
Visual Programming Language for Thymio II Robot

Jiwon Shin
∗

Dept. of Computer Science
ETH Zürich, Switzerland

jiwon.shin@inf.ethz.ch

Roland Siegwart
Autonomous Systems Lab
ETH Zürich, Switzerland
rsiegwart@ethz.ch

Stéphane Magnenat
Autonomous Systems Lab
ETH Zürich, Switzerland

stephane@magnenat.net

ABSTRACT
This paper introduces a visual programming language (vpl)
for Thymio II, an educational robot. Our vpl is intended
for children in primary school and aims at making robotics
programming approachable for young children by creating
a close correspondence between the icons of the program-
ming language and the design of the robot. Its two modes
of operation — basic and advanced — allow children to
learn programming at a level suitable for their current skill.
Moreover, our vpl provides a live generation of textual code
that eases the transition to textual programming for more
advanced children. This paper describes the goals and the
guiding principles behind the design of our vpl and demon-
strates how an iterative development process with evaluations
with children resulted in an improved vpl.

Categories and Subject Descriptors
D.1.7 [Programming Techniques]: Visual Programming;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces - User-centered design

General Terms
Design, Languages, Human Factors, Experimentation

Keywords
Graphical Programming, Robotics, Early Childhood, Educa-
tion

1. INTRODUCTION
Programming through robotics has shown its promise in

early-child education in recent years [2, 5]. Thymio II is such
a robot – designed specifically for children – that has shown
its effectiveness in teaching technology to children [7]. This
robot can be programmed through the open-source Aseba
environment [6]. The latter provides a textual language,
which is accessible for teenagers, but too complex for children.

Visual programming has widely been introduced as a
higher-level addition to programming languages to lower

∗The work was done while the author was at Autonomous
Systems Lab.

IDC 2014
June 17-20 2014
Aarhus, Denmark
www.idc2014.org
All rights retained by the author(s).

the entry barrier [4]. Most of these efforts, however, belong
to one of two categories: programs that reside entirely in
the virtual world [4], or programs that have a physical coun-
terpart but with a relatively abstract connection between
hardware and software [1]. Some efforts were made in com-
bining visual and tangible programming with robotics [3], but
tighter integration of virtual world presentation and physical
world counterpart is still a research question.

We propose a new visual programming language (vpl) for
the Thymio II robot, intended for children in primary school.
Built on top of Aseba, it renders robotics programming ap-
proachable to young children through its close correspondence
between its graphical programming elements and the design
of the robot (Fig. 1). The vpl has two modes of operation,
basic and advanced, to allow children to learn programming
at a level appropriate to their development. Visual programs
are converted into text programs in real time, easing the
transition from visual programming to textual programming
for more advanced children.

This paper and demonstration report the initial design, two
rounds of design updates resulting from usage observations by
children at public workshops, and provides guiding principles
for designing such programming environments.

2. DESIGN PRINCIPLES
While designing our vpl for Thymio II, we took inspiration

from Resnick and Silverman’s guiding design principles [8].
In particular, we considered the following principles:

Lower floor and wide walls: Starting programming
with the vpl should be easy for children of various ages. It
should hence foster acquisition of new concepts and grow in
complexity without compromising its low entry barrier.

Simplicity: The vpl should be as simple as possible
without compromising its usability or functionality.

Tinkerability: The vpl should support incremental de-
velopment of programs and enable children to experiment
with new concepts and features.

Support for self- and classroom-learning: The vpl
should enable self-learning and support classroom activities
through online documentation with minimal reading.

Iterative development: No design is perfect the first
time. Every new iteration of the vpl design should be
evaluated by its user, i.e., children, and lessons learned from
the evaluation should be incorporated into the new design.

Among these, iterative development played a central role
in ensuring that our vpl adheres to these design principles.
We present three iterations of vpl and demonstrate how the
guiding principles and evaluation led to the latest design.



(a) Thymio II (b) An event block

Figure 1: Thymio II and an event block

3. THYMIO II ROBOT
Thymio II [7] is a small differential-drive mobile robot

(Fig. 1(a)). It has five infrared (ir) sensors on the front and
two on the back to detect obstacles, and two on the bottom
to detect ground. There are five capacitive buttons on the
top, a three-axis accelerometer, a microphone, an ir sensor
for a remote control and a thermometer. The robot also has
rgb leds on its top and bottom, a circle of eight leds on its
top, a mono-colored led next to each sensor, and a sound
synthesizer. Thymio II costs 99 CHF (about 80 Euros), and
its hardware schematics and software are open source (see
http://thymio.org).

