
Fine-grained aspects of

automatic refactoring in

C2Eiffel

Master Thesis

Adrian Friedli
ETH Zurich

adrianfriedli@student.ethz.ch

April 1, 2011 - September 30, 2011

Supervised by:
Marco Trudel
Prof. Bertrand Meyer

Abstract

The C2Eiffel framework [1] translates C source code to Eiffel source code.
It aims to generate code that looks natural to a programmer such that it is
readable and maintainable. While this is already the case for most parts of
common C programs, there are areas for improvements.

External C functions are currently wrapped in the generated Eiffel code
since the used libraries are not translated. In this thesis I will replace some
standard and often used C functions by the corresponding Eiffel equivalents. In
the attempt to replace standard C string functions I will also try to replace the
current translation of C strings to integer arrays with native Eiffel strings.

I will also remove jump statements like break that are often used in C pro-
grams but are not available in Eiffel. This will increase the readability of the
code compared to the current implementation that emulates the jump mecha-
nism in Eiffel and produces hard to read code.

Contents

1 Introduction 7

1.1 Reference Projects . 8

2 Translation of printf statements to Eiffel’s counterpart 9

2.1 The printf statement in C . 9
2.2 Translatable printf statements 10
2.3 Translation . 10
2.4 Translation in real examples . 12

3 Translation of C strings to Eiffel Strings 13

3.1 C Strings . 13
3.2 Eiffel Strings . 14
3.3 Standard C string functions . 14
3.4 Translatable string variables . 15

Array indexing problem . 16
3.5 Translation of standard C string functions to Eiffel features . . . 19
3.6 Implementation of the analysis 19
3.7 Statistics . 22

4 Translation of C structs to Eiffel classes 25

4.1 Structs in C . 25
4.2 Translatable structs . 26

Pointer to structs . 27
Inheritance between structs . 27

4.3 Analysis Implementation . 27
4.4 Statistics . 28

5 Removing break, continue and return statements 31

5.1 Code transformation . 32
5.2 Optimization . 35
5.3 Statistics . 37

6 Conclusions 41

6.1 Conclusions . 41
6.2 Future Work . 41

A Additional translations of printf calls 43

5

Chapter 1

Introduction

The C2Eiffel framework [1] developed by Marco Trudel at ETH Zurich trans-
lates C source code to Eiffel source code. One of the goals of C2Eiffel is that
the translated code looks natural to a programmer, that means the differences
between the translated Code and manually written code should be as small as
possible. The advantages of natural looking code is that is is more readable and
easier to maintain. For most parts of common C programs C2Eiffel generates
already such code.

The goal of this thesis is to improve the generated code even further. To mea-
sure the improvements we will test the generated code with the ten real world
projects described in section 1.1. There are three main areas for improvements:

The first area is the translation of function calls to external C libraries. Since
those libraries are not translated to Eiffel, the generated Eiffel code still calls
those C functions directly. In this thesis I will replace some of those function
calls with the corresponding Eiffel features. In chapter 2 we translate as many
printf statements as possible to the Eiffel’s counterpart Io.put string. We will
restrict us to the features already present in the Eiffel base library. Even with
this restriction we can translate more than two thirds of the printf calls in the
reference projects. In chapter 3 we translate some of the standard C string
functions to the corresponding Eiffel features.

The second area is the translation of C strings and structs to Eiffel. At the
moment C strings are translated to arrays of integers. In chapter 3 we try to
replace them by Eiffel strings but we will see that this attempt will not be very
successful. The current translation of structs to Eiffel classes uses embedded C
code. The attempt to remove this C code in chapter 4 will unfortunately not
be successful too.

The third area is the translation of jump statements like break or return that
are not available in Eiffel. Currently those statements are handled in a generic
way that is hard to read and maintain (see section 5). To improve this code I
will remove break, continue and return statements by refactoring the C source
code in chapter 5. This is done amongst others by adding if statements that
allow to skip code when a jump statement was executed. Those code changes

7

8 Introduction - Reference Projects

have only a small impact on the readability of the code compared to the original
C source code as the analysis with the reference projects shows. Compared to
the currently generated code it considerably improves readability.

1.1 Reference Projects

We will evaluate our efforts on the following real world projects:

• Hello World
A simple hello world program that just prints hello world to the command
line with the printf function.

• Micro httpd [3]
It’s a small HTTP server with basic features and about 200 lines of code.

• Xeyes [4]
A graphical program that shows two eyes which follow the mouse cursor.

• Less [2]
A Unix program that shows the content of a file page by page in the
terminal.

• Wget [6]
A downloader that is part of the GNU Project.

• Links [5]
A text based web browser.

• Vim [10]
A feature rich text editor.

• Curl [7]
A multiprotocol file transfer library.

• Gmp [8]
The GNU multiple precision arithmetic library.

• Gsl [9]
The GNU scientific library that provides a wide range of numerical rou-
tines.

Chapter 2

Translation of printf

statements to Eiffel’s

counterpart

In this chapter we look at C’s printf statements and which ones can be translated
to Eiffel’s Io.put string feature and how.

2.1 The printf statement in C

The method signature of printf is the following:

int printf (const char * format, ...);

The format string is the text to write to stdout and can contain format tags.
Those tags get replaced by the additional arguments of the printf statement
and formated according to the formating arguments inside the tags. A format
tag has the following structure:

%[flags][width][.precision][length]specifier

where the parts in [] are optional. A format tag always starts with a %

followed by a sequence of arguments:

specifier The specifier is the only required argument. It defines the type of the
value that will replace this tag. The most common specifiers are ’c’ for
characters, ’d’ or ’i’ for integers, ’f ’ for floating-point values and ’s’ for
strings.

flags The flags control the justification (’-’), signs before the value (’+’ and
space) and padding with zeros (’0’).

9

10 Translation of printf - Translatable printf statements

Table 2.1: Supported printf specifiers and format tags

specifier format arguments
c precision (has no effect)
d, i width (incl. *)
f width, precision (incl. *)
s -
u -

width The width specifies the minimal number of characters to be printed. If
the representation of the value is shorter it will be padded with blanks.

precision The precision specifies the minimal number of digits to be printed for
integer specifiers and the exact number of decimal digits for floating-point
specifiers.

length The length specifies how the argument value is interpreted (as short
int, long int, . . .).

The width and precision argument can be ’*’, that means that the value is
given as an additional argument before the argument that will be formated. If
the printf statement is executed successfully the number of written characters,
otherwise a negative number is returned.

