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ABSTRACT
In program debugging, finding a failing run is only the first
step; what about correcting the fault? Can we automate
the second task as well as the first? The AutoFix-E tool au-
tomatically generates and validates fixes for software faults.
The key insights behind AutoFix-E are to rely on contracts
present in the software to ensure that the proposed fixes are
semantically sound, and on state diagrams using an abstract
notion of state based on the boolean queries of a class.

Out of 42 faults found by an automatic testing tool in two
widely used Eiffel libraries, AutoFix-E proposes successful
fixes for 16 faults. Submitting some of these faults to experts
shows that several of the proposed fixes are identical or close
to fixes proposed by humans.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, diagnostics; D.2.4 [Software Engineer-
ing]: Software Verification—programming by contract, as-
sertion checkers, reliability ; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning
about Programs—pre- and post-conditions; I.2.2 [Artificial
Intelligence]: Automatic Programming—program modifi-
cation

General Terms
Reliability, Verification

Keywords
Automated debugging, automatic fixing, program synthesis,
dynamic invariants

1. INTRODUCTION
The programmer’s ever recommencing fight against error

involves two tasks: finding faults; and correcting them. Both
are in dire need of at least partial automation.
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Automatic testing tools are becoming available to address
the first goal. Recently, some progress has also been made
towards tools that can propose automatic corrections. Such
is in particular the goal of the AutoFix project, of which
the tool described here, AutoFix-E, is one of the first results.
The general idea is, once a testing process (automatic, man-
ual, or some combination) has produced one or more exe-
cution failures, reflecting a fault in the software, to propose
corrections (“fixes”) for the fault. The important question of
how to use such corrections (as suggestions to the program-
mer, or, more boldly, for automatic patching) will not be
addressed here; we focus on the technology for finding good
potential corrections.

The work reported here is part of a joint project, Aut-
oFix, between ETH Zürich and Saarland University. The
tool is called AutoFix-E, to reflect that it has been devel-
oped for Eiffel, although the concepts are applicable to any
other language natively equipped with contracts (such as
Spec#) or a contract extension of an existing language (such
as JML for Java). The AutoFix project builds on the pre-
vious work on automatic testing at ETH, leading to the Au-
toTest tool [20], and on work on automatic debugging at
Saarland, leading in particular to the Pachika tool [5].

While AutoFix-E is only an initial step towards automatic
fault correction, the first results, detailed in Section 4, are
encouraging. In one experiment, we ran AutoFix-E on 42 er-
rors found on two important libraries (EiffelBase and Gobo)
by the AutoTest automatic testing framework [20]. These
libraries are production software, available for many years
and used widely by Eiffel applications, including ones with
up to 2 million lines of code. The use of an automatic test-
ing tool (rather than a manual selection of faults found by
human testers) is a protection against bias. AutoFix-E suc-
ceeded in proposing valid corrections for 16 of the faults. We
then showed some failed executions to a few highly experi-
enced programmers and asked them to propose their own
corrections; in several cases the results were the same.

The remainder of this paper is organized as follows: Sec-
tion 2 illustrates AutoFix-E from a user’s perspective on an
example program. Section 3 describes the individual steps
of our approach. Section 4 evaluates the effectiveness of the
proposed fixes. After discussing related work in Section 5,
Section 6 presents future work. All the elements necessary
to examine and reproduce these and other results described
in this article are available for download, as discussed in Sec-
tion 7: the source code of AutoFix-E, detailed experimental
results, and instructions to rerun the experiments.



Listing 1: Calling duplicate when before holds vio-
lates the precondition of item.

1 duplicate (n: INTEGER): like Current
2 −− Copy of subset beginning at cursor position
3 −− and having at most ‘n’ elements.
4 require
5 non negative: n ≥ 0
6 local
7 pos: CURSOR
8 counter: INTEGER
9 do

10 pos := cursor
11 create Result.make
12 from until (counter = n) or else after loop
13 Result.put left (item)
14 forth
15 counter := counter + 1
16 end
17 go to (pos)
18 end
19

20 item: G −− Current item
21 require
22 not off : (not before) and (not after)

2. AN AUTOFIX EXAMPLE
Let us first demonstrate AutoFix-E from a user’s per-

spective. Listing 1 shows an excerpt of the EiffelBase class
TWO WAY SORTED SET—a collection of objects, with a
cursor iterating over the collection. The cursor may point
before the first or after the last element; these conditions
can be queried as boolean functions before and after .

The duplicate routine takes a nonnegative argument n
and returns a new set containing at most n elements start-
ing from the current position of cursor. After saving the
current position of cursor as pos and initializing an empty
set as Result, duplicate enters a loop that navigates the
set data structure and iteratively adds the current item to
Result, calls forth to move to the next element in the set,
and updates the counter.

During automated testing, AutoTest discovered a defect
in duplicate . The precondition of routine item (also shown
in Listing 1) requires that not before and not after both
hold—that is, the cursor is neither before the first element
nor after the last. The loop exit condition, however, only
enforces the second condition. So if a call to duplicate oc-
curs when before holds, the call to item will violate item’s
precondition, resulting in a failure.

For this failure, AutoFix-E automatically generates the
fix shown in Listing 2, replacing the lines 13–15 in Listing 1.
The fix properly checks for the previously failing condition
(before) and, by calling forth , brings the program into a
state such that the problem does not occur.

How does AutoFix-E generate this fix? Two properties in
particular distinguish AutoFix-E from previous work in the
area, namely the reliance on contracts and on boolean query
abstraction:

Contracts associate specifications, usually partial, with
software elements such as classes or routines (meth-
ods). The work on AutoTest has already shown that
contracts significantly boost automatic testing [4].

