DINING_CAR BAR

BAR_CAR

use

rename use as sit rename use as eat

select eat rename eat as drink

select drink

Figure 8.3: Resolving features example: classes

Γ ` r is {A} .f in i. Γ ` g is {A} .f in B.
Γ `Mc(Ac(g)), r is {A} .f in inh

[
type

[
B...

]
, c
]
, i.

Γ ` ε is {?} .? in ε.

8.5.3 Example

The graph in �g. 8.3 shows six classes forming two diamonds. The central feature of
the example is {USABLE}.use, which is being renamed in CAR, RESTAURANT and BAR.
The CAR represents a train car, and a BAR is a variant of a RESTAURANT which primarly
serves drinks. There are two variations of cars in addition to the basic one: one for
dining and one for drinking. This example is arti�cial, its purpose is solely to explain
how selection works without introducing too many features and classes.

The proof trees in �g. 8.4 establish which e�ective feature is called if the feature
use is invoked on a target of static type USABLE representing an object of any of the
dynamic types in �g. 8.3. Note that we omitted the leafs proving existence, that is,
judgments ending in exists., to �t the proofs within one page.

148

Γ ` ε is {USABLE} .use in ε. Γ ` use is {USABLE} .use in type
[
USABLE

]
.

Γ ` sit is {USABLE} .use in inh
[

type
[
USABLE

]
, rename

[
use, sit

]]
.

Γ ` sit is {USABLE} .use in CAR.

Γ ` ε is {USABLE} .use in ε. Γ ` use is {USABLE} .use in type
[
USABLE

]
.

Γ ` eat is {USABLE} .use in inh
[

type
[
USABLE

]
, rename

[
use, eat

]]
.

Γ ` eat is {USABLE} .use in type
[
RESTAURANT

]
.

Γ ` ε is {USABLE} .use in ε. Γ ` eat is {USABLE} .use in type
[
RESTAURANT

]
.

Γ ` drink is {USABLE} .use in inh
[

type
[
RESTAURANT

]
, rename

[
eat, drink

]]
.

Γ ` drink is {USABLE} .use in type
[
BAR

]
.

Γ ` ε is {USABLE} .use in ε. Γ ` eat is {USABLE} .use in RESTAURANT.
Γ ` eat is {USABLE} .use in inh

[
type

[
RESTAURANT

]
, select

[
eat

]]
. Γ ` sit is {USABLE} .use in CAR.

Γ ` sit, eat is {USABLE} .use in inh
[

type
[
CAR

]]
, inh

[
type

[
RESTAURANT

]
, select

[
eat

]]
.

Γ ` eat is {USABLE} .use in type
[
DINING_CAR

]
.

Γ ` ε is {USABLE} .use in ε. Γ ` drink is {USABLE} .use in type
[
BAR

]
.

Γ ` drink is {USABLE} .use in inh
[

type
[
BAR

]
, select

[
drink

]]
. Γ ` eat is {USABLE} .use in type

[
DINING_CAR

]
.

Γ ` eat, drink is {USABLE} .use in inh
[

type
[
DINING_CAR

]]
, inh

[
type

[
BAR

]
, select

[
drink

]]
.

Γ ` drink is {USABLE} .use in type
[
BAR_CAR

]
.

Figure 8.4: Resolving features examples: proof trees

149

8.6 Immutability as a Property of Classes

There are three di�erent levels at which it is possible to specify that objects are im-
mutable:

1. At the object level, for example at creation time
2. At the type level, for example as a type modi�er
3. At the class level, for example as a marker

If we want to reason statically about immutable objects, then the �rst option is
not practical. Reasoning at the type level is possible and many related approaches,
some of them discussed in section 8.12, go this route. However, as we will see soon,
immutability puts a variety of requirements on the class structure, so speci�cation at
the class level is most convenient. It also avoids overloading the type system with
even more modi�ers. In fact, it only requires the introduction of a special IMMUTABLE
class and no further annotation.

To obtain a fully formal inductive reasoning system for proving classes immutable,
which can also be automated for use within a compiler, we need to specify what im-
mutability means and what its consequences are. We start by stating the general
property of immutable objects:

Property 1. An object of an immutable class may not change its state, that is, the value
of its attributes, after the creation routine is �nished. We write

C immutable. (8.47)

to declare class C is immutable.

This property implies that it is permissible to change the state during creation,
even if the creation routine calls other routines to modify the state.

Listing 8.2 shows a problem: feature do_something in class UNSUSPECTING requires
an argument of type IMMU_CLASS, of which it rightfully assumes that it is immutable.
However, the client may pass an instance of MUT_CLASS instead and then modify the
state after the supplier routine �nished. We therefore conclude:

Property 2. Classes inheriting from immutable classes must be immutable.

This property also implies how immutable classes can be marked:

Property 3. Immutable classes inherit from IMMUTABLE.

We now have the general conditions for declaring a class immutable, which we
formalize as the following rule:

Γ ` f features of C .
Γ ` cls

[
?, C, p

]
exists.

Γ ` f in safe.
Γ ` all invariants of IC(pOparam) in context IC(pOparam) immutating.

Γ ` C immutable.
We use the term immutating for instructions and features that are not mutating

immutable state. The rule speci�es that all the features of an (existing) immutable class
need to be safe, which means that they adhere to the immutability constraints. The
class needs to inherit from IMMUTABLE, and all its invariants need to be immutating,
which we will explain later.

150

class IMMU_CLASS
create

make
feature {NONE}

make (a: ANY)
do

item := a
end

feature
item: ANY

end

class MUT_CLASS
inherit

IMMU_CLASS
feature

set_item (a: ANY)
do

item := a
end

end

class UNSUSPECTING
feature

do_something (immu_object: IMMU_CLASS)
deferred
end

end

Listing 8.2: Mutable class inheriting from immutable class

8.6.1 Mutable Classes

A system may contain immutable and mutable classes. Mutable classes have no re-
strictions, except for the fact that

Property 4. Mutable classes may not inherit from IMMUTABLE. We write

A mutable. (8.48)

to express that the class A is mutable

Establishing mutability is done by this simple rule:

Γ ` A 6l IMMUTABLE

Γ ` A mutable.