2.2 Translatable printf statements

Since the return type of the Eiffel feature Io.put string is Void, no printf state-
ments can be translated where it is used as an expression, for example as the
right hand side of an assignment. To make sure the translation works in all
possible places, the replacement has to be a single statement too. If we restrict
us to built in features of Eiffel the translatable printf statements only contain
the specifiers and format arguments listed in table 2.1.

In addition to those printf statements we can support fprintf statements
where the destination file stream is either stdout or stderr. In the case of stdout
the fprintf and printf statements are equal and in the stderr case the output is
redirected to the error stream.

2.3 Translation

In the following we look at five examples and how they are translated.

The first example (line 2 in listing 2.1) is a printf statement with a charac-
ter specifier. In C2Eiffel characters are stored in an INTEGER 8 and can be
converted to a character with the feature to character 8. The translated print
statement is shown in listing 2.2 on line 2.

Translation of printf - Translation 11

Listing 2.1: C : Five exemplary printf statements

1 // c i s o f type char
2 printf("A character : %c\n", c);

3
4 // i i s o f type i n t
5 printf("An integer : %d\n", i);

6
7 // width i s o f type i n t
8 printf("An integer with variable width: %*i\n", width , i);

9
10 // d i s o f type double and p r e c i s i o n i s o f type i n t
11 printf("A double with variable width and precision : %*.* f\n"

, width , precision , d);

12
13 // s i s o f type char∗
14 printf("A string: %s\n", s);

Listing 2.2: Eiffel : The five translated printf statements

1 −− c i s o f type INTEGER 8
2 Io.put_string ("A character : " + (c).to_character_8 .out + "%

N")

3
4 −− i i s o f type INTEGER 32
5 Io.put_string ("An integer: " + i.out + "%N")

6
7 −− width i s o f type INTEGER 32
8 Io.put_string ("An integer with variable width: " + (
reate

{ FORMAT_INTEGER }. make (width)).formatted (i) + "%N")

9
10 −− d i s o f type REAL 64 and p r e c i s i o n i s o f type INTEGER 32
11 Io.put_string ("A double with variable width and precision :

"+ (
reate { FORMAT_DOUBLE }. make (width.max (precision),

precision)).formatted (d) + "%N")

12
13 −− s i s o f type CE POINTER [INTEGER 8]
14 Io.put_string ("A string: " + eif_string (s) + "%N")

12 Translation of printf - Translation in real examples

The second example (line 5 in both listings) contains an integer specifier. The
string representation of the integer is concatenated with the preceding string.

In the third example on line 8 we have the same with a variable width
argument. In this case we use the FORMAT INTEGER class which pads the
integer with blanks if its representation is shorten than the specified width.
The class offers more options to format the integer but for this we would need
multiple instructions, which is not possible because the translation should be a
single statement as discussed before.

On line 11 of the two listings we have a print statement that formates a
floating-point value with variable width and precision. In the Eiffel code the
FORMAT DOUBLE class is used analogously to the integer formating. For
the width we have to use the maximum of width and precision since the make
feature requires that the width is greater or equal to the precision.

In the last example (line 14) we have a print statement with a string specifier.
In the Eiffel code the array of characters (CE POINTER [INTETER 8]) has to
be converted to a STRING. This is done by the helper feature eif string.

The translation of a fprintf statement with the error stream as first argument
is the same as for the printf statement except that Io.put string is replaced by
Io.error.put string.

For more translations see Appendix A with a list of 26 printf translations
and the output of the executed print statements.

2.4 Translation in real examples

In order to see how many printf statements can be translated, we look at the
reference projects listed in section 1.1 (Table 2.2). In those projects more than
two-thirds of the printf statements can be translated in the above way to Eiffel.

Table 2.2: Number of translated printf statements

Project Total printf statements Replaced printf statements
hello world 1 1
micro httpd 16 13
xeyes 6 6
less 0 0
wget 63 21
links 29 27
vim 6 4
libcurl 0 0
libgmp 16 10
libgsl 82 66
Total 219 148

Chapter 3

Translation of C strings to

Eiffel Strings

In this chapter we look at C strings an how they can be translated to Eiffel
strings. We will also see how the standard string function calls (from the string.h
header file) can be replaced.

3.1 C Strings

In C a string is stored as an array of characters. Like for all arrays there are
two possibilities to declare and allocate space for a string variable.

The first way is to declare the variable as character pointer as shown in listing
3.1 on line 1. With this declaration only space for the pointer is allocated, not
for the content of the string. This is done with one of the memory allocation
functions like malloc.

The second way to declare a string variable is as character array as shown
in listing 3.1 on line 2. In this case also memory for N characters is allocated.

Besides the difference in memory allocation, there is no difference in the
usage of the string variables.

Listing 3.1: C : Declaration of string variables

1
har *char_pointer ;

2
har char_array [N];

13

14 Translation of C strings - Eiffel Strings

3.2 Eiffel Strings

In Eiffel strings are also character arrays. Those strings have, in contrast to
C strings, no terminating null character at the end. The length of the Eiffel
string is stored within the STRING class. This difference has consequences
when accessing individual characters of the string. We will discuss those later
in this chapter.

3.3 Standard C string functions

The standard C string functions are defined in the string.h header file. The
following functions are there defined:

• char * strcat(char *str1, const char *str2);
Appends str2 to str1, where the terminating null character of str1 is
overwritten. The function returns a pointer to str1.

• char * strncat(char *str1, const char *str2, size t n);
Same as strcat but appends at most n characters.

• char * strchr(const char *str, int c);
Searches for the first occurrence of c in the string str and returns a pointer
to that location.

• char * strrchr(const char *str, int c);
Same as strchr but searches the last occurrence of c.

• int strcmp(const char *str1, const char *str2);
Compares the two strings and returns zero if they are equal, less then zero
if the first string is less than the second one and greater zero otherwise.

• int strncmp(const char *str1, const char *str2, size t n);
Same as strcmp but compares only the first n characters.

• char * strcoll(const char *str1, const char *str2);
Same as strcmp but takes the LC COLLATE setting into account.

• char * strcpy(char *str1, const char *str2);
Copies str2 to str1 and returns a pointer to str1.

• char * strncpy(char *str1, const char *str2, size t n);
Same as strcpy but copies only n character.

• size t strspn(const char *str1, const char *str2);
Searches for the first sequence of characters in str1 that does contain only
characters from str2 and returns the length of this sequence.

• size t strcspn(const char *str1, const char *str2);
Same as strspn but searches for a sequence that does not contain any
characters from str2.

Translation of C strings - Translatable string variables 15

• char * strerror(int errnum);
Returns a pointer to the corresponding error message.

• size t strlen(const char *str);
Returns the length of the string.

