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Abstract—Automated random testing has shown to be an
effective approach to finding faults but still faces a major
unsolved issue: how to generate test inputs diverse enough to
find many faults and find them quickly. Stateful testing, the
automated testing technique introduced in this article, generates
new test cases that improve an existing test suite. The generated
test cases are designed to violate the dynamically inferred
contracts (invariants) characterizing the existing test suite. As
a consequence, they are in a good position to detect new errors,
and also to improve the accuracy of the inferred contracts by
discovering those that are unsound.

Experiments on 13 data structure classes totalling over 28,000
lines of code demonstrate the effectiveness of stateful testing in
improving over the results of long sessions of random testing:
stateful testing found 68.4% new errors and improved the
accuracy of automatically inferred contracts to over 99%, with
just a 7% time overhead.
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I. INTRODUCTION

Drawing inputs at random may sound like a desultory
approach to testing, since it ignores any information about
the structure of the system under test. This intuition, however,
turns out to be largely flawed: there is now a compelling
amount of evidence—both empirical [1] and analytical [2]—
showing that random testing is a quite effective testing tech-
nique that can uncover many subtle errors in real programs.

When the tested software is equipped with contracts (pre
and postconditions) random testing even becomes a completely
automated technique: preconditions help select valid inputs
and postconditions provide oracles to check if a test case
exposes unexpected behavior that does not conform to speci-
fication. The applications of random input generation are not
limited to testing but extend to other software dynamic analysis
techniques, such as inference of contracts [3] (improving and
completing those written by programmers) and even automated
program correction [4].

Constructing random inputs is straightforward for primitive
types, such as integers and characters, where it boils down
to drawing pseudo-random numbers. Constructing random
objects of arbitrary classes is more involved, because objects
can only be created and modified using a class’ routines
(methods). To approach this problem, random input generation
algorithms for object-oriented languages maintain an object
pool, which stores all objects randomly generated during the
current testing session. The pool is populated either with fresh

objects, built from scratch by creation procedures (construc-
tors), or with objects returned by random routine calls on
objects of appropriate type, randomly drawn from the pool.
Routines and creation procedures with arguments are handled
by recursively drawing from the pool conforming objects to
be used as arguments. A test case is the combination of any
target object in the pool with a routine applied to it.

Random testing sessions must last several hours to maxi-
mize error-finding effectiveness [1], [2]. A drawback of this
necessity is that the object pool grows to contain a large num-
ber of objects, even when duplicates are pruned. Therefore,
the probability of generating at random test cases that would
expose new bugs significantly decreases over time: the objects
needed to generate the “missing” test cases may already be in
the object pool, but they are unlikely to be drawn at random
because they constitute only a small fraction of the whole pool.

This paper presents stateful testing, a dynamic analysis
technique that builds on top of random testing and magnifies
its effectiveness. Stateful testing takes over where random
testing gives up: after long sessions of random test case
generation, the number of errors found reaches a plateau or
grows sluggishly, and the object pool contains thousands of
objects. At this point, stateful testing populates a database
with the content of the pool stored as serialized objects; the
database is searchable for objects that satisfy given predicates.
For example, we can look up an object n of class INTEGER
such that n >0, or an object s of class SET that satisfies
not s . is empty (that is, the set contains at least one element).

After populating the database, stateful testing runs dynamic
contract inference [3] on all passing test cases generated
during random testing; the result of this step is a collection of
pre and postcondition clauses that summarize the properties
of the test cases. Dynamic contract inference characterizes
the passing test cases with pre and postconditions based on
templates, which capture recurring usage patterns that lend
themselves to “meaningful” generalization. For object-oriented
programs, the set of public queries (functions) of a class often
provides a valuable collection of predicates to be combined in
templates; is empty in the example above is a public query that
often appears in contracts (inferred and programmer-written).
Since the inference is based on a finite number of observations
and on heuristics in the form of templates, some of the inferred
contracts can be unsound: they merely are a reflection of the
test cases that have been exercised.

Stateful testing combines the information stored in the



database of objects and the inferred contracts, with the goal
of mutually enhancing the test suite and the contracts, along
the lines of Xie and Notkin’s proposal [5]. Stateful testing
proceeds by systematically searching the database for objects
that violate some of the inferred contracts and therefore
enable the creation of new test cases. A new test case that
executes successfully shows that an inferred contract can be
violated without compromising execution, hence the contract
is unsound and should be discarded. A new test case that
triggers a failure exposes an error overlooked in the previous
testing session, corresponding to an input never tried before.
Either way, the new test cases improve over the previous
testing session by reaching out regions of the object space
previously unexplored. Take, for example, a routine wipe out
of class SET, which removes all the elements contained in the
set. If wipe out has always been called on empty sets, dynamic
contract inference suggests the precondition is empty. Then,
select an object s that violates the precondition, that is such
that not s . is empty. If the call s .wipe out succeeds, it shows
that the inferred precondition s . is empty is unsound and
should be removed. If the call triggers a failure, it exposes an
error in the routine’s implementation, which does not handle
correctly sets that are not already empty.

We implemented stateful testing within our AutoTest [6]
framework for random testing of object-oriented Eiffel appli-
cations; the implementation is integrated in EVE [7], the freely
available research branch of the EiffelStudio development
environment. In an extensive set of experiments described in
the paper, we applied stateful testing to the historical data
generated by running AutoTest for 520 hours on 13 classes
from the EiffelBase [8] and Gobo [9] data structure collections.
Both libraries have a long development history and are widely
used in the Eiffel community. AutoTest generated 149,293
distinct test cases, exposed 95 errors in the libraries, and
inferred hundreds of new contracts. We applied stateful testing
for 36 hours on this massive data set. In this relatively limited
amount of time, stateful testing exposed 65 new errors (68.4%
improvement) and invalidated 39.3% of the inferred contracts;
manual inspection reveals that almost all the retained contracts
are sound. These figures are promising and demonstrate that
stateful testing is an effective technique to boost the effective-
ness of random testing and dynamic analysis.