Listing 2: Fixed loop body generated by AutoFix-E
13 if before then
14 forth
15 else
16 Result.put left (item)
17 forth
18 counter := counter + 1
19 end

AutoFix-E illustrates a similar benefit for automatic
correction: as a failure is defined by a contract viola-
tion, knowledge about the contract helps generate a fix
not just by trying out various syntactical possibilities,
but by taking advantage of deep semantic knowledge
about the intent of the faulty code. For example, if
the evidence for the failure is that an assertion q is
violated, and analysis determines that a certain rou-
tine r has q as part of its postcondition, adding a call
to r may be a valid fix.

Boolean queries of a class (boolean-valued functions with-
out arguments) yield a partition of the correspond-
ing object state into a much smaller set of abstract
states. This partition has already proved useful for
testing [15], and it also helps for automatic correction,
by providing the basis for state/transition models.

These two properties form the core of our approach, de-
tailed in the following section.

3. HOW AUTOFIX WORKS
Let us now describe the detailed steps of our approach.

Figure 1 summarizes the individual steps from failure to fix,
detailed in the following subsections.

3.1 Contracts and Correctness
AutoFix-E works on Eiffel classes [8] equipped with con-

tracts (made of assertions [19]). Contracts constitute the
specification of a class and consist of preconditions
(require), postconditions (ensure), intermediate assertions
(check), and class invariants (translated into additional
postcondition and precondition clauses in all the examples).

Contracts provide a criterion to determine the correctness
of a routine: every execution of a routine starting in a state
satisfying the precondition (and the class invariant) must
terminate in a state satisfying the postcondition (and the
class invariant); every intermediate assertion must hold in
any execution that reaches it; every call to another routine
must occur in a state satisfying that routine’s precondition.

3.2 Testing and Fault Discovery
Testing a routine with various inputs can reveal a fault in

the form of an assertion violation. Testing can be manual—
with the programmer providing a number of test cases ex-
ercising a routine in ways that may make it fail—or au-
tomatic. In previous work, we developed AutoTest [20], a
fully automated random testing framework for Eiffel classes.
AutoTest generates as many calls as possible in the avail-
able testing time, and reports faults in the form of minimal-
length failing runs. In practice, AutoTest regularly finds
faults in production software [4]. The faults found by Au-
toTest are a natural input to AutoFix-E; the integration of



Eiffel Class (§3.1) Behavior Models (§3.5)

Fault Profile (§3.4)

✘

Fix Candidates (§3.6-7) Validated Fixes (§3.8)

> put_left(item)

Line 13:
> bind()

Line 11:

< unbind()

Line 15:

> put_left(item)

Line 13:

Object States (§3.3)

✔

✘

Test Case Runs (§3.2)

before ∧ off
Line 13:

¬before ∧ ¬off
Line 13:

Figure 1: How AutoFix-E works. We take an Eiffel class (Section 3.1) and generate test cases with Au-
toTest (Section 3.2). From the runs, we extract object states using boolean queries (Section 3.3). By com-
paring the states of passing and failing runs, we generate a fault profile (Section 3.4), an indication of what
went wrong in terms of abstract object state. From the state transitions in passing runs, we generate a finite-
state behavioral model (Section 3.5), capturing the normal behavior in terms of control. Both control and state
guide the generation of fix candidates (Section 3.6), with special treatment of linear assertions (Section 3.7).
Only those fixes passing the regression test suite remain (Section 3.8).

the two tools is intended to provide a completely automated
“push-button” solution to the testing-debugging phases of
software development. AutoFix-E can, however, work with
any set of test cases exposing a fault, whether these cases
have been derived automatically or manually.

3.3 Assessing Object State
To generate fixes, we first must reason about where a fail-

ure came from. For this purpose, we assess object state by
means of boolean queries.

3.3.1 Argument-less Boolean Queries
A class is usually equipped with a set of argument-less,

boolean-valued functions (called boolean queries from now
on), defining key properties of the object state: a list is
empty or not, the cursor is on an item or “off” all items, a
checking account is overdraft or not. n boolean queries for
a class define a partition of the corresponding object state
space into 2n “abstract states”. As n is rarely higher than
about 15 in practice,1, the resulting size is not too large,
unlike the concrete state space which is typically intractable.
Intuitively, such a partition is attractive, because for well-
designed classes, boolean queries characterize fundamental
properties of the objects. Our earlier work [15] confirms this
intuition for testing applications, showing that high bool-
ean query coverage correlates with high testing effectiveness;
our earlier work on fix generation [5] also relied on similar
abstractions. The reasons why state abstraction is effective
appear to be the following:

• Being argument-less, boolean queries describe the ob-
ject state absolutely, as opposed to in relation with
some given arguments.

• Boolean queries usually do not have any precondition,
hence they posses a definite value in any state. This
feature is crucial to have a detailed object state at any
point in a run.

• Boolean queries are widely used in Eiffel contracts,
which suggests that they model important properties
of a class.

1In EiffelBase [9], 284 out of 305 classes (94%) have 15 or
fewer boolean queries.

In all, it is very likely that there exists some boolean query
whose value in failing runs is different than in error-free runs.

We have seen some examples of useful boolean queries in
Section 2: before and after describe whether the internal
cursor is before the first element or after the last element
in an ordered set. is empty is another boolean query of the
class which, as the name indicates, is true whenever the set
contains no elements.

3.3.2 Complex Predicates
The values of boolean queries are often correlated. Our

experience suggests that implications can express most cor-
relations between boolean queries. For example, executing
the routine forth on an empty set changes after to true; in
other words, the implication

is empty implies after

characterizes the effect of routine forth . Such implications
are included as predicates for the object state model, be-
cause they are likely to make the abstraction more accurate.

Trying out all possible implications between pairs of bool-
ean queries is impractical and soon leads to a huge number
of often irrelevant predicates. We therefore use two sources
for implications:

Contracts. We mine the contracts of the class under anal-
ysis for implications; these implications are likely to
capture connections between boolean queries.