8.7 Mutating Features

8.7.1 Safe Features

The next step is to de�ne when a feature adheres to the immutability rules.

151

Property 5. All features of an immutable class need to preserve the immutability of the
object. We call such features safe and we write

f in A safe. (8.49)

if the feature name or list of feature names f are safe in class A

We can show safety individually, so we introduce the following rules

Γ ` f in a safe. Γ ` l in a safe.
Γ ` f, l in a safe.

Γ ` ε in ? safe.

8.7.2 Private Features

A feature that cannot be called after the construction can never modify the state. The
constructor, or any features it uses, if exported to onl NONE are permissible. While
it is important that these features are not called, directly or indirectly, from features
accessible by clients other than Current, they are permissible as safe. We call these
features private.

Property 6. A feature that can only be called from the same object is private. To state
that a feature with name f in class A is private we write:

f in A private. (8.50)

A variation of the judgment uses instead of a class A a list of feature and inheri-
tance clauses, in which case the informal meaning is that the symbol f is private in
all the classes denoted in the inheritance and all the features. This enables us to show
privateness inductively through the following rules:

Γ ` cls
[

?, A, c
]

exists.
Γ ` f in cOinh private.

Γ ` feat
[

visib
[
NONE

]
...
]
∈ c

Γ ` fname in Aname private.

Γ ` cls
[

?, A, c
]

exists.
Γ ` f in cOinh private.

f /∈ E(cOfeat)
Γ ` fname in Aname private.

Γ ` f in l private. Γ ` Ac(f) in P private.
Γ ` fname in inh

[
type

[
P...

]
, c
]
, l private.

Γ `? in ε private.

152

We show that a feature is private by induction. At each step we show that the
feature denoted by the given name is either not de�ned or it is de�ned with a visibility
of NONE in a class. We then inductively show the same for all the ancestor classes, for
which we reversely adapt the feature name according to the inheritance clause. Due
to polymorphism, it does not su�ce to show that the feature is not exported in the
immutable class itself.

A safe feature can be private and immutating: this is necessary if the feature is
indirectly accessible from a client other than Current. In our reasoning system, we
say that if a feature is private, this implies that it is safe.

Γ ` fname in Aname private.
Γ ` fname in Aname safe.

8.8 Immutating Features

Property 7. Features are safe if they are not mutating the state of the current object,
that is, if they are immutating. We write

θ ∈ {regular, deferred}
f in atype context ctype θ immutable.

(8.51)

to state that a feature f of tpye a in context of type c is immutating.

Note that this does not mean that it is free of side e�ects: it may, for example,
modify arguments. The variable θ with either regular or deferred as its value indicates
whether the complete feature is checked (regular) or just the interface (deferred). The
latter is weaker, as it speci�es that the feature is immutable without consideration of
its body, that is, as if it was deferred. Before we can derive a rule from this property,
we need a function that creates the initial context. I takes the parameters of a class
including the constraints and generates a type that consists of the constraints, or ANY
if unconstrained.

Ic(p) = type
[
c, I(p)

]
(8.52)

I(param
[
n
]
, l) = ANY, I(l) (8.53)

I(param
[
n, c

]
, l) = c, I(l) (8.54)

I(ε) = ε (8.55)

From the property and the function we conclude the following rule:

Γ ` f in Ic(pOparam) context Ic(pOparam) regular immutable.
Γ ` cls

[
?, A, c

]
exists.

Γ ` fname in Aname safe.

8.8.1 Ancestors

However, establishing that a feature is immutating also involves the ancestors of the
feature, similarly to privateness. We use the judgment

θ ∈ {regular, deferred}
f in iinh* of atype context ctype θ immutable.

(8.56)

153

to assert that the ancestors of feature f due to inheritance clauses i of a in context of
c are immutating. This judgment is derived using these two rules:

Γ ` cls
[

?, n, c
]

exists.
Γ ` Ai(f) in C

cOparam
type

[
n, p

](type
[
a, g

]
) context t θ′ immutable.

Γ ` f in l of type
[
n, p

]
context t θ immutable.

θ′ =

{
θ ⇐⇒ rede�ne

[
f
]
/∈ i ∧ unde�ne

[
f
]
/∈ i

deferred
Γ ` f in inh

[
type

[
a, g

]
, i
]
, l of type

[
n, p

]
context t θ immutable.

Γ `? in ε of ? context ? ? immutable.

8.8.2 Unde�ned Features

A feature that is not de�ned in a class is immutating if its ancestors are. We express
this with the following rule:

Γ ` cls
[

?, n, c
]

exists.
f /∈ E(cOfeat)

Γ ` f in cOinh of type
[
n, p

]
context t θ immutable.

Γ ` f in type
[
n, p

]
context t θ immutable.

8.8.3 Attributes

What makes a feature immutating depends on the type of the feature. We start by
looking at attributes as the state of a class. Since attributes cannot change by them-
selves, a �rst intuitive approach is to ignore them.

However, listing 8.3 reveals a problem with this approach. Obviously the class in
this listing is immutable according to the speci�cation given so far: its attribute is set
during creation and not modi�ed afterwards. However, it is not what a client expects
from an immutable object, since it does seem to have a mutable state, even if it is
encapsulated. To satisfy this expectation we further specify:

Property 8. Attributes of an object of an immutable class may only refer to or contain
objects of an immutable class, or must be declared separate.

This ensures that everything that can be reached from an immutable class is im-
mutable itself or separate. This is important since we want to be able to access im-
mutable objects non-separate in all processors. If we would allow (non-separate) ref-
erences to mutable classes, we would introduce traitors. Whether the object refer-
enced by a separate attribute is separate depends on the processor that is executing
the code. Attributes of generic type need also be either of immutable or separate type.

This property is formally expressed with the following rule:

Γ ` cls
[

?, n, c
]

exists.
Γ ` feat

[
?, f, b

]
is feature f of n.

Γ ` f in cOinh of type
[
n, p

]
context t θ immutable.

Γ ` {n} .f is attribute.
Γ ` separate ∈ b ∨ C

cOparam
type

[
n, p

](H(bOtype)) l IMMUTABLE

Γ ` f in type
[
n, p

]
context t θ immutable.