The rest of the paper is organized as follows: Section II
gives an overview of stateful testing with a few examples;
Section III describes the details of the technique; Section IV
outlines the design of the relational database used to store
the results of the initial dynamic analysis; Section V reports
the experimental evaluation of stateful testing; Section VI
discusses limitations and future work; Section VII presents
related work; Section VIII concludes.

II. EXAMPLES

This section presents three detailed examples that demon-
strate the applicability of stateful testing; the examples are
from the libraries EiffelBase and Gobo.

A. Unsound preconditions

The first example shows how stateful testing can generate
tests with a better coverage and detect unsound preconditions.
Class TWO WAY SORTED SET is the standard Eiffel imple-
mentation of sets with ordered elements. The class includes a
public routine

merge (other : TWO WAY SORTED SET)

which inserts all elements of other into the Current set (this
in Java or C#). After running for 40 hours, AutoTest reports
a dynamically inferred precondition for merge:

pre 1: Current. disjoint ( other ) ,

indicating that it has only been called on disjoint sets:
Current ∩ other = ∅, hence the functionality of merge has
not been tested thoroughly.

Stateful testing takes over from this situation and tries to
generate new test cases that cover the deficiency. To this end, it
looks up the database—filled with data from hours of random
testing—for objects of suitable type that violate pre 1; namely,
it searches for two objects o1, o2 such that:

(1) o1. type = TWO WAY SORTED SET ,
(2) o2. type = TWO WAY SORTED SET ,
(3) not o1. disjoint (o2) .

Even if AutoTest never drew such objects during the 40-hour
session, there are several pairs satisfying the three constraints
(1–3) in the database. For every such pair of objects, stateful
testing generates the new test case o1.merge (o2).

Executing the new test cases improves the coverage of
routine merge; it also reveals that the inferred precondition
pre 1 is unsound and must be reduced, hence removing an
error in the inferred contracts. In our experiments, the new
test cases did not expose any error.

B. Unsound postconditions

The second example shows how stateful testing can de-
tect unsound dynamically inferred postconditions. Routine
merge left ( other : LINKED LIST) in class LINKED LIST
merges the content of other into the Current list. Extensive
dynamic analysis reports, among others, the following post-
condition for merge left :

post 2 : old Current.is equal ( other )
implies Current.is empty .

That is, whenever Current and other contain the same ele-
ments (they are equal), they are actually empty lists. post 2 is
unsound, as it merely reflects the fact that the test suite never
ran merge left on lists that are equal but not empty.

Stateful testing targets the antecedent in the implication
post 2, which refers to the state before executing merge left
by means of the old notation. The antecedent suggests to exer-
cise the routine on objects o1, o2 where old o1. is equal (o2)
is the case, but not o1.is empty, with the hope of showing
that post 2’s consequent does not hold after the call. Stateful
testing creates a new test case o1. merge left (o2) for every



pair of objects in the database that satisfy the criteria. Since
merge left does not remove any element from the target o1,
not o1.is empty still holds after executing the test cases, thus
invalidating post 2 and increasing the coverage of merge left .

C. Constructing new objects

The third example shows how stateful testing can gener-
ate new objects by mutating other objects serialized in the
database. The example targets class TWO WAY TREE, an
implementation of trees with arbitrary number of branches at
each level. An object of type TWO WAY TREE encapsulates
a tree’s node; each node includes a list of references to its
children—empty if the node is a leaf—and a cursor. The
cursor is an iterator over the list of children, pointing to an
element in the list or being off the list. Given two nodes
n1, n2, we can merge n2’s children into n1’s by calling
n1.merge tree after (n2): n2’s list merges into n1’s after the
position marked by n1’s cursor, as shown in Figure 1 where
an arrow ⇑ marks the position of the cursor, when it is not
off. The position “after the cursor” is not defined if the cursor
is off ; developers wrote a precondition (require clause) to
merge tree after to enforce this constraint on the input:

merge tree after ( other : TWO WAY TREE)
require not off

where off is a Boolean query that holds when the cursor of the
Current node is off (such as for nodes n0 and n2 in Figure 1).

n0

n1

l1 l2 l3⇑
l4

n2

l5 l6

n0

n1

l1 l2 l3⇑
l5 l6 l4

n2

Fig. 1. Calling n1.merge tree after (n2) on the left tree results in the tree
shown on the right.

Dynamic analysis with AutoTest reports the dynamically
inferred precondition for merge tree after :

pre 3: not Current. is sibling ( other ) .

pre 3 reveals that merge tree after has never been tested
with sibling nodes, that is nodes at the same level of the
tree (e.g., n1 and n2 in Figure 1). Correspondingly, stateful
testing looks up the database for objects violating pre 3,
suitable to generate new test cases: two objects o1, o2 of
type TWO WAY TREE that satisfy o1. is sibling (o2) and
not o1. off —the latter constraint is merge tree after ’s
programmer-written precondition.

Unfortunately, no pair of objects in the database satis-
fies all these constraints: there are several trees with sib-
ling nodes, but all of them have their cursor off, hence
merge tree after cannot be applied. In such situations,
stateful testing selects available objects that satisfy some of
the requirements and searches for routines that can mutate the
object state to satisfy the missing requirements. The database

also includes information on the behavior of routines, collected
during dynamic analysis.