• char * strpbrk(const char *str1, const char *str2);
Returns a pointer to the first character in str1 that is also present in str2.

• char * strstr(const char *str1, const char *str2);
Searches for the first occurrence of the entire string str2 in str1 and returns
a pointer to the beginning.

• char * strtok(char *str1, const char *str2);

• size t strxfrm(char *str1, const char *str2, size t n);

3.4 Translatable string variables

The following types of C strings can potentially be translated to Eiffel strings:

• Global variables

• Function parameters and return types of internal functions

• Local variables

Supported operations on the string variables are:

• Assignment, where the right hand side of the assignment can be a string
constant, another string variable or the return value of a function. This in-
troduces a dependency that both sides of the assignment can be translated
to Eiffel strings or none.

• Function calls to internal functions with a string variable as parameter.
This introduces a dependency that both the declared and the actual pa-
rameter can be translated or none.

• Function calls to some external functions like strcpy, strlen, printf and
others. The whole list of supported external functions is given in section
3.5.

• Equality or inequality check on two string variables. This introduces also
a dependency between the two variables like an assignment.

As soon as one of the following operation is applied to a string variable, this
string variable can not be translated to an Eiffel string. Also all variables that
have a dependency to this one introduced through an assignment or a function
call can not be translated.

• The string is declared as a struct field.

16 Translation of C strings - Translatable string variables

• An array of strings is not supported.

• The string is used inside the signature of a function pointer or as parameter
in a call of one.

• The string variable is used in an unsupported external function call (see
section 3.5).

• The string variable is used with pointer arithmetic like sp+ 1.

• The string variable is casted to another type. A check if the pointer is
zero (includes a cast to unsigned integer) is supported.

• Accessing an individual character of a string variable (see end of this
section for the discussion of the problem).

• Dereferencing a string variable (equal to accessing the first character of
the string).

Now we look at a small meaningless C program with string variables (list-
ing 3.2) and the translation to Eiffel (listing 3.3). The Eiffel code is slightly
refactored to have everything in one class and to fit on one page.

Most of the translation is straight forward. The types char * and char []
are replaced by STRING 8, assignments remain normal assignments and printf
calls are replaced where possible like described in chapter 2. Interesting is the
replacement of the standard C string function strcpy (line 24 in the C code).
It is replaced by creating an identical copy of the string by calling twin and
an assignment (line 47 in the Eiffel code). Also noticeable is the printf call
that can’t be translated (line 25 in the C code and line 48 in the Eiffel code).
The string s1 can still be translated to an Eiffel string but has to be converted
before the call. In section 3.5 we will see more translations of standard string
functions.

Array indexing problem

Now we discuss why accessing individual characters of a string can not be sup-
ported.

In C we allocate a given number of bytes for a string either by calling a
memory allocation function or by declaring an array of characters with a given
size. Then accessing any of those bytes with s[n] is valid even if n is greater or
equal than the length of the string (the size returned by strlen). An example
usage is when multiple strings are stored consecutively in one variable. In Eiffel
you must not access any index greater than the length of the string. Since we
can not decide on compile time if an access is within the bounds it can not be
supported.

Translation of C strings - Translatable string variables 17

Listing 3.2: C : Program with string variables

1 #in
lude <stdio.h>

2 #in
lude <string.h>

3
4
har *cp;

5 stati

har string [12] = "Hello World";

6
7
har* select(
har *s, int i) {

8
har *tmp;

9
10 if (i != 0)

11 tmp = s;

12 else
13 tmp = cp;

14
15 return tmp;

16 }

17
18 int main ()

19 {

20 cp = "Test String";

21 printf("%s\n", cp);

22
23
har s1 [100];

24 strcpy (s1 , cp);

25 printf("%.4s\n", s1);

26
27
har *s2 = select(string , 1);

28 printf("%s\n", s2);

29
30 return 0;

31 }

18 Translation of C strings - Translatable string variables

Listing 3.3: Eiffel : The translation of the C program in listing 3.2

1
lass
2 P_TEST_STRING_TRANSFORMER

3 inherit
4 S_STDIO

5
reate
6 default_create

7
8 feature {NONE} −− I n i t i a l i z a t i o n
9 default_create

10 do
11 string := "Hello World"

12 end
13
14 feature {ANY} −− a t t r i b u t e s
15 cp: STRING_8 assign set_cp

16 set_cp (a_cp : STRING_8)

17 do
18 cp := a_cp

19 end
20
21 string: STRING_8 assign set_string

22 set_string (a_string : STRING_8)

23 do
24 string := a_string

25 end
26
27 feature {ANY} −− r o u t i n e s
28 select2 (a_s: STRING_8 ; a_i: INTEGER_32): STRING_8

29 lo
al
30 l_tmp: STRING_8

31 do
32 if a_i /= 0 then
33 l_tmp := a_s

34 else
35 l_tmp := cp

36 end
37 Result := l_tmp

38 end
39
40 main : INTEGER_32

41 lo
al
42 l_s1 : STRING_8

43 l_s2 : STRING_8

44 do
45 cp := "Test String"

46 Io. put_string (cp + "%N")

47 l_s1 := cp.twin

48 printf ([ce_string ("%%.4 s%N"), ce_string (l_s1)]).

do_nothing

49 l_s2 := (select2 (string , 1))

50 Io. put_string (l_s2 + "%N")

51 Result := 0

52 end
53 end

Translation of C strings - Translating string functions 19

3.5 Translation of standard C string functions

to Eiffel features

From the standard C string functions listed in section 3.3 six can be replaced
by Eiffel features. The functions and their replacements are listed in table 3.1.

Table 3.1: Standard C string functions and their Eiffel replacement

C string function Eiffel code
strcat(s1, s2) * s1.append(s2)
strncat(s1, s2, n) * s1.append(s2.substring (1, s2.count.min(n)))
strcmp(s1, s2) s1.three way comparison(s2)
strncmp(s1, s2, n) s1.substring(1, s1.count.min(n)).three way comparison

(s2.substring(1, s2.count.min(n)))
strcpy(s1, s2) * s1 := s2.twin or

s1 := s2 (if s2 is a string literal)
strlen(s) s.count

The functions marked with a * store the string result in the first argument
and also return a pointer to it. This is not possible in Eiffel so those functions
can only be replaced if they are used as statements and not as expression.
Unfortunately there is no feature in Eiffel to get a prefix of a string with at
most n characters. So we have to use substring and we have to calculate the
end position since substring returns an empty string if n is greater than the
length of the string.