4. INITIAL DESIGN

4.1 Design
Our vpl is built around one programming construct: event

handler. These are built by pairing an event block (triggered
by the robot’s sensors) and action blocks (setting the robot’s
actuators). In the first two design phases, a single event and
action are composed together into an event-action pair. In
the current design, multiple actions can be linked to an event.
Event and action blocks are designed to closely capture the
robot’s sensors and actuators. Fig. 1(b) presents an example.

The initial design of our vpl, as shown in Fig. 2(a), has
two different modes of operation: basic and advanced. In
both modes, textual programs are generated live alongside
of the visual programs. This staged programming enables
children with various skills and experience to program and
operate the robot at the level appropriate for them and aids
them to acquire advanced concepts smoothly.

4.1.1 Basic mode
The basic mode contains essential functionalities to operate

the robot. It provides five event blocks: buttons, horizontal
distance sensors, ground distance sensors, tap detection,
and clap detection. It provides four action blocks: motors,
top color, circular leds, music. Except for tap and clap
blocks, all the event blocks and action blocks are individually
configurable. Inspired by the traffic light, we use green to
indicate that a button is triggered or a sensor detects no
obstacle, red to mean stop or a sensor is blocked, and white
to mean ignore the state of the button or sensor.

4.1.2 Advanced mode
In advanced mode, we introduce the concept of variable

using an internal state of the robot. This enables the robot
to make a different action upon a given event depending on
its state. To set the state, we introduce a state action block,
which contains four buttons. Additionally, every event block
has four buttons to its right that correspond to four 1-bit
state variables. The robot can thus be in 16 different states.

4.1.3 Real-time textual program generation
Visual programs generated in the vpl are converted into

text programs in real time. As one adds a new event-action
pair to the visual program, the corresponding lines of source
code are generated and highlighted. In addition, the child can
click on any event-action pair to highlight the corresponding
source code. This also means that as the child manipulates a
block, the corresponding piece of code also changes live. For
instance, when a child activates or deactivates a button in a
buttons block, s/he can see how the activation or deactivation
gets expressed in textual programming.

4.2 Evaluation
We evaluated the initial design at two annual public events

hosted by our university in 2012. We hosted a total of eight
90–minute-long sessions, each with 23 to 25 children aged be-
tween 8 and 14 and one teaching assistant for 3 to 5 children.
The sessions began with an introduction to the robot and
the vpl environment, after which children played with the
system freely. The introduction to the robot consisted of an
explanation of the sensors and actuators and a demonstration
of preprogrammed behaviors. The introduction to the vpl
environment consisted of the explanation of event and action
blocks and the creation of some simple programs.

We observed the children and noted their questions and
confusions to identify strengths and weaknesses of our vpl.
In general, all event and action blocks were similarly popular,
but differences existed between younger and older children.
Younger children preferred to start programming with tap
or clap event blocks whereas older children often chose to
start programming with buttons or proximity sensors blocks.
Most younger children were content programming only in the
basic mode, but many older children found the basic mode
insufficient. In the end, only about half of the children were
introduced to the advanced mode.

Most children learned about the advanced mode because
they demonstrated sufficient understanding of the basic mode;
some children, however, learned of the advanced mode by
accident, i.e., clicking the advanced mode button unintention-
ally or noticing their neighbor was using the advanced mode.
We had made a design decision to disallow switching back
to the basic mode from the advanced mode; this, however,
showed to be problematic as not all children could grasp the
concept of state/variable. We also noticed that not having
any indicator on the robot itself of its current state made
difficult to develop its behavior in advanced mode.

A small percentage of children learned to program in the
textual language. In teaching them textual programming,
the live code generation of our vpl proved to be useful. Chil-
dren could easily learn the relationship between changes in
the visual program and the textual code because highlighting
an event-action pair results in highlighting its correspond-
ing textual code. Some children went beyond modifying
automatically-generated textual code; five children asked
about the timer functionality, a functionality that the tex-
tual programming offers but the initial vpl did not, and were
able to program these timers with some help from assistants.

5. INTERMEDIATE DESIGN

5.1 Design
Based on the initial evaluation, we made several modifica-

tions to our vpl as shown in Fig. 2(b).