In the running example, stateful testing searches for a
routine of class TWO WAY TREE that can change a node
where off is False to one where it is True. Routine start
moves the cursor to the first child node (if the child list is not
empty), hence it satisfies the search criteria. With this routine,
stateful testing generates a new test case for merge tree after
as follows. It selects two serialized objects o1, o2 of type
TWO WAY TREE that are siblings; the test case consists of
two consecutive calls:

o1. start ; o1. merge tree after (o2) .

In our experiments, this new test case triggered a failure,
showing that merge tree after does not work correctly on
sibling nodes. This error went undetected in the random testing
session, but stateful testing readily exposed it.

III. HOW STATEFUL TESTING WORKS

This section starts with an overview of how stateful testing
works (Section III-A), and then describes the details of the
technique: what are the products of random testing (Sec-
tion III-B), how stateful testing processes and organizes them
(Section III-C), the role of dynamically inferred contracts
(Section III-D), and their reduction to produce new test suites
(Section III-E).

A. Overview

Figure 2 provides a bird’s eye view of how stateful testing
works. Stateful testing is a fully automated technique that
produces new test cases from an existing test suite:

1) Running AutoTest, the automatic random testing
framework for Eiffel, for several hours produces a large
pool of objects, and a test suite based on those objects.

2) Stateful testing selects and extracts information from the
object pool and the test suite and stores it in a relational
database: the object/transition database.

3) AutoInfer, the dynamic contract inference component
of AutoTest, summarizes the behavior of the test cases
in the test suite in the form of dynamically inferred
contracts.

4) The reduction phase extracts objects from the database
that violate some of the inferred contracts. The extracted
objects support the generation of a new test suite, which
exercises the classes under tests differently than in the
original test suite.

5) Executing the new test suite can uncover new errors in
the code under test, and reveal which of the inferred
contracts are incorrect and should be discarded.

B. Preliminaries: test cases and objects

A test case t is the call of a routine r on a target object
a0 with actual arguments a1, . . . , am that returns an object b,
denoted as:

t = a0.r (a1, . . . , am) : b .



Reduction Eiffel 
classes 

AutoTest 

Historical data Stateful testing 

Object/transition 
database 

Inferred contracts 

New test suite: 
more errors detected, 

better contracts 

AutoInfer 

Data 

extraction 

Test 
suite 

violate 

select 

Fig. 2. Overview of how stateful testing works.

If r is a command (procedure), which does not return any
value, replace b with the dummy object ε; if r is a creation
procedure (constructor), which returns a fresh object, replace
the target a0 with ε.

Contracts are annotations using the same syntax as pro-
gramming language Boolean expressions; they specify the
behavior of routines through preconditions and postconditions.
The precondition of a routine r is a predicate that r’s target
and arguments satisfy before the call; for example, pre 1 in
Section II-A declares that the Current list (i.e., the target)
and the other list (i.e., the argument) are disjoint, for every
call of merge. The postcondition of a routine r is a predicate
over r’s result (if any), as well as r’s target and arguments;
postconditions can refer to targets and arguments both in
the post-state (i.e., after the call) and in the pre-state (i.e.,
before the call, with the old keyword). For example, post 2
in Section II-B specifies that, if the target list and the other
list contained the same elements before a call to merge, then
the target is empty after the call. In Eiffel, programmers can
annotate routines with pre (require clause) and postconditions
(ensure clause); stateful testing includes a contract inference
phase that supplements the contracts written by programmers
with inferred contracts.

Contracts provide a criterion to determine if a test case is
passing or failing completely automatically. A routine’s test
case a0.r (a1, . . . , am) : b is valid if its target and arguments
a0, a1, . . . , am satisfy r’s precondition, and is invalid other-
wise. Executing a valid test case t changes the target and
arguments into the post-state a′0, a

′
1, . . . , a

′
m, denoted

t 〈a′0, a′1, . . . , a′m〉 .
t is passing if executing the test case triggers no exceptions,
and the post-state 〈a′0, a′1, . . . , a′m〉, the pre-state 〈a0, a1, . . . ,
am〉 and the returned object b satisfy r’s postcondition; other-
wise, t is failing.

Stateful testing builds upon an existing test suite that
exercises a set of classes. A test suite is a collection T =
{t1, t2, . . .} of test cases; it induces the set O = {o1, o2, . . .}
of all objects mentioned in T ’s test cases or in the post-state of
passing test cases; O is the object pool. Stateful testing works

Listing 1. Routines of class LIST with contracts.
make: LIST −− Create an empty list

ensure Result . is empty

wipe out −− Remove all elements
ensure is empty

extend (v : ANY) −− Add ‘v’ to the end
ensure has (v)

append (other : LIST) −− Append ‘other’ to the end
require other 6=Void

has (v : ANY): BOOLEAN −− Does the list include ‘v’?

is empty : BOOLEAN −− Is the list empty?

independently of how the object pool O and the test suite T
are generated. Its implementation in the AutoTest framework,
however, generates them completely automatically from a set
of Eiffel classes with random testing.

Example. The class LIST implements dynamic lists; it
is modeled after real Eiffel classes, but is simplified for
clarity. Listing 1 shows the signatures of LIST’s routines with
programmer-written contracts. Consider the test suite T :

t1: ε.make : l1  〈ε〉
t2: l1.wipe out : ε 〈l1〉
t3: l1.append (l1): ε 〈l1, l1〉
t4: l1.extend (l1): ε 〈l2, l2〉
t5: l1.is empty: b3  〈l1〉
t6: ε.make : l4  〈ε〉

where all test cases are passing. For simplicity, we do not
introduce new duplicate objects in T when they are unchanged
in the post-state with respect to the pre-state; for example, t4
denotes a call to extend with l1 as target and argument, and
l2 is the name given to the list after extending it, whereas
t5 does not change the target l1 which is then repeated in



the post-state. T induces the object pool O = {l1, l2, b3, l4},
where l1, l4 are empty lists, l2 has one element (a reference
to l2 itself), and b3 is the Boolean True.

