IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 1

Automated Fixing of Programs with Contracts

Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, Andreas Zeller

Abstract—This paper describes AutoFix, an automatic debugging tech-
nigue that can fix faults in general-purpose software. To provide high-
quality fix suggestions and to enable automation of the whole debugging
process, AutoFix relies on the presence of simple specification elements
in the form of contracts (such as pre- and postconditions). Using
contracts enhances the precision of dynamic analysis techniques for
fault detection and localization, and for validating fixes. The only required
user input to the AutoFix supporting tool is then a faulty program
annotated with contracts; the tool produces a collection of validated fixes
for the fault ranked according to an estimate of their suitability.

In an extensive experimental evaluation, we applied AutoFix to over
200 faults in four code bases of different maturity and quality (of imple-
mentation and of contracts). AutoFix successfully fixed 42% of the faults,
producing, in the majority of cases, corrections of quality comparable
to those competent programmers would write; the used computational
resources were modest, with an average time per fix below 20 minutes
on commodity hardware. These figures compare favorably to the state
of the art in automated program fixing, and demonstrate that the AutoFix
approach is successfully applicable to reduce the debugging burden in
real-world scenarios.

Keywords—Automatic program repair, contracts, dynamic analysis

1 INTRODUCTION

HE programmer’s ever recommencing fight against
Terrors involves two tasks: finding faults; and cor-
recting them. Both are in dire need of at least partial
automation.

Techniques to detect errors automatically are becoming
increasingly available and slowly making their way into
industrial practice [1], [2], [3]. In contrast, automating the
whole debugging process—in particular, the synthesis of
suitable fixes—is still a challenging problem, and only
recently have usable techniques (reviewed in Section [6)
started to appear.

AutoFix, described in this paper, is a technique and
supporting tool that can generate corrections for faults
of general-purpose softwar completely automatically.
AutoFix targets programs annotated with contracts—
simple specification elements in the form of precon-
ditions, postconditions, and class invariants. Contracts
provide a specification of correct behavior that can be

Yu Pei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer are with
the Chair of Software Engineering, Department of Computer Science, ETH
Ziirich, Switzerland.
Yi Wei is with Microsoft Research Cambridge, UK.
Andreas Zeller is with the Software Engineering Chair, Saarland University,
Germany.

1. As opposed to the domain-specific programs targeted by related
repair techniques, which we review in Section

used not only to detect faults automatically [4] but
also to suggest corrections. The current implementation
of AutoFix is integrated in the open-source Eiffel Ver-
ification Environment [5]—the research branch of the
EiffelStudio IDE—and works on programs written in
Eiffel; its concepts and techniques are, however, appli-
cable to any programming language supporting some
form of annotations (such as JML for Java or the .NET
CodeContracts libraries).

AutoFix combines various program analysis
techniques—such as dynamic invariant inference,
simple static analysis, and fault localization—and
produces a collection of suggested fixes, ranked
according to a heuristic measurement of relevance.
The dynamic analysis for each fault is driven by a
set of test cases that exercise the routine (method)
where the fault occurs. While the AutoFix techniques
are independent of how these test cases have been
obtained, all our experiments so far have relied on the
AutoTest random-testing framework to generate the
test cases, using the contracts as oracles. This makes
for a completely automatic debugging process that goes
from detecting a fault to suggesting a patch for it. The
only user input is a program annotated with the same
contracts that programmers using a contract-equipped
language normally write [6], [7].

In previous work, we presented the basic algorithms
behind AutoFix and demonstrated them on some pre-
liminary examples [8]], [9)]. The present paper discusses
the latest AutoFix implementation, which combines and
integrates the previous approaches to improve the flexi-
bility and generality of the overall fixing technique. The
paper also includes, in Section [5, an extensive experi-
mental evaluation that applied AutoFix to over 200 faults
in four code bases, including both open-source software
developed by professionals and student projects of vari-
ous quality. AutoFix successfully fixed 86 (or 42%) of the
faults; inspection shows that 51 of these fixes are genuine
corrections of quality comparable to those competent
programmers would write. The other 35 fixes are not
as satisfactory—because they may change the intended
program behavior—but are still useful patches that pass
all available regression tests; hence, they avoid program
failure and can be used as suggestions for further debug-
ging. AutoFix required only limited computational re-
sources to produce the fixes, with an average time per fix
below 20 minutes on commodity hardware (about half

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 2

of the time is used to generate the test cases that expose
the fault). These results provide strong evidence that
AutoFix is a promising technique that can correct many
faults found in real programs completely automatically,
often with high reliability and modest computational
resources.

In the rest of the paper, Section [2| gives an overview
of AutoFix from a user’s perspective, presenting a fault
fixed automatically; the fault is included in the evalua-
tion (Section[5) and is used as running example. Section 3]
introduces some concepts and notation repeatedly used
in the rest of the paper, such as the semantics of contracts
and the program expressions manipulated by Auto-
Fix. Section [presents the AutoFix algorithm in detail
through its successive stages: program state abstraction,
fault localization, synthesis of fix actions, generation of
candidate fixes, validation of candidates, and ranking
heuristics. Section [5| discusses the experimental evalua-
tion, including a detailed statistical analysis of numerous
important measures. Section [f] presents related work and
compares it with our contribution. Finally, Section
includes a summary and concluding remarks.