Mutations. We also found it useful to generate three mu-
tations for each implication, obtained by negating the
antecedent, the consequent, or both. These mutations
are often helpful in capturing the object state in faulty
runs.

In our ongoing example, the implication is empty
implies after mutates into: (1) not is empty implies
after; (2) is empty implies not after; and (3) not

is empty implies not after.

The resulting set of predicates, including boolean queries
and implications, is called predicate set and denoted by P ;
Π denotes the set P∪{not p | p ∈ P} including all predicates
in the predicate set and their negations.



3.3.3 Predicate Pruning
The collection P of boolean queries and implications usu-

ally contains redundancies in the form of predicates that are
co-implied (i.e., they are always both true or both false) or
contradictory (i.e., if one of them is true the other is false
and vice versa). Some predicates may also be subsumed by
class invariants. Redundant predicates increase the size of
the predicate set without providing additional information.

To prune redundant predicates out of the predicate set
P , an automated theorem prover is the tool of choice. We
use Z3 [6] to check whether a collection of predicates is con-
tradictory or valid, and remove iteratively redundant pred-
icates until we obtain a suitable set—neither contradictory
nor valid. While there is in general no guarantee that this
procedure gives a minimal set, the relationships among pred-
icates are sufficiently simple that this unsophisticated ap-
proach gives good results.

3.4 Fault Analysis
Once we have extracted the predicates, we need to charac-

terize the crucial difference between the passing and failing
runs. To characterize this difference, AutoFix-E runs Daikon
[11] to find out which of the predicates in Π (determined in
Section 3.3) hold over all passing and failing runs, respec-
tively.2 These state invariants characterize the passing state
and failing state, respectively; their difference outlines the
failure cause.

3.4.1 Fault Profiles
We first consider all passing runs and infer a state invari-

ant at each program location that is executed. An invariant
is a collection of predicates from Π, all of which hold at the
given location in every passing run. Then, we perform the
same task with the set of failing runs for the bug currently
under analysis; the failing runs cannot continue past the lo-
cation of failure, hence the sequence of invariants will also
stop at that location. The results of this phase are two se-
quences of invariants, a pair for each executed location up
to the point of failure.

Comparing these pairs of failing and passing states results
in a fault profile. The fault profile contains all predicates
that hold in the passing run, but not in the failing run.
This is an an alleged indication of what “went wrong” in the
failing run in terms of abstract object state.

In the case of routine duplicate , AutoFix-E finds out that,
before the location of the exception, the state invariant
before and off holds only in failing test cases. Correspond-
ingly, the fault profile is the complement predicate:

before implies not off

Either of the predicates before or off may be the cause of
the the precondition violation. To narrow down the cause
further, we use two heuristics:

1. We consider only predicates in the failing state invari-
ants that imply the negation of the violated assertion.

2. Among those remaining predicates, we attempt to find
out the strongest (if possible).

2While Daikon also reports other properties as invariants,
we are only interested in the boolean query predicates as
discussed in Section 3.3.

Again, Z3 does the reasoning. In our example, both predi-
cates imply the negation of the violated precondition, so the
first heuristic does not help. The second heuristic, though,
finds out that before implies off in failing runs. Being the
antecedent of the implication, before is very likely to be the
cause of the assertion violation.

Formally, the fault profile is constructed as follows: For
a given location `, let I+

` ⊆ Π and I−` ⊆ Π be the sets
of predicates characterizing the passing and failing state,
respectively. The fault profile at location ` is the set Φ` ⊆ Π
of all predicates p ∈ Π for which p ∈ I+

` ∧ p 6∈ I
−
` holds; it

characterizes potential causes of errors at `.

3.4.2 Fixing as a Program Synthesis Problem
Using the fault profile at the program point where a failure

occurs, we can formulate the problem of finding a fix as a
program synthesis problem. For a location `, let fail state
and pass state be the invariants characterizing the failing
and passing runs, respectively. Any piece of code that can
drive the program state from fail state to pass state is a
candidate fix which, if executed at `, would permit normal
continuation of the failing run. Formally, we are looking for
a program fix that satisfies the specification:

require fail state do fix ensure pass state

The underlying assumption is that program fix is in general
sufficiently simple—consisting of just a few lines of code—
and that, consequently, it can be generated automatically.

3.5 Behavioral Models
Now that we can characterize the difference between pass-

ing and failing state, we need to know how to reach the pass-
ing state—that is, how to synthesize a fix. Building on our
previous experiences with Pachika [5], AutoFix-E extracts a
simple finite-state behavioral model from all error-free runs
of the class under analysis.

The behavioral model represents a predicate abstraction
of the class behavior. It is a finite-state automaton whose
states are labeled with predicates that hold in that state.
Transitions are labeled with routine names: a routine m
with specification require pre ensure post appears on tran-
sitions from a state where pre holds to a state where post
holds.

is_empty

not before

after

forthis_empty

before

not after

not is_empty

not before

not after

forthnot is_empty

before

not after

Figure 2: State transitions of forth

As an example, Figure 2 shows the behavioral model for
the forth routine from our running example. We can see
that if the initial state was is empty, after will always hold
after a call to forth . Also, after invoking forth , not before
will always hold. Therefore, if we want to reach the not
before state, as we would do in our running example to

avoid violating the precondition, invoking forth is a possible
option.

In general, the built abstraction is neither complete nor
sound because it is based on a finite number of test runs.



Nonetheless, our experiments showed that it is often suffi-
ciently precise to guide the generation of valid fixes.

We call mutator any routine that changes the state ac-
cording to the behavioral model; a sequence of mutators
(reaching a specific state) is called a snippet.

3.5.1 Reaching States
To derive a possible fix from a behavioral model, we need

to determine sequences of routine calls which can change the
object state appropriately. Formally, this works as follows.