154

class FAKE_IMMU_CLASS

create make

feature {NONE} make
do

create t
end

feature {NONE} t: CELL[ANY]

feature item: ANY
do

Result := t.item
end

feature set_item (a_item: ANY)
do

t.set_item (a_item)
end

end

Listing 8.3: Immutable class wrapping mutable object

An attribute is immutable if its ancestors are immutable and its type is immutable.

8.8.4 Routines

For routines, that is procedures and functions, the result type does not matter. How-
ever, to be considered immutating, routines have e�ects that need to be restricted:

Property 9. An immutating feature does not assign to attributes.

This property is not enough, since features can call other features. We therefore
conclude that

Property 10. An immutating feature does not make unquali�ed calls to mutating fea-
tures.

From property 5 we can gather that all quali�ed calls to an immutable object are
immutating; this includes calls with Current as a target according to the rules of
Ei�el. Note that calls are also part of the pre- and postcondition, not just the body of
a routine.

For normal routines, the rule is therefore:

Γ ` cls
[

?, n, c
]

exists.
Γ ` feat

[
?, f, b

]
is feature f of n.

Γ ` b local ε in type
[
n, p

]
context t θ immutable.

Γ ` f in cOinh of type
[
n, p

]
context t θ immutable.

Γ ` {n} .f is other.
Γ ` fname in type

[
n, p

]
context t θ immutable.

155

The rule requires that all the instructions and clauses of the feature are immutat-
ing, which we cover in section 8.9.

8.8.5 Once Features

While the above properties cover most features, they are not su�cient for the once
routines. These routines are special because their intrinsic value is, with exception of
the object once routine, not bound to the object but the class.

In general, these routines can be deemed mutating since they change state. In
the case of procedures, the only state is an indication of whether they have been run
before or not, while in the case of functions it also encompasses their result. For
these reasons, it seems that once routines should simply be banned from appearing
in immutable classes. However, this would be too restrictive and may cause problems
because the root class ANY already contains once routines. We therefore choose to
allow once routines, but restrict them in the same way as regular routines, with the
following justi�cation:

The scope of process once routines is the whole process, which, in D-Scoop, is the
current node: there are no system wide once routines in D-Scoop. As such, they are
not in the scope of the immutability property of the object. A similar reasoning can be
applied to thread-once routines: they are thread-local routines and variables and not
speci�c to an object. The thread scope is processor local, so such a once routine would
keep the state per processor. For object-once routines, the reasoning is di�erent: an
object-once routine is e�ectively just a lazily initialized attribute, so we consider it to
be a deferred part of the creation routine. However, if the immutable object is copied
by the D-Scoop runtime before this attribute has been initialized, it may be initialized
to di�erent values on di�erent nodes. It is a matter of debate whether the runtime
should prevent that in some way.

In all of these cases, a once routine may not change the state of the object through
assignments or calls. Since the value of once functions is determined by the spe-
cial, locally bound Result symbol, there does not need to be any exception for once
functions in the rules for features. However, object-once functions are treated like
attributes:

Property 11. The type of object-once functions needs to be immutable.

Note that for the usage in Scoop, once-features of the same object may not give
the same result when called from di�erent processors. In D-Scoop with transparent
copying, this is also the case for object-once functions if they have not been called
before the object was copied.

The rules for once features are therefore:

Γ ` cls
[

?, n, c
]

exists.
Γ ` feat

[
?, f, rtype, b

]
is feature f of n.

Γ ` b local ε in type
[
n, p

]
context t θ immutable.

Γ ` f in cOinh of type
[
n, p

]
context t θ immutable.

Γ ` {n} .f is once.
r = H(bOtype)

once
[

oscope
[
"OBJECT"

]
...
]
/∈ b ∨ r = ε ∨ C

cOparam
type

[
n, p

](r) l IMMUTABLE

Γ ` f in type
[
n, p

]
context t θ immutable.

156

8.8.6 Invariants

Although invariants are not features, they can be seen as part of all the features since
they are checked before and after every quali�ed call. This leads us to the next prop-
erty:

Property 12. Invariants of an immutable class may only call immutable features. We
state that the invariants of a class a in context of c are immutating by writing:

all invariants of atype in context ctype immutating. (8.57)

Although an invariant, or any other type of assertion, that mutates the state of a
class is certainly bad practice5, it is technically allowed by Ei�el. The judgment on the
immutating aspect of invariants is a simpli�ed form of the judgments for features. It
simply states that the invariants of a class in a speci�c context are immutating. There
is no need to identify each invariant and there is also no local context. To derive a rule,
we de�ne an an additional judgment for stating that the invariants of all ancestors are
immutating:

invariants iinh* of atype in context ctype immutating. (8.58)

The rules are similar to the ones for features:

Γ ` cls
[

?, n, c
]

exists.
Γ ` cOinv local ε in type

[
n, p

]
context c θ immutable.

Γ ` all invariants of cOinh in context c immutating.
Γ ` all invariants of type

[
n, p

]
in context c immutating.

Γ ` cls
[

?, n, b
]

exists.
Γ ` all invariants of CbOparam

type
[
n, p

](t) in context c immutating.

Γ ` invariants i of type
[
n, p

]
in context c immutating.

Γ ` invariants inh
[
t...
]
, i of type

[
n, p

]
in context c immutating.

Γ ` invariants ε of ? in context ? immutating.

8.9 Instructions and Expressions

Checking for immutability of the contents of features needs to include an additional
context: local variables. The following judgment is used to make a statement about
instructions, feature clauses and expressions. It incorporates a list of names that are
local and can be safely queried and assigned to. Note that variable a can assume many
di�erent types of nodes and node lists.

θ ∈ {regular, deferred}
a local lname* in atype context ctype θ immutable.

(8.59)

The rules to ensure immutability of feature clauses, instructions and expressions,
are numerous but simple, so give them here without detailed comments.

5Assertions may be removed from optimized binaries, and mutating state in a query is a violation of
the command/query separation principle.

157

8.9.1 Feature clauses

Γ ` r local l in q context c θ immutable. io args, type, attribute, deferred
Γ ` i, r local l in q context c θ immutable.

Γ ` r local v + l in q context c θ immutable.
Γ ` local

[
v
]
, r local l in q context c θ immutable.