2 AUTOFIX IN ACTION

We begin with a concise demonstration of how AutoFix,
as seen from a user’s perspective, fixes faults completely
automatically.

2.1 Moving items in sorted sets

Class TWO_WAY SORTED_SET is the standard Eiffel
implementation of sets using a doubly-linked list. Fig-
ure [2| outlines features (members) of the class, some
annotated with their pre- (require) and postconditions
(ensure)ﬂ As pictured in Figure [1} the integer attribute
index is an internal cursor useful to navigate the content
of the set: the set elements occupy positions 1 to count
(another integer attribute, storing the total number of
elements in the set), whereas the indexes 0 and count + 1
correspond to the positions before the first element
and after the last. before and after are also Boolean
argumentless queries (member functions) that return
True when the cursor is in the corresponding boundary
positions.

Figure 2| also shows the complete implementation of
routine move_item, which moves an element v (passed
as argument) from its current (unique) position in the
set to the immediate left of the internal cursor index. For
example, if the list contains (a, b, ¢, d) and index is 2 upon
invocation (as in Figure , move_item (d) changes the
list to (a,d, b, c). move_item’s precondition requires that
the actual argument v be a valid reference (not Void,
that is not null) to an element already stored in the set
(has(v)). After saving the cursor position as the local
variable idx, the loop in lines performs a linear

2. All annotations were provided by developers as part of the library
implementation.

index
J count count + 1
0 1 2 3 4 5
— — — — —
] * | b «—] ¢ | d -~
Fig. 1: A doubly-linked list implementing
TWO_WAY_SORTED_SET. The cursor index is on

position 2. The elements are stored in positions 1 to 4,
whereas positions 0 (before) and 5 (after) mark the
list’s boundaries. count denotes the number of stored
elements (i.e., four).

search for the element v using the internal cursor: when
the loop terminates, index denotes v’s position in the set.
The three routine calls on lines complete the work:
remove takes v out of the set; go_i_th restores index to its
original value saved in idx; put_left puts v back in the
set to the left of the position index.

2.2 An error in move_item

Running AutoTest on class TWO_WAY_SORTED_SET
for only a few minutes exposes, completely automati-
cally, an error in the implementation of move_item.

The error is due to the property that calling remove
decrements the count of elements in the set by one.
AutoTest produces a test that calls move_item when index
equals count + 1; after v is removed, this value is not
a valid position because it exceeds the new value of
count by two, while a valid cursor ranges between 0
and count + 1. The test violates go_i_th’s precondition
(line 23), which enforces the consistency constraint on
index, when move_item calls it on line

This fault is quite subtle, and the failing test rep-
resents only a special case of a more general faulty
behavior that occurs whenever v appears in the set
in a position to the left of the initial value of index:
even if index < count initially, put_left will insert v in
the wrong position as a result of remove decrement-
ing count—which indirectly shifts the index of every
element after index to the left by one. For example,
if index is 3 initially, calling move_item (d) on (a,d,b,c)
changes the set to (a, b, d, c), but the correct behavior is
leaving it unchanged. Such additional inputs leading to
erroneous behavior go undetected by AutoTest because
the developers of TWO_WAY_SORTED_SET provided
an incomplete postcondition; the class lacks a query to
characterize the fault condition in general termsﬂ

2.3 Automatic correction of the error in move_item

AutoFix collects the test cases generated by AutoTest
that exercise routine move_item. Based on them, and
on other information gathered by dynamic and static

3. Recent work [10], [11], [12] has led to new versions of the
libraries with strong (often complete) contracts, capturing all relevant
postcondition properties.

O 0 N U B N =

RN RN NN NN R = 2 s s s s
NI G A O NP, SV ® N0 G ®N = O

28

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 3

index: INTEGER —— Position of internal cursor.
count: INTEGER —— Number of elements in the set.

before : BOOLEAN —— Is index = 0 ?
do Result := (index = 0) end

after : BOOLEAN —— Is index = count + 1 ?
off: BOOLEAN —— Is cursor before or after ?

item: G —— Item at current cursor position.
require not off

forth —— Move cursor forward by one.
require not after
ensure index = old index + 1

has (v: G): BOOLEAN —— Does the set contain v ?
ensure Result implies count #0

go_i th (i: INTEGER) —— Move cursor to position i.
require 0 < i < count +1

put_left (v: G) —— Insert v to the left of cursor.
require not before

move_item (v: G) —— Move v to the left of cursor.
require
v # Void
has (v)
local idx: INTEGER ; found: BOOLEAN
do
idx := index
from start until found or after loop
found := (v = item)
if not found then forth end
end
check found and not after end
remove
go_i_th (idx)
put_left (v)
end