For every predicate p ∈ Φ` in a fault profile, Mp de-
notes the set of mutators: the routines that, according to
the finite-state model, drive the object from a state where
p does not hold to a state satisfying p. For a set of predi-
cates φ, Mφ denotes the set of common mutators

⋂
p∈φM

p.

A snippet for a set of predicates {p1, p2, . . .} is any se-
quence of mutators 〈m1,m2, . . .〉 that drive the object from
a state where none of {p1, p2, . . .} holds to one where all of
them hold. It may be the case that a routine is the mutator
for more than one predicate, hence the length of the snippet
need not be the same as the size of the set of predicates it af-
fects. For the running example, a predicate off is equivalent
to before or after , hence any mutator for before or after is
also a mutator for off .
S[Φ`] denotes the set of all snippets for the set or predi-

cates Φ`:

S[Φ`] ,
⋃

{φ1,φ2,...}∈Part(Φ`)
m1∈Mφ1 ,m2∈Mφ2 ,...

〈m1,m2, . . .〉

where Part(V ) denotes the set of all partitions (of any size)
of V .

Since the finite-state abstraction is built from observing
individual mutators, not all snippets may actually be exe-
cutable or achieve the correct result. Invalid snippets will,
however, be quickly discarded in the validation phase. We
found that being permissive in the snippet generation phase
is a better trade-off than adopting more precise—but signif-
icantly more expensive—techniques such as symbolic execu-
tion or precise predicate abstraction.

3.6 Generating Candidate Fixes
Now that we know about fault-characterizing states (Sec-

tion 3.4) and mutators between these states (Section 3.5),
we can leverage them to actually generate fixes. AutoFix-E
builds a set of possible candidate fixes in two phases. First,
it selects a fix schema—a template that abstracts common
instruction patterns. Then, it instantiates the fix schema
with actual conditions, as extracted from the fault profile
(Section 3.4), and routine calls, as obtained from the behav-
ioral model (Section 3.5). The set of possible instantiations
constitutes a set of candidate fixes.

3.6.1 Fix Schemas
To restrict the search space for code generation, AutoFix-

E uses a set of predefined templates called fix schemas. The
four fix schemas currently supported are shown in Table 1.
In these schemas, fail is instantiated by a predicate, snippet
is a sequence of mutators to reach a state, and old stmt some
statements, in the original program, related to the point of
failure.3

3The AutoFix-E framework can accommodate different im-
plementations of these two components and, more generally,

(a) snippet
old stmt

(c) if not fail then
old stmt

end

(b) if fail then
snippet

end
old stmt

(d) if fail then
snippet

else
old stmt

end

Table 1: Fix schemas implemented in AutoFix-E.

(b) if before then
forth

end
Result.put left (item)
forth
counter := counter + 1

(d) if before then
forth

else
Result.put left (item)
forth
counter := counter + 1

end

Table 2: Fix candidates. By instantiating the fix
schemas (b) and (d) from Table 1 for the duplicate
example (Listing 1), we obtain two fix candidates.

For the running example, AutoFix-E generates two can-
didate fixes by instantiating the fix schemas (b) and (d),
respectively; they correspond to the routine duplicate with
the two sequences of statements in Table 2 replacing the
original loop body.

3.6.2 Instantiating Schemas
The instantiation of schemas starts from the location

where the fault occurred and might possibly backtrack to
previous locations in the failing run if no valid fix can be
generated at the point of failure.

The instantiation of schemas for a location ` is done ex-
haustively as follows:

fail takes one of the following values:

1. not p, for a single predicate p ∈ Φ`;

2. not p1 and not p2 and . . ., for a selection of
predicates p1, p2, . . . ∈ Φ`;

3. not violated clause , where violated clause is the
originally violated assertion clause revealing the
fault.

The first case is the most common, and is sufficient
in the large majority of cases. The second case does
not necessary lead to a huge number of selections, be-
cause Φ` is often a small set. The third case is use-
ful when the predicates in Π cannot precisely charac-
terize the violated assertion that caused the failure;
in these cases, we simply replicate verbatim the very
clause that was violated.

different techniques for the generation of fix candidates from
the specification. Thus, advances in any of these techniques
(e.g., [23]) immediately translate into a more powerful au-
tomated debugging technique.



snippet takes any value in S[Φ`].

old stmt takes one of the following values:

1. the lone statement at location `;

2. the block of statements that immediately con-
tains `.

Accordingly, the instantiated schema replaces the
statement at location ` or the whole block.

3.7 Linearly Constrained Assertions
In contract-based development, many assertions take the

form of linear constraints—that is, an assertion consisting
of boolean combinations of linear inequalities over program
variables and constants. As an example of such linearly con-
strained assertions (or linear assertions for short), consider
the precondition of routine put i th , which inserts item v at
position i in a sorted data structure:

put i th (v: G; i : INTEGER) require i ≥ 1 and i≤count

The precondition requires that i denotes a valid position
in the range [1.. count], where count is the total number of
elements in the structure.

As linear assertions are common in contracts, they re-
quire special techniques for fix generation in case they are
violated. The rest of this section describes them succinctly
and illustrates how they are integrated within the general
automated debugging framework.

3.7.1 Fault Analysis
The violation of a linear assertion occurs when a variable

takes a value that does not satisfy the constraint. In the
example, calling routine put i th with i = 0 triggers a pre-
condition violation.

A fix for a linear assertion violation should check whether
the variable subject to the linear constraint takes a value
compatible with the constraint itself and, in case it does
not happen, it should change the value into a valid one.
This means that we cannot treat linear constraints as atomic
propositions, but we must “open the box” and reason about
their structure. More precisely, it is important to determine
what is a variable and what is a constant in a linear asser-
tion. A variable is the parameter that must be changed (i in
the example), while everything else is a constant—with re-
spect to the constraint—and should not be modified (count
and, obviously, 1 in the example).

