
Concurrent Object-Oriented Development with
Behavioral Design Patterns

Benjamin Morandi1, Scott West1, Sebastian Nanz1, and Hassan Gomaa2

1 ETH Zurich, Switzerland 2 George Mason University, USA
firstname.lastname@inf.ethz.ch hgomaa@gmu.edu

Abstract. Architectural modeling using the Unified Modeling Language
(UML) can support the development of concurrent applications, but the
problem of mapping the model to a concurrent implementation remains.
This paper defines a scheme to map concurrent UML designs to a concur-
rent object-oriented program. Using the COMET method for the archi-
tectural design of concurrent object-oriented systems, each component
and connector is annotated with a stereotype indicating its behavioral
design pattern. For each of these patterns, a reference implementation
is provided using SCOOP, a concurrent object-oriented programming
model. Given the strong execution guarantees of the SCOOP model,
which is free of data races by construction, this development method
eliminates a source of intricate concurrent programming errors.

1 Introduction

Writing concurrent applications is challenging because of the complexity of con-
current software architectures and the hazards associated with concurrent pro-
gramming, such as data races. For object-oriented applications, support for the
architectural design of concurrent software is fortunately available. Standard
notations, such as the Unified Modeling Language (UML), can provide such
support when used with a method for developing concurrent applications, such
as COMET [1]. The remaining difficulty is the mapping of the concurrent object-
oriented model to an implementation that avoids common concurrency pitfalls.

This paper describes a development method that starts with a concurrent
UML design, annotated with behavioral stereotypes, and maps the design sys-
tematically to an implementation that is guaranteed to be data-race free. Each
component and connector in the UML model is given a behavioral role, based
on COMET. For each of COMET’s component and connector types, this paper
defines a mapping to an implementation in SCOOP (Simple Concurrent Object-
Oriented Programming) [2,3], a concurrent object-oriented programming model.
Choosing this model over others simplifies concurrent reasoning [4] and offers
strong execution guarantees: by construction, the model is free of data races [2];
also, a mechanism for deadlock avoidance is available [5]. To evaluate the ap-
proach, the development process is applied to a case study of an ATM system
that covers all important connector and component patterns.

A companion technical report [6] contains additional material. The remain-
der of the paper is structured as follows. Section 2 describes behavioral design

«component»

«device I/O» «entity» «control» «algorithm»

«coordinator»
«state dependent

control»
«timer»

{execution =passive}

{exclusion = single-read |

 multi-read}

{execution = demand | periodic}

{execution = event driven | demand | periodic}

{execution = demand}

{execution = periodic}

{execution = demand}

«input/

output»
«output»«input»

Fig. 1: Classification of components using stereotypes

patterns of the COMET method in UML. The implementation of the design
patterns is described in Section 3. Section 4 presents the case study. Section 5
presents a survey of related work, and Section 6 draws conclusions.

2 Behavioral design patterns

Behavioral design patterns used by the COMET method [1, 7] address design
issues in concurrent and distributed applications. There are two main categories:
component patterns and connector patterns.

Component patterns. Component patterns address concurrent component de-
sign. Each component is depicted from two different perspectives, its role in the
application and the behavioral nature of its concurrency. Models of the design
use UML stereotypes to depict the decisions made by the designer. The stereo-
type depicts the component’s role criterion, which describes the component’s
function in the application such as ¾I/O¿ or ¾control¿. A UML constraint is
used to describe the type of concurrency of the component, which is based on
how the component is activated. For example, a concurrent ¾I/O¿ component
could be activated by an external event or a periodic event, whereas an ¾en-
tity¿ component is passive and access to it is mutually exclusive or by means of
multiple readers and writers. Components are categorized using the component
stereotype classification hierarchy in Figure 1. Separate stereotypes can be used
to depict the component role and the type of concurrency.

Connector patterns. Connector patterns describe the different types of message
communication between the concurrent components. In both distributed and
non-distributed applications, connector patterns include asynchronous commu-
nication and synchronous communication with or without reply.