Fig. 2: Some features of class TWO_WAY_SORTED_SET.

if idx >index then
idx = idx — 1
end

Fig. 3: Correction of the error in move_itermn automatically
generated by AutoFix.

analysis, it produces, after running only a few minutes
on commodity hardware without any user input, up
to 10 suggestions of fixes for the error discussed. The
suggestions include only valid fixes: fixes that pass all
available tests targeting move_item. Among them, we find
the “proper” fix in Figure B}, which completely corrects the
error in a way that makes us confident enough to deploy
it in the program. The correction consists of inserting the
lines n Figure [3|before the call to go_i_th on line
in Figure [2| The condition idx >index holds precisely
when v was initially in a position to the left of index; in
this case, we must decrement idx by one to accommodate
the decreased value of count after the call to remove. This
fix completely corrects the error beyond the specific case
reported by AutoTest, even though move_item has no
postcondition that formalizes its intended behavior.

3 PRELIMINARIES: CONTRACTS, TESTS, AND
PREDICATES

To identify faults, distinguish between correct and faulty
input, and abstract the state of objects at runtime, Auto-
Fix relies on basic concepts which will now be summa-
rized.

3.1

AutoFix works on Eiffel classes equipped with con-
tracts [13]]. Contracts define the specification of a class
and consist of assertions: preconditions (require), post-
conditions (ensure), intermediate assertions (check), and
class invariants (translated for simplicity of presentation
into additional pre- and postconditions in the examples
of this paper). Each assertion consists of one or more
clauses, implicitly conjoined and usually displayed on
different lines; for example, move_item’s precondition has
two clauses: v # Void on line [30| and has(v) on line
Contracts provide a criterion to determine the correct-
ness of a routine: every execution of a routine starting
in a state satisfying the precondition (and the class
invariant) must terminate in a state satisfying the post-
condition (and the class invariant); every intermediate
assertion must hold in any execution that reaches it;
every call to another routine must occur in a state
satisfying the callee’s precondition. Whenever one of
these conditions is violated, we have a faultﬁ uniquely
identified by a location in the routine where the violation
occurred and by the specific contract clause that is

Contracts and correctness

4. Since contracts provide a specification of correct behavior, contract
violations are actual faults and not mere failures.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 4

violated. For example, the fault discussed in Section
occurs on line (2] in routine move_item and violates the
single precondition clause of put_left .

3.2 Tests and correctness

In this work, a test case ¢ is a sequence of object creations
and routine invocations on the objects; if r is the last
routine called in ¢, we say that t is a test case for r. A
test case is passing if it terminates without violating any
contract and failing otherwiseE]

Every session of automated program fixing takes as
input a set T of test cases, partitioned into sets P
(passing) and F' (failing). Each session targets a single
specific fault—identified by some failing location f in
some routine r and by a violated contract clause c. When
we want to make the targeted fault explicit, we write 7,
P,, and F-. For example, Fia™® M denotes a set of

s I Ple, Fingve_item
test cases all violating put_left ‘s precondition at line
in move_item.

The fixing algorithm described in Section [is in-
dependent of whether the test cases T are generated
automatically or written manually. The experiments dis-
cussed in Section [f|all use the random testing framework
AutoTest [4] developed in our previous work. Relying
on AutoTest makes the whole process, from fault de-
tection to fixing, completely automatic; our experiments
show that even short AutoTest sessions are sufficient
to produce suitable test cases that AutoFix can use for
generating good-quality fixes.

3.3 Expressions and predicates

AutoFix understands the causes of faults and builds fixes
by constructing and analyzing a number of abstractions
of the program states. Such abstractions are based on
Boolean predicates that AutoFix collects from three basic
sources:
« argumentless Boolean queries;
o expressions appearing in the program text or in
contracts;
o Boolean combinations of basic predicates (previous
two items).

3.3.1 Argumentless Boolean queries

Classes are usually equipped with a set of argumentless
Boolean-valued functions (called Boolean queries from
now on), defining key properties of the object state: a
list is empty or not, the cursor is on boundary positions
or before the first element (off and before in Figure 2), a
checking account is overdrawn or not. For a routine 7,
Q- denotes the set of all calls to public Boolean queries
on objects visible in 7’s body or contracts.

Boolean queries characterize fundamental object prop-
erties. Hence, they are good candidates to provide useful
characterizations of object states: being argumentless,

5. Since execution cannot continue after a failure, a test case can only
fail in the last call.

they describe the object state absolutely, as opposed to
in relation with some given arguments; they usually do
not have preconditions, and hence are always defined;
they are widely used in object-oriented design, which
suggests that they model important properties of classes.
Some of our previous work [14], [15] showed the effec-
tiveness of Boolean queries as a guide to partitioning the
state space for testing and other applications.