If we can tell variables and constants apart, constraint
solving can determine a valid value for variables: an ex-
tremal solution to the constraint, expressed as a symbolic
expression of the constants. Finally, injecting the valid value
into the routine using suitable fix schemas produces a can-
didate fix.

3.7.2 Variable Selection
Some heuristics can guess which identifiers occurring in a

linear assertions are variables and which are constants. The
heuristics assign a weight to each identifier according to the
following guidelines; the identifier with the least weight will
be the variable, and everything else will be a constant.

• Routine arguments in preconditions receive lower
weights than other identifiers.

• In any assertion, an identifier receives a weight in-
versely proportional to the number of its occurrences
in the assertion (e.g., appearing twice weighs less than
appearing once).

• Identifiers that the routine body can assign to receive
less weight than expressions that cannot change.

To account for the imperfection of this weighing scheme,
it is useful to introduce a bit of slack in the selection of the
variable and trying out more than one candidate among the
identifiers with low weights. If two different selections both
work as a fix, the one with the lowest weight will eventually
be chosen as the best fix in the final ranking of valid fixes.

3.7.3 Fixes for Linear Assertions
Fixes for linear assertions are generated in two phases:

first, we select a value for the variable that satisfies the con-
straint, and then we plug the value into a fix schema and
inject it in the routine under analysis.

Given a linear assertion λ and a variable v, we look for
extremal values of v that satisfy λ. AutoFix-E uses Mathe-
matica [17] to solve λ for maximal and minimal values of v
as a function of the other parameters (numeric or symbolic)
in λ. To increase the quality of the solution, strengthen λ
with linear assertions from the class invariants which share
identifiers with λ. In the example of put i th , the class in-
variant count ≥ 0 is added to λ when looking for extrema.
The solution consists of the extremal values 1 and count.

We use the following schema to build candidate fixes for
linear assertions.

if not constraint then new stmt else old stmt end

The violated linear assertion replaces constraint in the sche-
ma. The rest of the schema is instantiated as follows, for an
extremal value ext for variable v.

Precondition violation: old stmt is the routine invoca-
tion triggering the fault; new statement is a call to
the same routine with ext replacing v; the instantiated
schema replaces the faulty routine invocation in the
candidate schema.

Postcondition or other assertion violation: old stmt
is empty, new statement is the assignment v := ext,
and the instantiated schema precedes the check state-
ment or the end of the routine.

A faulty call put i th (x, j) is a case of precondition viola-
tion, which we would handle by replacing it with:

if not ( j ≥ 1 and j≤ count ) then
put i th (x, 1)

else
put i th (x, j)

end

3.8 Validating Fixes
The previous sections have shown how to generate a num-

ber of candidate fixes. But do these candidates actually cor-
rect the fault at hand? For this purpose, AutoFix-E runs all
the candidates through the full set of test cases and retains
those that pass all runs. A fix is valid if it passes all the
(previously) failing test cases and it still passes the original



passing test cases generated in the fault analysis. Given that
the contracts constitute the specification, we can even call
the fix a correction.

In the example of routine duplicate , we generated two
candidate fixes, shown in Table 2. These two candidates are
now put to the test:

• The left fix (b) still does not pass test cases where
before holds. In test cases where the set is empty, the
fix fails because the first call to forth makes after true,
which causes the violation of the precondition require
not after of routine forth at its second call.

The left fix also fails on non-empty sets because two
consecutive calls to forth skip one element of the set;
this misbehavior will cause a violation of the postcon-
dition of routine duplicate .

• The right fix (d) of routine duplicate is instead a valid
fix: it does not change the behavior of the loop if before
is false, and it moves the cursor to the first element if
before is true, so that all references to item are error-
free.

Consequently, fix (d) is retained, and finally suggested to
the programmer as a valid fix (Listing 2).

3.9 Ranking Fixes
AutoFix-E often finds several valid fixes for a given fault.

While it is ultimately the programmer’s responsibility to se-
lect which one to deploy, flooding her with many fixes defeats
the purpose of automated debugging, because understand-
ing what the various fixes actually do and deciding which
one is the most appropriate is tantamount to the effort of
designing a fix in the first place. To facilitate the selection,
AutoFix-E ranks the valid fixes according to two simple met-
rics, combining dynamic and static information.

The experiments in Section 4 will show that these met-
rics are sufficient to guarantee that, in the large majority
of cases, a “proper” fix appears within the first five fixes in
the ranking. Here “proper” refers to the expectations of a
real programmer who is familiar with the code-base under
analysis.

3.9.1 Dynamic Metric
Dynamic (semantic) metrics prefer fixes which modify the

run-time behavior of passing test cases as little as possible;
the intuition is that a good fix does not affect significantly
the behavior of correct runs of the program.

The dynamic metric estimates the difference in runtime
behavior between the fix and the original (faulty) program
over the set of originally passing runs. It is based on state
distance, defined as the number of argument-less boolean
and integer queries whose value differ in two object states.

AutoFix-E sums the state distances over all routine exit
points in all passing runs for the original and the fixed pro-
grams; the final figure gives the value of the dynamic metric.

3.9.2 Static Metric
Static (syntactic) metrics favor fixes with simpler textual

changes; the smaller its value, the smaller the textual change
in the source code. Fixes that introduce only minor textual
changes are likely easier to understand and maintain, hence
preferable—all else being equal—over more complex ones.

We use a simple static metric which combines three syn-
tactic measures according to the formula:

ÔS + 5 · ŜN + 2.5 · B̂F

where each weighted factor is the normalized value of the
corresponding syntactic measure. The weights have been
determined empirically, while the three measures are defined
as follows, with reference to the fix schemas in Table 1.

Old Statements (OS): zero for the fix schemas (a),(b),
and the number of statements in old stmt for the fix
schemas (c),(d).

