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Abstract—This paper describes AutoFix, an automatic debugging tech-
nique that can fix faults in general-purpose software. To provide high-
quality fix suggestions and to enable automation of the whole debugging
process, AutoFix relies on the presence of simple specification elements
in the form of contracts (such as pre- and postconditions). Using
contracts enhances the precision of dynamic analysis techniques for
fault detection and localization, and for validating fixes. The only required
user input to the AutoFix supporting tool is then a faulty program
annotated with contracts; the tool produces a collection of validated fixes
for the fault ranked according to an estimate of their suitability.

In an extensive experimental evaluation, we applied AutoFix to over
200 faults in four code bases of different maturity and quality (of imple-
mentation and of contracts). AutoFix successfully fixed 42% of the faults,
producing, in the majority of cases, corrections of quality comparable
to those competent programmers would write; the used computational
resources were modest, with an average time per fix below 20 minutes
on commodity hardware. These figures compare favorably to the state
of the art in automated program fixing, and demonstrate that the AutoFix
approach is successfully applicable to reduce the debugging burden in
real-world scenarios.
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1 INTRODUCTION

THE programmer’s ever recommencing fight against
errors involves two tasks: finding faults; and cor-

recting them. Both are in dire need of at least partial
automation.

Techniques to detect errors automatically are becoming
increasingly available and slowly making their way into
industrial practice [1], [2], [3]. In contrast, automating the
whole debugging process—in particular, the synthesis of
suitable fixes—is still a challenging problem, and only
recently have usable techniques (reviewed in Section 6)
started to appear.

AutoFix, described in this paper, is a technique and
supporting tool that can generate corrections for faults
of general-purpose software1 completely automatically.
AutoFix targets programs annotated with contracts—
simple specification elements in the form of precon-
ditions, postconditions, and class invariants. Contracts
provide a specification of correct behavior that can be
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1. As opposed to the domain-specific programs targeted by related
repair techniques, which we review in Section 6.2.

used not only to detect faults automatically [4] but
also to suggest corrections. The current implementation
of AutoFix is integrated in the open-source Eiffel Ver-
ification Environment [5]—the research branch of the
EiffelStudio IDE—and works on programs written in
Eiffel; its concepts and techniques are, however, appli-
cable to any programming language supporting some
form of annotations (such as JML for Java or the .NET
CodeContracts libraries).

AutoFix combines various program analysis
techniques—such as dynamic invariant inference,
simple static analysis, and fault localization—and
produces a collection of suggested fixes, ranked
according to a heuristic measurement of relevance.
The dynamic analysis for each fault is driven by a
set of test cases that exercise the routine (method)
where the fault occurs. While the AutoFix techniques
are independent of how these test cases have been
obtained, all our experiments so far have relied on the
AutoTest random-testing framework to generate the
test cases, using the contracts as oracles. This makes
for a completely automatic debugging process that goes
from detecting a fault to suggesting a patch for it. The
only user input is a program annotated with the same
contracts that programmers using a contract-equipped
language normally write [6], [7].

In previous work, we presented the basic algorithms
behind AutoFix and demonstrated them on some pre-
liminary examples [8], [9]. The present paper discusses
the latest AutoFix implementation, which combines and
integrates the previous approaches to improve the flexi-
bility and generality of the overall fixing technique. The
paper also includes, in Section 5, an extensive experi-
mental evaluation that applied AutoFix to over 200 faults
in four code bases, including both open-source software
developed by professionals and student projects of vari-
ous quality. AutoFix successfully fixed 86 (or 42%) of the
faults; inspection shows that 51 of these fixes are genuine
corrections of quality comparable to those competent
programmers would write. The other 35 fixes are not
as satisfactory—because they may change the intended
program behavior—but are still useful patches that pass
all available regression tests; hence, they avoid program
failure and can be used as suggestions for further debug-
ging. AutoFix required only limited computational re-
sources to produce the fixes, with an average time per fix
below 20 minutes on commodity hardware (about half
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of the time is used to generate the test cases that expose
the fault). These results provide strong evidence that
AutoFix is a promising technique that can correct many
faults found in real programs completely automatically,
often with high reliability and modest computational
resources.

In the rest of the paper, Section 2 gives an overview
of AutoFix from a user’s perspective, presenting a fault
fixed automatically; the fault is included in the evalua-
tion (Section 5) and is used as running example. Section 3
introduces some concepts and notation repeatedly used
in the rest of the paper, such as the semantics of contracts
and the program expressions manipulated by Auto-
Fix. Section 4 presents the AutoFix algorithm in detail
through its successive stages: program state abstraction,
fault localization, synthesis of fix actions, generation of
candidate fixes, validation of candidates, and ranking
heuristics. Section 5 discusses the experimental evalua-
tion, including a detailed statistical analysis of numerous
important measures. Section 6 presents related work and
compares it with our contribution. Finally, Section 7
includes a summary and concluding remarks.

2 AUTOFIX IN ACTION

We begin with a concise demonstration of how AutoFix,
as seen from a user’s perspective, fixes faults completely
automatically.

2.1 Moving items in sorted sets
Class TWO WAY SORTED SET is the standard Eiffel
implementation of sets using a doubly-linked list. Fig-
ure 2 outlines features (members) of the class, some
annotated with their pre- (require) and postconditions
(ensure).2 As pictured in Figure 1, the integer attribute
index is an internal cursor useful to navigate the content
of the set: the set elements occupy positions 1 to count
(another integer attribute, storing the total number of
elements in the set), whereas the indexes 0 and count + 1
correspond to the positions before the first element
and after the last. before and after are also Boolean
argumentless queries (member functions) that return
True when the cursor is in the corresponding boundary
positions.

Figure 2 also shows the complete implementation of
routine move item, which moves an element v (passed
as argument) from its current (unique) position in the
set to the immediate left of the internal cursor index. For
example, if the list contains 〈a, b, c, d〉 and index is 2 upon
invocation (as in Figure 1), move item (d) changes the
list to 〈a, d, b, c〉. move item’s precondition requires that
the actual argument v be a valid reference (not Void,
that is not null) to an element already stored in the set
(has(v)). After saving the cursor position as the local
variable idx, the loop in lines 35–38 performs a linear

2. All annotations were provided by developers as part of the library
implementation.
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Fig. 1: A doubly-linked list implementing
TWO WAY SORTED SET. The cursor index is on
position 2. The elements are stored in positions 1 to 4,
whereas positions 0 ( before ) and 5 ( after ) mark the
list’s boundaries. count denotes the number of stored
elements (i.e., four).

search for the element v using the internal cursor: when
the loop terminates, index denotes v’s position in the set.
The three routine calls on lines 40–42 complete the work:
remove takes v out of the set; go i th restores index to its
original value saved in idx; put left puts v back in the
set to the left of the position index.

2.2 An error in move item

Running AutoTest on class TWO WAY SORTED SET
for only a few minutes exposes, completely automati-
cally, an error in the implementation of move item.

The error is due to the property that calling remove
decrements the count of elements in the set by one.
AutoTest produces a test that calls move item when index
equals count + 1; after v is removed, this value is not
a valid position because it exceeds the new value of
count by two, while a valid cursor ranges between 0
and count + 1. The test violates go i th’s precondition
(line 23), which enforces the consistency constraint on
index, when move item calls it on line 41.

This fault is quite subtle, and the failing test rep-
resents only a special case of a more general faulty
behavior that occurs whenever v appears in the set
in a position to the left of the initial value of index:
even if index ≤ count initially, put left will insert v in
the wrong position as a result of remove decrement-
ing count—which indirectly shifts the index of every
element after index to the left by one. For example,
if index is 3 initially, calling move item (d) on 〈a, d, b, c〉
changes the set to 〈a, b, d, c〉, but the correct behavior is
leaving it unchanged. Such additional inputs leading to
erroneous behavior go undetected by AutoTest because
the developers of TWO WAY SORTED SET provided
an incomplete postcondition; the class lacks a query to
characterize the fault condition in general terms.3

2.3 Automatic correction of the error in move item

AutoFix collects the test cases generated by AutoTest
that exercise routine move item. Based on them, and
on other information gathered by dynamic and static

3. Recent work [10], [11], [12] has led to new versions of the
libraries with strong (often complete) contracts, capturing all relevant
postcondition properties.
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1 index : INTEGER −− Position of internal cursor.
2

3 count : INTEGER −− Number of elements in the set.
4

5 before : BOOLEAN −− Is index = 0 ?
6 do Result := (index = 0) end
7

8 after : BOOLEAN −− Is index = count + 1 ?
9

10 off : BOOLEAN −− Is cursor before or after ?
11

12 item : G −− Item at current cursor position.
13 require not off
14

15 forth −− Move cursor forward by one.
16 require not after
17 ensure index = old index + 1
18

19 has (v: G): BOOLEAN −− Does the set contain v ?
20 ensure Result implies count 6= 0
21

22 go i th ( i : INTEGER) −− Move cursor to position i.
23 require 0≤ i ≤ count + 1
24

25 put left (v : G) −− Insert v to the left of cursor.
26 require not before
27

28 move item (v : G) −− Move v to the left of cursor.
29 require
30 v 6=Void
31 has (v)
32 local idx : INTEGER ; found: BOOLEAN
33 do
34 idx := index
35 from start until found or after loop
36 found := (v = item)
37 if not found then forth end
38 end
39 check found and not after end
40 remove
41 go i th ( idx)
42 put left (v)
43 end

Fig. 2: Some features of class TWO WAY SORTED SET.

44 if idx > index then
45 idx := idx − 1
46 end

Fig. 3: Correction of the error in move item automatically
generated by AutoFix.

analysis, it produces, after running only a few minutes
on commodity hardware without any user input, up
to 10 suggestions of fixes for the error discussed. The
suggestions include only valid fixes: fixes that pass all
available tests targeting move item. Among them, we find
the “proper” fix in Figure 3, which completely corrects the
error in a way that makes us confident enough to deploy
it in the program. The correction consists of inserting the
lines 44–46 in Figure 3 before the call to go i th on line 41
in Figure 2. The condition idx > index holds precisely
when v was initially in a position to the left of index ; in
this case, we must decrement idx by one to accommodate
the decreased value of count after the call to remove. This
fix completely corrects the error beyond the specific case
reported by AutoTest, even though move item has no
postcondition that formalizes its intended behavior.

3 PRELIMINARIES: CONTRACTS, TESTS, AND
PREDICATES

To identify faults, distinguish between correct and faulty
input, and abstract the state of objects at runtime, Auto-
Fix relies on basic concepts which will now be summa-
rized.

3.1 Contracts and correctness
AutoFix works on Eiffel classes equipped with con-
tracts [13]. Contracts define the specification of a class
and consist of assertions: preconditions (require), post-
conditions (ensure), intermediate assertions (check), and
class invariants (translated for simplicity of presentation
into additional pre- and postconditions in the examples
of this paper). Each assertion consists of one or more
clauses, implicitly conjoined and usually displayed on
different lines; for example, move item’s precondition has
two clauses: v 6=Void on line 30 and has(v) on line 31.

Contracts provide a criterion to determine the correct-
ness of a routine: every execution of a routine starting
in a state satisfying the precondition (and the class
invariant) must terminate in a state satisfying the post-
condition (and the class invariant); every intermediate
assertion must hold in any execution that reaches it;
every call to another routine must occur in a state
satisfying the callee’s precondition. Whenever one of
these conditions is violated, we have a fault,4 uniquely
identified by a location in the routine where the violation
occurred and by the specific contract clause that is

4. Since contracts provide a specification of correct behavior, contract
violations are actual faults and not mere failures.
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violated. For example, the fault discussed in Section 2
occurs on line 42 in routine move item and violates the
single precondition clause of put left .

3.2 Tests and correctness
In this work, a test case t is a sequence of object creations
and routine invocations on the objects; if r is the last
routine called in t, we say that t is a test case for r. A
test case is passing if it terminates without violating any
contract and failing otherwise.5

Every session of automated program fixing takes as
input a set T of test cases, partitioned into sets P
(passing) and F (failing). Each session targets a single
specific fault—identified by some failing location f in
some routine r and by a violated contract clause c. When
we want to make the targeted fault explicit, we write Tr,
Pr, and F f,c

r . For example, F 42,not before
move item denotes a set of

test cases all violating put left ’s precondition at line 42
in move item.

The fixing algorithm described in Section 4 is in-
dependent of whether the test cases T are generated
automatically or written manually. The experiments dis-
cussed in Section 5 all use the random testing framework
AutoTest [4] developed in our previous work. Relying
on AutoTest makes the whole process, from fault de-
tection to fixing, completely automatic; our experiments
show that even short AutoTest sessions are sufficient
to produce suitable test cases that AutoFix can use for
generating good-quality fixes.

3.3 Expressions and predicates
AutoFix understands the causes of faults and builds fixes
by constructing and analyzing a number of abstractions
of the program states. Such abstractions are based on
Boolean predicates that AutoFix collects from three basic
sources:
• argumentless Boolean queries;
• expressions appearing in the program text or in

contracts;
• Boolean combinations of basic predicates (previous

two items).