C. Object/transition database

The object/transition database contains detailed information
about the objects in the object pool O. Section IV details
how the database is implemented with relational database
technology; the current section describes how stateful testing
selects and extracts the information to store in the database.

Abstract object states and transitions. The ob-
ject/transition database stores all objects in the pool O in
serialized form. On top of the serialized objects, the database
stores their abstract state, expressed in terms of the public
queries (functions) of the objects. In the running example,
class LIST has two public queries: is empty and has. We
would like to have information as extensive as possible in
the database: for every combination of objects in the pool,
evaluate every public query that is applicable. This is clearly
unfeasible for object pools of non-trivial size, hence stateful
testing uses a heuristic based on the usage of objects in
the test suite T . For an object o ∈ O, consider the set
ρ(o) of objects reachable from references in o, including o
itself; because of how the object pool is defined, ρ(o) is a
subset of O. Extend the notation to objects reachable from
a set of objects: ρ(O) =

⋃
o∈O ρ(o). For every test case

t = a0.r (a1, . . . , am) : b 〈a′0, . . . , a′m〉, the database stores
all the applicable public queries q:

α0.q (α1, . . . , αn) : β (1)
ω0.q (ω1, . . . , ωn) : ψ (2)

where α0, α1, . . . , αn range over the set ρ(a0, a1, . . . , am) of
object reachable in t’s pre-state, and ω0, ω1, . . . , ωn range over
the set ρ(b, a′0, a

′
1, . . . , a

′
m) of object reachable in t’s post-

state. Precisely, for every call of the form (1) or (2), the
database adds the objects β, ψ in serialized form and includes
a tuple with q’s signature, and references to the serialized
objects α0, . . . , αn, ω0, . . . , ωn, β, ψ stored in the database.
The current tool implementation supports queries of generic
return type; for simplicity, the presentation in this paper only
considers queries that return Boolean values.

The database also stores information about transitions: each
transition associates the routine r with several pairs of query
evaluations; the first element of the pair evaluates a query in
the pre-state (1), and the second evaluates it in the post-state
(2). Then, the transition represents the fact that calling r when
the pre-state holds can drive the object to the post-state.

Continuing the running example (Listing 1), the test cases
t1, t2, t3 only mention the list object l1, which produces
the queries l1.is empty: True and l1.has (l1): False. t4 intro-
duces the object l2, hence the new queries l2 . is empty :False,
l1 .has (l2):False, l2 .has (l1):False, l2 .has (l2):True. t6 in-
troduces two more queries on l4: l4.is empty: True and
l4.has (l4): False. Finally, t4 induces the only non-trivial
transitions from a pre-state where is empty evaluates to True

and has to False, to a post-state where both queries change
their returned value when evaluated on the changed target.

Public branch and path conditions. To increase the preci-
sion of the abstract states stored in the database, stateful testing
includes the value of several Boolean expressions extracted
from the program text. For every test case t exercising a
routine r, collect all the Boolean expressions e1, e2, . . . that ap-
pear as branch conditions or as path conditions in r’s control-
flow graph, and that only reference public features (members)
of r’s containing class. The rationale for storing branch and
path conditions is that they often offer “interesting” partitions
of the input states. The database stores the evaluations of
these expressions for each applicable combination of objects
reachable in the pre-state and in the post-state of every test t.

D. Dynamic contract inference

To get a concise characterization of the test suite T in terms
of class features, stateful testing performs contract inference
with dynamic techniques. The implementation uses AutoIn-
fer [3], the inference component of the AutoTest framework.

Contract inference only considers the passing test cases
from the suite T and produces, for each routine r exercised
in the test suite, a list pre(r) of preconditions and a list
post(r) of postconditions. These inferred contracts summarize
r’s behavior with the test cases in T : for every passing test
t = a0.r (a1, . . . , am) : b 〈a′0, . . . , a′m〉 in T , the arguments
a1, . . . , am and the target satisfy all preconditions in pre(r),
and the result b (if any) and post-state a′0, a

′
1, . . . , a

′
m satisfy

all postconditions in post(r).
In the running example (Listing 1), wipe out is always

invoked on an empty list, hence is empty is an inferred precon-
dition in pre(wipe out); append is invoked once on an empty
list which is still empty after the call, hence old is empty
implies is empty is a postcondition in post(append), and

other . is empty is a precondition in pre(append).1

The inferred contracts are typically different than those
programmers write: the former tend to be more detailed and
numerous than the latter, especially in the case of postcon-
ditions, which programmers neglect but dynamic analysis
is effective at reporting [3], [10]. Furthermore, dynamically
inferred contracts have no guarantee of being correct: since
they are based on a finite number of observations, they may
merely be a reflection of a not sufficiently varied test suite,
such as the two examples discussed in the previous paragraph.

E. Reduction

After building the object/transition database and collecting
the inferred contracts, stateful testing generates a new test suite
by precondition reduction. The basic idea is partitioning the
input space: a predicate p defines two regions, one where p
holds and one where it doesn’t; a comprehensive test suite
should cover every region, for every combination of “inter-
esting” predicates, with at least one test case. This is clearly

1Dynamic inference does not really infer contracts based on so few test
cases because they are statistically insignificant; the example is only for
illustration purposes.



unfeasible, because the predicates are too many; precondition
reduction is a heuristic technique that considers a reduced
number of partitions based on the inferred preconditions.

1) Precondition reduction: The precondition reduction of a
routine r generates new inputs to test r by trying to invalidate
r’s inferred preconditions. Suppose r has m arguments, and
let require(r) denote r’s programmer-written preconditions.
Select a dynamically inferred precondition p from the set
pre(r) and build the predicate:

♣rp : ¬p ∧ require(r) .