This factor measures the number of original instruc-
tions that the fix “encloses”; schemas (a) and (b) ex-
ecute old stmt unconditionally, hence they score zero
for this factor.

Snippet Size (SN): number of statements in snippet.

This factor measures the complexity of the new in-
structions used by the fix.

Branching Factor (BF): number of branches to reach
old stmt from the point of injection of the instantiated
fix schema.

This factor measures how deep does the fix “bury” the
original instructions within the fix schema.

4. EXPERIMENTAL EVALUATION
This section reports on some experiments that applied

AutoFix-E to several faults found in production software
and provides a preliminary assessment of the quality of the
automatically generated fixes.

4.1 Experimental Setup
All the experiment ran on a Windows 7 machine with

a 2.53 GHz Intel dual-core CPU and 4 GB of memory.
AutoFix-E was the only computationally-intensive process
running during the experiments. On average, AutoFix-E
ran for 2.6 minutes for each fault.

4.1.1 Selection of Faults
We ran AutoFix-E on 42 faults detected by AutoTest in 10

data structure classes from the EiffelBase and Gobo libraries
[9, 12]. Table 3 lists, for each class, its length in lines of
code (LOC), its number of routines (#R), of boolean queries
(#B), and the number of faulty routines (#F).

Table 3: Classes used in the experiments.
Class LOC #R #B #F
ACTIVE LIST 2,547 155 16 3
ARRAYED CIRCULAR 1,912 131 15 9
ARRAYED LIST 2,357 149 16 1
ARRAYED QUEUE 1,654 109 10 1
ARRAYED SET 2,705 162 12 2
ARRAY 1,354 93 11 5
BOUNDED QUEUE 876 63 11 4
DS ARRAYED LIST 2,762 166 8 7
LINKED PRIORITY QUEUE 2,375 123 10 3
TWO WAY SORTED SET 2,871 139 16 4



The selection covers varied types of faults (Table 4 groups
them according to the type of assertion they violate), in rou-
tines of diverse complexity (Table 5, where the same routine
can originate more than one fault).

Table 4: Types of faults and fixes.
Type of fault # Faults # Fixed # Proper
Precondition 24 11 (46%) 11 (46%)
Postcondition 8 0 0
Check 1 1(100%) 0
Class invariant 9 4 (44%) 2 (22%)
Total 42 16(38%) 13(30%)

Table 5: Lines Of Code (LOC) of faulty routines.
LOC 1–5 6–10 11–20 21–30 31–40 Total
# Rout. 15 11 9 3 1 39

4.1.2 Selection of Test Cases
The selection of test cases for passing (and failing) runs

can affect significantly the performance of automated de-
bugging. To reduce this bias and to show that the whole
chain “testing and fixing” can be fully automated, our ex-
periments only use test cases generated automatically by
AutoTest. AutoFix-E is allowed to discard test cases if they
are “redundant” and do not add information to the finite-
state abstraction; this filters out several test cases produced
by AutoTest without affecting the quality of the generated
fixes. In our experiments, the average number of passing
and failing test cases for a fault is 9 and 6.5, respectively.

4.2 Results
Valid fixes. The column “# Fixed” in Table 4 shows the

number of faults for which AutoFix-E built at least one valid
fix. The data shows that AutoFix-E works better on pre-
condition and class invariant violations than on other types
of fault. AutoFix-E failed an all of the 8 postcondition vi-
olation faults because they all involved complex assertions
that could not be characterized precisely enough in terms of
boolean queries. While future work will address such limita-
tions, it is interesting to notice that, in our experience with
random testing, precondition violations occur significantly
more frequently than postcondition violations.

Candidate fixes. The number of candidate fixes gen-
erated by AutoFix-E for a given fault varies wildly, rang-
ing from just a couple for linear assertions up to over a
thousand for assertion violations occurring within a complex
loop. For each of the 16 faults which were fixed automat-
ically, AutoFix-E generated, on average, 165.75 candidates
and 12.1 valid fixes; the average percentage of valid fixes per
candidate is instead 22%.

Assertion forms. Table 6 correlates the form of a vi-
olated assertion—whether it is a single boolean query, an
implication, a linear constraint, etc.—and the success of
AutoFix-E in finding valid fixes for that form. For each
assertion form, the second column reports the number of
automatically fixed faults. AutoFix-E is most effective for
simpler assertions consisting of a single boolean query or a
linear constraint. In both cases, it is straightforward to track
down the “causes” of a fault and there is a higher chance of
finding routine calls that restore a valid state.

Table 6: Relationship between assertion form and
valid fixes.

Assertion form # Faults # Fixed
Single boolean query 6 5 (83%)
Implication 2 1 (50%)
Linear 7 5 (71%)
Other4 27 5 (19%)

Quality of fixes from a programmer’s perspective.
A valid fix is only as good as the test suite it passes. As a
sanity check on the automatically generated fixes, we manu-
ally inspected the top five valid fixes for each fault, according
to the ranking criterion of AutoFix-E. The rightmost column
of Table 4 counts the number of faults for which we could
find at least one “proper” fix among the top five. A “proper”
fix is one that fixes the bug without obviously introducing
other bugs; it might still not be the best correction, but it is
a significant improvement over the buggy code and not just
a trivial patch. In all the experiments, whenever a proper
fix exists it ranks first among the valid fixes, which gives
us some confidence in the ranking criteria implemented in
AutoFix-E.

As an additional preliminary assessment of the quality of
the automatically generated fixes, we selected a few faults
and asked two experienced programmers from Eiffel Soft-
ware to write their own fixes for the faults. In 4 out of 6 of
the cases, the programmers submitted fixes which are iden-
tical (or semantically equivalent) to the best fixes produced
automatically by AutoFix-E.