3.3.1 Argumentless Boolean queries
Classes are usually equipped with a set of argumentless
Boolean-valued functions (called Boolean queries from
now on), defining key properties of the object state: a
list is empty or not, the cursor is on boundary positions
or before the first element (off and before in Figure 2), a
checking account is overdrawn or not. For a routine r,
Qr denotes the set of all calls to public Boolean queries
on objects visible in r’s body or contracts.

Boolean queries characterize fundamental object prop-
erties. Hence, they are good candidates to provide useful
characterizations of object states: being argumentless,

5. Since execution cannot continue after a failure, a test case can only
fail in the last call.

they describe the object state absolutely, as opposed to
in relation with some given arguments; they usually do
not have preconditions, and hence are always defined;
they are widely used in object-oriented design, which
suggests that they model important properties of classes.
Some of our previous work [14], [15] showed the effec-
tiveness of Boolean queries as a guide to partitioning the
state space for testing and other applications.

3.3.2 Program expressions
In addition to programmer-written Boolean queries, it
is useful to build additional predicates by combining
expressions extracted from the program text of failing
routines and from failing contract clauses. For a routine r
and a contract clause c, the set Er,c denotes all expressions
(of any type) that appear in r’s body or in c. We normally
compute the set Er,c for a clause c that fails in some ex-
ecution of r; for illustrative purposes, however, consider
the simple case of the routine before and the contract
clause index >1 in Figure 2: E before , index >1 consists of the
expressions Result, index , index = 0, index > 1, 0, 1.

Then, with the goal of collecting additional expres-
sions that are applicable in the context of a routine r
for describing program state, the set Er,c extends Er,c

by unfolding [6]: Er,c includes all elements in Er,c and,
for every e ∈ Er,c of reference type t and for every
argumentless query q applicable to objects of type t, Er,c

also includes the expression e .q (a call of q on target
e). In the example, E before ,index >1 = E before ,index >1 because
all the expressions in E before ,index >1 are of primitive type
(integer or Boolean), but this will no longer be the case
for assertions involving references.

Finally, we combine the expressions in Er,c to form
Boolean predicates; the resulting set is denoted Br,c. The
set Br,c contains all predicates built according to the
following rules:

Boolean expressions: b, for every Boolean b ∈ Er,c of
Boolean type (including, in particular, the Boolean
queries Qr defined in Section 3.3.1);

Voidness checks: e = Void, for every e ∈ Er,c of
reference type;

Integer comparisons: e ∼ e′, for every e ∈ Er,c of
integer type, every e′ ∈ Er,c\{e}∪{0} also of integer
type,6 and every comparison operator ∼ in {=, <,
≤};

Complements: not p, for every p ∈ Br,c.
In the example, B before ,index >1 contains Result and
not Result, since Result has Boolean type; the com-
parisons index <0, index ≤ 0, index = 0, index 6=0,
index ≥ 0, and index >0; and the same comparisons
between index and the constant 1.

3.3.3 Combinations of basic predicates
One final source of predicates comes from the observa-
tion that the values of Boolean expressions describing

6. The constant 0 is always included because it is likely to expose
relevant cases.
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AutoFix

Eiffel program

class SET
...

end

Test cases

forth ; move 3
back ; move 7

Suspicious
snapshots

2. line 41: idx >index

Fix actions

1. forth
2. idx := 1

Candidate fixes

1. line 42:
>if before then forth

2. line 41:
>if idx >index then idx := 1

Valid fixes

line 42:

>if before then forth 3

Fig. 4: How AutoFix works. Given an Eiffel program
with contracts (Section 3.1), we generate passing and
failing test cases that target a faulty routine (Section 3.2).
By comparing the program state during passing and
failing runs, AutoFix identifies suspicious snapshots (Sec-
tions 4.1–4.2) that denote likely locations and causes of
failures. For each suspicious snapshot, AutoFix generates
fix actions (Section 4.3) that can change the program state
of the snapshot. Injecting fix actions into the original
program determines a collection of candidate fixes (Sec-
tion 4.4). The candidates that pass the regression test
suite are valid (Section 4.5) and output to the user.

object states are often correlated. For example, off al-
ways returns True on an empty set (Figure 2); thus, the
implication count = 0 implies off describes a correlation
between two predicates that partially characterizes the
semantics of routine off .

Considering all possible implications between predi-
cates is impractical and leads to a huge number of often
irrelevant predicates. Instead, we define the set Pr,c as
the superset of Br,c that also includes:

• All implications appearing in c, in contracts of r, or
in contracts of any routine appearing in Br,c;

• For every implication a implies b collected
from contracts, its mutations not a implies b,
a implies not b, b implies a obtained by negating
the antecedent a, the consequent b, or both.

These implications are often helpful in capturing the
object state in faulty runs.

The collection of implications and their mutations
may contain redundancies in the form of implications
that are co-implied (they are always both true or both
false). Redundancies increase the size of the predicate
set without providing additional information. To prune
redundancies, we use the automated theorem prover
Z3 [16]: we iteratively remove redundant implications
until we reach a fixpoint. In the remainder, we assume

Pr,c has pruned out redundant implications using this
procedure.

4 HOW AUTOFIX WORKS

Fig. 4 summarizes the steps of AutoFix processing, from
failure to fix. The following subsections give the details.

AutoFix starts with a set of test cases, some passing
and some failing, that expose a specific fault. The fault
being fixed is characterized by a program location f
and by a violated contract clause c (Section 3.2); the
presentation in this section leaves f and c implicit
whenever clear from the context. The notion of snapshot
(described in Section 4.1) is the fundamental abstraction
for characterizing and understanding the behavior of the
program in the passing or failing test cases; AutoFix
uses snapshots to model correct and incorrect behavior.
Fixing a fault requires finding a suitable location where
to modify the program to remove the source of the
error. Since each snapshot refers to a specific program
location, fault localization (described in Section 4.2) boils
down to ranking snapshots according to a combination
of static and dynamic analyses that search for the origins
of faults.

Once AutoFix has decided where to modify the pro-
gram, it builds a code snippet that changes the program
behavior at the chosen location. AutoFix synthesizes
such fix actions, described in Section 4.3, by combin-
ing the information in snapshots with heuristics and
behavioral abstractions that amend common sources of
programming errors.

AutoFix injects fix actions at program locations ac-
cording to simple conditional schema; the result is a
collection of candidate fixes (Section 4.4). The following
validation phase (Section 4.5) determines which candi-
date fixes pass all available test cases and can thus be
retained.

In general, AutoFix builds several valid fixes for the
same fault; the valid fixes are ranked according to heuris-
tic measures of “quality” (Section 4.6), so that the best
fixes are likely to emerge in top positions.

The latest implementation of AutoFix combines two
approaches developed in previous work: model-based
techniques [8] and code-based techniques [9].

4.1 Program state abstraction: snapshots

The first phase of the fixing algorithm constructs abstrac-
tions of the passing and failing runs that assess the pro-
gram behavior in different conditions. These abstractions
rely on the notion of snapshot7: a triple

〈`, p, v〉 ,

consisting of a program location `, a Boolean predicate p,
and a Boolean value v. A snapshot abstracts one or more

7. In previous work [9], we used the term “component” instead of
“snapshot”.
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program executions that reach location ` with p evaluat-
ing to v. For example, 〈31, v = Void,False〉 describes that
the predicate v = Void evalutes to False in an execution
reaching line 31.

Consider a routine r failing at some location f by
violating a contract clause c. Given a set Tr of test cases
for this fault, partitioned into passing Pr and failing
F f,c
r as described in Section 3.2, AutoFix constructs a

set snap(Tr) of snapshots. The snapshots come from two
sources: invariant analysis (described in Section 4.1.1)
and enumeration (Section 4.1.2).

We introduce some notation to define snapshots. A
test case t ∈ Tr describes a sequence loc(t) = `1, `2, . . . of
executed program locations. For an expression e and a
location ` ∈ loc(t), [[e]]`t is the value of e at ` in t, if e can
be evaluated at ` (otherwise, [[e]]`t is undefined).

4.1.1 Invariant analysis
An invariant at a program location ` with respect to a set
of test cases is a collection of predicates that all hold at
` in every run of the tests.8 AutoFix uses Daikon [17] to
infer invariants that characterize the passing and failing
runs; their difference determine some snapshots that
highlight possible failure causes.9

For each location ` reached by some tests in Tr, we
compute the passing invariant π` as the collection of
predicates that hold in all passing tests Pr ⊂ Tr; and
the failing invariant φ` as the collection of predicates
that hold in all failing tests in F f,c

r ⊆ Tr. AutoFix uses
only invariants built out of publicly visible predicates in
Pr,c. The predicates in Π = {p | p ∈ φ` and ¬p ∈ π`}
characterize potential causes of errors, as Π contains
predicates that hold in failing runs but not in passing
runs.10 Correspondingly, the set snap(Tr) includes all
components 〈

`,
∧
p∈Π

p,True

〉
,

for every non-empty subset Π of Π that profiles potential
error causes.

The rationale for considering differences of sets of
predicates is similar to the ideas behind the predicate
elimination strategies in “cooperative bug isolation”
techniques [18]. The dynamic analysis described in Sec-
tion 4.2.2 would assign the highest dynamic score to
snapshots whose predicates correspond to the determin-
istic bug predictors in cooperative bug isolation.

4.1.2 Enumeration
For each test t ∈ Tr, each predicate p ∈ Pr,c, and
each location ` ∈ loc(t) reached in t’s execution where

8. The class invariants mentioned in Section 3.1 are a special case.
9. Using Daikon is an implementation choice made to take advan-

tage of its useful collection of invariant templates, which includes
Boolean combinations beyond those described in Section 3.3.

10. Since the set of predicates used by AutoFix is closed under
complement (Section 3.3), Π is equivalently computed as the negations
of the predicates in {p | p ∈ π` and ¬p ∈ φ`}.

the value of p is defined, the set snap(Tr) of snapshots
includes

〈`, p, [[p]]`t〉 ,

where p is evaluated at ` in t.
In the case of the fault of routine move item (discussed

in Section 2), the snapshots include, among many others,
〈34, v = Void,False〉 (every execution has v 6=Void when
it reaches line 34) and 〈41, idx > index,True〉 (executions
failing at line 41 have idx > index).

Only considering snapshots corresponding to actual
test executions avoids a blow-up in the size of snap(Tr).
In our experiments (Section 5), the number of snapshots
enumerated for each fault ranged from about a dozen
to few hundreds; those achieving a high suspiciousness
score (hence actually used to build fixes, as explained in
Section 4.2.3) typically targeted only one or two locations
` with different predicates p.

4.2 Fault localization

The goal of the fault localization phase is to determine
which snapshots in snap(Tr) are reliable characteriza-
tions of the reasons for the fault under analysis. Fault
localization in AutoFix computes a number of heuristic
measures for each snapshot, described in the following
subsections; these include simple syntactic measures
such as the distance between program statements (Sec-
tion 4.2.1) and metrics based on the runtime behavior
of the program in the passing and failing tests (Sec-
tion 4.2.2).

The various measures are combined in a ranking of
the snapshots (Section 4.2.3) to estimate their “suspicious-
ness”: each triple 〈`, p, v〉 is assigned a score susp〈`, p, v〉
which assesses how suspicious the snapshot is. A high
ranking for a snapshot 〈`, p, v〉 indicates that the fault
is likely to originate at location ` when predicate p
evaluates to v. The following phases of the fixing algo-
rithm only target snapshots achieving a high score in the
ranking.

4.2.1 Static analysis
The static analysis performed by AutoFix is based on
simple measures of proximity and similarity: control
dependence measures the distance, in terms of number of
instructions, between two program locations; expression
dependence measures the syntactic similarity between
two predicates. Both measures are variants of standard
notions used in compiler construction [19], [20]. AutoFix
uses control dependence to estimate the proximity of
a location to where a contract violation is triggered;
the algorithm then differentiates further among expres-
sions evaluated at nearby program locations according
to syntactic similarity between each expression and the
violated contract clause. Static analysis provides coarse-
grained measures that are only useful when combined
with the more accurate dynamic analysis (Section 4.2.2)
as described in Section 4.2.3.
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Control dependence. AutoFix uses control depen-
dence to rank locations (in snapshots) according to
proximity to the location of failure. For two program
locations `1, `2, write `1  `2 if `1 and `2 belong to the
same routine and there exists a directed path from `1
to `2 on the control-flow graph of the routine’s body;
otherwise, `1 6 `2. The control distance cdist(`1, `2) of two
program locations is the length of the shortest directed
path from `1 to `2 on the control-flow graph if `1  `2,
and ∞ if `1 6 `2. For example, cdist(40, 42) = 2 in
Figure 2.