♣rp characterizes objects that satisfy r’s programmer-written
preconditions but violate the inferred p, hence they can be
used to test r in a way not covered by the existing test suite.

Stateful testing searches the object/transition database for
tuples of objects 〈o0, o1, . . . , om〉 that satisfy ♣rp (expressed
as a conjunction of elementary expressions). In the running
example (Listing 1), wipe out’s inferred precondition is empty
suggests to search for objects of type LIST satisfying not
is empty (wipe out has no programmer-written precondition);
l2 satisfies the search criterion.

For each tuple 〈o0, o1, . . . , om〉 retrieved in the search,
stateful testing constructs the new test case

tnew = o0.r (o1, . . . , om) .

In practice, there is a cut-off on the number of retrieved tuples
(if they are too many, only a few are tried) and a time-out on
the time spent searching the database (if no tuple is found by
the time-out, we move to the next reduction). If tnew is passing,
then the precondition p is unsound and removed from pre(r);
if tnew is failing, an error is found (and p is also unsound).
Since the information stored in the database is incomplete,
tnew may also be invalid, in which case it is simply discarded.
In the running example, the list l2 is not empty and the test
case l2.wipe out exercises wipe out in ways not tested before.

2) Using transitions: If the search for objects satisfying
♣rp fails, stateful testing tries to retrieve objects satistying a
weaker predicate than ♣rp, and then it searches for a transition
that drives the objects to match the desired ♣rp. To this end,
put ♣rp in conjunctive normal form c1 ∧ · · · ∧ cn and select
1 ≤ d < n clauses to drop; without loss of generality, we drop
c1, . . . , cd (D) and we keep cd+1, . . . , cn (K):

♣rp ≡ c1 ∧ · · · cd︸ ︷︷ ︸
D

∧ cd+1 ∧ · · · ∧ cn︸ ︷︷ ︸
K

.

For any tuple of objects 〈o0, . . . , om〉 satisfying K, search the
object/transition database for transitions that can transform
a tuple 〈o0, . . . , om〉 satisfying ¬D into a tuple 〈o′0, . . . ,
o′m〉 satisfying D. Every such transition consists of a routine
s and a mapping µ : [0..n] → [0..m], where s has n ≥ 0
arguments. µ binds the objects o0, . . . , om to s’s target and
arguments: the i-th argument is instantiated with oµ(i). For
every such transition, construct the new test case

tnew = oµ(0).s (oµ(1), . . . , oµ(n)) ; o0.r (o1, . . . , om) ,

consisting of two consecutive calls.

In the TWO WAY TREE example in Section II-C, the
dropped clause D is not Current.off and the kept clause
K is Current. is sibling ( other ). Two objects o1, o2 in the
database satisfy o1. is sibling (o2), and a transition suggests
that routine start can change o1 from o1. off to not o1. off .

The search for transitions is heuristic: since the information
about transitions in the database is incomplete in general, the
routine s may be inapplicable to the objects 〈o0, . . . , om〉, or
it may not drive them in a state satisfying ♣rp—for example,
because it invalidates K as a side-effect of satisfying D. In
practice, the heuristic search is reasonably successful when
there are objects whose state is close to satisfying ♣rp; cor-
respondingly, the current implementation drops at most one
clause (d = 1), and does not build sequences of transitions
with more than two calls.

3) Detecting unsound postconditions: Inferred postcondi-
tions can be unsound, too, but we cannot directly select objects
that violate postconditions, because we do not have direct
control over post-states. Precondition reduction, however, can
also help to invalidate inferred postconditions, while testing
routines more thoroughly. Consider an inferred postcondition
q in post(r) in the form:

q : old(A) =⇒ C .

We focus on postconditions in this form, because q naturally
expresses many postconditions where a property C of the post-
state is a consequence of a property A of the pre-state (old).
Invalidating the implication q means producing test cases that
start in a pre-state where A holds and reach a post-state
where ¬C holds. The existing test suite does not include such
test cases, otherwise P would not be a dynamically inferred
postcondition.

The inferred preconditions, however, help select pre-states
that may challenge the validity of q. To this end, consider the
set pre(r|A) of r’s dynamically inferred preconditions that
hold when A also holds. Select a p ∈ pre(r|A) among these
preconditions and build the predicate:

♠rp,q : A ∧ ♣rp .
Then, select (or build with transitions) objects 〈o0, . . . , om〉
that satisfy ♠rp,q , and generate the new test case tnew that
calls r on 〈o0, . . . , om〉 (as in Section III-E1). If tnew is valid
but C is false after executing it, the postcondition q is unsound
and is removed from post(r); if tnew is failing, it also shows
an error.

In the example of Listing 1, stateful testing targets the
inferred postcondition old is empty implies is empty of rou-
tine append, which is in the form q: A is is empty; for the
same routine, other . is empty is a precondition inferred when
A also holds. Hence, stateful testing looks for two lists, one
empty and one not; l1, l2 satisfy the criterion and yield the
new test case l1.append (l2).

IV. OBJECT/TRANSITION DATABASE

Section III-C describes what kind of information the
object/transition database stores; the present section details
how the database is implemented with relational technology.
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tid
class
routine
pre serialized
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Predicates 1
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name
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Predicates (n+ 1)

tid
name
var 0
type 0
· · ·
var (n+ 1)
type (n+1)
ret value
kind

Fig. 3. Relational schema of the object/transition database.