As an example of multiple valid fixes for the precondi-
tion violation in routine duplicate , consider the following
two fragments, replacing the loop (lines 12–16 in Listing 1).

from
if before then

forth
end

until ... loop
−− original loop body

end

from
if before then

start
end

until ... loop
−− original loop body

end

AutoFix-E discovered these two valid fixes, but ranked
them lower than the one presented in Section 2: the static
metric prefers corrections that modify locations closest to
the failing statement (inside the loop body in the example)
over those modifying other statements (the from clause).
The two new fixes are perfectly equivalent because forth
and start have the very same effect on an object where

before holds. Semantically, they are also equivalent to the
one previously shown, as forth is executed only once because
it is guarded by before . These two fixes, however, achieve a
better run-time performance (in the absence of sophisticated
compiler optimizations) as they check before only once. The
expert programmers indeed suggested the rightmost one as
a correction. The human preference for using start over the
equivalent, in this context, forth is probably due to the name
of the two routines, where start suggests a closer relation to
the notion of before than forth does.

4Most of the “other” assertions include queries with argu-
ments or implications mixing queries and linear constraints.



4.3 Threats to Validity
The following threats may influence the generalization of

our results:

• All the classes used in the experiments are data struc-
ture related. Although they have heterogeneous se-
mantic and syntactic complexities, they are not neces-
sarily representative of programs in general. The ef-
fectiveness of AutoFix-E may be quite different when
applied to other classes.

• The assertions being violated in the examples may
also reflect the particular contracting style of these li-
braries; for example they often refer to the notion of
cursor in a data structure. We do not know if this
might bias the results.

• The evaluation of proper fixes was done under the as-
sumption that contracts present in classes are correct
and strong enough. This may not be true from the
point of view of the library developers, who may dis-
agree with some fixes we classified as proper and sug-
gest, instead, changes in the contract as proper fixes
in those cases.

• We have not yet performed a large-scale retro-analysis
of inferred fixes against fixes actually performed in the
history of a project. This is part of planned future
work.

5. RELATED WORK
This section reviews techniques that correct programming

errors automatically by combining diverse software engineer-
ing techniques.

5.1 Restricted Models
Automated debugging is more tractable for restricted

models of computations; a number of works deal with fixing
finite-state programs automatically (see e.g., [18, 24]).

Abraham and Erwig developed automated debugging
techniques for spreadsheets, where the user may introduce
erroneous formulas. In [1], they present a technique based
on annotating cells with simple information about their “ex-
pected value”. Whenever the computed value of a cell con-
tradicts its expected value, the system suggests changes to
the cell formula that would restore its value to within the
expected range. Their method can be combined with au-
tomated testing techniques to reduce the need for manual
annotations [2].

5.2 Dynamic Patching
Some fixing techniques work dynamically, that is at run-

time, with the goal of contrasting the adverse effects of some
malfunctioning functionality and prolonging the up time of
some piece of deployed software.

Data structure repair. Demsky and Rinard [7] show
how to dynamically repair data structures that violate their
consistency constraints. The programmer specifies the con-
straints, which are monitored at runtime, in a domain lan-
guage based on sets and relations. The system reacts to
violations of the constraints by running repair actions that
try to restore the data structure in a consistent state.

Elkarablieh and Khurshid develop the Juzi tool for Java
programs [10]. A user-defined repOk boolean query checks

whether the data structure is in a coherent state. Juzi
monitors repOk at runtime and performs some repair action
whenever the state is corrupted. The repair action is based
on symbolic execution and a systematic search through the
object space. In a paper presenting ongoing work [16], the
same authors outline how the dynamic fixes generated by
the Juzi tool could be abstracted and propagated back to
the source code.

Memory errors repair. The ClearView framework [22]
dynamically corrects buffer overflows and illegal control flow
transfers in binaries. It exploits a variant of Daikon to ex-
tract invariants in normal executions. When the inferred in-
variants are violated, the system tries to restore them from
a faulty state by looking at the differences between the two
states. ClearView can prevent the damaging effects of ma-
licious code injections.

Exterminator [21] is another tool for dynamic patching of
memory errors such as out-of-bound. It monitors repeated
runs of a program and allocates extra memory to accommo-
date out-of-bound references appropriately.

5.3 Static Debugging
Static approaches to automated debugging target the

source code to permanently remove the buggy behavior from
a program.

Model-driven debugging. Some automated debugging
methods — including the one in the present paper — rely on
the availability of a finite-state abstraction of the program’s
behavior to detect errors and build patches.

Weimer [25] presents an algorithm to produce patches of
Java programs according to finite-state specifications of a
class. The main differences with respect to our work are the
need for user-provided finite-state machine specifications,
and the focus on security policies: patches may harm other
functionalities of the program and “are not intended to be
applied automatically” [25].

Machine-learning-based debugging. Machine-learn-
ing techniques can work in the absence of user-provided an-
notations, which is a big advantage to analyze pre-existing
legacy code in languages such as C or Java.

Jeffrey et al. [14] present BugFix, a tool that summarizes
existing fixes in the form of association rules. BugFix then
tries to apply existing association rules to new bugs. The
user can also provide feedback — in the form of new fixes
or validations of fixes provided by the algorithm — thus
ameliorating the performance of the algorithm over time.

Other authors applied genetic algorithms to generate suit-
able fixes. Arcuri and Yao [3] use a co-evolutionary algo-
rithm where an initially faulty program and some test cases
compete to evolve the program into one that satisfies its
formal specification.

Weimer et al. [26] present a genetic algorithm that takes
as input an unannotated program, a set of successful test
cases, and a single failing one. After rounds of evolution,
the program changes into one that passes all test cases, in-
cluding the previously failing one. [26] mitigates the limited
scalability of genetic algorithms by only producing changes
that re-use portions of code available elsewhere in the pro-
gram and that are limited to the portions of code that is
executed when the bug occurs. This, however, requires that
the failing execution path is different than the successful
execution path, a restriction which does not apply to our
approach. Another limitation of [26] resides in its sensitiv-



ity to the quality (and size) of the provided test suite, an
effect which is much more limited in our approach where
random testing techniques can generate a suitable test suite
automatically.