(a) Initial, basic mode (b) Intermediate, adv. (c) Current, basic mode (with textual counterpart) and advanced mode

Figure 2: The three iterations of the design of our VPL

5.1.1 Basic mode
In basic mode, we changed the sound action block to add

more creative possibilities and removed the circular led
action block. We also changed the color scheme of buttons
in the event blocks to grey (ignore the sensor), white (detect
nothing near the sensor), and red (detect something near
the sensor). We choose this color scheme because it maps to
what is shown by the led next to each sensor on the robot.
Lastly, we introduced a timer with corresponding event and
action blocks. The timer action block starts a timer with a
timeout in the range of 0 to 4 seconds, defined by the user
by clicking somewhere in the clock face. The timer event
block fires when the timer has elapsed.

5.1.2 Advanced mode
In advanced mode, we displayed the current state of the

robot in the four corner leds of its led circle. The state
action can set each of these four bits to 1 or 0, or to leave it
as is. For the event, the state buttons act as filters: when a
button is gray, the bit is ignored; when it is orange, the bit
must be 1 for the event to occur; and when white, the bit
must be 0 for the event to occur.

5.2 Evaluation
We evaluated the intermediate design in several occasions

(workshops, interactions with children and teachers, etc.), but
in particular by observing 40 children, aged 10–15, at a 1.5-
hour workshop taking place at our university. The children
worked in groups of two or three with one assistant for every
5 to 7 children (twice as many as in the previous workshop).
We gave children a set of recommended tasks. Some groups
actively played with the robot and the vpl, programming
complex behaviors, while other groups struggled to program
even simple behaviors such as making the robot move forward.
The variability in the performance of the groups seemed to
stem from the motivation and interests of the children.

At this session and other events, we observed that the
children struggled with the compilation error caused by re-
dundant event-action pairs. Often, children did not realize
that their program contained identical pairs. This leads to
an error because when the robot has two instances of the
same action type associated with a given event block type
and parameters, it cannot know which action to execute.

Children were also confused that the robot would not stop
unless a motor action with null speed was programmed. The
horizontal and ground sensor event blocks were problematic
because they can be programmed to cause an event to occur
when something is detected or not detected. For the horizon-
tal sensors, an obstacle will cause the ir light to be reflected,

while for the ground sensor, at the end of a table, the ir light
is no longer reflected. The children simply believed that an
event will occur when “something happens” without realizing
that in one case the event occurs when light is reflected and
in the other when it is no longer reflected.

6. CURRENT DESIGN

6.1 Current design
The evaluation of the intermediate design resulted in the

current version of our vpl, as shown in Fig. 2(c).

6.1.1 Color coding scheme of sensors
Despite the tight coupling of previous color coding scheme

to the robot, many children found the color coding scheme
confusing, especially for the ground sensor. Indeed, for the
ground sensor to detect a white ground, the color on the
block had to be red, and to detect a black ground, the color
had to be white. The new version changes this code to black
when something is far, and to indicate something is close,
to white for the ground sensor and to red for the proximity
sensor. As this new scheme captures the physical reality
more closely, it would be easier to write programs such as
line following and to teach the physics of the sensor.

6.1.2 Multiple actions per event
To minimize the errors caused by duplicate event-action

pairs, we introduced event-action sets that allow multiple
action blocks (of different types) to be associated to a given
event, and forbid the same event with same parameters to
appear twice in the program. In advanced mode, we com-
bined the state buttons associated with events in a state
filter block, which looks like another block type with a differ-
ent background color. This improves the consistency of the
interface and enables moving and copying of the state filter.

6.1.3 Updates to blocks
We updated several blocks. For the sound and timer action

blocks, we enabled dragging of notes and the hand, to be
consistent with blocks with sliders. For the tap block, which
reacts to the accelerometer, we allow it to detect the pitch or
the roll angle of the robot in advanced mode. This opens the
possibility for interesting behaviors such as avoiding slopes
or stopping the robot when it reaches a given inclination. For
the proximity and ground sensors event blocks, we allow users
to change the thresholds using sliders in advanced mode.

6.1.4 Other changes



We made several other additions. To run a program on
the robot, children must press the run button; however,
children often forget to to so after they modify their program.
As automatic loading can break the robot’s behavior under
execution, we instead introduce a blinking run button to
remind children to load their change to the robot. The run
button blinks in red when the program is modified and stops
blinking when it is pressed. Moreover, as the run and the
stop buttons are the most frequently used ones, we increased
their sizes to make them more visible. Finally, we introduced
the ability to undo/redo changes and to copy blocks.