Correspondingly, when `  , the control dependence
cdep(`, ) is the normalized score:

cdep(`, ) = 1− cdist(`, )

max{cdist(λ, ) | λ ∈ r and λ }
,

where λ ranges over all locations in routine r (where `
and  also appear); otherwise, ` 6  and cdep(`, ) = 0.

Ignoring whether a path in the control-flow graph
is feasible when computing control-dependence scores
does not affect the overall precision of AutoFix’s heuris-
tics: Section 4.2.3 shows how static analysis scores are
combined with a score obtained by dynamic analysis;
when the latter is zero (the case for unfeasible paths,
which no test can exercise), the overall score is also zero
regardless of static analysis scores.

Expression dependence. AutoFix uses expression de-
pendence to rank expressions (in snapshots) according to
similarity to the contract clause violated in a failure. Ex-
pression dependence is meaningful for expressions eval-
uated in the same local environment (that is, with strong
control dependence), where the same syntax is likely to
refer to identical program elements. Considering only
syntactic similarity is sufficient because AutoFix will be
able to affect the value of any assignable expressions (see
Section 4.3). For an expression e, define the set sub(e) of
its sub-expressions as follows:

• e ∈ sub(e);
• if e′ ∈ sub(e) is a query call of the form
t.q (a1, . . . , am) for m ≥ 0, then t ∈ sub(e) and
ai ∈ sub(e) for all 1 ≤ i ≤ m.

This definition also accommodates infix operators (such
as Boolean connectives and arithmetic operators), which
are just syntactic sugar for query calls; for example a
and b are both sub-expressions of a + b, a shorthand
for a . plus (b). Unqualified query calls are treated as
qualified call on the implicit target Current.

The expression proximity eprox(e1, e2) of two
expressions e1, e2 measures how similar e1 and e2 are in
terms of shared sub-expressions; namely, eprox(e1, e2) =
|sub(e1) ∩ sub(e2)| . For example, the expression
proximityeprox( i ≤ count, 0 ≤ i ≤ count + 1) is 2,
corresponding to the shared sub-expressions i and
count. The larger the expression proximity between two
expressions is, the more similar they are.

Correspondingly, the expression dependence edep(p, c) is

the normalized score:

edep(p, c) =
eprox(p, c)

max{eprox(π, c) | π ∈ Pr,c}
,

measuring the amount of evidence that p and c
are syntactically similar. In routine before in Fig-
ure 2, for example, edep(index, index = 0) is 1/3 because
eprox(index, index = 0) = 1 and index = 0 itself has the
maximum expression proximity to index = 0.

4.2.2 Dynamic analysis
Our dynamic analysis borrows techniques from generic
fault localization [21] to determine which locations are
likely to host the cause of failure. Each snapshot receives
a dynamic score dyn〈`, p, v〉, roughly measuring how often
it appears in failing runs as opposed to passing runs.
A high dynamic score is empirical evidence that the
snapshot characterizes the fault and suggests what has
to be changed; we use static analysis (Section 4.2.1)
to differentiate further among snapshots that receive
similar dynamic scores.

Principles for computing the dynamic score. Con-
sider a failure violating the contract clause c at location
f in some routine r. For a test case t ∈ Tr and a
snapshot 〈`, p, v〉 such that ` is a location in r’s body,
write 〈`, p, v〉 ∈ t if t reaches location ` at least once and
p evaluates to v there:

〈`, p, v〉 ∈ t iff ∃`i ∈ loc(t), ` = `i, and v = [[p]]`it .

For every test case t ∈ Tr such that 〈`, p, v〉 ∈ t, σ(t)
describes t’s contribution to the dynamic score of 〈`, p, v〉:
a large σ(t) should denote evidence that 〈`, p, v〉 is a
likely “source” of error if t is a failing test case, and
evidence against it if t is passing. We choose a σ that
meets the following requirements:
(a) If there is at least one failing test case t such that
〈`, p, v〉 ∈ t, the overall score assigned to 〈`, p, v〉
must be positive: the evidence provided by failing
test cases cannot be canceled out completely.

(b) The magnitude of each failing (resp. passing)
test case’s contribution σ(t) to the dynamic score
assigned to 〈`, p, v〉 decreases as more failing
(resp. passing) test cases for that snapshot are avail-
able: the evidence provided by the first few test cases
is crucial, while repeated outcomes carry a lower
weight.

(c) The evidence provided by one failing test case alone
is stronger than the evidence provided by one pass-
ing test case.

The first two principles correspond to “Heuristic III” of
Wong et al. [21], whose experiments yielded better fault
localization accuracy than most alternative approaches.
According to these principles, snapshots appearing only
in failing test cases are more likely to be fault causes.

AutoFix’s dynamic analysis assigns scores starting
from the same basic principles as Wong et al.’s, but with
differences suggested by the ultimate goal of automatic



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 8

fixing: our dynamic score ranks snapshots rather than
just program locations, and assigns weight to test cases
differently. Contracts help find the location responsible
for a fault: in many cases, it is close to where the
contract violation occurred; on the other hand, automatic
fixing requires gathering information not only about the
location but also about the state “responsible” for the
fault. This observation led to the application of fault
localization principles on snapshots in AutoFix. It is
also consistent with recent experimental evidence [22]
suggesting that the behavior of existing fault localization
techniques on the standard benchmarks used to evaluate
them is not always a good predictor of their performance
in the context of automated program repair; hence the
necessity of adapting to the specific needs of automated
fixing.11

Dynamic score. Assume an arbitrary order on the test
cases and let σ(t) be αi for the i-th failing test case t and
βαi for the i-th passing test case. Selecting 0 < α < 1
decreases the contribution of each test case exponentially,
which meets principle (b); then, selecting 0 < β < 1
fulfills principle (c).

The evidence provided by each test case adds up:

dyn〈`, p, v〉= γ+
∑{

σ(u) |u ∈ F f,c
r

}
−
∑
{σ(v) | v ∈ Pr} ,

for some γ ≥ 0; the chosen ordering is immaterial. We
compute the score with the closed form of geometric
progressions:

#p〈`, p, v〉= |{t ∈ Pr | 〈`, p, v〉 ∈ t}| ,
#f〈`, p, v〉=

∣∣{t ∈ F f,c
r | 〈`, p, v〉 ∈ t

}∣∣ ,
dyn〈`, p, v〉=γ +

α

1− α

(
1− β + βα#p〈`,p,v〉 − α#f〈`,p,v〉

)
,

where #p〈`, p, v〉 and #f〈`, p, v〉 are the number of pass-
ing and failing test cases that determine the snapshot
〈`, p, v〉. It is straightforward to prove that dyn〈`, p, v〉 is
positive if #f〈`, p, v〉 ≥ 1, for every nonnegative α, β, γ
such that 0 < α+ β < 1; hence the score meets principle
(a) as well.

Since the dynamic score dyn varies exponentially only
with the number of passing and failing test cases, the
overall success rate of the AutoFix algorithm is affected
mainly by the number of tests but not significantly
by variations in the values of α and β. A small em-
pirical trial involving a sample of the faults used in
the evaluation of Section 5 confirmed this expectation
of robustness; it also suggested selecting the values
α = 1/3, β = 2/3, and γ = 1 as defaults in the cur-
rent implementation of AutoFix, which tend to produce
slightly shorter running times on average (up to 10%
improvement). With these values, one can check that
2/3 < dyn〈`, p, v〉 < 3/2, and 1 < dyn〈`, p, v〉 < 3/2 if
at least one failing test exercises the snapshot.

11. The results of Wong et al.’s heuristics in Qi et al.’s experi-
ments [22] are not directly applicable to AutoFix (which uses different
algorithms and adapts Wong et al.’s heuristics to its specific needs);
replication belongs to future work.

4.2.3 Overall score
AutoFix combines the various metrics into an overall
score susp〈`, p, v〉. The score puts together static and
dynamic metrics with the idea that the latter give the
primary source of evidence, whereas the less precise
evidence provided by static analysis is useful to discrim-
inate among snapshots with similar dynamic behavior.

Since the static measures are normalized ratios, and
the dynamic score is also fractional, we may combine
them by harmonic mean [23]:

susp〈`, p, v〉 =
3

edep(p, c)−1+cdep(`, f)−1+dyn〈`, p, v〉−1 .

Our current choice of parameters for the dynamic score
(Section 4.2.2) makes it dominant in determining the
overall score susp〈`, p, v〉: while expression and control
dependence vary between 0 and 1, the dynamic score
has minimum 1 (for at least one failing test case and
indefinitely many passing). This range difference is con-
sistent with the principle that dynamic analysis is the
principal source of evidence.

For the fault of Figure 2, the snapshot
〈41, idx > index,True〉 receives a high overall score.
AutoFix targets snapshots such as this in the fix action
phase.

4.3 Fix action synthesis
A snapshot 〈`, p, v〉 in snap(Tr) with a high score
susp〈`, p, v〉 suggests that the “cause” of the fault under
analysis is that expression p takes value v when the
execution reaches `. Correspondingly, AutoFix tries to
build fixing actions (snippets of instructions) that modify
the value of p at `, so that the execution can hopefully
continue without triggering the fault. This view reduces
fixing to a program synthesis problem: find an action
snip that satisfies the specification:

require p = v do snip ensure p 6=v end .

AutoFix uses two basic strategies for generating fixing
actions: setting and replacement. Setting (described in
Section 4.3.1) consists of modifying the value of variables
or objects through assignments or routine calls. Replace-
ment (described in Section 4.3.2) consists of modifying
the value of expressions directly where they are used
in the program. Three simple heuristics, with increasing
specificity, help prevent the combinatorial explosion in
the generation of fixing actions:

1) Since the majority of program fixes are short and
simple [24], [25], we only generate fixing actions that
consist of simple instructions;

2) We select the instructions in the actions according to
context (the location that we are fixing) and common
patterns, and based on behavioral models of the
classes (Section 4.3.3);

3) For integer expressions, we also deploy constraint
solving techniques to build suitable derived expres-
sions (Section 4.3.4).
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We now describe actions by setting and replacements,
which are the basic mechanisms AutoFix uses to synthe-
size actions, as well as the usage of behavioral models
and constraint solving. To limit the number of candi-
dates, AutoFix uses no more than one basic action in
each candidate fix.

4.3.1 Actions by setting
One way to change the value of a predicate is to modify
the value of its constituent expressions by assigning new
values to them or by calling modifier routines on them.
For example, calling routine forth on the current object
has the indirect effect of setting predicate before to False.

Not all expressions are directly modifiable by setting;
an expression e is modifiable at a location ` if: e is of refer-
ence type (hence we can use e as target of routine calls);
or e is of integer type and the assignment e := 0 can be
executed at `; or e is of Boolean type and the assignment
e := True can be executed at `. For example, index is
modifiable everywhere in routine move item because it
is an attribute of the enclosing class; the argument i
of routine go i th, instead, is not modifiable within its
scope because arguments are read-only in Eiffel.

Since the Boolean predicates of snapshots may not be
directly modifiable, we also consider sub-expressions of
any type. The definition of sub-expression (introduced
in Section 4.2.1) induces a partial order �: e1 � e2

iff e1 ∈ sub(e2) that is e1 is a sub-expression of e2;
correspondingly, we define the largest expressions in a
set as those that are only sub-expressions of themselves.
For example, the largest expressions of integer type in
sub(idx < index or after ) are idx and index.

A snapshot 〈`, p, v〉 induces a set of target expres-
sions that are modifiable in the context given by the
snapshot. For each type (Boolean, integer, and refer-
ence), the set targ〈`, p〉 of target expressions includes
the largest expressions of that type among p’s sub-
expressions sub(p) that are modifiable at `. For exam-
ple, targ〈41, idx >Current.index〉 in Figure 2 includes
the reference expression Current, the integer expres-
sions Current.index and idx, but no Boolean expressions
(idx >Current.index is not modifiable because it is not a
valid L-value of an assignment).

Finally, the algorithm constructs the set set〈`, p〉 of
settings induced by a snapshot 〈`, p, v〉 according to the
target types as follows; these include elementary assign-
ments, as well as the available routine calls.

Boolean targets. For e ∈ targ〈`, p〉 of Boolean type,
set〈`, p〉 includes the assignments e := d for d equal to
the constants True and False and to the complement
expression not e.

Integer targets. For e ∈ targ〈`, p〉 of integer type,
set〈`, p〉 includes the assignments e := d for d equal to
the constants 0, 1, and −1, the “shifted” expressions e+1
and e − 1, and the expressions deriving from integer
constraint solving (discussed in Section 4.3.4).

Reference targets. For e ∈ targ〈`, p〉 of reference type,
if e.c (a1, . . . , an) is a call to a command (procedure)

c executable at `, include e.c (a1, . . . , an) in set〈`, p〉.
(Section 4.3.3 discusses how behavioral models help
select executable calls at ` with chances of affecting the
program state indicated by the snapshot.)

In the example of Section 2, the fault’s snap-
shot 〈41, idx > index,True〉 determines the settings
set〈41, idx > index〉 that include assignments of 0, 1,
and −1 to idx and index, and unit increments and
decrements of the same variables.