Axiomatic reasoning. He and Gupta [13] present a
technique that compares two program states at a faulty lo-
cation in the program. Unlike our work, [13] computes these
characterizations statically with weakest precondition rea-
soning. The comparison between the two program states
illustrates the source of the error; a change to the pro-
gram that reconciles the two states fixes the bug. Besides
the apparent high-level similarities between the approach of
[13] and ours, there are several important details that dif-
fer. First, weakest precondition reasoning requires a very
detailed postcondition (e.g., full functional specifications in
first-order logic), which also limits scalability. In addition,
[13] computes patches by syntactically comparing the two
program states; this restricts the fixes that can be auto-
matically generated to limited changes in expressions (for
example in off-by-one errors).

5.4 Our Earlier Work
In [5], Dallmeier, Zeller, and Meyer presented Pachika, a

tool that automatically builds finite-state behavioral models
of a set of passing and failing test cases of a Java class. A fix
candidate is then a modification of the model of failing runs
which makes it compatible with the model of passing runs.
In practice, Pachika can insert new transitions or delete ex-
isting transitions to change the behavior of the failing model.

While Pachika and AutoFix-E share common origins as
part of the joint AutoFix project (such as behavior mod-
els, state abstraction, and creating fixes from transitions),
AutoFix-E brings several advances, which constitute the
contributions of this paper. The main contribution is that
AutoFix-E leverages user-provided contracts integrating
them with dynamically inferred information; this shapes and
impacts all stages of fix generation (Section 3). In addition,
the concepts of fix schemas (Section 3.6), linear assertions
(Section 3.7), and ranking fixes (Section 3.9) are unique to
the present paper. All these contributions imply a greater
flexibility in accommodating different templates, more com-
plex types of fix actions, and a much higher effectiveness and
efficiency in generating fixes.

6. FUTURE WORK
Much remains to be done in automatic fix generation as

in our own tool. Our future work will focus on the following
topics:

Retro-analysis. For further validation of the approach, we
plan to run a systematic application of AutoFix-E on
the history of fixed bugs in representative projects, to
compare the results with the fixes that developers ac-
tually applied.

Contract-less environments. In the absence of contracts,
defects are much harder to locate. We want to leverage
dynamic invariants and state models to identify likely
violations and derive locations for potential fixes.

Predicate selection and instantiation. If one only in-
cludes predicates that are relevant to a particular fault
in the state model, this can result in fewer, yet more

relevant fixes to be generated. Also, the current imple-
mentation of AutoFix-E does not instantiate fix
schemas with more than one predicate at a time; all
these options are on our agenda.

Improved behavior models. Our technique relies on
boolean queries to build a state model (Section 3.3),
hence it works poorly for classes without boolean
queries or such that boolean queries do not capture
effectively salient features of the object state.

Dependence on executions. We build a finite-state be-
havioral model using test runs randomly generated by
AutoTest (Section 3.5). This might lead to inconsis-
tent or biased behavioral models, which would then
generate ineffective or needlessly complicated snippets.
The current implementation reduces the chances of
this happening to a minimum with validation (Sec-
tion 3.9) and by empirically limiting the maximum ad-
mitted length of a snippet to a small number (typically
two or three instructions). We want to apply more so-
phisticated techniques to build the behavioral model—
maybe with some soundness or minimality guarantee—
to improve performances.

Enriching the execution space. As “causes” for a fault
are tracked down by comparing abstract object states
during passing and failing runs, it is impossible to work
on a single fault report without a sufficient number of
passing runs. Of course, it is always possible to use
automated random testing to build a sufficient number
of passing test cases. This limitation does not apply
to linear constraints (Section 3.7).

Alternate fault types. We only handle faults in the form
of assertion violations. We plan to extend our ap-
proach to consider different kinds of faults, such as
Void dereferencing, integer overflow, I/O errors, etc.

Faults in contracts. We assume contracts are correct, but
some faults may require fixing the contracts them-
selves. We are working on ways to track down this
type of faults.

Improved numerical constraints. For numerically con-
strained assertions, we only generates fixes involving
minimal or maximal values. While this choice is em-
pirically effective, more subtle faults may require the
usage of non-extremal values.

Finding the best fix. We use very simple metrics to rank
valid fixes; more research in this line may boost the
quality of the ranking—and to determine what makes
one fix “better” than another. One interesting ap-
proach is to look at known histories of changes and
fixes to leverage this history for generating similar fixes.

7. CONCLUSIONS
In the past decade, automated debugging has made spec-

tacular advances: First, we have seen the raise of methods to
isolate failure causes automatically; then, statistical meth-
ods were devised that highlight likely failure locations. Now,
we have reached a state where “automated debugging” truly
deserves its name: we can actually attempt to automatically
generate fixes.



Our experiences with AutoFix-E show that this goal is
within reach: out of 42 faults found by AutoTest in two
widely used Eiffel libraries, AutoFix-E proposes successful
fixes for 16 faults. Since the entire process is fully auto-
matic, this means that in 16 cases, the programmer’s load
could be reduced to almost zero. Note that we say “almost
zero”here, as we still assume that a human should assess the
generated fixes and keep authority over the code. One may
also think of systems that generate and apply fixes automat-
ically; the risk of undesired behavior may still be preferred
to no behavior at all, and can be alleviated by a strong spec-
ification in terms of contracts. In any case, we look forward
to a future in which much of the debugging is taken over by
automated tools, reducing risks in development and reliev-
ing programmers from a significant burden.

Availability. The AutoFix-E source code, and all data and
results cited in this article, are available at:

http://se.inf.ethz.ch/research/autofix/
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