A. Relational schema

Figure 3 shows the most significant parts of the
object/transition database’s relational schema. The database
is centered around the test cases in the test suite T : for
each test case a0.r (a1, . . . , am) : b  〈a′0, . . . , a′m〉 table
TESTCASES stores: (1) a unique identifier (attribute tid),
(2) r’s class (class), (3) r’s name (routine), (4) the list
a0, a1, . . . , am, am+1, . . . , an of all serialized objects in the
pre-state followed by all objects reachable from them (pre -
serialized), (5) the list a′0, a

′
1, . . . , a

′
m, b, a

′
m+1, . . . , a

′
n′ of all

serialized objects in the post-state followed by all objects
reachable from them (post serialized). We do not discuss the
straightforward details of how lists of serialized objects are
encoded as sequences of characters with separators.

The other tables PREDICATES 1, PREDICATES 2, . . . ,
PREDICATES 9 store information about the abstract state
of objects, in the form of predicates over 1, 2, . . . , 9
objects. Consider an atomic Boolean predicate q evaluated
over n + 1 objects, in the form o0.q (o1, . . . , on) : v, that
holds for the pre-state of a test case with identifier x.
Table PREDICATES (n+ 1) stores an entry with: (1) a refer-
ence to the test case x (attribute tid), (2) the normalized textual
form of the predicate, obtained by replacing every reference
to objects with ‘$’ placeholders as in $.q ($, . . . , $) (attribute
name), (3) for each object oi, 0 ≤ i ≤ n + 1, an integer ki
such that the ki-th element of the list in the pre state attribute
of the test case with tid x contains oi (attribute var i), (4) for
each object oi, 0 ≤ i ≤ n+1, its dynamic type (type i), (5) the
Boolean value v returned (attribute ret value), (6) the constant
pre to denote that q is evaluated over the pre-state (attribute
kind). For predicates evaluated in the post-state, attribute kind
stores the constant post, and everything else is like for pre-
states.

Consider, for example, the test case t4 in the running
example (Section III-B): l1.extend(l1) : ε  〈l2, l2〉. Table
TESTCASES stores a tuple 〈id4,LIST, extend, π,Π〉, where id4
is the unique identifier, π is the list of (serialized) objects
in the pre-state: π = [l1, l1], and Π is the list of objects
in the post-state: Π = [l2, l2]. t4 induces, among others, the
evaluation of the query l1.has(l1) in the pre-state, which table
PREDICATES 2 stores as the tuple

〈id4, $.has($), 0,LIST, 0,LIST, False, pre〉

where the entries 0 in attributes var 0 and var 1 refer to the

first element in the 0-indexed list π of serialized objects (i.e.,
object l1 in serialized form).

B. Quering the database

The translation of predicates into SQL queries to the
object/transition database is straightforward:
• Objects become variables in the SELECT clause;
• These variables are joined with the PREDICATES and

TESTCASES tables in the FROM clause;
• The WHERE clause encodes the constraints on the

individual predicates, and SQL Boolean operators map
the Boolean connectives in the translated predicate.

Let us demonstrate the creation of SQL queries with the
example at the end of Section III-E3, where we search for
two objects l1, l2 of type LIST such that l1.is empty and
not l2.is empty. We create the SQL query in Listing 2 that
searches for such objects in pre-states (the query for post-
states is all similar). The SQL query returns a tuple objs1 ,
objs2 , idx1 , idx2 such that objs1 , objs2 are collections of
serialized objects and idx1 , idx2 are integer indices: the
idx1-th element in collection objs1 is an empty list, and the
idx2-th element in collection objs2 is a non-empty list.

Listing 2. An SQL query searching for two lists.
SELECT

t1 . pre serialized as objs1 , t2 . pre serialized as objs2 ,
p1.var 0 as idx1 , p2.var 0 as idx2

FROM
Predicates 1 p1 join TestCases t1 on p1. tid = t1 . tid ,
Predicates 1 p2 join TestCases t2 on p2. tid = t2 . tid

WHERE
p1.name = '$.is empty' AND
p1.type 0 = 'LIST' AND
p1. ret value AND p1.kind = 'pre' AND

p2.name = '$.is empty' AND
p2.type 0 = 'LIST' AND
NOT (p2.ret value) AND p2.kind = 'pre'

V. EVALUATION

This section presents the results of an experimental eval-
uation, summarized in Table I: the leftmost part of the table
contains statistics about random testing, the middle part shows
the performance of stateful testing with preconditions and the
rightmost part with postconditions.

A. Experimental setup

The experiments targeted 13 Eiffel classes implementing
data structures from the libraries EiffelBase [8] (revision 506)
and Gobo [9] (revision 6665). Table I lists the size of each
class in lines of code (LOC) and public routines (#R).

Each session in the preparation of the original test suite
with random testing ran on a Linux node with a 2.53 GHz
Intel Nehalem quad-core CPU and 8 GB of memory. The



TABLE I
CLASSES UNDER TEST AND RESULTS.

RANDOM TESTING STATEFUL TESTING WITH PRECONDITIONS STATEFUL TESTING WITH POSTCONDITIONS
CLASS LOC #R #E #Tp #Up #Vp #Ep #Mp #Tq #Uq #Vq #Eq #Mq