A connector can be designed for each connector pattern to encapsulate the
details of the communication mechanism. The message buffer and message buffer

send

(in message) «connector»

aMessage

Buffer

receive (out

message)
«component»

aConsumer

«component»

aProducer

(a) Message buffer connector for syn-
chronous communication without reply

send (in message)
«connector»

aMessage

Queue

receive (out message)

«component»

aConsumer

«component»

aProducer

(b) Message queue connector for asyn-
chronous communication

send

(in message,

out response)
«connector»

aMessage

Buffer and

Reply

receive (out

message)

«component»

aService
«component»

aClient reply (in

response)

(c) Message buffer and reply connector for
synchronous communication with reply

send

(in message,

in callbackHandle)
«connector»

aMessage

Queue and

Callback

receive (out

message)

«component»

aService

«component»

aClient

reply (in response)accept (out response)

(d) Message queue and callback connector for
asynchronous communication with callback

Fig. 2: Connectors for communication patterns

and reply connectors respectively implement the synchronous communication
pattern without reply and with reply; the message queue and message queue and
callback connectors implement the corresponding asynchronous communication
patterns. These connectors can also be categorized using stereotypes.

Figure 2a depicts a synchronous communication without reply pattern, in
which the concurrent producer component sends a message to a concurrent con-
sumer component via a message buffer connector, and waits for the consumer to
accept the message. Figure 2b depicts an asynchronous message communication
pattern in which a producer communicates with a consumer through a message
queue connector that encapsulates the details of the asynchronous communica-
tion by: (1) adding a message from the producer to a FIFO message queue and
only suspending the producer if the queue is full (2) returning a message to a
consumer or suspending the consumer if the queue is empty. Figure 2c depicts
a synchronous communication with reply pattern in which the client component
sends a message to a service component and waits for the reply via a message
buffer and reply connector. Figure 2d depicts an asynchronous communication
with reply pattern, in which the client sends a message to a service via a message
queue and callback connector, continues executing and later receives the service
response from the connector. In this pattern, the client needs to provide an id
or callback handle to which the response is returned.

3 Implementation of design patterns

This section describes the SCOOP implementation of the behavioral design pat-
terns with examples, and highlights the most relevant implementation properties.
The full implementation is available online [8].

Implementing components. Components are implemented by providing a class
hierarchy mirroring the component taxonomy in Figure 1. Specialized compo-
nents in the end user application inherit from the appropriate abstract class.

To remove ambiguity, the term component object will be used to denote an in-
stance of the component class, which is the implementation of the design pattern
component.

We examine the implementation of the periodic task in detail. It is imple-
mented as a pair of classes: one class represents the job to be done, the other
represents a “pacemaker”, which periodically calls an instance of the first class
to perform its task. The instances of each class reside on two distinct processors.

The basic interface to PERIODIC defines:

– a single iteration (step),
– an indicator that the task is finished (is_done),
– integration with the pacemaker: notify executes a step then asks the pace-

maker to schedule another call to notify (unless is_done).

This design increases the availability of the PERIODIC object to other pro-
cessors. If the waiting were to occur directly within the PERIODIC object, that
object’s processor would be unavailable for the duration of the waiting time;
other objects would be unable to ask the periodic task simple queries such as
is_done. This is why the pacemaker does the waiting and calls to the task after
an appropriate delay. The interaction between the pacemaker and the periodic
task allows the processor containing the periodic task to remain unoccupied
between step executions.

Implementing connectors. Each of the connectors is implemented using three de-
pendent pieces: the sender endpoint, the receiver endpoint, and the conduit(s).
These are implemented as a cohesive unit to guarantee the communication takes
place correctly. Conduits are data channels; they sit as a bridge between end-
points, with the endpoints responsible for using the conduit correctly (e.g., en-
suring synchronous access). We use the term connector objects to denote the
combination of endpoint objects and conduit objects, which are the realization of
a particular connector.

An example of a simple connector is the synchronous message buffer. It holds
a single message, and the sender does not proceed until the receiver has received
the message. The usage of this connector can be seen in the object diagram in
Figure 3a, which is the SCOOP implementation of Figure 2a.

Another example is an asynchronous message queue with callback, where the
sender sends its message, continues on, and then waits for a reply. The connector
is implemented using two independent conduits; one conduit is responsible for
carrying outgoing messages and the other for replies (this pattern is common in
connectors with a reply). This is seen in the implementation given in Figure 3b,
which is the SCOOP implementation of Figure 2d. The sender uses the conduits
in two basic ways:

– Sending a message, along with its identity. This allows the receiving end to
send a message back to it.