7. DESIGN DISCUSSION
The current design of our vpl is the result of two iterations

of evaluations with children followed by modification. This
section discusses how this current design adheres to the
principles stated in the introduction and addresses the needs
and learning goals of children in primary school.

Low floor and wide walls
The close correspondence between our vpl design and the
functionalities of the robot ensures that learning program-
ming with our vpl is easy for children even without any
prior knowledge. Our vpl minimizes abstraction to reduce
the number of concepts children must learn when starting
their programming education. At the same time, the two
modes of operation enable children of various skills to learn
at their appropriate level; younger children can explore the
basic mode while more advanced children can acquire more
complex concepts. Our live textual code generation eases the
transition from visual programming to textual programming,
providing endless possibilities to the most advanced children.

Simplicity
Our vpl ensures simplicity through its clean block design,
simple environment, and simple programming construct. The
event and action block icons are large and contain only com-
ponents necessary for parametrization of the underlying event
or action. The programming environment has event blocks
on the left and action blocks on the right with the central
pane for event-actions sets. Clicking blocks or dragging them
into the center pane is all the children need to do to program.
All the relationships between events and actions are encoded
in event-actions sets, and children can program complex
behaviors if they understand this one construct.

Tinkerability
Visual programs can be compiled and run at any time, as
long as programs are valid. This means that as children play
with our vpl, they can incrementally develop their programs.
After adding a new event-actions set, the child can run the
program on the robot and see if the robot behaves as s/he
expects. If it does, s/he can verify her/his understanding by
varying the parameters of the event or the action. If it does
not, s/he can question why there is a discrepancy between
the expected behavior and the actual behavior. In addition,
children can learn what compilation error is when it occurs,
i.e., when they create a duplicate event for instance.

Support for self- and classroom-learning
vpl’s online documentation provides the possibility of self-
learning and classroom activities. The website (http://

thymio.org), which is available in several languages, provides
a 45-page-long tutorial with exercises and answers, and a
reference documentation.

8. CONCLUSIONS
We have introduced and demonstrated a visual program-

ming language (vpl) for an educational robot, Thymio II,
suited for children in primary school. The goals of our vpl are
to make robotics programming approachable for young chil-
dren and to foster them to deepen their knowledge through
exploration and experimentation. The basic mode of our vpl
provides children with a gentle introduction to programming
and its advanced mode and live textual code generation en-
gage them to go further. The online documentation supports
self-learning and provides classroom activities.

The current design of our vpl is the result of two iterations
of design and evaluation. We believe that this iterative pro-
cess enhances the quality of our vpl and its appropriateness
to children, and we plan to pursue this process further.

9. ACKNOWLEDGEMENTS
We thank all the children, teachers and co-workers who

provided valuable feedback during the development.

10. REFERENCES
[1] D. Benedetelli. LEGO MINDSTORMS EV3 Laboratory:

Build, Program, and Experiment with Five Wicked Cool
Robots. No Starch Press, 2013.

[2] M. U. Bers. Blocks to robots: Learning with technology
in the early childhood classroom. Teachers College, New
York, NY, 2008.

[3] E. Cejka, C. Rogers, and M. Portsmore. Kindergarten
robotics: Using robotics to motivate math, science, and
engineering literacy in elementary school. International
Journal of Engineering Education, 22(4):711–722, 2006.

[4] L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U.
Bers, P. Bontá, and M. Resnick. Designing scratchjr:
Support for early childhood learning through computer
programming. In Proceedings of the 12th International
Conference on Interaction Design and Children, pages
1–10, 2013.

[5] E. Kazakoff and M. Bers. Programming in a robotics
context in the kindergarten classroom: The impact on
sequencing skills. Journal of Educational Multimedia and
Hypermedia, 21(4):371–391, 2012.

[6] S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp,
and F. Mondada. ASEBA: A modular architecture for
event-based control of complex robots. IEEE/ASME
Transactions on Mechatronics, pages PP(99) 1–9, 2010.

[7] S. Magnenat, F. Riedo, M. Bonani, and F. Mondada. A
programming workshop using the robot “Thymio-II”:
The effect on the understanding by children. In IEEE
Workshop on Advanced Robotics and its Social Impacts
(ARSO), 2012.

[8] M. Resnick and B. Silverman. Some reflections on
designing construction kits for kids. In Proceedings of the
2005 Conference on Interaction Design and Children,
pages 117–122, 2005.