ARRAY 1466 65 9 111 23 23 (100%) 2 52′ 14 1 1 (100%) 0 5′
ARRAYED QUEUE 1064 40 0 17 13 13 (100%) 0 7′ 19 0 0 N/A 0 9′
ARRAYED SET 2343 46 9 55 18 18 (100%) 1 25′ 141 0 0 N/A 0 10′
BOUNDED QUEUE 1130 40 0 20 16 16 (100%) 0 7′ 22 0 0 N/A 0 9′
DS ARRAYED LIST 2760 104 5 178 107 107 (100%) 4 92′ 170 16 11 (69%) 0 154′
DS HASH SET 3074 82 1 279 173 173 (100%) 2 40′ 51 3 3 (100%) 0 5′
DS LINKED LIST 3432 100 5 196 120 120 (100%) 2 106′ 129 1 0 (0%) 1 88′
DS LINKED STACK 934 28 0 39 38 38 (100%) 0 4′ 4 0 0 N/A 0 1′
HASH TABLE 2032 58 1 117 88 87 (99%) 1 16′ 63 10 10 (100%) 0 30′
LINKED LIST 1998 72 1 53 46 46 (100%) 0 9′ 149 13 13 (100%) 1 22′
LINKED SET 2366 80 13 91 47 47 (100%) 4 33′ 176 15 15 (100%) 1 28′
TWO WAY SORTED SET 2866 92 29 221 120 120 (100%) 15 49′ 25 7 7 (100%) 0 2′
TWO WAY TREE 3316 107 22 364 203 198 (98%) 26 75′ 10 3 0 (0%) 5 4′

Total 28781 914 95 1741 1012 1006 (99.4%) 57 515′ 973 68 60 (88.2%) 8 367′

other experiments (contract inference and stateful testing) ran
on an Ubuntu machine with a 1.73 GHz Intel Core i7 CPU
and 8 GB of memory. The average speed of random testing,
contract inference, and stateful testing on the two architectures
is comparable.

1) Random testing: To generate the original test suite T—
upon which stateful testing builds—AutoTest ran 30 sessions
of random testing for each of the 13 classes. A session lasts 80
minutes and initializes the pseudo-random number generator
with a new seed. The 30 sessions totaled 520 hours of testing
and generated a test suite with 149,293 distinct test cases. The
test suite T revealed 95 distinct errors2 (column #E of Table I).

2) Stateful testing running time: Dynamic contract infer-
ence. AutoInfer processed the test suite T for 16 hours and
reported 1741 preconditions and 973 postconditions express-
ible as implications, shown in column #Tp and #Tq in Table I.
Manual inspection revealed that 1012 (58%) of the inferred
preconditions and 68 (7%) of the inferred postconditions
are unsound. Columns #Up and #Uq respectively report the
number of unsound pre and postconditions for each class.

Object/transition database construction. Constructing the
object/transition database from T took 5 hours. The database
contains about 3.5 million objects, 18.4 million predicate
evaluations, and 68.8 thousand transitions, and occupies 3.4
GB on disk.

Reduction. Notice that querying the object/transition data-
base gives predictable results, hence the reduction is deter-
ministic and needs to run only once. Stateful testing ran for
15 hours trying to violate the inferred pre and postconditions.
The times (in minutes) spent on the pre and postconditions in
each class are shown in columns #Mp and #Mq of Table I. In
the experiments, every query times out after one minute.

B. Experimental results

In all, stateful testing discovered 65 new errors in the
classes under test, corresponding to a 68.4% improvement over
the number of errors found by random testing, with only a
7% time overhead (36/520 hours). Columns #Ep and #Eq in

2Two errors are distinct if they violate two different contract clauses.

Table I respectively show the number of new errors detected
while trying to violate the inferred pre and postconditions in
each class. The performance in terms of number of unsound
preconditions and postconditions detected is given below.

Building upon random testing, stateful testing detected
68.4% new errors in a fraction of the time.

1) Unsound preconditions: Table II gives an account of the
most common structures of the inferred preconditions targeted
in the experiments. Stateful testing tried to invalidate the 1741
inferred preconditions for 8.2 hours (i.e., about 18 seconds
per precondition), following the technique in Section III-E1.
It successfully invalidated 1006 (99.4%) of the unsound pre-
conditions (column #Vp of Table I, which also report the
percentages relative to column #Up), while exposing 57 new
errors (column #Ep).

TABLE II
STRUCTURE OF INFERRED PRECONDITIONS.

STRUCTURE EXAMPLE #T
Reference equality o1 = o2 154
Object equality o1. is equal (o2) 329
Voidness check o 6=Void 7
Integer equality o .count = 0 377
Boolean query with arguments o .has(v) 483
Boolean query without arguments o . is empty 356
Other (complex) o . full or i < l .count 35
Total 1741

2) Unsound postconditions: Stateful testing tried to inval-
idate the 973 inferred postconditions in implication form for
6 hours (i.e., about 23 seconds per postcondition), following
the technique in Section III-E3. It successfully invalidated
60 (88.2%) of the unsound postconditions (column #Vq of
Table I, which also report the percentages relative to column
#Uq), while exposing 8 new errors (column #Eq).

3) Undetected unsound contracts: Stateful testing only
failed to detect 6 unsound preconditions (0.6% of the total)
and 8 unsound postconditions (11.8%). In all such cases,
no serialized objects were in a state violating the contract
(or sufficiently close to it), or the predicates provided an
abstraction of the object state that was too coarse-grained for
the desired objects to be identifiable.



Stateful testing increased the soundness of inferred
contracts from 60.2% to 99.5%.

VI. LIMITATIONS AND FUTURE WORK

Stateful testing, and its current implementation, has some
limitations to be addressed in future work.
• As it is customary in random testing [11], we have

evaluated stateful testing on classes implementing data
structures. This was also useful for comparison against
out previous experience with AutoTest [1]. Further ex-
periments will target different types of classes.

• Stateful testing can start from a test suite T generated
manually or with any technique, all our experiments used
test cases automatically generated. Further experiments
will determine if the performance of stateful testing is
affected by how the original test suite is generated.

• The current implementation of stateful testing adopts the
following heuristics when retrieving objects and tran-
sitions from the database: (1) search for objects and
consider the first 45 results; (2) if none of the 45 retrieved
objects work, search for transitions and call them on the
45 result objects; (3) if none of the transitions work, give
up and move to the next reduction. This heuristic worked
quite well in the experiments, but further experience will
determine if it can be improved and how robust the results
are with respect to this heuristic.