The replacement of the functions in table 3.1 is possible when at least the
first string argument can be transformed to an Eiffel string. If the second
string argument can’t be transformed, then it can be converted on runtime with
eif string to an Eiffel string since it is only read.

In addition to the above replacements it is for most functions listed in section
3.3 possible to have one or more arguments as Eiffel string even if the function
can not be replaced by a Eiffel feature. Those Eiffel strings are converted with
ce string before the call. This conversion is possible when the string is only
read and no pointer to it is kept or returned by the function. Table 3.2 lists
all standard string functions listed in section 3.3 and which arguments can be
Eiffel strings.

3.6 Implementation of the analysis

The translation is done in two phases. In the first phase all string variables
are collected and their usage in the code is analyzed. In the second phase the
types are replaced by a new ast node called AST EIFFEL STRING TYPE,
the external functions are replaced like described in section 3.5 and some other
adjustments are done.

In this section we will look at the first phase. The second phase is straight

20 Translation of C strings - Implementation of the analysis

Table 3.2: Eiffel strings as arguments to standard C string functions

Eiffel string as
C string function signature 1st arg. 2nd arg.
char * strcat(char *, const char *) no yes
char * strncat(char *, const char *, size t) no yes
char * strchr(const char *, int) no -
char * strrchr(const char *, int) no -
int strcmp(const char *, const char *) yes yes
int strncmp(const char *, const char *, size t) yes yes
char * strcoll(const char *, const char *) yes yes
char * strcpy(char *, const char *) no yes
char * strncpy(char *, const char *, size t) no yes
size t strspn(const char *, const char *) yes yes
size t strcspn(const char *, const char *) yes yes
char * strerror(int) - -
size t strlen(const char *) yes -
char * strpbrk(const char *, const char *) no yes
char * strstr(const char *, const char *) no yes
char * strtok(char *, const char *) no yes
size t strxfrm(char *, const char *, size t) no yes

forward and is not discussed here.

For the analysis we use a dependency graph to store the dependencies be-
tween the string variables introduced through assignments or function calls (see
section 3.4). Figure 3.1 shows the dependency graph for the C code in listing 3.2.
The numbers next to the arrows indicate the line in the code that introduces the
dependency. For example the assignment on line 11 introduces a dependency
between the variables tmp and s.

Figure 3.1: The dependency graph for the C code in Listing 3.2. The num-
bers next to the arrows indicate the line in the code where the dependency is
introduced. The variable s1 has no dependency to other variables.

While collecting those dependencies we also check the code for unsupported
operations on the string variables (see section 3.4). In such situations the af-
fected variables are marked as bad in the dependency graph. At the end of
this first phase all variables that have a dependency to a bad one (possibly
through other variables) are also marked bad. After that all variables that are

Translation of C strings - Implementation of the analysis 21

not marked as bad can be translated to Eiffel strings.

To get a better idea why a C string can not be translated to an Eiffel string,
we also set a flag while marking a variable as bad. The used flags and in what
situations they are set is described below.

Bad ref flag
This flag is set while updating the dependency graph when a node has
a dependency to a bad one and no other flag was set before (so it was
not marked as bad before). Those variables could be translated to Eiffel
strings if their dependencies wouldn’t have been marked as bad.

Extern function flag
This flag is set when a variable is used as argument of an external function
that can’t be replaced.

Struct member flag
This flag is set when the variable is a struct field.

Pointer flag
This flag is set if the pointer of the string variable is used, for example in
pointer arithmetic like cp++.

Cast flag
This flag is set when a string variable is casted to another type. Most of
the time this is a cast to or from void *.

Function pointer flag
This flag is set when a string variable is used inside the signature of a
function pointer.

Assignment flag
This flag is set when a variable is part of an unsupported assignment like
array[0] = a string.

Initializer flag
This flag is set when a variable is initialized with something else than a
string literal. In those cases the variable is mostly used as an array for
small integers.

Array flag
This flag is set when an individual character is accessed. See the array
indexing problem at the end of section 3.4.

Other flag
This flag is set when a variable is part of an AST EIFFEL EXPRESSION.
This happens when another transformation step has already introduced
Eiffel code into the AST.

22 Translation of C strings - Statistics

3.7 Statistics

Table 3.3 shows how many strings in the reference projects (see section 1.1) can
be translated to Eiffel strings. In average over all projects only 1.9 percent of
the strings can be translated.

Table 3.3: Number of translatable strings in real projects

Project Total strings Translatable strings Percentage
(1) hello world 0 0 -
(2) micro httpd 31 6 19.4%
(3) xeyes 0 0 -
(4) less 508 6 1.2%
(5) wget 2274 10 0.4%
(6) links 246 2 0.8%
(7) vim 2315 27 1.2%
(8) libcurl 1036 2 0.2%
(9) libgmp 143 3 2.1%
(10) libgsl 263 74 28.1%
Total 6818 130 1.9%

Table 3.4 shows in more detail why the strings can not be translated. It lists
for all flags introduces in section 3.6 for how many strings this flag was set. The
projects hello world and xeyes are omitted, since they have no strings. Table
3.5 summarizes those numbers.

Table 3.4: Statistics for individual flags and projects

Projects (numbers from table 3.3)
Flags (2) (4) (5) (6) (7) (8) (9) (10)
(Total strings) 31 508 2274 246 2315 1036 143 263
Bad ref 8 196 713 58 376 300 26 61
Extern function 15 96 785 31 399 506 56 26
Struct member 0 14 113 6 35 136 5 21
Pointer 6 125 338 18 51 177 32 7
Cast 0 80 377 105 1612 236 36 8
Function pointer 0 14 54 0 2 6 9 2
Assignment 2 24 37 1 13 89 7 2
Initializer 0 0 32 0 2 0 0 0
Array 6 166 620 80 86 235 54 87
Other 0 18 122 4 8 47 13 0
Bad marks 70 1278 5874 480 3348 2980 383 416
Average bad marks 2.3 2.5 2.6 2.0 1.4 2.9 2.7 1.6

The three most often set flags are the cast flag, the extern function flag and
the array flag. If we ignore the array indexing problem, more string variables
could be translated (41 more in the examples (1) to (10) in total) but we can’t
guarantee that the generated code doesn’t rise a precondition violation. But in
most of the programs this wouldn’t be the case.

Translation of C strings - Statistics 23

Table 3.5: Summarized statistics for individual flags

Flags Total Percentage
(Total strings) 6816
Bad ref 1738 25.5%
Extern function 1914 28.1%
Struct member 330 4.8%
Pointer 754 11.1%
Cast 2454 36.0%
Function pointer 87 1.3%
Assignment 175 2.6%
Initializer 34 0.5%
Array 1334 19.6%
Other 212 3.1%
Bad marks 14’829
Average bad marks 2.2

Chapter 4

Translation of C structs to

Eiffel classes

The goal of this chapter is to replace C structs with simple Eiffel classes that
only contain the attributes and setter features for them and no interfacing with
C code.