3.3.2 Program expressions

In addition to programmer-written Boolean queries, it
is useful to build additional predicates by combining
expressions extracted from the program text of failing
routines and from failing contract clauses. For a routine r
and a contract clause c, the set £, . denotes all expressions
(of any type) that appear in 7’s body or in ¢. We normally
compute the set E, . for a clause c that fails in some ex-
ecution of r; for illustrative purposes, however, consider
the simple case of the routine before and the contract
clause index >11in Figure Eeore, index >1 consists of the
expressions Result, index, index = 0, index >1, 0, 1.

Then, with the goal of collecting additional expres-
sions that are applicable in the context of a routine r
for describing program state, the set E, . extends E, .
by unfolding [6]: E, . includes all elements in E, . and,
for every e € E,. of reference type t and for every
argumentless query ¢ applicable to objects of type ¢, E, .
also includes the expression e.q (a call of ¢ on target
6). In the example, Ebefore,index >1 = Ebefore,index >1 because
all the expressions in Epefore index >1 are of primitive type
(integer or Boolean), but this will no longer be the case
for assertions involving references.

Finally, we combine the expressions in E, . to form
Boolean predicates; the resulting set is denoted B, .. The
set B, . contains all predicates built according to the
following rules:

Boolean expressions: b, for every Boolean b € E, . of
Boolean type (including, in particular, the Boolean
queries @, defined in Section [3.3.1);

Voidness checks: ¢ = Void, for every e € E,. of
reference type;

Integer comparisons: ¢ ~ ¢/, for every e € E, . of
integer type, every e’ € E, .\ {e}U{0} also of integer
typeﬂ and every comparison operator ~ in {=, <,
<k

Complements: not p, for every p € B, ..

In the example, By index >1 contains Result and
not Result, since Result has Boolean type; the com-
parisons index <0, index <0, index =0, index #0,
index >0, and index >0; and the same comparisons
between index and the constant 1.

3.3.3 Combinations of basic predicates

One final source of predicates comes from the observa-
tion that the values of Boolean expressions describing

6. The constant 0 is always included because it is likely to expose
relevant cases.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 5

Eiffel program

class SET

end

Test cases
forth ; move /
back ; move
AutoFix
Y Candidate fixes
Suspicious Fix actions
snapshots

y 1 line 42:
>if before then forth

2. line 41:
>if idx >index then idx := 1

1. forth
2. idx =1

2. line 41: idx >index

Valid fixes

line 42:
>if before then forth /

Fig. 4: How AutoFix works. Given an Eiffel program
with contracts (Section [3.I), we generate passing and
failing test cases that target a faulty routine (Section 3.2).
By comparing the program state during passing and
failing runs, AutoFix identifies suspicious snapshots (Sec-
tions that denote likely locations and causes of
failures. For each suspicious snapshot, AutoFix generates
fix actions (Section that can change the program state
of the snapshot. Injecting fix actions into the original
program determines a collection of candidate fixes (Sec-
tion 4.4). The candidates that pass the regression test
suite are valid (Section and output to the user.

object states are often correlated. For example, off al-
ways returns True on an empty set (Figure [2); thus, the
implication count = 0 implies off describes a correlation
between two predicates that partially characterizes the
semantics of routine off.

Considering all possible implications between predi-
cates is impractical and leads to a huge number of often
irrelevant predicates. Instead, we define the set P, . as
the superset of B, . that also includes:

o All implications appearing in ¢, in contracts of r, or
in contracts of any routine appearing in B, ;

o For every implication a impliesb collected
from contracts, its mutations nota implies b,
a implies not b, b implies a obtained by negating
the antecedent a, the consequent b, or both.

These implications are often helpful in capturing the
object state in faulty runs.

The collection of implications and their mutations
may contain redundancies in the form of implications
that are co-implied (they are always both true or both
false). Redundancies increase the size of the predicate
set without providing additional information. To prune
redundancies, we use the automated theorem prover
Z3 [16]: we iteratively remove redundant implications
until we reach a fixpoint. In the remainder, we assume

P, has pruned out redundant implications using this
procedure.

4 How AUTOFIX WORKS

Fig. 4 summarizes the steps of AutoFix processing, from
failure to fix. The following subsections give the details.

AutoFix starts with a set of test cases, some passing
and some failing, that expose a specific fault. The fault
being fixed is characterized by a program location f
and by a violated contract clause ¢ (Section [3.2); the
presentation in this section leaves f and c¢ implicit
whenever clear from the context. The notion of snapshot
(described in Section is the fundamental abstraction
for characterizing and understanding the behavior of the
program in the passing or failing test cases; AutoFix
uses snapshots to model correct and incorrect behavior.
Fixing a fault requires finding a suitable location where
to modify the program to remove the source of the
error. Since each snapshot refers to a specific program
location, fault localization (described in Section boils
down to ranking snapshots according to a combination
of static and dynamic analyses that search for the origins
of faults.

Once AutoFix has decided where to modify the pro-
gram, it builds a code snippet that changes the program
behavior at the chosen location. AutoFix synthesizes
such fix actions, described in Section by combin-
ing the information in snapshots with heuristics and
behavioral abstractions that amend common sources of
programming errors.