Γ ` r local n, l in c context θ immutable.
Γ ` var

[
n, t

]
, r local l in q context c θ immutable.

Γ ` e, r local l in q context c θ immutable. α ∈ { req, ens }
Γ ` α

[
e
]
, r local l in q context c θ immutable.

Γ ` b, r local l in q context c regular immutable.
Γ ` do

[
b
]
, r local l in q context c regular immutable.

Γ ` r local l in q context c deferred immutable.
Γ ` do

[
...
]
, r local l in q context c deferred immutable.

Γ ` b, r local l in q context c regular immutable.
once

[
?, b

]
, r local l in type

[
n, p

]
context c regular immutable.

Γ ` r local l in q context c deferred immutable.
Γ ` once

[
...
]
, r local l in q context c deferred immutable.

8.9.2 Conditionals and Loops

Γ ` b, r local l in q context c θ immutable.
α ∈ { cond, then, elseif, else, from, until, vari, inv, loopb }

Γ ` α
[
b
]
, r local l in q context c θ immutable.

Note that the rule above is also used for class invariants, in which case list l is
always empty.

8.9.3 Feature calls

A quali�ed feature call is always safe: even if the target is Current, the call is only
valid if the feature is exported. However, the arguments need to be immutable.

Γ ` t, a+ r local l in q context c θ immutable.
Γ ` qc

[
target

[
t
]

name
[
f
]
a
]
, r local l in q context c θ immutable.

An unquali�ed feature call is only immutable if the target feature is immutable.

Γ ` a+ r local l in q context c θ immutable.
Γ ` f in q context c regular immutable.

Γ ` uc
[

name
[
f
]
a
]
, r local l in q context c θ immutable.

158

8.9.4 Assignment

Assignment is only immutable if it is to a local variable or to the special Result vari-
able. Note that assignment to arguments and to scoped variables, such as the the ones
introduces with object tests, are invalid in Ei�el.

Γ ` e, r local l in q context c θ immutable. n ∈ l ∪ {Result}
Γ ` assign

[
n, e

]
, r local l in q context c θ immutable.

8.9.5 Creation instruction

Creation is immutable if the target is a local variable.

Γ ` a+ r local l in q context c θ immutable. n ∈ l ∪ {Result}
Γ ` createi

[
n, f, a

]
, r local l in q context c θ immutable.

8.9.6 Expressions

The create expression does not assign to a variable, it is therefore immutable if the
arguments are immutable.

Γ ` a+ r local l in q context c θ immutable.
Γ ` createe

[
n, f, a

]
, r local l in q context c θ immutable.

Constants are immutable.

Γ ` r local l in q context c θ immutable. ko char, str, int, real, bool
Γ ` kchar, r local l in q context c θ immutable.

8.10 Adherence of Programs to Immutability

What remains to be addressed is how we prove that a program adheres to immutability
rules. This is expressed by the property that

Property 13. A valid program consists of mutable and immutable classes only. We state
that a program p is valid by writing

p ok. (8.60)

The inference rules to establish validity are straight forward:

p exists. ` p ok.
pprog

Γ ` c ok. Γ ` p ok.
Γ ` cclspprog ok.

Γ ` c mutable.
Γ ` ccls ok.

Γ ` c immutable.
Γ ` ccls ok.

159

RCELL[G]

CELL[G] ICELL[G <- IMMUTABLE]

IMMUTABLE

Figure 8.5: Cells example: inheritance

class RCELL[G]

create
make

feature {NONE}
make (a_item: G)

do
set_item (a_item)

end

set_item (a_item: G)
do

item := a_item
end

feature
item: G

end

class CELL[G]

create
make

inherit
RCELL[G]

export {ANY}
set_item

end

end

class ICELL[G <- IMMUTABLE]

create
make

inherit
RCELL[G]
IMMUTABLE

end

Listing 8.4: Cells example: classes

8.11 Example

As an example for using the proof system we present an immutable cell class.
While the usefulness of an immutable cell is debatable, it explains two concepts. First,
it shows how to conform to a generic class and preserve immutability and second, it
shows how to provide both immutable and mutable versions of a class.

The conformance problem is solved by constraining the generic parameter to IM-
MUTABLE, thus making the attribute immutable which allows it to conform to the
restrictions of immutability.

As for the second, this is something that is often encountered: A version of the
class that only provides features for immutable access and a version that also allows
mutation. A common scheme is to make the immutable version of the class the parent
of the mutable one: since mutability adds functionality, this is reasonable. However,
immutability as a property should be inheritable as established in section 8.6, so this
is not an option. The solution is to use a common parent, the readable version, to both
the mutable and the immutable version of the class, as shown in �g. 8.5. This allows

160

the usage of the common class whenever only readable access is needed, and of the
two other other classes if their speci�c characteristic is needed.

8.12 Related Work

Immutability is an inherent property of functional languages due to their stateless-
ness, and is replicated in many programming languages as an unchecked property of
some classes, for example String in Java. The approach most similar to ours is [68],
which, although is does not change the syntax of Java, does require a great amount of
annotation, but also allows for immutable references. An approach using ownership
types is [24]. While this gives some more �exibility, especially the fact that it can op-
erate with classes that are not checked, it does come at the cost of a great amount of
annotation. Another approach that relaxes the requirement for immutable classes to
be completely initialized after the constructor has run is [36]. This is based on static
veri�cation techniques and requires annotation such as modi�es clauses. Approaches
that are speci�cally treating reference immutability, as in [64], which ensure that ref-
erences cannot be used to change an object, are not su�cient with our intention of
using it for Scoop and D-Scoop.

8.13 Future Work

The current immutability checker is limited to be used with regular Scoop since the
D-Scoop prototype does not yet support export of objects. In future work, we plan to
integrate the support for immutable classes into D-Scoop. Furthermore, an immutable
variant of the SPECIAL class that backs arrays in Ei�el is needed to get true immutable
strings. Implementing this and other basic immutable classes are another topic to
work on in the future.