4.1 Structs in C

In C a struct is used to group multiple variables together in a collection. It is
a light version of a class like they are known from C++ or Eiffel, since structs
can only have fields and no functions.

The only operations allowed with structs are copying, assigning to another
struct (this includes passing structs as arguments to functions), accessing the
address with the & Operator or accessing the fields with the . or -> Operators.

Listing 4.1 shows how structs can be declared.

Listing 4.1: C : Declaration of structs

1 stru
t fpoint_2 {

2 float x;

3 float y;

4 };

5 stru
t fpoint_2 fp2;

6
7 stru
t fpoint_3 {

8 float x;

9 float y;

10 float z;

11 } fp3;

25

26 Struct translation - Translatable structs

Listing 4.2: Eiffel : The translation of the struct fpoint 2 from listing 4.1

1
lass
2 FPOINT_2

3
4 feature {ANY} −− E i f f e l g e t t e r s
5
6 x: REAL_32 assign set_x

7
8 y: REAL_32 assign set_y

9
10 feature {ANY} −− E i f f e l s e t t e r s
11
12 set_x (a_x: REAL_32)

13 do
14 x := a_x

15 end
16
17 set_y (a_y: REAL_32)

18 do
19 y := a_y

20 end
21 end

On the lines 1 to 4 a struct with the name fpoint 2 is declared. Then line
5 declares a variable with the name fp2 of this struct type. The declaration of
the struct and variables of this type can be combined. This is done on line 7 to
11 where a struct with the name fpoint 3 and a variable with the name fp3 is
declared.

4.2 Translatable structs

Listing 4.2 show the translation of the struct fpoint 2 from listing 4.1 to a simple
Eiffel class that only has the attributes and the setter features.

Structs can be translated as long as no variable of this struct type is used
in one of the following situations:

• An array of structs is not supported.

• The struct type is used inside the signature of a function pointer or as
parameter in a call of one.

• A struct variable is used in an external function call.

• A struct variable is casted to another type. Casts between struct types can
be supported if one can inherit from the other (see later in this section)

• The struct variable is used in embedded assembler code.

Struct translation - Analysis Implementation 27

Listing 4.3: C : Inheritance for structs

1 stru
t list {

2 void *next ;

3 void *prev ;

4 };

5
6 stru
t sub_list {

7 sub_list *next ;

8 sub_list *prev ;

9
har *s;

10 };

Pointer to structs

In Eiffel and other object oriented languages variables are references to objects.
When assigning one variable to the other only the reference is copied, the object
itself is not. This is different for structs in C. They behave like simple data types,
that means that in assignments and function calls the whole struct is copied.
When we translate this to Eiffel we have to copy the whole class too. When
the variable is declared as a pointer to a struct then the behavior is the same
as with references in Eiffel.

In both cases we can replace the variable by the same Eiffel class but we
have to handle assignments and function calls accordingly.

Inheritance between structs

When a struct extends another struct we can introduce an inheritance relation-
ship. The necessary condition for such an inheritance is that the extending
struct has all struct fields of the base struct with the same types or possibly
subtypes. The names don’t have to be the same. They can be renamed with the
rename clause in Eiffel. In addition to these fields the extending struct can have
more fields with any type. Casts between two structs that have an inheritance
relation are supported in the translation to simple Eiffel classes. Listing 4.3
shows two structs, where the second one extends the first one.

4.3 Analysis Implementation

The translation works the same way as the translation of C strings to Eiffel
strings described in section 3.6. But since the number of translatable structs
(see section 4.4) is really small, the actual replacement of the structs is not
implemented. For the analysis we use also a dependency graph like we did in
the analysis for the translation of C string to Eiffel strings.

This time we don’t translate the type of individual variables, now we want
to replace the whole type implementation. This means that a struct type is

28 Struct translation - Statistics

replaced in the whole program or nowhere. As a consequence assignments or
function calls don’t introduce dependencies anymore. The only situation where
a dependency is introduced is when a struct type is used inside the declaration
of an other struct. This dependency is directed from the inner to the outer
struct type, means that when the outer struct type is marked as bad so is the
inner one.

In addition to the flags introduced in section 3.6 we need two more flags for
the analysis of the structs:

Union flag
In C2Eiffel unions and structs are threated equally, only a boolean value
indicates the difference. So this flag is set for all unions because unions
can not be translated to simple Eiffel classes.

Assembler flag
This flag is set whenever a struct type is used inside embedded assembler
code.

4.4 Statistics

Table 4.1 shows how many structs in the reference projects can be translated to
simple Eiffel classes. The numbers marked with a * are upper limits. Since the
translation is not implemented, the translation of those structs is not tested. So
the actual number could be less if not all unsupported operations are recognized.
In average over all projects only 6.5% of the structs can be translated (at most).

Table 4.1: Number of translatable structs in real projects

Project Total structs Translatable structs Percentage
(1) hello world 0 0 -
(2) micro httpd 6 0 0%
(3) xeyes 61 1 1.6%
(4) less 28 1 3.6%
(5) wget 86 1 1.2%
(6) links 149 0 0%
(7) vim 463 7* 1.5%
(8) libcurl 133 1 0.8%
(9) libgmp 36 5* 13.9%
(10) libgsl 303 66* 21.8%
Total 1265 82* 6.5%

The table 4.2 shows in more detail why the structs can’t be translated. It
lists for all flags from section 3.6 and 4.3 how many structs those flag have.
Additionally it shows how often the variables were marked as bas in total and
on average. The project hello world is omitted, since it has no structs. Table
4.3 summarizes those numbers.