AutoFix injects fix actions at program locations ac-
cording to simple conditional schema; the result is a
collection of candidate fixes (Section [.4). The following
validation phase (Section determines which candi-
date fixes pass all available test cases and can thus be
retained.

In general, AutoFix builds several valid fixes for the
same fault; the valid fixes are ranked according to heuris-
tic measures of “quality” (Section [£.6), so that the best
fixes are likely to emerge in top positions.

The latest implementation of AutoFix combines two
approaches developed in previous work: model-based
techniques [8]] and code-based techniques [9].

4.1

The first phase of the fixing algorithm constructs abstrac-
tions of the passing and failing runs that assess the pro-
gram behavior in different conditions. These abstractions
rely on the notion of snapshoﬂ a triple

<£apav>7

consisting of a program location ¢, a Boolean predicate p,
and a Boolean value v. A snapshot abstracts one or more

Program state abstraction: snapshots

7. In previous work [9], we used the term “component” instead of
“snapshot”.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 6

program executions that reach location ¢ with p evaluat-
ing to v. For example, (31} v = Void, False) describes that
the predicate v = Void evalutes to False in an execution
reaching line 31.

Consider a routine r failing at some location f by
violating a contract clause c. Given a set 7). of test cases
for this fault, partitioned into passing P, and failing
Ff< as described in Section AutoFix constructs a
set snap(T;) of snapshots. The snapshots come from two
sources: invariant analysis (described in Section
and enumeration (Section [4.1.2).

We introduce some notation to define snapshots. A
test case t € T, describes a sequence loc(t) = {1, 4, ... of
executed program locations. For an expression e and a
location ¢ € loc(t), [e]¢ is the value of e at £ in ¢, if e can
be evaluated at ¢ (otherwise, [e]{ is undefined).

4.1.1 Invariant analysis

An invariant at a program location ¢ with respect to a set
of test cases is a collection of predicates that all hold at
¢ in every run of the testsﬁ AutoFix uses Daikon [17] to
infer invariants that characterize the passing and failing
runs; their difference determine some snapshots that
highlight possible failure causesﬂ

For each location ¢ reached by some tests in T, we
compute the passing invariant m, as the collection of
predicates that hold in all passing tests P, C T; and
the failing invariant ¢, as the collection of predicates
that hold in all failing tests in Frf ¢ C T,. AutoFix uses
only invariants built out of publicly visible predicates in
P, .. The predicates in IT = {p | p € ¢, and —p € m}
characterize potential causes of errors, as II contains
predicates that hold in failing runs but not in passing
runsET] Correspondingly, the set snap(7;.) includes all

components
<€, /\ D, True>,
pell

for every non-empty subset II of II that profiles potential
eITor causes.

The rationale for considering differences of sets of
predicates is similar to the ideas behind the predicate
elimination strategies in “cooperative bug isolation”
techniques [18]. The dynamic analysis described in Sec-
tion would assign the highest dynamic score to
snapshots whose predicates correspond to the determin-
istic bug predictors in cooperative bug isolation.

4.1.2 Enumeration

For each test ¢t € T,, each predicate p € P, and
each location ¢ € loc(t) reached in t’s execution where

8. The class invariants mentioned in Section are a special case.

9. Using Daikon is an implementation choice made to take advan-
tage of its useful collection of invariant templates, which includes
Boolean combinations beyond those described in Section

10. Since the set of predicates used by AutoFix is closed under
complement (Section, I1 is equivalently computed as the negations
of the predicates in {p | p € 7y and —p € ¢;}.

the value of p is defined, the set snap(7;,) of snapshots
includes

(p,Ipli) .

where p is evaluated at / in ¢.

In the case of the fault of routine move_item (discussed
in Section [2), the snapshots include, among many others,
v = Void, False) (every execution has v # Void when
it reaches line [34) and idx >index, True) (executions
failing at line (41| have idx > index).

Only considering snapshots corresponding to actual
test executions avoids a blow-up in the size of snap(7}).
In our experiments (Section [5), the number of snapshots
enumerated for each fault ranged from about a dozen
to few hundreds; those achieving a high suspiciousness
score (hence actually used to build fixes, as explained in
Section [4.2.3) typically targeted only one or two locations
¢ with different predicates p.

4.2 Fault localization

The goal of the fault localization phase is to determine
which snapshots in snap(7}) are reliable characteriza-
tions of the reasons for the fault under analysis. Fault
localization in AutoFix computes a number of heuristic
measures for each snapshot, described in the following
subsections; these include simple syntactic measures
such as the distance between program statements (Sec-
tion and metrics based on the runtime behavior
of the program in the passing and failing tests (Sec-
tion [4.2.2)).

The various measures are combined in a ranking of
the snapshots (Section [£.2.3) to estimate their “suspicious-
ness”: each triple (¢,p,v) is assigned a score susp(¢, p, v)
which assesses how suspicious the snapshot is. A high
ranking for a snapshot (/,p,v) indicates that the fault
is likely to originate at location ¢ when predicate p
evaluates to v. The following phases of the fixing algo-
rithm only target snapshots achieving a high score in the
ranking.