161

Chapter 9

Conclusion

This dissertation discusses a system for distributed and parallel computing based on
the Scoop concurrency model. We introduce the area and identify the need for a
solution that can be used to manage concurrency both on the level of intra-node pro-
cessors and of inter-node communication. Current solutions lack either the universal
applicability or do not o�er su�cient safety and reliability features. To achieve our
goal, we choose the Scoop model for its advanced mechanisms to avoid high level
data races.

As a justi�cation for the need of �nding a unifying model as well as the compara-
ble e�orts in the �eld, chapter 2 gives an overview over the most prominent models
suitable to �ll the gap. In addition, this chapter de�nes a terminology for describing
object-oriented concurrent and distributed models and languages. Such a de�nition
is needed because of the many terms used in this area of research, some of them, such
as active object, for multiple di�erent concepts.

The model of choice, Scoop, is presented in some more detail in a dedicated chap-
ter, chapter 3. While this introduction is not supposed to be a complete tutorial, it
o�ers readers a complete overview of the mechanisms of Scoop and de�nes the im-
portant terms controlled and locked as well as the approach Scoop takes on exclusive
access.

In order to support the claim that a distributed application of the Scoop model
can �ll the need for many di�erent types of distributed applications, the examples
in chapter 4 cover the three widely used communication architectures: peer-to-peer,
client-server and manager-worker. They further demonstrate one of the key inno-
vations of D-Scoop: compensation. A less obvious, but no less important feature of
D-Scoop is shown by omission: that D-Scoop does not require any additional annota-
tion compared to regular Scoop. This means that the transition from a regular Scoop
program to a D-Scoop program can be done without signi�cant modi�cations.

The dissertation gives an informal overview of the D-Scoop system and frame-
work in chapter 5. The system works on top of a simple message passing protocol,
and its most important aspect of the protocol is shown in detail: the prelock phase
that ensures a proper ordering of requests. The seamless integration of the prelock
phase into the Scoop model based on Queue-of-Queues using proxy processors en-
sures that there is no performance regression for purely local operations as well as
no preferential treatment of local over remote clients. Furthermore, the chapter com-
pares the performance of D-Scoop with the widely used network object model Java
RMI and �nds reassuring results: as soon as there is some synchronization needed,

162

the D-Scoop system can outperform RMI. Even in cases that are light on synchroniza-
tions, the D-Scoop system o�ers a well comparable performance.

To close the gap between the protocol and the Scoop model, this work includes
a formal speci�cation of the protocol and the D-Scoop semantics in chapter 6. The
author reduces the complexity of the semantics drastically by choosing an abstraction
that narrows the focus on the important aspects: the handling of locks, exceptions and
compensation, as well as the interactions between processors. From the semantics,
an implementor can deduce which information has to be stored at which part of a
processor, while not prescribing a model for heap or stack memory.

The presented material supports our �rst hypothesis, which states that the Scoop
model can be used as a reliable base for distributed programming. The remaining two
core chapters are dedicated to the integration of shared memory in a model that is
based on segregation of regions. Since shared memory is available on most modern
computer architectures, not being able to take advantage of it is a major detractor
to the usage of safe concurrency models such as Scoop. These chapters support the
second hypothesis of the thesis.

The �rst approach, which is presented in chapter 7, is by providing an API that is
designed to maintain all guarantees established by the Scoop model while at the same
time internally circumvents the rules imposed by the model so that it can use shared
memory whenever possible. The API focuses on array structures, but is generalizable
to other divisible data structures such as hash tables or trees. Furthermore, the API can
transparently fall back to a copying approach when shared memory is not available,
which allows the programmer to use it regardless of whether the parallelization is
realized with local or remote processors.

The second approach exploits the fact that immutable data structures are inher-
ently resilient against data races. Chapter 8 o�ers a de�nition of immutable classes
together with a formal model for proving these correct. By exploiting the information
hiding techniques o�ered by Ei�el, the language used by the principal implementa-
tions of Scoop and D-Scoop, the proofs can be mechanically generated without an-
notations going further than marking the classes that should be immutable. While
the main purpose of immutable classes in this dissertation is to o�er a way to limit
memory use and copying on shared memory machines, it also has some advantages
in a distributed context. Most importantly, immutable classes are also a useful tool to
structure programs since they o�er clients a very useful guarantee. The lack of an-
notations is the main advantage of this approach to other approaches for immutable
classes.

By showing two approaches to integrate shared memory in an otherwise no-share
model, we show that D-Scoop can indeed �ll the need of a model that does not forsake
shared memory in order to o�er safety from data races.

There are still some specialized areas where a general model has a hard time to
compete.

GPGPU General Purpose usage of Graphic Processing Units has become an im-
portant area for massive parallel computation. Due to their inherently di�erent ar-
chitecture, they cannot be treated the same as normal processors. Ongoing work by
Kolesnichenko [33] is promising to �ll this particular gap.

Parallelism. While our work takes advantage of shared memory, other frameworks
geared towards e�cient parallel computing provide APIs optimized for parallel algo-

163

rithms. Slicing is only providing a fundamental support for distributing this data, so
there is a need for more advanced APIs building on top of it.

Distributed Parallel Computing. Another area is distributed parallelism. Clus-
ters, nowadays often equipped with GPUs, are used for scienti�c and commercial
computing for large problems. API’s for that integrate well with the D-Scoop ap-
proach are an interesting pursuit, and similar to the work here, should unify GPU,
local and distributed parallelism.

While it might very well be possible to integrate all these into the Scoop model, at
some point it might not be the best way to go forward. A uni�ed model has many
advantages, but specialized models can be better at their specialty as they are not
restricted by others. While concurrency and distribution have the advantage of being,
to a certain degree, tolerant in respect of e�ciency, high-performance computing is
not. It is an area where every small increase in e�ciency can save a lot of money,
so sacri�cing even a little bit of e�ciency in order to get a nicer and more integrated
model is di�cult to argue for.

In general, developer time is worth more than execution time, so a safe concur-
rency and distribution model with reasonable support for parallelism, as shown in
this thesis, is often the right way to go.

164

Bibliography

[1] Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

[2] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming lan-
guages for distributed computing systems. ACM Comput. Surv., 21(3):261–322,
September 1989.

[3] John K Bennett. The design and implementation of distributed Smalltalk, vol-
ume 22. ACM, 1987.