4.3.2 Actions by replacement
In some cases, assigning new values to an expression
is undesirable or infeasible. For example, expression i in
routine go i th of Figure 2 does not have any modifiable
sub-expression. In such situations, replacement directly
substitutes the usage of expressions in existing instruc-
tions. Replacing the argument idx with idx − 1 on line 41
modifies the effect of the call to go i th without directly
changing any local or global variables.

Every location ` labels either a primitive instruction
(an assignment or a routine call) or a Boolean condition
(the branching condition of an if instruction or the exit
condition of a loop). Correspondingly, we define the set
sub(`) of sub-expressions of a location ` as follows:
• if ` labels a Boolean condition b then sub(`) = sub(b);
• if ` labels an assignment v := e then sub(`) = sub(e);
• if ` labels a routine call t.c (a1, . . . , an) then

sub(`) =
⋃
{sub(ai) | 1 ≤ i ≤ n } .

Then, a snapshot 〈`, p, v〉 determines a set replace〈`, p〉
of replacements: instructions obtained by replacing one
of the sub-expressions of the instruction at ` according
to the same simple heuristics used for setting. More
precisely, we consider expressions e among the largest
ones of Boolean or integer type in sub(p) and we modify
their occurrences in the instruction at `. Notice that if `
labels a conditional or loop, we replace e only in the
Boolean condition, not in the body of the compound
instruction.

Boolean expressions. For e of Boolean type,
replace〈`, p〉 includes the instructions obtained by
replacing each occurrence of e in ` by the constants True
and False and by the complement expression not e.

Integer expressions. For e of integer type, replace〈`, p〉
includes the instructions obtained by replacing each
occurrence of e in ` by the constants 0, 1, and −1,
by the “shifted” expressions e + 1 and e − 1, and by
the expressions deriving from integer constraint solving
(Section 4.3.4).

Continuing the example of the fault of Section 2, the
snapshot 〈41, idx > index,True〉 induces the replacement
set replace〈41, idx > index〉 including go i th ( idx − 1),
go i th ( idx + 1), as well as go i th (0), go i th (1), and
go i th (−1).

4.3.3 Behavioral models
Some of the fixing actions generated by AutoFix try
to modify the program state by calling routines on the
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current or other objects. This generation is not blind but
targets operations applicable to the target objects that
can modify the value of the predicate p in the current
snapshot 〈`, p, v〉. To this end, we exploit the finite-state
behavioral model abstraction to quickly find out the most
promising operations or operation sequences.

is empty
before

not after

not is empty
before

not after

is empty
not before
not after

not is empty
not before
not after

forth

forth

Fig. 5: Behavioral model of routine forth .

Using techniques we previously developed for
Pachika [15], AutoFix extracts a simple behavioral model
from all passing runs of the class under consideration.
The behavioral model represents a predicate abstraction of
the class behavior. It is a finite-state automaton whose
states are labeled with predicates that hold in that state,
and transitions are labeled with routine names, connect-
ing observed pre-state to observed post-states.

As an example, Fig. 5 shows a partial behavioral
model for the forth routine in Figure 2. This behav-
ioral model shows, among other things, that not before
always holds after calls to forth in any valid initial
state. By combining this information with the snapshot
〈42, before ,True〉, we can surmise that invoking forth on
line 42 mutates the current object state so that it avoids
the possible failure cause before = True.

In general, the built behavioral abstraction is neither
complete nor sound because it is based on a finite
number of test runs. Nonetheless, it is often sufficiently
precise to reduce the generation of routine calls to those
that are likely to affect the snapshot state in the few cases
where enumerating all actions by setting (Section 4.3.1)
is impractical.

4.3.4 Constraint solving
In contract-based development, numerous assertions
take the form of Boolean combinations of linear in-
equalities over program variables and constants. The
precondition of go i th on line 23 in Figure 2 is an
example of such linearly constrained assertions (or linear
assertions for short). Such precondition requires that the
argument i denote a valid position inside the set.

When dealing with integer expressions extracted from
linear assertions, we deploy specific techniques to gen-
erate fixing actions in addition to the basic heuristics
discussed in the previous sections (such as trying out
the “special” values 0 and 1). The basic idea is to solve
linear assertions for extremal values compatible with the
constraint. Given a snapshot 〈`, λ, v〉 such that λ is a

linear assertion, and an integer expression j appearing in
λ, AutoFix uses Mathematica to solve λ for maximal and
minimal values of j as a function of the other parameters
(numeric or symbolic) in λ. To increase the quality of
the solution, we strengthen λ with linear assertions
from the class invariants that share identifiers with λ.
In the example of go i th, the class invariant count ≥ 0
would be added to λ when looking for extrema. The
solution consists, in this case, of the extremal values 0
and count + 1, which are both used as replacements
(Section 4.3.2) of variable i .

4.4 Candidate fix generation

Given a “suspicious” snapshot 〈`, p, v〉 in snap(Tr), the
previous section showed how to generate fix actions that
can mutate the value of p at location `. Injecting any
such fix actions at location ` gives a modified program
that is a candidate fix: a program where the faulty be-
havior may have been corrected. We inject fix actions in
program in two phases. First, we select a fix schema—
a template that abstracts common instruction patterns
(Section 4.4.1). Then, we instantiate the fix schema with
the snapshot’s predicate p and some fixing action it
induces (Section 4.4.2).

Whereas the space of all possible fixes generated with
this approach is potentially huge, AutoFix only generates
candidate fixes for the few most suspicious snapshots
(15 most suspicious ones, in the current implementation).
In our experiments, each snapshot determines at most
50 candidate fixes (on average, no more than 30), which
can be validated in reasonable time (see Section 5.3.3).

4.4.1 Fix schemas

AutoFix uses a set of predefined templates called fix
schemas. The four fix schemas currently supported are
shown in Figure 6;12 they consist of conditional wrappers
that apply the fix actions only in certain conditions (with
the exception of schema a which is unconditional). In the
schemas, fail is a placeholder for a predicate, snippet is
a fixing action, and old stmt are the statements in the
original program where the fix is injected.

4.4.2 Schema instantiation

For a state snapshot 〈`, p, v〉, we instantiate the schemas
in Figure 6 as follows:

fail becomes p = v, the snapshot’s predicate and
value.

snippet becomes any fix action by setting (set〈`, p〉
in Section 4.3.1) or by replacement (replace〈`, p〉 in
Section 4.3.2).

old stmt is the instruction at location ` in the original
program.

12. Recent work [25] has demonstrated that these simple schemas
account for a large fraction of the manually-written fixes found in
open-source projects.
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(a) snippet
old stmt

(c) if not fail then
old stmt

end

(b) if fail then
snippet

end
old stmt

(d) if fail then
snippet

else
old stmt

end

Fig. 6: Fix schemas implemented in AutoFix.

The instantiated schema replaces the instruction at posi-
tion ` in the program being fixed; the modified program
is a candidate fix.

For example, consider again the snapshot
〈41, idx > index,True〉, which receives a high
“suspiciousness” score for the fault described in
Section 2 and which induces, among others, the
fix action consisting of decrementing idx. The
corresponding instantiation of fix schema (b) in
Figure 6 is then: fail becomes idx > index = True,
snippet becomes idx := idx − 1, and old stmt is the
instruction go i th ( idx) on line 23 in Figure 2. Injecting
the instantiated schema (replacing line 23) yields the
candidate fix in Figure 3, already discussed in Section 2.

4.5 Fix validation

The generation of candidate fixes, described in the previ-
ous Sections 4.3 and 4.4, involves several heuristics and
is “best effort”: there is no guarantee that the candidates
actually correct the error (or even that they are exe-
cutable programs). Each candidate fix must pass a vali-
dation phase which determines whether its deployment
removes the erroneous behavior under consideration.
The validation phase regressively runs each candidate fix
through the full set Tr of passing and failing test cases
for the routine r being fixed. A fix is validated (or valid)
if it passes all the previously failing test cases F f,c

r and
it still passes the original passing test cases Pr. AutoFix
only reports valid fixes to users, ranked as described in
Section 4.6.

The correctness of a program is defined relative to its
specification; in the case of automated program fixing,
this implies that the validated fixes are only as good as
the available tests or, if these are generated automatically,
as the available contracts. In other words, evidently
incomplete or incorrect contracts may let inappropriate
candidate fixes pass the validation phase.

To distinguish between fixes that merely pass the
validation phase because they do not violate any of the
available contracts and high-quality fixes that developers
would confidently deploy, we introduce the notion of

proper fix. Intuitively, a proper fix is one that removes
a fault without introducing other faulty or unexpected
behavior. More rigorously, assume we have the complete
behavioral specification Sr of a routine r; following our
related work [10], [12], Sr is a pre-/postcondition pair
that characterizes the effects of executing r on every
query (attribute or function) of its enclosing class. A
valid fix is proper if it satisfies Sr; conversely, it is
improper if it is valid but not proper.

While we have demonstrated [12] that it is possible
to formalize complete behavioral specifications in many
interesting cases (in particular, for a large part of the
EiffelBase library used in the experiments of Section 5),
the line between proper and improper may be fuzzy un-
der some circumstances when the notion of “reasonable”
behavior is disputable or context-dependent. Conversely,
there are cases—such as when building a proper fix is
very complex or exceedingly expensive—where a valid
but improper fix is still better than no fix at all because it
removes a concrete failure and lets the program continue
its execution.

In spite of these difficulties of principle, the experi-
ments in Section 5 show that the simple contracts nor-
mally available in Eiffel programs are often good enough
in many practical cases to enable AutoFix to suggest fixes
that we can confidently classify as proper, as they meet
the expectations of real programmers familiar with the
code base under analysis.

4.6 Fix ranking

The AutoFix algorithm often finds several valid fixes for
a given fault. While it is ultimately the programmer’s
responsibility to select which one to deploy, flooding
them with many fixes defeats the purpose of automated
debugging, because understanding what the various
fixes actually do and deciding which one is the most
appropriate is tantamount to the effort of designing a
fix in the first place.

To facilitate the selection, AutoFix ranks the valid fixes
according to the “suspiciousness” score susp〈`, p, v〉 of
the snapshot 〈`, p, v〉 that determined each fix.13 Since
multiple fixing actions may determine valid fixes for
the same snapshot, ties in the ranking are possible. The
experiments in Section 5 demonstrate that high-quality
proper fixes often rank in the top 10 positions among the
valid ones; hence AutoFix users only have to inspect the
top fixes to decide with good confidence if any of them
is deployable.

5 EXPERIMENTAL EVALUATION

We performed an extensive experimental evaluation of
the behavior and performance of AutoFix by applying
it to over 200 faults found in various Eiffel programs.

13. Since all fixing actions are comparatively simple, they do not
affect the ranking of valid fixes, which is only based on suspiciousness
of snapshots.
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The experiments characterize the reproducible average
behavior of AutoFix in a variety of conditions that are in-
dicative of general usage. To ensure generalizable results,
the evaluation follows stringent rules: the experimental
protocol follows recommended guidelines [26] to achieve
statistically significant results in the parts that involve
randomization; the faults submitted to AutoFix come
from four code bases of different quality and maturity; the
experiments characterize usage with limited computational
resources.

Two additional features distinguish this experimental
evaluation from those of most related work (see Sec-
tion 6). First, the experiments try to capture the usage
of AutoFix as a fully automatic tool where user interac-
tion is limited to selecting a project, pushing a button,
and waiting for the results. The second feature of the
evaluation is that it includes a detailed inspection of the
quality of the automatically generated fixes, based on the
distinction between valid and proper fixes introduced in
Section 4.5.

5.1 Experimental questions and summary of find-
ings
Based on the high-level goals just presented, the exper-
imental evaluation addresses the following questions:

Q1 How many faults can AutoFix correct, and what
are their characteristics?

Q2 What is the quality of the fixes produced by Au-
toFix?

Q3 What is the cost of fixing faults with AutoFix?
Q4 How robust is AutoFix’s performance in an

“average” run?
The main findings of the evaluation are as follows:
• AutoFix produced valid fixes for 86 (or 42%) out of

204 randomly detected faults in various programs.
• Of the 86 valid fixes produced by AutoFix, 51 (or

59%) are proper, that is of quality comparable to
those produced by professional programmers.

• AutoFix achieves its results with limited compu-
tational resources: AutoFix ran no more than 15
minutes per fault in 93.1% of the experiments; its
median running time in all our experiments was 3
minutes, with a standard deviation of 6.3 minutes.

• AutoFix’s behavior is, to a large extent, robust with
respect to variations in the test cases produced by
AutoTest: 48 (or 56%) of the faults that AutoFix
managed to fix at least once were fixed (with pos-
sibly different fixes) in over 95% of the sessions. If
we ignore the empty sessions where AutoTest did
not manage to reproduce a fault, AutoFix produced
a valid fix 41% of all non-empty sessions—when
AutoFix is successful, it is robustly so.