4.2.1 Static analysis

The static analysis performed by AutoFix is based on
simple measures of proximity and similarity: control
dependence measures the distance, in terms of number of
instructions, between two program locations; expression
dependence measures the syntactic similarity between
two predicates. Both measures are variants of standard
notions used in compiler construction [19], [20]. AutoFix
uses control dependence to estimate the proximity of
a location to where a contract violation is triggered;
the algorithm then differentiates further among expres-
sions evaluated at nearby program locations according
to syntactic similarity between each expression and the
violated contract clause. Static analysis provides coarse-
grained measures that are only useful when combined
with the more accurate dynamic analysis (Section
as described in Section

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 7

Control dependence. AutoFix uses control depen-
dence to rank locations (in snapshots) according to
proximity to the location of failure. For two program
locations /1, {2, write {1 ~ {3 if £; and {2 belong to the
same routine and there exists a directed path from ¢,
to {5 on the control-flow graph of the routine’s body;
otherwise, ¢; * (5. The control distance cdist(¢1, {2) of two
program locations is the length of the shortest directed
path from ¢; to ¢, on the control-flow graph if ¢; ~» /o,
and oo if ¢1 +~ {5. For example, cdist@lHE2) = 2 in
Figure [2|

Correspondingly, when ¢ ~» j, the control dependence
cdep(, 7) is the normalized score:

cdist(¥, 1)
max{cdist(\,7) | A € r and A ~ 5}’

cdep(f,7) =1 —

where A ranges over all locations in routine r (where ¢
and 7 also appear); otherwise, ¢ + 7 and cdep(¢, 7) = 0.

Ignoring whether a path in the control-flow graph
is feasible when computing control-dependence scores
does not affect the overall precision of AutoFix’s heuris-
tics: Section shows how static analysis scores are
combined with a score obtained by dynamic analysis;
when the latter is zero (the case for unfeasible paths,
which no test can exercise), the overall score is also zero
regardless of static analysis scores.

Expression dependence. AutoFix uses expression de-
pendence to rank expressions (in snapshots) according to
similarity to the contract clause violated in a failure. Ex-
pression dependence is meaningful for expressions eval-
uated in the same local environment (that is, with strong
control dependence), where the same syntax is likely to
refer to identical program elements. Considering only
syntactic similarity is sufficient because AutoFix will be
able to affect the value of any assignable expressions (see
Section [4.3). For an expression ¢, define the set sub(e) of
its sub-expressions as follows:

o e € sub(e);

o if ¢ € sub(e) is a query call of the form
t.q(ay,...,ap) for m > 0, then t € sub(e) and
a; € sub(e) for all 1 <i < m.

This definition also accommodates infix operators (such
as Boolean connectives and arithmetic operators), which
are just syntactic sugar for query calls; for example a
and b are both sub-expressions of @ + b, a shorthand
for a.plus (b). Unqualified query calls are treated as
qualified call on the implicit target Current.

The expression proximity eprox(ej,ez) of two
expressions eq, eo measures how similar e; and e, are in
terms of shared sub-expressions; namely, eprox(eq, e2) =
|sub(e;) Nsub(ez)]. For example, the expression
proximityeprox(i < count,0 < i < count + 1) is 2,
corresponding to the shared sub-expressions i and
count. The larger the expression proximity between two
expressions is, the more similar they are.

Correspondingly, the expression dependence edep(p, c) is

the normalized score:

eprox(p, ¢)
max{eprox(m,c) | 7 € P, .}’

edep(p,c) =

measuring the amount of evidence that p and c
are syntactically similar. In routine before in Fig-
ure 2} for example, edep(index, index = 0) is 1/3 because
eprox(index,index = 0) = 1 and index = 0 itself has the
maximum expression proximity to index = 0.

4.2.2 Dynamic analysis

Our dynamic analysis borrows techniques from generic
fault localization [21] to determine which locations are
likely to host the cause of failure. Each snapshot receives
a dynamic score dyn(¢, p, v), roughly measuring how often
it appears in failing runs as opposed to passing runs.
A high dynamic score is empirical evidence that the
snapshot characterizes the fault and suggests what has
to be changed; we use static analysis (Section
to differentiate further among snapshots that receive
similar dynamic scores.

Principles for computing the dynamic score. Con-
sider a failure violating the contract clause ¢ at location
f in some routine r. For a test case t € T, and a
snapshot (¢,p,v) such that ¢ is a location in 7’s body,
write (¢, p,v) € t if t reaches location ¢ at least once and
p evaluates to v there:

(,p,v)y €t iff 3t € loc(t),l ={;, and v = [p]’* .