[4] Bertrand Meyer. SCOOP tutorial. http://se.ethz.ch/~meyer/down/scoop/
scoop_tutorial.pdf, 2013.

[5] Andrew Birrell et al. Distributed garbage collection for network objects. Tech-
nical report, Systems Research Center, 1993.

[6] Andrew Birrell, Greg Nelson, Susan S. Owicki, and Edward Wobber. Network
objects. In Proc. SOSP 1993, pages 217–230. ACM, 1993.

[7] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure
in the Emerald system, volume 21. ACM, 1986.

[8] Guy E. Blelloch. NESL: A nested data-parallel language. Technical report,
Carnegie Mellon University, 1993.

[9] Michael Butler, Tony Hoare, and Carla Ferreira. A trace semantics for long-
running transactions. In Communicating Sequential Processes. The First 25 Years,
pages 133–150. Springer, 2005.

[10] Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. Asynchronous sequen-
tial processes. Information and Computation, 207(4):459–495, 2009.

[11] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data parallel haskell: a status report. In Proceedings of
the 2007 workshop on Declarative aspects of multicore programming, pages 10–18.
ACM, 2007.

[12] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the
Chapel language. International Journal of High Performance Computing Applica-
tions, 21(3):291–312, 2007.

[13] Claudio Corrodi, Alexander Heußner, and Christopher M. Poskitt. A graph-
based semantics workbench for concurrent asynchronous programs. In Proc.
FASE 2016, volume 9633 of LNCS, pages 31–48. Springer, 2016.

165

http://se.ethz.ch/~meyer/down/scoop/scoop_tutorial.pdf
http://se.ethz.ch/~meyer/down/scoop/scoop_tutorial.pdf

[14] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with readers
and writers. Communications of the ACM, 14(10):667–668, October 1971.

[15] M. Crispin. RFC2060 - Internet Message Access Protocol. URL: https://tools.
ietf.org/html/rfc2060, dec 1996. accessed: 2016-10-13.

[16] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for
shared-memory programming. IEEE Computer Science & Engineering, 5(1):46–55,
1998.

[17] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and Wolf-
gang De Meuter. Ambient-oriented programming in AmbientTalk. In Proc.
ECOOP 2006, volume 4067 of LNCS, pages 230–254. Springer, 2006.

[18] Distributed SCOOP website. http://cme.ethz.ch/scoop/dscoop/.

[19] Norihisa Doi, Yasushi Kodama, and Ken Hirose. An implementation of an op-
erating system kernel using concurrent object oriented language abcl/c+. In
European Conference on Object-Oriented Programming, pages 250–266. Springer,
1988.

[20] Ei�el Documentation: Concurrent Ei�el with SCOOP. https://www.eiffel.
org/doc/solutions/Concurrent%20programming%20with%20SCOOP. Acc.: Apr.
2016.

[21] Ei�el Software. http://www.eiffel.com/, 2016.

[22] Grand Central Dispatch (GCD) Reference. https://developer.apple.com/
library/mac/documentation/Performance/Reference/GCD_libdispatch_
Ref/index.html. Acc.: Apr. 2016.

[23] Go programming language. http://golang.org/, 2016.

[24] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for a java-
like language. In Proceedings of the 16th European Symposium on Programming,
ESOP’07, pages 347–362, Berlin, Heidelberg, 2007. Springer-Verlag.

[25] Michi Henning. The rise and fall of corba. Queue, 4(5):28–34, 2006.

[26] Ludovic Henrio, Fabrice Huet, and Zsolt István. Multi-threaded active objects.
In International Conference on Coordination Languages andModels, pages 90–104.
Springer, 2013.

[27] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In Proc. ISCA 1993, pages 289–300. ACM, 1993.

[28] Mark Hills, Traian Florin Şerbănuţă, and Grigore Roşu. A rewrite framework for
language de�nitions and for generation of e�cient interpreters. In Proceedings of
the 6th International Workshop on Rewriting Logic and its Applications (WRLA’06),
volume 176 of Electronic Notes in Theoretical Computer Science, pages 215–231.
Elsevier Science, July 2007. also appeared as Technical Report UIUCDCS-R-2005-
2667, December 2005.

[29] C. A. R Hoare. Monitors: An operating system structuring concept. Communi-
cations of the ACM, 17:549–557, 1974.

166

https://tools.ietf.org/html/rfc2060
https://tools.ietf.org/html/rfc2060
http://cme.ethz.ch/scoop/dscoop/
https://www.eiffel.org/doc/solutions/Concurrent%20programming%20with%20SCOOP
https://www.eiffel.org/doc/solutions/Concurrent%20programming%20with%20SCOOP
http://www.eiffel.com/
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
http://golang.org/

[30] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM (CACM), 21(8):666–677, 1978.

[31] E. B. Johnsen, O. Owe, and I. Chieh Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1-2):23–66,
2006.

[32] Einar Broch Johnsen, Jasmin Christian Blanchette, Marcel Kyas, and Olaf Owe.
Intra-object versus inter-object: Concurrency and reasoning in Creol. In Proc.
TTSS 2008, volume 243 of ENTCS, pages 89–103, 2009.

[33] Alexey Kolesnichenko, Christopher M Poskitt, and Sebastian Nanz. Safegpu:
Contract-and library-based gpgpu for object-oriented languages. Computer Lan-
guages, Systems & Structures, 2016.

[34] R. Greg Lavender and Douglas C. Schmidt. Active object: An object behavioral
pattern for concurrent programming. In John M. Vlissides, James O. Coplien, and
Norman L. Kerth, editors, Pattern Languages of Program Design 2, pages 483–499.
Addison-Wesley, 1996.

[35] Douglas Lea. Concurrent programming in Java: design principles and patterns.
Addison-Wesley Professional, 2000.

[36] K. Rustan Leino, Peter Müller, and Angela Wallenburg. Flexible immutability
with frozen objects. In Proceedings of the 2Nd International Conference on Ver-
i�ed Software: Theories, Tools, Experiments, VSTTE ’08, pages 192–208, Berlin,
Heidelberg, 2008. Springer-Verlag.

[37] Barbara Liskov. Distributed programming in argus. Communications of the ACM,
31(3):300–312, 1988.