5.2 Experimental setup
All the experiments ran on the computing facilities of
the Swiss National Supercomputing Centre consisting

of Transtec Lynx CALLEO High-Performance Servers
2840 with 12 physical cores and 48 GB of RAM. Each
experiment session used exclusively one physical core
at 1.6 GHz and 4 GB of RAM, whose computing power
is similar to that of a commodity personal computer.
Therefore, the experiments reflect the performance of
AutoFix in a standard programming environment.

We now describe the code bases and the faults tar-
geted by the experiments (Section 5.2.1), then present
the experimental protocol (Section 5.2.2).

5.2.1 Experimental subjects
The experiments targeted a total of 204 contract-violation
faults collected from four code bases of different quality
and maturity. The following discussion analyzes whether
such a setup provides a sufficiently varied collection of
subjects that exercise AutoFix in different conditions.

Code bases. The experiments targeted four code bases:
• Base is a data structure library. It consists of the

standard data structure classes from the EiffelBase
and Gobo projects, distributed with the EiffelStudio
IDE and developed by professional programmers
over many years.

• TxtLib is a library to manipulate text documents,
developed at ETH Zurich by second-year bachelor’s
students with some programming experience.

• Cards is an on-line card gaming system, devel-
oped as project for DOSE, a distributed software
engineering course organized by ETH [27] for mas-
ter’s students. Since this project is a collaborative
effort involving groups in different countries, the
students who developed Cards had heterogeneous,
but generally limited, skills and experience with
Eiffel programming and using contracts; their devel-
opment process had to face the challenges of team
distribution.

• ELearn is an application supporting e-learning,
developed in another edition of DOSE.

TABLE 1: Size and other metrics of the code bases (the
dot is the decimal mark; the comma is the thousands
separator).

Code base #C #kLOC #R #Q #Pre #Post #Inv

Base 11 26.548 1,504 169 1,147 1,270 209
TxtLib 10 12.126 780 48 97 134 11
Cards 32 20.553 1,479 81 157 586 58
ELearn 27 13.693 1,055 20 144 148 38

Total 80 72.920 4,818 318 1,545 2,138 316

Table 1 gives an idea of the complexity of the programs
selected for the experiments, in terms of number of
classes (#C), thousands of lines of code (#kLOC), number
of routines (#R), Boolean queries (#Q), and number of
contract clauses in preconditions (#Pre), postconditions
(#Post), and class invariants (#Inv).

The data suggests that Base classes are significantly
more complex than the classes in other code bases, but
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they also offer a better interface with more Boolean
queries that can be used by AutoFix (Section 3.3). The
availability of contracts also varies significantly in the
code bases, ranging from 0.76 precondition clauses per
routine in Base down to only 0.11 precondition clauses
per routine in Cards. This diversity in the quality of
interfaces and contracts ensures that the experiments are
representative of AutoFix’s behavior in different condi-
tions; in particular, they demonstrate the performance
also with software of low quality and with very few
contracts, where fault localization can be imprecise and
unacceptable behavior may be incorrectly classified as
passing for lack of precise oracles (thus making it more
difficult to satisfactorily fix the bugs that are exposed by
other contracts).

Faults targeted by the experiments. To select a collec-
tion of faults for our fixing experiments, we performed
a preliminarily run of AutoTest [4] on the code bases
and recorded information about all faults found that
consisted of contract violations. These include violations
of preconditions, postconditions, class invariants, and
intermediate assertions (check instructions), but also vio-
lations of implicit contracts, such as dereferencing a void
pointer and accessing an array element using an index
that is out of bounds, and application-level memory
and I/O errors such as a program terminating without
closing an open file and buffer overruns. In contrast, we
ignored lower-level errors such as disk failures or out-
of-memory allocations, since these are only handled by
the language runtime. Running AutoTest for two hours
on each class in the code bases provided a total of 204
unique contract-violation faults (identified as discussed
in Section 3.2). Table 2 counts these unique faults for
each code base (#Faults), and also shows the breakdown
into void-dereferencing faults (#Void), precondition vio-
lations (#Pre), postcondition violations (#Post), class in-
variant violations (#Inv), and check violations (#Check),
as well as the number of faults per kLOC ( #F

kLOC ). The
figures in the last column give a rough estimate of the
quality of the code bases, confirming the expectation
that software developed by professional programmers
adheres to higher quality standards.

TABLE 2: Faults used in the fixing experiments.

Code base #Faults #Void #Pre #Post #Inv #Check #F
kLOC

Base 60 0 23 32 0 5 2.3
TxtLib 31 12 14 1 0 4 2.6
Cards 63 24 21 8 10 0 3.1
ELearn 50 16 23 8 3 0 3.7

Total 204 52 81 49 13 9 2.8

The use of AutoTest for selecting faults has two prin-
cipal consequences for this study:
• On the negative side, using AutoTest reduces the

types of programs we can include in the exper-
iments, as the random testing algorithm imple-
mented in AutoTest has limited effectiveness with

functionalities related to graphical user interfaces,
networking, or persistence.

• On the positive side, using AutoTest guards against
bias in the selection of faults in the testable classes,
and makes the experiments representative of the
primary intended usage of AutoFix: a completely
automatic tool that can handle the whole debugging
process autonomously.

To ensure that the faults found by AutoTest are “real”,
we asked, in related work [12], some of the maintainers
of Base to inspect 10 faults, randomly selected among
the 60 faults in Base used in our experiments; their
analysis confirmed all of them as real bugs requiring
to be fixed. Since Eiffel developers write both programs
and their contracts, it is generally safe to assume that
a contract violation exposes a genuine fault, since a
discrepancy between implementation and specification
must be reconciled somehow; this assumption was con-
firmed in all our previous work with AutoTest.

5.2.2 Experimental protocol
The ultimate goal of the experiments is to determine
the typical behavior of AutoFix in general usage con-
ditions under constrained computational resources and
a completely automatic process. Correspondingly, the
experimental protocol involves a large number of repe-
titions, to ensure that the average results are statistically
significant representatives of a typical run, and combines
AutoTest and AutoFix sessions, to minimize the depen-
dency of the quality of fixes produced by AutoFix on
the choice of test cases, and to avoid requiring users to
provide test cases.

For each unique fault f identified as in Section 5.2.1,
we ran 30 AutoTest sessions of 60 minutes each, with the
faulty routine as primary target. Each session produces a
sequence of test cases generated at different times. Given
a fault f in a routine r, we call m-minute series on f any
prefix of a testing sequence generated by AutoTest on r.
A series may include both passing and failing test cases.
In our analysis we considered series of m = 5, 10, 15, 20,
30, 40, 50, and 60 minutes. The process determined 30
m-minute series (one per session) for every m and for
every fault f; each such series consists of a set T = P ∪F
of passing P and failing F test cases.

Since the AutoFix algorithms are deterministic, an m-
minute series on some fault f uniquely determines an
AutoFix session using the tests in T to fix the fault f. The
remainder of the discussion talks of m-minute fixing ses-
sion on f to denote the unique AutoFix session run using
some given m-minute series on f. In all, we recorded the
fixes produced by 270 (= 9×30) fixing sessions of various
lengths on each fault; in each session, we analyzed at
most 10 fixes—those ranked in the top 10 positions—
and discarded the others (if any).

5.3 Experimental results
The experimental data were analyzed through statisti-
cal techniques. Section 5.3.1 discusses how many valid



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 14

fixes AutoFix produced in the experiments, and Sec-
tion 5.3.2 how many of these were proper fixes. Sec-
tion 5.3.3 presents the average AutoFix running times.
Section 5.3.4 analyzes the performance of AutoFix over
multiple sessions to assess its average behavior and its
robustness.

5.3.1 How many faults AutoFix can fix

It is important to know for how many faults AutoFix
managed to construct valid fixes in some of the repeated
experiments. The related questions of whether these
results are sensitive to the testing time or depend on
chance are discussed in the following sections.

TABLE 3: Number of faults fixed by AutoFix (valid fixes).

Code base #Fixed #Void #Pre #Post #Inv #Check

Base 26 (43%) – (–) 18 (78%) 7 (22%) – (–) 1 (20%)
TxtLib 14 (45%) 5 (42%) 5 (36%) 0 (0%) – (–) 4 (100%)
Cards 31 (49%) 14 (58%) 13 (62%) 4 (50%) 0 (0%) – (–)
ELearn 15 (30%) 4 (25%) 9 (39%) 2 (25%) 0 (0%) – (–)

Total 86 (42%) 23 (44%) 45 (56%) 13 (27%) 0 (0%) 5 (56%)

When AutoFix succeeds. The second column of Ta-
ble 3 lists the total number of unique faults for which
AutoFix was able to build a valid fix and rank it among
the top 10 during at least one of the 55080 (270 sessions
for each of the 204 unique faults) fixing sessions, and
the percentage relative to the total number of unique
faults in each code base. The other columns give the
breakdown into the same categories of fault as in Table 2.
Overall, AutoFix succeeded in fixing 86 (or 42%) of the
faults. Section 5.3.4 discusses related measures of success
rate, that is the percentage of sessions that produced a
valid fix.

The fixing process is in general non-monotonic; that
is, there are faults f on which there exists some success-
ful m-minute fixing session but no successful n-minute
fixing sessions for some n > m. The reason is the
randomness of AutoTest: a short AutoTest run may
produce better, if fewer, tests for fixing than a longer run,
which would have more chances of generating spurious
or redundant passing tests. Non-monotonic behavior is,
however, very infrequent: we observed it only for two
faults (one in Base and one in Cards) which were
overly sensitive to the kinds of test cases generated.
In both cases, the faults were fixed in all sessions but
those corresponding to a single intermediate testing time
(respectively, 15 and 20 minutes). This corroborates the
idea that non-monotonicity is an ephemeral effect of
randomness of test-case generation, and suggests that
it is not a significant issue in practice.

When AutoFix fails. To understand the limitations
of our technique, we manually analyzed all the faults
for which AutoFix always failed, and identified four
scenarios that prevent success. Table 4 lists the number of
faults not fixed (column #NotFixed) and the breakdown
into the scenarios described next.

TABLE 4: Types of faults that AutoFix could not fix.

Code base #NotFixed #NoFail #Complex #Contract #Design

Base 34 3 8 10 13
TxtLib 17 1 5 10 1
Cards 32 6 4 16 6
ELearn 35 0 13 14 8

Total 118 10 30 50 28

Faults hard to reproduce. A small portion of the faults
identified during the preliminary 2-hour sessions (Sec-
tion 5.2.1) could not be reproduced during the shorter
AutoTest sessions used to provide input to AutoFix
(Section 5.2.2). Without failing test cases14 the AutoFix
algorithms cannot possibly be expected to work. Column
#NoFail in Table 4 lists the faults that we could not
reproduce, and hence could not fix, in the experiments.15

Complex patches required. While a significant fraction
of fixes are simple [24], some faults require complex
changes to the implementation (for example, adding a
loop or handling special cases differently). Such patches
are currently out of the scope of AutoFix; column #Com-
plex of Table 4 lists the faults that would require complex
patches.

Incorrect or incomplete contracts. AutoFix assumes con-
tracts are correct and tries to fix implementations based
on them. In practice, however, contracts contain errors
too; in such cases, AutoFix may be unable to satisfy
an incorrect specification with changes to the code. A
related problem occurs when contracts are missing some
constraints—for example about the invocation order of
routines—that are documented informally in the com-
ments; faults generated by violating such informally-
stated requisites are spurious, and AutoFix’s attempts
thus become vain. Column #Contract of Table 4 lists the
faults involving incorrect or incomplete contracts that
AutoFix cannot fix. (In recent work [28], we developed
a fixing technique that suggests changes to incorrect or
inconsistent contracts to remove faults.)

Design flaws. The design of a piece of software may
include inconsistencies and dependencies between com-
ponents; as a consequence fixing some faults may require
changing elements of the design—something currently
beyond what AutoFix can do. The design flaws that
AutoFix cannot correct often involve inheritance; for
example, a class LINKED SET in Base inherits from
LINKED LIST but does not uniformly changes its con-
tracts to reflect the fact that a set does not have duplicates
while a list may. Fixing errors such as this requires a
substantial makeover of the inheritance hierarchy, of the
interfaces, or both. Column #Design of Table 4 lists the
faults due to design flaws that AutoFix cannot fix.

14. As a side remark, AutoFix managed to fix 19 faults for which
AutoTest could generate only failing tests; 7 of those fixes are even
proper.

15. Even if AutoTest were given enough time to generate failing tests,
AutoFix would still not succeed on these faults due to complex patch
required (4 faults) or incorrect contracts (6 faults).
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Which fix schemas are used. Not all four schemas
available to AutoFix (Section 4.4.1) are as successful at
generating valid fixes. Table 5 shows the number of
faults successfully fixed using each of the schemas a, b,
c, and d in Figure 6. For reference, column #F shows the
total number of faults in each code base; since two valid
fixes for the same fault may use different schemas, the
total number of faults fixed with any schema is larger
than the numbers in column #F. Schemas b and d are
the most successful ones, producing valid fixes for 79%
and 75% of the 86 fixable faults; together, they can fix
all the 86 faults. This means that the most effectively
deployable fixing strategies are: “execute a repair action
when a suspicious state holds” (schema b); and “execute
an alternative action when a suspicious state holds, and
proceed normally otherwise” (schema d).