Struct translation - Statistics 29

Table 4.2: Statistics for individual flags and projects

Projects (numbers from table 4.1)
Flags (2) (3) (4) (5) (6) (7) (8) (9) (10)
(Total structs) 6 61 28 86 149 463 133 36 303
Bad ref 1 38 4 4 9 102 25 2 4
Extern func. 3 11 7 17 17 89 13 2 1
Union 0 2 1 3 4 28 17 4 5
Pointer 3 6 17 47 78 174 69 15 43
Cast 0 3 10 54 98 190 55 16 200
Function ptr. 1 8 0 2 20 52 6 3 13
Array 1 5 7 17 31 88 12 10 7
Assembler 0 0 0 1 1 2 1 1 0
Other 0 0 0 14 20 27 9 3 5
Bad marks 27 185 257 1030 5507 9848 2386 844 2295
Av. bad marks 4.5 3.0 9.2 12.0 37.0 21.3 17.9 23.4 7.6

Table 4.3: Summarized statistics for individual flags

Flags Total Percentage
(Total structs) 1265
Bad ref 189 14.9%
Extern function 160 12.6%
Union 64 5.1%
Pointer 452 35.7%
Cast 626 49.5%
Function pointer 105 8.3%
Array 178 14.1%
Assembler 6 0.5%
Other 78 6.1%
Bad marks 22’379
Average bad marks 17.7

Chapter 5

Removing break, continue

and return statements

The C programming language allows to jump from one place in the code to
another with jump instructions like goto, break and others. The purpose of
this chapter is to remove some of those jump instructions because Eiffel doesn’t
support them. In particular the following jump instructions are removed:

break (only those belonging to a loop)
When a break statement is executed, the execution immediately exits the
current loop.

continue
When a continue statement is executed, the execution skips the rest of
the loop. In a for loop the execution continues with the increment block.
For all other loops the execution continues with the checking of the loop
condition.

return
When a return statement is executed, the function terminates immedi-
ately. No further code is executed in this function.

Goto’s are not removed by this transformation, they are handled by a later
transformation step.

Existing translation

The existing handling of break, continue and return emulates jumps (also goto)
in Eiffel. This is achieved with an inspect instruction inside a loop and an ad-
ditional variable (l pos) that stores the jump destination. The different inspect
values mark the different jump destinations and a special value (−1) is used as
an exit condition for the loop. After the inspect statement the l pos variable is
incremented. So when no jump statement has changed the variable, execution

31

32 Removing jump statements - Code transformation

Listing 5.1: C : Gcd Algorithm

1 int gcd(int a, int b) {

2 if (a == 0) {

3 return b;

4 }

5
6 while (1) {

7 if (b == 0) {

8 break;
9 }

10 if (a > b) {

11 a -= b;

12 } else {

13 b -= a;

14 }

15 }

16
17 return a;

18 }

just continues with the directly following instructions. As an example listing
5.2 shows the transformation of the gcd algorithm from listing 5.1. This simple
example shows also that the generated Eiffel code is not easy readable.

The advantage of this approach is that all jump statements can be handled at
the same time. In the next section we will see an approach that is more readable
but can’t handle break ’s in switch statements and goto’s. For the handling of
those jump statements the existing approach is kept. The advantage of having
both approaches at the same time is that the number of jump destinations is
reduced and for many functions the emulation of jumps isn’t needed anymore.
Therefore the readability is improved.

5.1 Code transformation

The jump instructions that we remove in this chapter (break, continue and
return) don’t jump to programmer defined places in the code. They basically
just skip the following instructions inside a loop or a function. This allows us to
use if statements to implement those jumps by moving the following statements
into a new if statement with an appropriate condition [11]. We will call those
if statements skip blocks.

For this we introduce a new class JUMP STATE (see listing 5.3) that tracks
which jump statement was called and has features for the useage in the condition
of the skip blocks. Every function that has a break, continue or return gets an
additional local variable called js of type JUMP STATE.

Then every break statement is replaced with the feature call js.break that sets
the value of break called to True. Analogously continue and return statements

Removing jump statements - Code transformation 33

Listing 5.2: Eiffel : Gcd Algorithm from listing 4.1

1 gcd (a_a: INTEGER_32 ; a_b: INTEGER_32): INTEGER_32

2 lo
al
3 l_a: INTEGER_32

4 l_b: INTEGER_32

5 l_pos: INTEGER_32

6 do
7 from
8 l_pos := 0

9 until
10 l_pos = -1 −− −1: r e tu rn
11 loop
12 inspe
t l_pos

13
14 −− <f u n c t i on body>
15 when 0 then −− ex e cu t i on s t a r t :
16 l_a := a_a

17 l_b := a_b

18 if l_a = 0 then
19 Result := l_b

20 l_pos := -1 + -1 −− r e tu rn
21 end
22 when 1 then
23 if False then
24 l_pos := -1 + 4 −− s k i p loop
25 end
26 when 2 then −− l oop body :
27 if l_b = 0 then
28 l_pos := -1 + 4 −− break
29 end
30 when 3 then
31 if l_a > l_b then
32 l_a := l_a - l_b

33 else
34 l_b := l_b - l_a

35 end
36 l_pos := -1 + 1 −− back to loop cond i t i on
37 when 4 then −− l oop done
38 Result := l_a

39 l_pos := -1 + -1 −− r e tu rn
40 end
41 −− </ fun c t i on body>
42
43 l_pos := l_pos + 1

44 end
45 end

34 Removing jump statements - Code transformation

Listing 5.3: Eiffel : Jump State class

1 expanded
lass
2 JUMP_STATE

3
4 feature {ANY} −− r e tu rn
5 return_called : BOOLEAN

6 −− ” re tu rn ” c a l l e d
7
8 return

9 do
10 return_called := True
11 end
12
13 feature {ANY} −− l o op s
14 break_called : BOOLEAN

15 −− ” break ” c a l l e d
16
17 break

18 do
19 break_called := True
20 end
21
22 continue_called : BOOLEAN

23 −− ” cont inue ” c a l l e d
24
25 continue

26 do
27 continue_called := True
28 end
29
30 feature {ANY} −− q u e r i e s
31 loop_jumped : BOOLEAN

32 −− ” break ” , ” con t inue ” or ” re tu rn ” c a l l e d
33 do
34 Result := break_called or continue_called or

return_called

35 end
36
37 loop_left : BOOLEAN

38 −− ” break ” or ” re tu rn ” c a l l e d
39 do
40 Result := break_called or return_called

41 end
42
43 feature {ANY}

44 reset

45 do
46 break_called := False
47 continue_called := False
48 end
49
50 end

Removing jump statements - Optimization 35

are replaced with the corresponding feature calls. The call js.return is omitted
when the execution of the function ends anyway after the return statement. The
other features of the class JUMP STATE are:

• The feature loop jumped indicates if the remaining statements of a loop
should be skiped. This is the case if any of the three jump statements was
executed. It is used for the conditions of the new skip blocks.

• The feature loop left indicates if the execution should leave the current
loop. This is the case if either break or return was called. It is used as
additional condition for the loops.

• The feature reset resets the values of break called and continue called to
False. It is used as first instruction of a loop to revert the setting of those
values in the previous loop iteration. It is also used after every loop since
those values are only valid within the loop they are called.

Listing 5.4 shows the transformation of the gcd algorithm from listing 5.1.