[38] Barbara Liskov. Distributed programming in Argus. Communications of the ACM
(CACM), 31(3):300–312, 1988.

[39] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In
ACM Sigplan Notices, volume 9, pages 50–59. ACM, 1974.

[40] Dominic Meier. Parallelism visualizer for scoop. Master’s thesis, ETH-Zürich,
2014.

[41] Bertrand Meyer. Iso/ecma ei�el standard (standard ecma-367: Ei�el: Analysis,
design and programming language), june 2006.

[42] Bertrand Meyer. Systematic concurrent object-oriented programming. COM-
MUNICATIONS OF THE ACM, 36(9):56–80, 1993.

[43] Bertrand Meyer, Alexander Kogtenkov, and Emmanuel Stapf. Avoid a void: The
eradication of null dereferencing. In Re�ections on the Work of CAR Hoare, pages
189–211. Springer, 2010.

[44] Mark S Miller, E Dean Tribble, and Jonathan Shapiro. Concurrency among
strangers. In International Symposium on Trustworthy Global Computing, pages
195–229. Springer, 2005.

167

[45] B. Morandi, S. Nanz, and B. Meyer. Who is accountable for asynchronous ex-
ceptions? In Software Engineering Conference (APSEC), 2012 19th Asia-Paci�c,
volume 1, pages 462–471, Dec 2012.

[46] Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. Safe and e�cient data
sharing for message-passing concurrency. In Proc. COORDINATION 2014, vol-
ume 8459 of LNCS, pages 99–114. Springer, 2014.

[47] Benjamin Morandi, Mischael Schill, Sebastian Nanz, and Bertrand Meyer. Pro-
totyping a concurrency model. In Proc. ACSD 2013, pages 170–179. IEEE, 2013.

[48] Sebastian Nanz, Faraz Torshizi, Michela Pedroni, and Bertrand Meyer. Design
of an empirical study for comparing the usability of concurrent programming
languages. In Proc. ESEM 2011, pages 325–334. IEEE Computer Society, 2011.

[49] Piotr Nienaltowski. Practical framework for contract-based concurrent object-
oriented programming. PhD thesis, ETH Zürich, 2007.

[50] Piotr Nienaltowski, Volkan Arslan, and Bertrand Meyer. Scoop: Concurrent pro-
gramming made easy.

[51] Object management Group, Inc. Fault Tolerant CORBA, version 1.0 edition, May
2010.

[52] Object management Group, Inc. Common Object Request Broker Architecture
(CORBA) Speci�cation, version 3.3 edition, November 2012.

[53] Object management Group, Inc. Asynchronous Method Invocation for CORBA
Component Model, version 1.1 edition, August 2015.

[54] Semih Okur and Danny Dig. How do developers use parallel libraries? In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE’12, pages 54:1–54:11. ACM, 2012.

[55] Perl programming language. http://www.perl.org/, 2016.

[56] Gordon D Plotkin. A structural approach to operational semantics. 1981.

[57] James Reinders. Intel threading building blocks – out�tting C++ for multi-core
processor parallelism. O’Reilly, 2007.

[58] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[59] Jan Schäfer and Arnd Poetzsch-He�ter. JCoBox: Generalizing active objects to
concurrent components. In Proc. ECOOP 2010, volume 6183 of LNCS, pages 275–
299. Springer, 2010.

[60] Mischael Schill, Sebastian Nanz, and Bertrand Meyer. Handling parallelism in
a concurrency model. In JoãoM. Lourenço and Eitan Farchi, editors, Multicore
Software Engineering, Performance, and Tools, volume 8063 of Lecture Notes in
Computer Science, pages 37–48. Springer Berlin Heidelberg, 2013.

168

http://www.perl.org/

[61] Mischael Schill, Christopher M Poskitt, and Bertrand Meyer. An interference-
free programming model for network objects. In International Conference on
Coordination Languages and Models, pages 227–244. Springer, 2016.

[62] Roman Schmocker and Alexey Kolesnichenko. Concurrency patterns in scoop,
2014.

[63] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Com-
puting, 10(2):99–116, 1997.

[64] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutabil-
ity to java. In Proceedings of the 20th Annual ACM SIGPLANConference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages
211–230, New York, NY, USA, 2005. ACM.

[65] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, and
Wolfgang De Meuter. Ambienttalk: object-oriented event-driven programming
in mobile ad hoc networks. InChilean Society of Computer Science, 2007. SCCC’07.
XXVI International Conference of the, pages 3–12. IEEE, 2007.

[66] Scott West, Sebastian Nanz, and Bertrand Meyer. E�cient and reasonable object-
oriented concurrency. In Proc. ESEC/FSE 2015, pages 734–744. ACM, 2015.

[67] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented
concurrent programming ABCL/1, volume 21. ACM, 1986.

[68] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kie, un, and
Michael D. Ernst. Object and reference immutability using java generics. In
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC-FSE ’07, pages 75–84, New York, NY, USA, 2007. ACM.

169

List of Tables

2.1 Overview of capabilities of selected concurrent and distributed object
oriented programming models . 18

3.1 Type conformance for assignment . 27
3.2 Type conformance for reference argument passing to separate calls . 27
3.3 Type combinations of separateness 28

5.1 Code complexity . 73

7.1 Mean running times (in seconds) . 124

8.1 Simpli�ed Ei�el Abstract Syntax Tree 137

170

List of Figures

2.1 Processor states in ABCL/1 . 19

3.1 Three processors (p1, p2, p3) logging requests on another (p0) 34

4.1 Example state of the Distributed Banking system 37
4.2 Example state of the chat system . 44
4.3 Example state of the search engine . 49

5.1 Prelock phase: a processor on node C is entering a separate block
involving separate objects on remote nodes N1, . . . Nn 60

5.2 All three phases: a processor on C1 calls transfer on A1 and A2; a
processor on C2 concurrently calls withdraw on A1 62

5.3 Example call stack . 65
5.4 Chat server: Exchanged messages – Entering 67
5.5 Chat server: Exchanged messages – Chatting 69
5.6 Chat server: Exchanged messages – Disconnect 70
5.7 Distributed Banking: Exchanged messages 71
5.8 Benchmark results: each run involved several thousand iterations . . 72