TABLE 5: Number of faults fixed using each of the fix
schemas in Figure 6.

Code base #F Schema (a) Schema (b) Schema (c) Schema (d)

Base 26 9 18 18 23
TxtLib 14 0 12 0 6
Cards 31 0 27 6 25
ELearn 15 0 11 4 11

Total 86 9 68 28 65

In our experiments, AutoFix produced
valid fixes for 86 (42%) of 204 faults.

5.3.2 Quality of fixes
What is the quality of the valid fixes produced by
AutoFix in our experiments? We manually inspected
the valid fixes and determined how many of them can
be considered proper, that is genuine corrections that
remove the root of the error (see Section 4.5).

Since what constitutes correct behavior might be
controversial in some corner cases, we tried to lever-
age as much information as possible to determine the
likely intent of developers, using comments, inspect-
ing client code, and consulting external documentation
when available. In other words, we tried to classify a
valid fix as proper only if it really meets the expecta-
tions of real programmers familiar with the code base
under analysis. Whenever the notion of proper was still
undetermined, we tried to be conservative as much as
possible. While we cannot guarantee that the classifica-
tion is indisputable, we are confident it is overall very
reasonable and sets high standards of quality.

The second column of Table 6 lists the total number
of unique faults for which AutoFix was able to build a
proper fix and rank it among the top 10 during at least one
of the fixing sessions, and the percentage relative to the
total number of faults in code base. The other columns
give the breakdown into the same categories of fault
as in Tables 2 and 3. Overall, AutoFix produces proper
fixes in the majority (59% of 86 faults) of cases where
it succeeds, corresponding to 25% of all unique faults

TABLE 6: Number of faults fixed by AutoFix (proper
fixes).

Code base #Fixed #Void #Pre #Post #Inv #Check

Base 12 (20%) – (–) 12 (52%) 0 (0%) – (–) 0 (0%)
TxtLib 9 (29%) 4 (33%) 2 (14%) 0 (0%) – (–) 3 (75%)
Cards 18 (29%) 10 (42%) 8 (38%) 0 (0%) 0 (0%) – (–)
ELearn 12 (24%) 3 (19%) 7 (30%) 2 (25%) 0 (0%) – (–)

Total 51 (25%) 17 (33%) 29 (36%) 2 (4%) 0 (0%) 3 (33%)

considered in the experiments; these figures suggest that
the quality of fixes produced by AutoFix is often high.

The quality bar for proper fixes is set quite high:
many valid but non-proper fixes could still be usefully
deployed, as they provide effective work-arounds that
can at least avoid system crashes and allow executions
to continue. Indeed, this kind of “first-aid” patches is
the primary target of related approaches described in
Section 6.3.

We did not analyze the ranking of proper fixes within
the top 10 valid fixes reported by AutoFix. The ranking
criteria (Section 4.6) are currently not precise enough to
guarantee that proper fixes consistently rank higher than
improper ones. Even if the schemas used by AutoFix
lead to textually simple fixes, analyzing up to 10 fixes
may introduce a significant overhead; nonetheless, espe-
cially for programmers familiar with the code bases16,
the time spent analyzing fixes is still likely to trade off
favorably against the effort that would be required by
a manual debugging process that starts from a single
failing test case. Future work will empirically investigate
the human effort required to evaluate and deploy fixes
produced by AutoFix.

Which fix schemas are used. The effectiveness of
the various fix schemas becomes less evenly distributed
when we look at proper fixes. Table 7 shows the number
of faults with a proper fix using each of the schemas a,
b, c, and d in Figure 6; it is the counterpart of Table 5 for
proper fixes. schema a is used in no proper fix, whereas
schema b is successful with 78% of the 51 faults for which
AutoFix generates a proper fix; schemas b and d together
can fix 44 out of those 51 faults. These figures demon-
strate that unconditional fixes (schema a) were not useful
for the faults in our experiments. Related empirical
research on manually-written fixes [29] suggests, how-
ever, that there is a significant fraction of faults whose
natural corrections consist of unconditionally adding an
instruction; this indicates that schema a may still turn
out to be applicable to code bases other than those used
in our experiments (or that AutoFix’s fault localization
based on Boolean conditions in snapshots naturally leads
to conditional fixes).

16. During the data collection phase for this paper, it took the first
author 3 to 6 minutes to understand and assess each valid fix for a
given fault.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 16

TABLE 7: Number of faults with proper fixes using each
of the fix schemas in Figure 6.

Code base #F Schema (a) Schema (b) Schema (c) Schema (d)

Base 12 0 7 5 7
TxtLib 9 0 8 0 0
Cards 18 0 18 0 3
ELearn 12 0 7 4 3

Total 51 0 40 9 13

In our experiments, AutoFix produced proper fixes
(of quality comparable to programmer-written fixes)

for 51 (25%) of 204 faults.

5.3.3 Time cost of fixing

Two sets of measures quantify the cost of AutoFix in
terms of running time. The first one is the average
running time for AutoFix alone; the second one is the
average total running time per fix produced, including
both testing and fixing.

Fixing time per fault. Figure 7 shows the distribu-
tion of running times for AutoFix (independent of the
length of the preliminary AutoTest sessions) in all the
experiments.17 A bar at position x whose black compo-
nent reaches height yB , gray component reaches height
yG ≥ yB , and white component reaches height yW ≥ yG
denotes that yW fixing sessions terminated in a time be-
tween x−5 and x minutes; yG of them produced a valid
fix; and yB of them produced a proper fix. The pictured
data does not include the 11670 “empty” sessions where
AutoTest failed to supply any failing test cases, which
terminated immediately without producing any fix. The
distribution is visibly skewed towards shorter running
times, which demonstrates that AutoFix requires limited
amounts of time in general.
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Fig. 7: Distribution of running times for AutoFix, in-
dependent of the length of the preliminary AutoTest
sessions (black bars: sessions with proper fixes; gray
bars: sessions with valid fixes; white bars: all sessions).

17. AutoFix ran with a timeout of 60 minutes, which was reached
only for two faults.

Table 8 presents the same data about non-empty fixing
sessions in a different form: for each amount of AutoFix
running time (first column), it displays the number and
percentage of sessions that terminated in that amount
of time (#Sessions), the number and percentage of those
that produced a valid fix (#Valid), and the number and
percentage of those that produced a proper fix (#Proper).
Table 9 shows the minimum, maximum, mean, median,

TABLE 8: Distribution of running times for AutoFix.

min. Fixing #Sessions #Valid #Proper

5 25905 (59.7%) 8275 (31.9%) 5130 (19.8%)
10 36164 (83.4%) 13449 (37.2%) 8246 (22.8%)
15 40388 (93.1%) 16220 (40.2%) 9892 (24.5%)
20 42003 (96.9%) 17114 (40.7%) 10432 (24.8%)
25 42436 (97.9%) 17295 (40.8%) 10543 (24.8%)
30 42650 (98.4%) 17371 (40.7%) 10607 (24.9%)
40 43025 (99.2%) 17670 (41.1%) 10799 (25.1%)
50 43318 (99.9%) 17918 (41.4%) 11013 (25.4%)

60 43365 (100.0%) 17954 (41.4%) 11046 (25.5%)

standard deviation, and skewness of the running times
(in minutes) across: all fixing sessions, all non-empty
sessions, all sessions that produced a valid fix, and all
sessions that produced a proper fix.

TABLE 9: AutoFix running time statistics (times are in
minutes).

min max mean median stddev skew

All 0.0 60 4.8 3.0 6.3 3.2
Non-empty 0.0 60 6.1 4.0 6.5 3.2
Valid 0.5 60 7.8 5.5 7.6 2.8
Proper 0.5 60 8.1 5.4 8.3 2.9

Total time per fix. The total running time of a fixing
session also depends on the time spent generating in-
put test cases; the session will then produce a variable
number of valid fixes ranging between zero and ten
(remember that we ignore fixes not ranked within the top
10). To have a finer-grained measure of the running time
based on these factors, we define the unit fixing time of a
combined session that runs AutoTest for t1 and AutoFix
for t2 and produces v > 0 valid fixes as (t1 + t2)/v.
Figure 8a shows the distribution of unit fixing times in
the experiments: a bar at position x reaching height y
denotes that y sessions produced at least one valid fix
each, spending an average of x minutes of testing and
fixing on each. The distribution is strongly skewed to-
wards short fixing times, showing that the vast majority
of valid fixes is produced in 15 minutes or less. Table 10
shows the statistics of unit fixing times for all sessions
producing valid fixes, and for all sessions producing
proper fixes. Figure 8b shows the same distribution of
unit fixing times as Figure 8a but for proper fixes. This
distribution is also skewed towards shorted fixing times,
but much less so than the one in Figure 8a: while the
majority of valid fixes can be produced in 35 minutes
or less, proper fixes require more time on average, and
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(a) Distribution of unit fixing times for valid fixes.

Unit fixing time for proper fixes in minutes
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(b) Distribution of unit fixing times for proper fixes.

Fig. 8: Distribution of unit fixing times, including the time spent in the preliminary AutoTest sessions.

there is a substantial fraction of proper fixes requiring
longer times up to about 70 minutes.

TABLE 10: Unit fixing times statistics (times are in
minutes and include the time spent in the preliminary
AutoTest sessions).

min max mean median stddev skew

Valid 0.7 98.6 10.8 6.9 12.1 2.9
Proper 1.0 101.1 23.5 17.9 17.9 1.1

The unit fixing time is undefined for sessions pro-
ducing no fixes, but we can still account for the time
spent by fruitless fixing sessions by defining the average
unit fixing time of a group of sessions as the total time
spent testing and fixing divided by the total number
of valid fixes produced (assuming we get at least one
valid fix). Table 11 shows, for each choice of testing
time, the average unit fixing time for valid fixes (second
column) and for proper fixes (third column); the last line
reports the average unit fixing time over all sessions:
19.9 minutes for valid fixes and 74.2 minutes for proper
fixes.

TABLE 11: Average unit fixing times for different testing
times (times are in minutes).

min. Testing min. Valid min. Proper

5 6.0 22.0
10 8.9 32.5
15 11.9 43.7
20 14.6 54.0
25 17.7 65.3
30 20.4 76.7
40 26.1 97.3
50 31.9 121.6
60 37.3 143.5

All 19.9 74.2

Looking at the big picture, the fixing times are preva-
lently of moderate magnitude, suggesting that AutoFix
(and its usage in combination with AutoTest) can make
an efficient usage of computational time and quickly

produce useful results in most cases. The experimental
results also suggest practical guidelines to use AutoFix
and AutoTest: as a rule of thumb, running AutoTest for
five to ten minutes has a fair chance of producing test
cases for AutoFix to correct an “average” fault.

In our experiments, AutoFix took on average less than
20 minutes per valid fix, including the time required

to generate suitable tests with AutoTest.

5.3.4 Robustness

The last part of the evaluation analyzes the robust-
ness and repeatability of AutoFix sessions. The AutoFix
algorithm is purely deterministic, given as input an
annotated program and a set of passing and failing
test cases exposing a fault in the program. In our ex-
periments, however, all the tests come from AutoTest,
which operates a randomized algorithm, so that different
runs of AutoTest may produce test suites of different
quality. We want to assess the robustness of AutoFix
with respect to different choices of input test suites, that
is how AutoFix’s output depends on the test cases sup-
plied. Assessing robustness is important to demonstrate
that our evaluation is indicative of average usage, and
its results do not hinge on having used a particularly
fortunate selection of tests.

Our experiments consisted of many repeated runs
of AutoTest, each followed by AutoFix runs using the
generated test as input. To assess robustness we fix the
testing time, and we measure the percentage of AutoFix
runs, on each of the repeated testing sessions terminating
within the allotted testing time, that produced a valid fix.
A high percentage shows that AutoFix was successful
in most of the repeated testing runs, and hence largely
independent of the specific performance of AutoTest; to
put it differently, a random testing session followed by
a fixing sessions has a high chance of producing a valid
fix.

Formally, to measure the robustness with respect to
choice of test cases, we introduce the notion of success
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Fig. 9: Distribution of success rates for valid fixes.
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Fig. 10: Distribution of success rates for proper fixes.

rate: given a fault f and a testing time m, the m-minute
absolute success rate on f is defined as the percentage
of m-minute fixing sessions on f that produce at least
one valid fix; the relative success rate is defined similarly
but the percentage is relative only to non-empty fixing
sessions (where AutoTest produced at least one failing
test case). Figure 9 shows the distribution of the absolute
(Figure 9a) and relative (Figure 9b) success rates for all
“fixable” faults—for which AutoFix produced a valid fix
at least once in our experiments—for any testing time
m. The graphs demonstrate that AutoFix has repeat-
able behavior with a strong majority of faults, largely
insensitive to the specific input test cases. The relative
success rates, in particular, exclude the empty AutoTest
sessions (which are concentrated on some “hard to re-
produce faults” as discussed in Section 5.3.1) and thus
characterize the robustness of AutoFix’s behavior on the
“approachable” faults. (The fact that a classification into
“approachable” and “hard” faults for AutoFix naturally

emerges further indicates that the kinds of faults used
in this evaluation are varied.)