Nested loops

At first one would think that the value of break called and continue called could
be changed by a nested loop and therefore one would need to have separate
values for every nested loop. But whenever the execution enters a nested loop
break called and continue called are False. Otherwise we would have skipped
the loop in the first place.

There is one exceptional case: When the increment block of a for loop
contains a loop. Then the continue called can be True. But at this point we
don’t need the value anymore since the continue is already done and it doesn’t
influence the nested loop since the value is reset at the beginning anyway.

Also jumps with goto into or out of a loop are no problem. continue called
and break called are always False when a goto is executed. This can be verified
in the same way as above.

5.2 Optimization

Through the insertion of additional skip blocks the code indentation increases.
This can affect readability when multiple skip blocks are nested and therefore
the indentation level increases a lot. To counteract this incrementation two
optimizations are implemented.

The first optimization tries to flatten the nesting of skip blocks. If a skip
block is the last statement in another skip block and they have the same skip
condition, it can be removed from the other skip block and inserted right after
it. This reduces the indentation level of that skip block and all statements inside
by one. Listings 5.5 and 5.6 illustrate this optimization.

36 Removing jump statements - Optimization

Listing 5.4: Eiffel : Gcd Algorithm from listing 4.1 (second version)

1 gcd (a_a: INTEGER_32 ; a_b: INTEGER_32): INTEGER_32

2 lo
al
3 l_a: INTEGER_32

4 l_b: INTEGER_32

5 js: JUMP_STATE

6 do
7 l_a := a_a

8 l_b := a_b

9 if l_a = 0 then
10 Result := l_b

11 js.return

12 end
13 if not js.return_called then
14 from
15 until
16 js.loop_left

17 loop
18 js.reset

19 if l_b = 0 then
20 js.break

21 end
22 if not js.loop_jumped then
23 if l_a > l_b then
24 l_a := l_a - l_b

25 else
26 l_b := l_b - l_a

27 end
28 end
29 end
30 js.reset

31 Result := l_a

32 end
33 end

Listing 5.5: Eiffel : Nested skip blocks

1 if not js. loop_left then
2 if foo then
3 js.break

4 end
5 if not js.loop_left then
6 bar

7 end
8 end

Removing jump statements - Statistics 37

Listing 5.6: Eiffel : Nested skip blocks after optimization

1 if not js.loop_left then
2 if foo then
3 js.break

4 end
5 end
6 if not js.loop_left then
7 bar

8 end
Listing 5.7: Eiffel : Merged skip block and if statement

1 if not js.loop_left and then foo then
2 js.break

3 end
4 if not js.loop_left then
5 bar

6 end
The second optimization combines a skip block with an if statement inside

under the condition that the if statement is the only statement inside the skip
block and it has no else part. The combination is done by combining the
condition of the skip block with the condition of the if statement with an
and then. This ensures that the second condition is only evaluated when it
would also be evaluated in the original code. This optimization also reduces the
indentation level of the if statement and all statements inside by one. Listing
5.7 shows the result of this optimization for the code from listing 5.6.

5.3 Statistics

In the following we will see how much the transformation described in this
chapter changes the code of the reference projects (see section 1.1).

At first we look at how many jump statements could be removed. The
remaining jump statements are break statements that belong to a switch or
goto statements. Table 5.1 shows how many jump statements are in the projects
before and after the refactoring. In the last column is the number of added skip
blocks. Over all projects more than 80 percent of the jump statements could be
removed.

Functions that have no jump statement after the transformation don’t need
the emulation of jumps described in the beginning of this chapter. Table 5.2 lists
how many functions have jump statements before and after the transformation.
The number of such functions decreases clearly.

As discussed in section 5.2 the transformation changes the indentation level
of the code. Table 5.3 shows the maximal and average code indentation before

38 Removing jump statements - Statistics

Table 5.1: Removed jump statements

jump statements added
before after removed removed [%] skip blocks

micro httpd 38 1 37 97.4 22
xeyes 21 4 17 81.0 0
less 1426 376 1050 73.6 602
wget 2636 566 2070 78.5 885
links 3650 1072 2578 70.6 1372
vim 18085 5023 13062 72.2 7597
libcurl 3369 974 2395 71.1 1499
libgmp 5483 367 5116 93.3 733
libgsl 19404 1796 17608 90.7 10118
Total 54112 10179 43933 81.2 22828

Table 5.2: Functions with jump statements

functions with jump statements
before after less less [%]

micro httpd 7 1 6 85.7
xeyes 17 2 15 88.2
less 375 70 305 81.3
wget 599 100 499 83.3
links 994 199 795 80.0
vim 4113 875 3238 78.7
libcurl 640 137 503 78.6
libgmp 580 91 489 84.3
libgsl 5073 515 4558 89.8
Total 12398 1990 10408 83.9

and after the transformation. It shows that the change is acceptably small and
therefore doesn’t have a negative influence on the readability.

The transformation also introduces additional statements. Table 5.4 shows
that the number of statements increases on average by 15 percent. Since the
jump statements have to be modeled in Eiffel somehow, additional statements
can not be avoided.

Removing jump statements - Statistics 39

Table 5.3: Change in code indentation

maximal nesting average nesting
before after before after

micro httpd 5 5 0.90 1.10
xeyes 5 5 0.46 0.45
less 13 13 0.75 1.01
wget 18 18 0.92 1.14
links 22 25 0.86 1.11
vim 96 96 1.32 1.59
libcurl 20 26 1.02 1.33
libgmp 17 18 1.14 1.37
libgsl 19 20 1.00 1.25

Table 5.4: Number of statements

before after difference difference [%]
micro httpd 234 284 50 21.37
xeyes 246 249 3 1.22
less 7’019 8’263 1’244 17.72
wget 17’971 20’382 2’411 13.42
links 26’957 29’396 2’439 9.05
vim 138’274 152’477 14’203 10.27
libcurl 19’371 22’765 3’394 17.52
libgmp 30’670 35’937 5’267 17.17
libgsl 123’059 148’884 25’825 20.99
Total 363’801 418’637 54’836 15.07

Chapter 6

Conclusions

6.1 Conclusions

The C and Eiffel programming languages are quite different and therefore trans-
lating C strings or structs to the Eiffel counterpart is not very successful. The
main reasons for this is the usage of pointers and external libraries in most
C programs. The number of translatable strings is for most of the projects
too small to justify the usage of two different strings representations. Those
would raise difficulties when the code is changed later and string variables with
a different representations are used together for example in an assignment.