– Receiving the callback from the other end. The sender’s identity is used once
again to select the correct message to receive.

conduitsender endpoint

component 1 component 2

receiver endpoint

(a) Message buffer connector

callback

conduit
sender endpoint

component 1 component 2

receiver endpoint

send conduit

(b) Message queue and callback connector

Fig. 3: Object diagrams for conduit and endpoints

Since connector objects come in three parts: sender/receiver endpoints and
the conduits, any component object that wants to use a connector must have
access to the connector’s endpoint functionality. This can either be done by
creating an endpoint object, or inheriting from the appropriate endpoint class.
Because the conduits are an implementation detail of the endpoints, component
objects do not need a direct reference to the conduits.

4 Case study

This section applies the suggested development method to an ATM system [1],
shown in Figure 4a and available at [8].

Applying the design pattern implementations. Figure 4b shows the result of
applying the design pattern implementations to Figure 4a. Active components
become component objects handled by separate processors; passive components
become component objects handled by one of the processors for an active compo-
nent object. The class of a component object inherits from the framework class
that corresponds to the component’s stereotype. Connectors become conduit
objects on separate processors and endpoint objects on existing processors.

Implementing interconnections. The root object sets up the objects representing
control components, i.e., the server object and the ATM objects. It first creates
the conduit objects that connect these control component objects. It then creates
the control component objects using the conduit objects; the component objects
then create local endpoint objects. After creation, the root object starts the
new component objects. Each object representing a controlled component gets
created by the controlling object. To do so, the control object first creates the
conduit objects for the connectors along with local endpoint objects. It then
creates the controlled object using the conduit objects.

«state dependent, demand»

atm_berlin

«message buffer and reply»

touchscreen_connector

«message buffer»

atm_to_card_reader_connector

«message buffer»

receipt_printer_connector

«message buffer»

cash_dispenser_connector

«message queue»

log_connector

«message queue and callback»

server_connector

«input/output, demand»

touchscreen

«input/output, event driven»

card_reader

«output, demand»

receipt_printer

«output, demand»

cash_dispenser

«output, periodic»

log

«state dependent, demand»

atm_zurich

«coordinator, demand»

server

«state dependent, demand»

atm_fairfax

«message buffer»

card_reader_to_atm_connector
«entity, passive, single-

read»transaction

(a) Design of the ATM system. Only one ATM with one customer is detailed; however, the
server can be connected to multiple ATMs. To save space, the arrows omit the direction
of the communication as done in Figure 2; instead, the names contain this information.

atm_zurich

touchscreen

card_reader

receipt_printer

cash_dispenser

touchscreen_send_ep

card_reader_receive_ep

card_reader_send_ep

receipt_printer_send_ep

cash_dispenser_send_ep

log_send_ep

server_send_ep_zurich

log

server

server_send_conduit

server_callback_conduit

touchscreen_send_conduit

touchscreen_reply_conduit

log_send_conduit

cash_dispenser_send_conduit

receipt_printer_send_conduit

card_reader_to_atm_send_conduit

atm_to_card_reader_send_conduit

pacemaker

atm_berlin

atm_fairfax server_send_ep_fairfax

server_send_ep_berlin

atm_receive_ep

atm_send_ep

transaction

atm_receive_ep

atm_receive_ep

atm_receive_ep

atms_receive_ep

atm_receive_ep

(b) SCOOP implementation of the ATM system. The boxes group objects handled by the
same processor. Endpoint objects have the suffix ep. The names of the endpoint and con-
duit objects indicate the direction of the communication; for example, the atm receive ep
object queries the touchscreen send conduit object to receive a message from the ATM.
The colors link the connectors in Figure 4a to the resulting connector objects here.

Fig. 4: Design and implementation of the ATM system

Implementing interactions. The interactions between components can be imple-
mented in the start features of the component objects. For instance, an ATM
object executes a loop; each iteration begins with a message from the card reader
object. Upon receiving this message, the ATM object proceeds according to the
customer’s choice. The server object executes a similar loop: it waits for messages
from one of the ATM objects and acts accordingly.

Discussion. The case study was a manual effort; the development method has
however potential for automation, using the following steps:

1. Generate one class for each component. The class inherits from the frame-
work class corresponding to the component’s stereotype. For each of the
component’s connectors, the class has a non-separate attribute for the con-
nector’s endpoint object; for each passive component, the class has a non-

separate attribute as well. The class has a creation procedure to initialize
these attributes. For each connector, the creation procedure takes the connec-
tor’s conduit objects as arguments and uses them to initialize the endpoint
object. Finally, the creation procedure creates a non-separate component
object for each passive component.