For every test case t € T, such that (¢,p,v) € t, o(t)
describes t’s contribution to the dynamic score of (¢, p,v):
a large o(t) should denote evidence that (¢,p,v) is a
likely “source” of error if t is a failing test case, and
evidence against it if ¢ is passing. We choose a ¢ that
meets the following requirements:

(a) If there is at least one failing test case ¢ such that
(¢,p,v) € t, the overall score assigned to (¢,p,v)
must be positive: the evidence provided by failing
test cases cannot be canceled out completely.

(b) The magnitude of each failing (resp. passing)
test case’s contribution o(¢) to the dynamic score
assigned to (¢,p,v) decreases as more failing
(resp. passing) test cases for that snapshot are avail-
able: the evidence provided by the first few test cases
is crucial, while repeated outcomes carry a lower
weight.

(c) The evidence provided by one failing test case alone
is stronger than the evidence provided by one pass-
ing test case.

The first two principles correspond to “Heuristic III” of
Wong et al. [21]], whose experiments yielded better fault
localization accuracy than most alternative approaches.
According to these principles, snapshots appearing only
in failing test cases are more likely to be fault causes.
AutoFix’s dynamic analysis assigns scores starting
from the same basic principles as Wong et al.’s, but with
differences suggested by the ultimate goal of automatic

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 8

fixing: our dynamic score ranks snapshots rather than
just program locations, and assigns weight to test cases
differently. Contracts help find the location responsible
for a fault: in many cases, it is close to where the
contract violation occurred; on the other hand, automatic
fixing requires gathering information not only about the
location but also about the state “responsible” for the
fault. This observation led to the application of fault
localization principles on snapshots in AutoFix. It is
also consistent with recent experimental evidence [22]
suggesting that the behavior of existing fault localization
techniques on the standard benchmarks used to evaluate
them is not always a good predictor of their performance
in the context of automated program repair; hence the
necessity of adapting to the specific needs of automated
fixing

Dynamic score. Assume an arbitrary order on the test
cases and let o(t) be o' for the i-th failing test case ¢ and
Ba' for the i-th passing test case. Selecting 0 < a < 1
decreases the contribution of each test case exponentially,
which meets principle (b); then, selecting 0 < § < 1
fulfills principle (d).

The evidence provided by each test case adds up:

dyn(t,p,v)= v+ {o(u)[ue FI*}-3 " {o(w) | ve P},

for some v > 0; the chosen ordering is immaterial. We
compute the score with the closed form of geometric
progressions:

#p(l,p,v)=[{t € P | {{,p,v) €1}],

#(,p,v)=|{t € Ele|(t,p,v) € t}

dyn(l, p,v) =7 + —— (1 — B+ Ba#Pltry) — a#f“’p’”>) :
l1—«a

b

where #p(¢, p,v) and #f (¢, p,v) are the number of pass-
ing and failing test cases that determine the snapshot
(¢, p,v). It is straightforward to prove that dyn(¢, p,v) is
positive if #f(¢,p,v) > 1, for every nonnegative «, 3,
such that 0 < a + 8 < 1; hence the score meets principle
(a) as well.

Since the dynamic score dyn varies exponentially only
with the number of passing and failing test cases, the
overall success rate of the AutoFix algorithm is affected
mainly by the number of tests but not significantly
by variations in the values of a and 5. A small em-
pirical trial involving a sample of the faults used in
the evaluation of Section [5| confirmed this expectation
of robustness; it also suggested selecting the values
a =1/3, 6 = 2/3, and v = 1 as defaults in the cur-
rent implementation of AutoFix, which tend to produce
slightly shorter running times on average (up to 10%
improvement). With these values, one can check that
2/3 < dyn{¢,p,v) < 3/2, and 1 < dyn({,p,v) < 3/2 if
at least one failing test exercises the snapshot.

11. The results of Wong et al’s heuristics in Qi et al’s experi-
ments [22] are not directly applicable to AutoFix (which uses different
algorithms and adapts Wong et al.’s heuristics to its specific needs);
replication belongs to future work.

4.2.3 Overall score

AutoFix combines the various metrics into an overall
score susp({,p,v). The score puts together static and
dynamic metrics with the idea that the latter give the
primary source of evidence, whereas the less precise
evidence provided by static analysis is useful to discrim-
inate among snapshots with similar dynamic behavior.

Since the static measures are normalized ratios, and
the dynamic score is also fractional, we may combine
them by harmonic mean [23]:

3
edep(p, ¢)~+-cdep(¢, f)~L+dyn(t, p,v) "

Our current choice of parameters for the dynamic score
(Section makes it dominant in determining the
overall score susp(¢,p,v): while expression and control
dependence vary between 0 and 1, the dynamic score
has minimum 1 (for at least one failing test case and
indefinitely many passing). This range difference is con-
sistent with the principle that dynamic analysis is the
principal source of evidence.