6.1 Syntax for cells and lists . 79
6.2 Rules for simplifying cells . 82
6.3 Rules for simplifying lists . 84
6.4 De�nitions for cells and lists . 85
6.5 Syntax of D-Scoop con�guration . 86
6.6 Initial D-Scoop con�guration . 88
6.7 D-Scoop messaging rules . 89
6.8 Inference rules for appearance and spawning of processors 89
6.9 Inference rules for locking . 91
6.10 Inference rules for unlocking . 93
6.11 Inference rules for lock passing . 94
6.12 Inference rules for wait conditions . 95
6.13 Inference rules for routine abstraction 97
6.14 Call categories . 97
6.15 Inference rules for calls . 99
6.16 Inference rules for enqueuing of calls 100
6.17 Inference rule for execution . 101
6.18 Inference rules for exceptions . 102
6.19 Inference rules for disappearance. 104
6.20 Inference rules for compensation . 107

171

7.1 Quicksort: scalability . 125
7.2 Matrix multiplication: scalability . 125

8.1 Ei�el syntax: classes and features . 138
8.2 Ei�el syntax: instructions and expressions 139
8.3 Resolving features example: classes 148
8.4 Resolving features examples: proof trees 149
8.5 Cells example: inheritance . 160

172

List of Listings

2.1 Bank account example . 10
3.1 Example: using agents for asynchronous callbacks 35
5.1 Bank account transfer feature in the client: sequential 53
5.2 Bank account transfer feature in the client: multi-threaded 53
5.3 Bank account transfer feature in the client: active objects 54
5.4 Bank account transfer feature in the client: Scoop 54
5.5 Connection to a D-Scoop system . 56
5.6 Starting a server in D-Scoop . 57
5.7 Client feature to withdraw money from a account 62
5.8 Adding compensation to the transfer example 65
5.10 Example: asynchronous self-call in a producer 76
7.1 SORTER: In-place Quicksort in Scoop 127
7.2 API for slices . 128
7.3 Slicing . 129
7.4 Merging . 129
7.5 API for slice views . 130
7.6 Viewing . 131
7.7 Quicksort algorithm using slices . 132
7.8 Matrix multiplication worker using slices and views 133
8.1 Adapting generics in immutable types 146
8.2 Mutable class inheriting from immutable class 151
8.3 Immutable class wrapping mutable object 155
8.4 Cells example: classes . 160

173

	Introduction
	Background
	Unification and its Challenges
	Safe usage of Shared Memory
	High-Level Data Races
	Failure

	Hypotheses and Contributions
	Contributions

	Plan of the Thesis
	State of the Art
	A distributed, object-oriented programming model
	Taking Advantage of Shared Memory

	Distributed Object-Oriented Programming Models
	Terminology
	Node
	Network Objects
	Processor
	Region
	Features, Calls and Application
	Client / Supplier
	Communication

	Concurrency
	Asynchronous Calls
	Synchronous Calls
	Future Calls
	Asynchronous Replies
	Local/Remote Wait Condition

	Principal Problems in Concurrency and Distribution
	High-Level Data Races
	Failure

	Concurrent Programming Paradigms
	Threads – Classic Shared Memory
	Processes – Classic Message Passing
	Active Objects

	Comparison of Network Object Languages
	Evaluation
	Argus
	Emerald
	Modula 3
	CORBA
	Java RMI

	Comparison of Active Object Languages
	Evaluation
	Failure
	Overview
	Actor Based Concurrent Language
	Asynchronous Sequential Processes
	MultiASP
	Creol
	(J)CoBox
	E
	AmbientTalk
	Scoop

	Conclusion

	Scoop
	Regions and Processors
	References
	Expanded Classes
	Immutable Classes
	Processor Creation
	Passive Regions

	Control and non-interference
	Locking
	Control
	Lock Passing

	Blocking and Waiting
	Adaptive Synchronization
	Wait Conditions
	Attributes as Futures

	Agents
	Scoop Runtime

	Examples
	Distributed Banking
	Architecture
	Initialization
	Classes

	Chat Server
	Architecture
	Initialization
	Classes

	Computing Cluster
	Architecture
	Initialization
	Classes

	Distributed Scoop
	From Network Objects to Distributed Scoop
	The Distributed Scoop Framework
	Components
	Mechanisms
	D-Scoop Protocol.

	Locking Remote Objects
	Lock Passing

	Compensating for Failure
	Wait Conditions
	Passive Regions
	Examples
	Chat System: Message Exchange
	Distributed Banking: Message Exchange

	Semantics
	Evaluation
	Future Work
	Creation of Remote Agents
	Export
	Smarter Wait Conditions
	Explicit Synchronization
	Asynchronous Replies
	Exceptions and Compensations
	Security

	Conclusion

	D-Scoop Semantics
	Introduction
	Semantics and Implementation
	Definitions and Support
	Cells
	Sets and lists
	Definitions

	Configuration
	Initial Configuration

	Message Passing
	Appearance
	Lock Handling
	Acquiring Locks
	Releasing Locks
	Lock Passing
	Wait Conditions

	Execution
	Feature abstraction
	Making calls
	Enqueuing calls
	Feature application

	Exceptions
	Resilience
	Disappearance
	Compensation

	Example
	Conclusion and Future Work

	Handling Parallelism in a Concurrency Model
	Introduction
	Performance issues of race-free models
	Array slicing
	Slices
	Views

	Performance evaluation
	Quicksort
	Matrix multiplication

	Related work
	Conclusion

	Immutable Classes
	Motivation
	Abstract Syntax Tree
	Nodes and Lists

	General Statements
	Global Context
	Existence
	Defined features
	Features of a Class
	Properties of features

	Conformance
	Resolving Features
	Adaptation
	Resolving Features
	Example

	Immutability as a Property of Classes
	Mutable Classes

	Mutating Features
	Safe Features
	Private Features

	Immutating Features
	Ancestors
	Undefined Features
	Attributes
	Routines
	Once Features
	Invariants

	Instructions and Expressions
	Feature clauses
	Conditionals and Loops
	Feature calls
	Assignment
	Creation instruction
	Expressions

	Adherence of Programs to Immutability
	Example
	Related Work
	Future Work

	Conclusion