To have a quantitative look at the same data, Table 12
displays, for each testing time m, the number of faults
that were fixed successfully—producing a valid fix—
in at least X% of the m-minute fixing sessions, for
percentages X = 50, 80, 90, 95.18 Each table entry also
shows, in parentheses, the percentage of the fixed faults,
relative to the 86 fixable faults that AutoFix fixed at
least once; the data is shown for both the relative and
the absolute success rate. For example, AutoFix was
successful at least 95% of the times with 56% of all fixable

18. All else being equal, the number of fixed faults is larger when
considering relative success rates: a relative success rate of X% = r/n
corresponds to r successful fixing sessions out of n non-empty sessions;
an absolute success rate of X% = a/(n+ e) for the same testing time
corresponds to a successful fixing sessions out of n non-empty sessions
and e empty sessions; since r/n = a/(n + e) and e ≥ 0, it must be
r ≥ a; hence the number of unique faults is also larger in general for
the relative rate.
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faults; or even with 79% of all fixable faults provided
with at least one failing test case. The last line displays
the statistics over all testing sessions of any length. The
aggregated data over all fixing sessions for all faults is
the following: 32% of all sessions and 41% of all non-
empty sessions produced a valid fix. These success rates
suggest a high repeatability of fixing.

Figure 10 and Table 13 display similar data about
successful sessions that produced at least one proper fix,
with percentages relative to all faults for which AutoFix
produced a proper fix at least once in our experiments.
The aggregated data over all fixing sessions for all faults
is the following: 20% of all sessions and 25% of all non-
empty sessions produced a proper fix; these percentages
are quite close to the 25% of all faults for which AutoFix
produces at least once a proper fix (Table 6). The data
for proper fixes is overall quite similar to the one for
valid fixes. The absolute figures are a bit smaller, given
that the requirement of proper fixes is more demanding,
but still support the hypothesis that AutoFix’s behavior
is often robust and largely independent of the quality of
provided test cases.

In our experiments, AutoFix produced valid fixes
in 41% of the sessions with valid input tests.

5.4 Limitations and threats to validity
Limitations. AutoFix relies on a few assumptions, which
may restrict its practical applicability.

Contracts or a similar form of annotation must be
available in the source code. The simple contracts that
programmers write [7] are sufficient for AutoFix; and
having to write contracts can be traded off against not
having to write test cases. Requiring contracts does not
limit the applicability of our technique to Eiffel, given the
increasing availability of support for contracts in main-
stream programming languages. However, the software
projects that use contracts in their development is still a
small minority [7], which restricts broader applicability
of AutoFix on the software that is currently available
without additional annotation effort.

Whether writing contracts is a practice that can be-
come part of mainstream software development is a
long-standing question. Our previous experience is cer-
tainly encouraging, in that using contracts does not re-
quire highly-trained programmers, and involves efforts
that can be traded off against other costs (e.g., main-
tenance [30]) and are comparable to those required by
other more accepted practices. For example, EiffelBase’s
contracts-to-code ratio is around 0.2 [12]; while detailed
quantitative data about industrial experiences with a
more accepted practice such as test-driven development
is scarce, the few references that indicate quantitative
measures [31], [32], [33] report test-LOC-to-application-
LOC ratios between 0.4 and 1.0 for projects of size
comparable to EiffelBase. More extensive assessments
belong to future work beyond the scope of the present
paper.

Functional faults are the primary target of AutoFix,
given that contracts provide an effective specification
of functional correctness. This excludes, for example,
violation of liveness properties (e.g., termination) or low-
level I/O runtime errors (Section 5.2.1). Nonetheless, the
expressiveness of contracts is significant, and in fact we
could identify various categories of contract-violation
faults that AutoFix can or cannot fix (Section 5.3.1).

Correctness of contracts is assumed by AutoTest, which
uses them as oracles, and by AutoFix, which fixes im-
plementations accordingly. Since contracts have errors
too, this may affect the behavior of AutoFix on certain
faults (see Section 5.3.1). Anyway, the line for correctness
must be drawn somewhere: test cases may also include
incorrect usages or be incorrectly classified.

Types of fixes generated by AutoFix include only a
subset of all possible actions (Section 4.3) and are limited
to simple schema (Section 4.4). This limits the range of
fixes that AutoFix can generate; at the same time, it helps
reduce the search space of potential fixes, focusing on the
few schema that cover the majority of cases [24], [25].

Threats to validity. While we designed the evalua-
tion of AutoFix targeting a broad scope and repeatable
results, a few threats to generalizability remain.

Automatically generated test cases were used in all our
experiments. This provides complete automation to the
debugging process, but it also somewhat restricts the
kinds of projects and the kinds of faults that we can
try to those that we can test with AutoTest. We plan to
experiment with manually-written test cases in future
work.

Unit tests were used in all our experiments, as opposed
to system tests. Unit tests are normally smaller, which
helps with fault localization and, consequently, to reduce
the search space of possible fixes. The fact that unit tests
are produced as part of fairly widespread practices such
as test-driven development [31] reflects positively on the
likelihood that they be available for automated fixing.

Size and other characteristics (type of program, pro-
gramming style, and so on) of the programs used in the
evaluation were constrained by the fundamental choice
of targeting object-oriented programs using contracts
that can be tested with AutoTest. This implies that
further experiments are needed to determine to what
extent the algorithms used by AutoFix scale to much
larger code bases—possibly with large-size modules
and system-wide executions—and which design choices
should be reconsidered in that context. To partly mitigate
this threat to generalizability, we selected experimental
subjects of non-trivial size exhibiting variety in terms
of quality, maturity, and available contracts—within the
constraints imposed by our fundamental design choices,
as discussed in Section 5.2.1.

Variability of performance relative to different choices
for the various heuristics used by AutoFix has not been
exhaustively investigated. While most heuristics rely on
well-defined notions, and we provided the rationale for
the various design choices, there are a few parameters
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TABLE 12: Repeatability of AutoFix on faults that produced some valid fixes.

Success rate: 50% 80% 90% 95%

min. Testing relative absolute relative absolute relative absolute relative absolute

5 83 (97%) 58 (67%) 80 (93%) 49 (57%) 78 (91%) 46 (53%) 75 (87%) 40 (47%)
10 83 (97%) 62 (72%) 77 (90%) 56 (65%) 75 (87%) 51 (59%) 69 (80%) 45 (52%)
15 81 (94%) 65 (76%) 76 (88%) 58 (67%) 71 (83%) 52 (60%) 68 (79%) 48 (56%)
20 82 (95%) 68 (79%) 76 (88%) 58 (67%) 70 (81%) 54 (63%) 67 (78%) 51 (59%)
25 80 (93%) 68 (79%) 72 (84%) 58 (67%) 70 (81%) 56 (65%) 65 (76%) 51 (59%)
30 81 (94%) 69 (80%) 74 (86%) 59 (69%) 70 (81%) 56 (65%) 68 (79%) 53 (62%)
40 79 (92%) 69 (80%) 71 (83%) 61 (71%) 68 (79%) 58 (67%) 65 (76%) 55 (64%)
50 79 (92%) 70 (81%) 73 (85%) 62 (72%) 69 (80%) 59 (69%) 63 (73%) 53 (62%)
60 78 (91%) 71 (83%) 73 (85%) 61 (71%) 68 (79%) 59 (69%) 67 (78%) 57 (66%)

All 79 (92%) 67 (78%) 73 (85%) 56 (65%) 69 (80%) 51 (59%) 68 (79%) 48 (56%)

TABLE 13: Repeatability of AutoFix on faults that produced some proper fixes.

Success rate: 50% 80% 90% 95%

min. Testing relative absolute relative absolute relative absolute relative absolute

5 45 (88%) 35 (69%) 42 (82%) 31 (61%) 41 (80%) 41 (80%) 39 (76%) 24 (47%)
10 47 (92%) 41 (80%) 43 (84%) 35 (69%) 42 (82%) 42 (82%) 36 (71%) 27 (53%)
15 47 (92%) 41 (80%) 43 (84%) 37 (73%) 39 (76%) 39 (76%) 36 (71%) 29 (57%)
20 47 (92%) 43 (84%) 43 (84%) 37 (73%) 40 (78%) 40 (78%) 35 (69%) 27 (53%)
25 48 (94%) 44 (86%) 42 (82%) 37 (73%) 39 (76%) 39 (76%) 34 (67%) 28 (55%)
30 46 (90%) 43 (84%) 42 (82%) 37 (73%) 41 (80%) 41 (80%) 39 (76%) 32 (63%)
40 47 (92%) 45 (88%) 41 (80%) 39 (76%) 39 (76%) 39 (76%) 34 (67%) 32 (63%)
50 47 (92%) 45 (88%) 42 (82%) 39 (76%) 39 (76%) 39 (76%) 33 (65%) 31 (61%)
60 47 (92%) 45 (88%) 41 (80%) 39 (76%) 40 (78%) 40 (78%) 34 (67%) 31 (61%)

All 47 (92%) 43 (84%) 42 (82%) 36 (71%) 40 (78%) 40 (78%) 35 (69%) 28 (55%)

(such as α, β, and γ in Section 4.2.2) whose impact we
have not investigated as thoroughly as other aspects of
the AutoFix algorithm. As also discussed in Section 4.2.2,
the overall principles behind the various heuristics are
not affected by specific choices for these parameters;
therefore, the impact of this threat to generalizability is
arguably limited.

Limited computational resources were used in all our
experiments; this is in contrast to other evaluations of
fixing techniques [34]. Our motivation for this choice is
that we conceived AutoFix as a tool integrated within
a personal development environment, usable by indi-
vidual programmers in their everyday activity. While
using a different approach to automatic fixing could take
advantage of massive computational resources, AutoFix
was designed to be inexpensive and evaluated against
this yardstick.

Classification of fixes into proper and improper was
done manually by the first author. While this may have
introduced a classification bias, it also ensured that the
classification was done by someone familiar with the
code bases, and hence in a good position to understand
the global effects of suggested fixes. Future work will in-
vestigate this issue empirically, as done in recent related
work [35].

Programmer-written contracts were used in all our ex-
periments. This ensures that AutoFix works with the
kinds of contracts that programmers tend to write. How-
ever, as future work, it will be interesting to experi-
ment with stronger higher-quality contracts to see how

AutoFix performance is affected. In recent work [12]
we obtained good results with this approach applied to
testing with AutoTest.

6 RELATED WORK ON AUTOMATED FIXING

We present the related work on automated program fix-
ing in three areas: techniques working on the source code
(as AutoFix does); applications to specialized domains;
and techniques that operate dynamically at runtime.

6.1 Source-code repairs
Techniques such as AutoFix target the source code to per-
manently remove the buggy behavior from a program.

Machine-learning techniques. Machine-learning tech-
niques can help search the space of candidate fixes
efficiently and support heuristics to scale to large code
bases.

Jeffrey et al. [36] present BugFix, a tool that summa-
rizes existing fixes in the form of association rules. BugFix
then tries to apply existing association rules to new bugs.
The user can also provide feedback—in the form of new
fixes or validations of fixes provided by the algorithm—
thus ameliorating the performance of the algorithm over
time.

Other authors applied genetic algorithms to gener-
ate suitable fixes. Arcuri and Yao [37], [38] use a co-
evolutionary algorithm where an initially faulty program
and some test cases compete to evolve the program into
one that satisfies its formal specification.
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Weimer et al. [39], [40] describe GenProg, a technique
that uses genetic programming19 to mutate a faulty pro-
gram into one that passes all given test cases. GenProg
has been extensively evaluated [34], [41] with various
open-source programs, showing that it provides a scal-
able technique, which can produce non-trivial correc-
tions of subtle bugs, and which works without any user
annotations (but it requires a regression test suite).

Kim et al. [35] describe Par, a technique that combines
GenProg’s genetic programming with a rich predefined
set of fix patterns (suggested by human-written patches).
Most of the fix patterns supported by Par are covered
by AutoFix’s synthesis strategies (Section 4.3); the few
differences concern the usage of overloaded methods—
a feature not available in the Eiffel language, and hence
not covered by AutoFix. Par has also been extensively
evaluated, with a focus on acceptability of patches: the
programmers involved in the study tended to consider
the patches generated by Par more acceptable than
those generated by GenProg, and often as acceptable as
human-written patches for the same bugs. The notion of
acceptability addresses similar concerns to our notion of
proper fix, since they both capture quality as perceived
by human programmers beyond the objective yet weak
notion of validity, although the two are not directly
comparable.