• Future experiments will try to iterate the infer/reduce
process on the new test suite generated with stateful
testing. This will challenge the state of the art in dynamic
invariant inference and is likely to suggest improvements
to the techniques used in the process.

VII. RELATED WORK

Xie and Notkin [5] first suggested a framework that com-
bines test-case generation and dynamic specification inference
with the goal of mutually enhancing their results.

Dallmeier et al. [12] implement Xie and Notkin’s ideas
for typestate specifications (finite-state automata describing
abstract object states and transitions), and report an evaluation
showing that their technique builds more accurate specifi-
cation and finds more errors injected in Java applications
than traditional dynamic analysis techniques [13]. Stateful
testing is based on the same principles—applied to contract
specifications—and extends them with the usage of a database
to improve the reuse of previous testing sessions and to build
new test cases. Typestates provide object-state abstractions—
based on argumentless Boolean queries and simple integer
partitioning—that are coarser-grained than the one deployed in
the present paper; consequently, building a typestate model by
exhaustive exploration is feasible, whereas our more detailed
model requires heuristics and an efficient search of serialized
objects to be built. We also provide an implementation and
experimental evaluation.

Stateful testing combines diverse techniques of program
analysis; the rest of this section summarizes some represen-
tative work involving these techniques. More comprehensive
references are available in the bibliography of the cited work.

A. Automated test-case generation

Automated random testing [6] is now a well-understood
technique which, in spite of the simplicity of its underlying
ideas, is quite effective and can find subtle bugs [1]. Arcuri
et al.’s analysis of random testing [2] analytically confirms
the experimental results, and suggests that more sophisticated
test-case generation techniques are best deployed after random
testing exhausts its potential. Stateful testing is indeed applied
following random testing sessions, to reuse the objects gener-
ated and find new inputs and errors.

Search-based test-case generation refines random test-
ing with goal-driven searches in the space of test cases;
McMinn [14] and Ali et al. [15] survey the state of the
art in search-based techniques. Test suite augmentation [16]
uses search-based techniques driven by coverage criteria, with
the purpose of adapting a regression test suite to changed
code. Genetic algorithms are a recurring choice to search
for test inputs; Tonella [17] first suggested the idea, and
Andrews et al. [18] show how to use genetic algorithms to
optimize the performance of standard random testing. Stateful
testing is also search-based, but the search takes place among
previously generated objects, and it is guided by contracts that
characterize an existing test suite to be improved.

Other refinements of random testing combine it with
white-box techniques such as symbolic execution (e.g., [19]),
or leverage the availability of formal specifications in various
forms (see Hierons et al. [20] for a survey). Stateful testing
also makes extensive usage of specifications in the form of
contracts, both inferred and written by programmers.

In previous work [21], we developed precondition satisfiac-
tion, a search strategy that improves the selection of objects
to test routines with complex preconditions. This technique is
included in AutoTest, and all the random testing session that
preceded stateful testing (in the experiments of Section V)
deployed precondition satisfaction.

B. Dynamic specification inference

Daikon [22] pioneered the dynamic inference of specifi-
cations and program invariants, and showed that assertions
“guessed” based on a finite number of runs are often sound
with respect to generic executions. Since the first Daikon
release, dynamic inference has been applied to other speci-
fication models (e.g., typestates [23]) and has improved its
accuracy (such as in our own AutoInfer [3]).

Gupta and Heidepriem [24] suggest to improve the quality
of inferred contracts by using different test suites (i.e., based
on code coverage and invariant coverage), and by retaining
only the contracts that are inferred with both techniques. Fraser
and Zeller [25] simplify and improve test cases based on
mining recurring usage patterns in code bases; the simplified
tests are easier to understand and focus on common usage.
Other approaches to improve the quality of inferred contracts
combine static and dynamic techniques (e.g., [26], [27]).

Stateful testing leverages dynamic contract inference tech-
niques, and tries to violate inferred contracts to explore new
regions of the input state space; this not only improves the



test suite, but it also detects many unsound contracts. Stateful
testing also includes the results of some lightweight static
analysis (based on the branching structure of routines) to
gather more information about the available test suite.

C. Search-based techniques

The idea of constructing “semantic” databases, with a
uniform search interface to retrieve programs [28], program
elements [29], [30], or test cases [31] with specific character-
istics has recently been deployed, mostly to help developers
organize their code and reuse products written by others.

The object capture technique [32] stores serialized objects,
created during program executions, and reuses them as new
test inputs to reach uncovered branches. Stateful testing also
stores serialized objects and reuses them to create new test
cases; the object capture framework, however, only supports
searching for objects based on their types, whereas stateful
testing stores rich information about the objects’ abstract
states, as well as transitions between states. Another significant
difference is that stateful testing targets the mutual improve-
ment of test suites and inferred contracts, whereas object
capture is only concerned with improving branch coverage.

VIII. CONCLUSIONS

This paper presented stateful testing, a completely auto-
mated testing technique which generates new test cases from
an existing test suite. Stateful testing works by trying to reduce
(i.e., invalidate) the inferred contracts that characterize the
existing test suite. Extensive experiments show that stateful
testing is quite effective: it generates tests that uncover new
errors and invalidates many of the unsound contracts inferred
dynamically from the original test suite.

Stateful testing is part of the automated testing framework
AutoTest; the source code of AutoTest—including the basic
testing infrastructure, dynamic contract inference, and the
stateful testing implementation—detailed experimental results
and instructions to reproduce the experiments are available at:

http://se.inf.ethz.ch/research/autotest
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