2. Generate one root class. The root object first creates the conduit objects for
each connector. It then creates component objects on separate processors
for each active component. It links the component objects according to the
design by passing the conduit objects during construction. Lastly, the root
object triggers the execution of all created component objects.

3. In each component class, add code for the component’s interactions.

The first and second steps can be automated; the design contains the neces-
sary information. However, it does not contain the data for the third step.

5 Related work

Software design patterns provide a tried and tested solution to a design problem
in the form of a reusable template, which can be used in the design of new
software applications. Software architectural patterns [9] address the high-level
design of the software architecture [10, 11], usually in terms of components and
connectors. These include widely used architectures [12] such as client/server and
layered architectures. Design patterns [13] address smaller reusable designs than
architectural patterns in terms of communicating objects and classes customized
to solve a general design problem in a particular context. The patterns described
in this paper are aimed at developing concurrent applications and are hence
different from patterns for sequential applications.

Component technologies [11] have been developed for distributed applica-
tions. Examples of this technology include client-side Java Beans and server-side
Enterprise Java Beans (EJB). Patterns for concurrent and networked objects
are comprehensively described in [14]. However, these patterns are not used to
systematically derive a concurrent program from a design, as it is the case in
our approach. Pettit and Gomaa [15] represent UML models using colored Petri
nets to conduct behavioral analyses (e.g., timing behavior). Our work focuses
on obtaining an executable system with built-in behavioral guarantees.

6 Conclusion

With the increasing need of concurrency, offering adequate support to develop-
ers in designing and writing concurrent applications has become an important
challenge. The approach taken in this paper is to base such support on widely
used architectural modeling principles, namely UML with the COMET method,
which should simplify adoption in industrial settings. We defined a mapping of
COMET’s behavioral design patterns into SCOOP programs and demonstrated

with a case study that using this approach entire concurrent UML designs can
be systematically mapped to executable programs.

For future work, it would be interesting to integrate our method with other
approaches based on UML and the COMET method, giving rise to a more
comprehensive framework with additional analyses of concurrent designs. In the
long term, we would also like to provide an automated method to translate UML
concurrent software architecture designs to an implementation.

Acknowledgments This work was funded in part by the ERC under the EU’s
Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no.
291389, the Hasler Foundation, and ETH (ETHIIRA). Hassan Gomaa thanks
Bertrand Meyer for the opportunity to work, during his sabbatical, with the
Chair of Software Engineering group at ETH.

References

1. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with
UML. Addison-Wesley (2000)

2. Meyer, B.: Object-Oriented Software Construction. 2nd edn. Prentice-Hall (1997)
3. Nienaltowski, P.: Practical framework for contract-based concurrent object-

oriented programming. PhD thesis, ETH Zurich (2007)
4. Nanz, S., Torshizi, F., Pedroni, M., Meyer, B.: Design of an empirical study for com-

paring the usability of concurrent programming languages. In: ESEM’11. (2011)
325–334

5. West, S., Nanz, S., Meyer, B.: A modular scheme for deadlock prevention in an
object-oriented programming model. In: ICFEM’10, Springer (2010) 597–612

6. Morandi, B., West, S., Nanz, S., Gomaa, H.: Concurrent object-oriented develop-
ment with behavioral design patterns. Technical report, http://arxiv.org/abs/
1212.5491 (2012)

7. Gomaa, H.: Software Modeling and Design: UML, Use Cases, Patterns, and Soft-
ware Architectures. Cambridge University Press (2011)

8. SCOOP implementations of design patterns. https://github.com/scottgw/

scoop_design_patterns (2013)
9. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

Oriented Software Architecture: A System of Patterns. John Wiley & Sons (1996)
10. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-

pline. Prentice-Hall (1996)
11. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,

Theory, and Practice. Wiley (2009)
12. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. 2nd edn.

Addison-Wesley (2003)
13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley (1995)
14. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software

Architecture: Patterns for Concurrent and Networked Objects. Wiley (2000)
15. Pettit, IV, R.G., Gomaa, H.: Modeling behavioral design patterns of concurrent

objects. In: ICSE’06, ACM (2006) 202–211

http://arxiv.org/abs/1212.5491
http://arxiv.org/abs/1212.5491
https://github.com/scottgw/scoop_design_patterns
https://github.com/scottgw/scoop_design_patterns

	Concurrent Object-Oriented Development with Behavioral Design Patterns