Of the several approaches to source-code general-
purpose program repair discussed in this section, Gen-
Prog and Par are the only ones that have undergone
evaluations comparable with AutoFix’s: the other ap-
proaches have only been applied to seeded faults [38],
[42], [43], to few benchmarks used for fault localiza-
tion [36], or do not aim at complete automation [44].

GenProg can fix 52% of 105 bugs with the latest
improvements [34]; Par fixes 23% of 119 bugs (GenProg
fixes 13% of the same 119 bugs [35]). In our experiments
in Section 5, we target almost twice as many bugs
(204) and AutoFix fixes 42% of them. Whereas these
quantitative results should not directly be compared
because they involve different techniques and faults,
they demonstrate that all three approaches produce in-
teresting results and have been thoroughly evaluated.
GenProg’s and Par’s evaluations have demonstrated
their scalability to large programs: GenProg worked on
8 C programs totaling over 5 million lines of code; Par
worked on 6 Java programs totaling nearly 500 thousand
lines of code. AutoFix’s evaluation targeted a total of 72
thousand lines of Eiffel code; while lines of code is a
coarse-grained measure of effort, more experiments are
needed to conclusively evaluate AutoFix’s scalability on
much larger programs. The test cases used in GenProg’s
and Par’s evaluations (respectively, around 10 thousand
and 25 thousand) do not seem to be directly comparable
with those used by AutoFix: GenProg and Par use
manually-written tests, which may include system tests

19. See also Arcuri and Briand’s remarks [26, Sec. 2] on the role of
evolutionary search in Weimer et al.’s experiments [39].

as well as unit tests; AutoFix does not require user-
written test cases (and uses fewer on average anyway)
but uses automatically generated tests that normally
exercise only a limited subset of the instructions in
the whole program. The sensitivity of GenProg or Par
about the input test suite have not been systematically
investigated,20 and therefore we do not know if they
could perform well with tests generated automatically.
In contrast, our experiments show that AutoFix is robust
with respect to the input tests, and in fact it works con-
sistently well with tests randomly generated given the
simple contracts available in Eiffel programs. Another
advantage of leveraging contracts is that AutoFix can
naturally target functional errors (such as those shown in
Section 2).

Weimer et al.’s evaluation of fix quality has been
carried out only for a sample of the bugs, and mostly
in terms of induced runtime performance [41]. It is
therefore hard to compare with AutoFix’s. Finally, Au-
toFix works with remarkably limited computational
resources: using the same pricing scheme used in
GenProg’s evaluation [34]21, AutoFix would require
a mere $0.01 per valid fix (computed as 0.184 ×
total fixing time in hours / total number of valid fixes)
and $0.03 per proper fix; or $0.06 per valid and $0.23
per proper fix including the time to generate tests—two
orders of magnitude less than GenProg’s $7.32 per valid
fix.

Axiomatic reasoning. He and Gupta [42] present a
technique that compares two program states at a faulty
location in the program. The comparison between the
two program states illustrates the source of the error; a
change to the program that reconciles the two states fixes
the bug. Unlike our work, theirs compares states purely
statically with modular weakest precondition reasoning.
A disadvantage of this approach is that modular weakest
precondition reasoning may require detailed postcon-
ditions (typically, full functional specifications in first-
order logic) in the presence of routine calls: the effects
of a call to foo within routine bar are limited to what
foo ’s postcondition specifies, which may be insufficient
to reason about bar’s behavior. Even if the static analysis
were done globally instead of modularly, it would still
require detailed annotations to reason about calls to
native routines, whose source code is not available. This
may limit the applicability to small or simpler programs;
AutoFix, in contrast, compares program states mostly
dynamically, handling native calls and requiring only
simple annotations for postconditions. Another limita-
tion of He and Gupta’s work is that it builds fix actions
by syntactically comparing the two program states; this
restricts the fixes that can be automatically generated
to changes in expressions (for example, in off-by-one

20. GenProg’s sensitivity to the design choices of its genetic algo-
rithm has been recently investigated [45].

21. We consider on-demand instances of Amazon’s EC2 cloud com-
puting infrastructure, costing $0.184 per wall-clock hour at the time of
GenProg’s experiments.
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errors). AutoFix uses instead a combination of heuristics
and fix schemas, which makes for a flexible usage of a
class’s public routines without making the search space
of possible solutions intractably large.

Constraint-based techniques. Gopinath et al. [43]
present a framework that repairs errors due to value mis-
uses in Java programs annotated with pre- and postcon-
ditions. A repairing process with the framework involves
encoding programs as relational formulae, where some
of the values used in “suspicious” statements are re-
placed by free variables. The conjunction of the formula
representing a program with its pre- and postcondition
is fed to a SAT solver, which suggests suitable instan-
tiations for the free variables. The overall framework
assumes an external fault localization scheme to provide
a list of suspicious statements; if the localization does
not select the proper statements, the repair will fail.
Solutions using dynamic analysis, such as AutoFix, have
a greater flexibility in this respect, because they can
better integrate fault localization techniques—which are
also typically based on dynamic analysis. As part of
future work, however, we will investigate including SAT-
based techniques within AutoFix.

Nguyen et al. [46] build on previous work [47] about
detecting suspicious expressions to automatically syn-
thesize possible replacements for such expression; their
SemFix technique replaces or adds constants, variables,
and operators to faulty expressions until all previously
failing tests become passing. The major differences with
respect to AutoFix are that SemFix’s fault localization is
based on statements rather than snapshots, which gives
a coarser granularity; and that the fixes produced by
SemFix are restricted to changes of right-hand sides of
assignments and Boolean conditionals, whereas AutoFix
supports routine calls, more complex expression substi-
tutions, and conditional schemas. This implies that Auto-
Fix can produce fixes that are cumbersome or impossible
to build using SemFix. For example, conditional fixes are
very often used by AutoFix (Tables 5 and 7) but can be
generated by SemFix only if a conditional already exists
at the repair location; and supporting routine calls in
fixes takes advantage of modules with a well-designed
API.

Model-driven techniques. Some automated fixing
methods exploit finite-state abstractions to detect errors
or to build patches. AutoFix also uses a form of finite-
state abstraction as one way to synthesize suitable fixing
actions (Section 4.3.3).

In previous work, we developed Pachika [15], a tool
that automatically builds finite-state behavioral mod-
els from a set of passing and failing test cases of a
Java program. Pachika also generates fix candidates by
modifying the model of failing runs in a way which
makes it compatible with the model of passing runs.
The modifications can insert new transitions or delete
existing transitions to change the behavior of the failing
model; the changes in the model are then propagated
back to the Java implementation. AutoFix exploits some

of the techniques used in Pachika—such as finite-state
models and state abstraction—in combination with other
novel ones—such as snapshots, dynamic analysis for
fault localization, fix actions and schema, contracts, and
automatic test-case generation.

Weimer [44] presents an algorithm to produce patches
of Java programs according to finite-state specifications
of a class. The main differences with respect to Auto-
Fix are the need for user-provided finite-state machine
specifications, and the focus on security policies: patches
may harm other functionalities of the program and “are
not intended to be applied automatically” [44].

6.2 Domain-specific models

Automated debugging can be more tractable over re-
stricted models of computations. A number of works
deal with fixing finite-state programs, and normally
assumes a specification given in some form of temporal
logic [48], [49], [49].

Carzaniga et al. [50], [51] show how to patch web
applications at runtime by exploiting the redundancy of
services offered through their APIs; the patches are gen-
erated from a set of rewrite rules that record the relations
between services. In more recent work [52], they support
workarounds of general-purpose Java applications based
on a repertoire of syntactically different library calls that
achieve the same semantics.

Janjua and Mycroft [53] target atomicity violation er-
rors in concurrent programs, which they fix by intro-
ducing synchronization statements automatically. More
recently, Jin et al. [54] developed the tool AFix that
targets the same type of concurrency errors.

Abraham and Erwig [55] develop automated correc-
tion techniques for spreadsheets, whose users may in-
troduce erroneous formulae. Their technique is based
on annotating cells with simple information about their
“expected value”; whenever the computed value of a
cell contradicts its expected value, the system suggests
changes to the cell formula that would restore its value to
within the expected range. The method can be combined
with automated testing techniques to reduce the need for
manual annotations [56].

Samimi et al. [57] show an approach to correct errors
in print statements that output string literals in PHP
applications. Given a test suite and using an HTML
validator as oracle for acceptable output, executing each
test and validating its output induces a partial constraint
on the string literals. Whenever the combination of all
generated constraints has a solution, it can be used to
modify the string literals in the print statements to avoid
generating incorrect output. Constraint satisfaction can
be quite effective when applied to restricted domains
such as PHP strings; along the same lines, AutoFix uses
constraint-based techniques when dealing with linear
combinations of integer variables (Section 4.3.4).
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6.3 Dynamic patching

Some fixing techniques work dynamically, that is at run-
time, with the goal of contrasting the adverse effects of
some malfunctioning functionality and prolonging the
up time of some piece of deployed software. Demsky
et al. [58], [59] provide generic support for dynamic
patching inside the Java language.

Data-structure repair. Demsky and Rinard [60] show
how to dynamically repair data structures that violate
their consistency constraints. The programmer specifies
the constraints, which are monitored at runtime, in a
domain language based on sets and relations. The sys-
tem reacts to violations of the constraints by running
repair actions that try to restore the data structure in a
consistent state.

Elkarablieh and Khurshid [61] develop the Juzi tool
for Java programs. A user-defined repOk Boolean query
checks whether the data structure is in a coherent state.
Juzi monitors repOk at runtime and performs some
repair action whenever the state is corrupted. The repair
actions are determined by symbolic execution and by a
systematic search through the object space. In follow-
up work [62], [63], the same authors outline how the
dynamic fixes generated by Juzi can be abstracted and
propagated back to the source code.

Samimi et al.’s work [64] leverages specifications in the
form of contracts to dynamically repair data structures
and other applications. As in our work, an operation
whose output violates its postcondition signals a fault.
When this occurs, their Plan B technique uses constraint
solving to generate a different output for the same op-
eration that satisfies the postcondition and is consistent
with the rest of the program state; in other words, they
execute the specification as a replacement for executing a
faulty implementation. Their prototype implementation
for Java has been evaluated on a few data-structure faults
similar to those targeted by Demsky and Rinard [60], as
well as on other operations that are naturally expressed
as constraint satisfaction problems.

Memory-error repair. The ClearView framework [65]
dynamically corrects buffer overflows and illegal con-
trol flow transfers in binaries. It exploits a variant
of Daikon [66] to extract invariants in normal execu-
tions. When the inferred invariants are violated, the
system tries to restore them by looking at the differ-
ences between the current state and the invariant state.
ClearView can prevent the damaging effects of malicious
code injections.

Exterminator [67], [68] is a framework to detect and
correct buffer overflow and dangling pointer errors in
C and C++ programs. The tool executes programs using
a probabilistic memory allocator that assigns a memory
area of variably larger size to each usage; an array of
size n, for example, will be stored in an area with strictly
more than n cells. With this padded memory, dereferenc-
ing pointers outside the intended frame (as in an off-by-
one overflow access) will not crash the program. Exter-

minator records all such harmless accesses outside the
intended memory frame and abstracts them to produce
patches that permanently change the memory layout; the
patched layout accommodates the actual behavior of the
program in a safe way.

7 CONCLUSIONS

In the past decade, automated debugging has made
spectacular advances: first, we have seen methods to
isolate failure causes automatically; then, methods that
highlight likely failure locations. Recently, the slogan
“automated debugging” has denoted techniques that
truly deserve this name: we can actually generate work-
able fixes completely automatically.

The AutoFix approach, described in the paper, is an
important contribution towards the ideal of automatic
debugging. In experiments with over 200 faults in soft-
ware of various quality, AutoFix generated fixes for 42%
of the faults; inspection reveals 59% of them are not
mere patches but real corrections of quality comparable
to those programmers familiar with the faulty programs
could write. AutoFix achieves these results with limited
computational resources: running on standard hardware,
it required an average time per fix under 20 minutes—
where the average includes all failed fixing attempts and
the automatic generation of test cases that profile the
faults. One of the key ingredients used to achieve these
encouraging results is the reliance on contracts to boost
and automate all debugging steps. The kinds of contracts
required by AutoFix are simple and normally available
in Eiffel programs; the effort of writing them is, therefore,
limited and comparable to other everyday programming
activities.

With AutoFix, the programmer’s debugging effort
could be reduced to almost zero in many cases. We write
“almost zero”, as we still assume that a human should
assess the generated fixes and keep authority over the
code. One may also think of systems that generate and
apply fixes automatically; the risk of undesired behavior
may still be preferred to no behavior at all, and can
be alleviated by more precise specifications expressed
as contracts. In any case, we look forward to a future
in which much of the debugging is taken over by auto-
mated tools, reducing risks in development and relieving
programmers from a significant burden.

AVAILABILITY

The AutoFix source code, and all data and results cited
in this article, are available at:

http://se.inf.ethz.ch/research/autofix/
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