For the fault of Figure the snapshot
idx >index, True) receives a high overall score.
AutoFix targets snapshots such as this in the fix action
phase.

susp(¢, p,v) =

4.3 Fix action synthesis

A snapshot (¢,p,v) in snap(7,) with a high score
susp(¢, p,v) suggests that the “cause” of the fault under
analysis is that expression p takes value v when the
execution reaches ¢. Correspondingly, AutoFix tries to
build fixing actions (snippets of instructions) that modify
the value of p at ¢, so that the execution can hopefully
continue without triggering the fault. This view reduces
fixing to a program synthesis problem: find an action
snip that satisfies the specification:

require p = v do snip ensure p #v end .

AutoFix uses two basic strategies for generating fixing
actions: setting and replacement. Setting (described in
Section [4.3.1) consists of modifying the value of variables
or objects through assignments or routine calls. Replace-
ment (described in Section consists of modifying
the value of expressions directly where they are used
in the program. Three simple heuristics, with increasing
specificity, help prevent the combinatorial explosion in
the generation of fixing actions:

1) Since the majority of program fixes are short and
simple [24], [25], we only generate fixing actions that
consist of simple instructions;

2) We select the instructions in the actions according to
context (the location that we are fixing) and common
patterns, and based on behavioral models of the
classes (Section 4.3.3);

3) For integer expressions, we also deploy constraint
solving techniques to build suitable derived expres-
sions (Section [£.3.4).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 5, MAY 2014 9

We now describe actions by setting and replacements,
which are the basic mechanisms AutoFix uses to synthe-
size actions, as well as the usage of behavioral models
and constraint solving. To limit the number of candi-
dates, AutoFix uses no more than one basic action in
each candidate fix.

4.3.1 Actions by setting

One way to change the value of a predicate is to modify
the value of its constituent expressions by assigning new
values to them or by calling modifier routines on them.
For example, calling routine forth on the current object
has the indirect effect of setting predicate before to False.

Not all expressions are directly modifiable by setting;
an expression e is modifiable at a location ¢ if: e is of refer-
ence type (hence we can use e as target of routine calls);
or e is of integer type and the assignment e := 0 can be
executed at /; or e is of Boolean type and the assignment
e = True can be executed at ¢. For example, index is
modifiable everywhere in routine move_item because it
is an attribute of the enclosing class; the argument i
of routine go_i_th, instead, is not modifiable within its
scope because arguments are read-only in Eiffel.

Since the Boolean predicates of snapshots may not be
directly modifiable, we also consider sub-expressions of
any type. The definition of sub-expression (introduced
in Section induces a partial order <: e; =< e
iff e; € sub(ez) that is e; is a sub-expression of es;
correspondingly, we define the largest expressions in a
set as those that are only sub-expressions of themselves.
For example, the largest expressions of integer type in
sub(idx <index or after) are idx and index.

A snapshot (¢,p,v) induces a set of target expres-
sions that are modifiable in the context given by the
snapshot. For each type (Boolean, integer, and refer-
ence), the set targ({,p) of target expressions includes
the largest expressions of that type among p’s sub-
expressions sub(p) that are modifiable at ¢. For exam-
ple, targ{dl] idx >Current.index) in Figure [2] includes
the reference expression Current, the integer expres-
sions Current.index and idx, but no Boolean expressions
(idx > Current.index is not modifiable because it is not a
valid L-value of an assignment).

Finally, the algorithm constructs the set set(¢,p) of
settings induced by a snapshot (¢, p,v) according to the
target types as follows; these include elementary assign-
ments, as well as the available routine calls.

Boolean targets. For e € targ(/,p) of Boolean type,
set(¢,p) includes the assignments e := d for d equal to
the constants True and False and to the complement
expression not e.

Integer targets. For e € targ({,p) of integer type,
set(¢,p) includes the assignments e := d for d equal to
the constants 0, 1, and —1, the “shifted” expressions e+1
and e — 1, and the expressions deriving from integer
constraint solving (discussed in Section [4.3.4).

Reference targets. For e € targ(¢, p) of reference type,
if e.c(ay,...,ay) is a call to a command (procedure)

¢ executable at ¢, include e.c(ay,...,a,) in set(¢,p).
(Section discusses how behavioral models help
select executable calls at £ with chances of affecting the
program state indicated by the snapshot.)

In the example of Section the fault’s snap-
shot idx >index, True) determines the settings
setidx >index) that include assignments of 0, 1,
and —1 to idx and index, and unit increments and
decrements of the same variables.

4.3.2 Actions by replacement

In some cases, assigning new values to an expression
is undesirable or infeasible. For example, expression i in
routine go_i_th of Figure 2| does not have any modifiable
sub-expression. In such situations, replacement directly
substitutes the usage of expressions in existing instruc-
tions. Replacing the argument idx with idx — 1 on line[41]
modifies the effect of the call to go_i_th without directly
changing any local or global variables.

Every location ¢ labels either a primitive instruction
(an assignment or a routine call) or a Boolean condition
(the branching condition of an if instruction or the exit
condition of a loop). Correspondingly, we define the set
sub(¢) of sub-expressions of a location ¢ as follows:

o if £ labels a Boolean condition b then sub(¢) = sub(