In contrast to the translation of strings and structs the translation of printf
statements to the Eiffel feature Io.put string is possible for the common usages.
The refactoring of the code to remove jump statements like break and continue
always works and is a considerable improvement over the emulation of jumps
like it is described in chapter 5. It enhances the readability with an acceptable
increase in the code size.

6.2 Future Work

Possible future topics are the translation of C arrays to Eiffel arrays and the
iteration over those from pointers to Eiffel iterators. Also the file handling could
be translated to Eiffel’s own file handling. But after the results of the string
and struct translations the success of those is uncertain.

41

Appendix A

Additional translations of

printf calls

Listing A.1: C : test printf transformer class

1 #in
lude <stdio.h>

2
3 /∗ D i f f e r e n t p r i n t f s t a t ement s to t e s t the

PRINTF TRANSFORMER ∗/
4 int main (int argc ,
har* argv [])

5 {

6 // supported p r i n t f s t a t ement s
7
har c = ’A’;

8 int code = 66;

9 printf("A character : %c\n", c);

10 printf("A character from ASCII code : %c\n", code);

11 printf("A constant character : %c\n", ’C’);

12 printf("A constant character from ASCII code : %c\n", 68);

13
14 int i = -123;

15 long int l = 1234567 l;

16 long long int ll= 123456789000 ll;

17 unsigned int ui = 123;

18 unsigned short us = 123;

19 int width = 6;

20 printf("An integer : %d\n", i);

21 printf("An integer with width: %5i\n", i);

22 printf("An integer with variable width: %*i\n", width , i);

23 printf("A long integer: %d\n", l);

24 printf("A long long integer : %d\n", ll); // w i l l be
t runcat ed

25 printf("An integer from unsigned int: %i\n", ui);

26 printf("An integer from unsigned short: %i\n", us);

27 printf("A constant integer : %d\n", 1234);

28
29 float f = 123.45678; // w i l l be t runcat ed
30 double d = 123.45678;

43

44 Additional translations of printf calls

31 int small_width = 1;

32 int big_width = 12;

33 int precision = 3;

34 printf("A float: %f\n", f);

35 printf("A float with precision : %.1f\n", f);

36 printf("A float with variable precision : %.*f\n",

precision , f);

37 printf("A float with (to) small width: %5f\n", f);

38 printf("A float with variable width: %*f\n", big_width , f)

;

39 printf("A double with width and precision : %1.3 f\n", d);

40 printf("A double with variable width and precision : %*.* f\

n", small_width , precision , d);

41 printf("A double with variable width and fix precision :

%*.3 f\n", big_width , d);

42 printf("A double with fix width and variable precision :

%12.*f\n", precision , d);

43 printf("A constant float: %f\n", 1.234);

44
45
har* s = "A variable String";

46 printf("A string: %s\n", s);

47 printf("A constant string: %s\n", "Hello World");

48
49 printf("An unsigned integer : %u\n", ui);

50 printf("An unsigned integer from int: %u\n", i); // to
t e s t c onv e r s i on

51
52 return 0;

53 }

Listing A.2: Output from the code in listing A.1

1 A character : A

2 A character from ASCII code : B

3 A constant character : C

4 A constant character from ASCII code : D

5 An integer : -123

6 An integer with width: -123

7 An integer with variable width: -123

8 A long integer : 1234567

9 A long long integer: -1097262584

10 An integer from unsigned int: 123

11 An integer from unsigned short: 123

12 A constant integer: 1234

13 A float: 123.456779

14 A float with precision : 123.5

15 A float with variable precision : 123.457

16 A float with (to) small width: 123.456779

17 A float with variable width: 123.456779

18 A double with width and precision : 123.457

19 A double with variable width and precision : 123.457

20 A double with variable width and fix precision : 123.457

21 A double with fix width and variable precision : 123.457

22 A constant float: 1.234000

Additional translations of printf calls 45

23 A string: A variable String

24 A constant string: Hello World

25 An unsigned integer : 123

26 An unsigned integer from int: 4294967173

Listing A.3: Eiffel : Translated test printf transformer class

1
lass
2 TEST_PRINTF_TRANSFORMER

3
4 inherit
5 TEST_PRINTF_TRANSFORMER_DATA

6
7 feature {ANY} −− r o u t i n e s
8
9 main (argc : INTEGER_32 ; argv : CE_POINTER [CE_POINTER [

INTEGER_8]]): INTEGER_32

10 lo
al
11 c: INTEGER_8

12 code : INTEGER_32

13 i: INTEGER_32

14 l: INTEGER_32

15 ll: INTEGER_64

16 ui: NATURAL_32

17 us: NATURAL_16

18 width: INTEGER_32

19 f: REAL_32

20 d: REAL_64

21 small_width : INTEGER_32

22 big_width : INTEGER_32

23 precision : INTEGER_32

24 s: CE_POINTER [INTEGER_8]

25 do
26
reate s.make

27
28 c := ((’A’).code).to_integer_8

29 code := 66

30 Io.put_string ("A character : " + (c). to_character_8 .

out + "%N")

31 Io.put_string ("A character from ASCII code : " + (code

).to_character_8 .out + "%N")

32 Io.put_string ("A constant character : C%N")

33 Io.put_string ("A constant character from ASCII code :

D%N")

34 i := -123

35 l := 1234567

36 ll := { INTEGER_64 } 123456789000

37 ui := { NATURAL_32 } 123

38 us := (123).to_natural_16

39 width := 6

40 Io.put_string ("An integer : " + i.out + "%N")

41 Io.put_string ("An integer with width: " + (
reate {

FORMAT_INTEGER }. make (5)).formatted (i) + "%N")

42 Io.put_string ("An integer with variable width: " + (
reate { FORMAT_INTEGER }. make (width)).formatted (i)

+ "%N")

43 Io. put_string ("A long integer : " + l.out + "%N")

44 Io. put_string ("A long long integer : " + ll.

to_integer_32 .out + "%N")

45 Io. put_string ("An integer from unsigned int: " + ui.

to_integer_32 .out + "%N")

46 Io. put_string ("An integer from unsigned short: " + us

.out + "%N")

47 Io. put_string ("A constant integer : 1234%N")

48 f := (123.45677999999999) . truncated_to_real

49 d := 123.45677999999999

50 small_width := 1

51 big_width := 12

52 precision := 3

53 Io. put_string ("A float: " + (
reate {FORMAT_DOUBLE }.

make (6, 6)).formatted (f) + "%N")

54 Io. put_string ("A float with precision : " + (
reate {

FORMAT_DOUBLE }. make (1, 1)).formatted (f) + "%N")

55 Io. put_string ("A float with variable precision : " + (
reate {FORMAT_DOUBLE }. make ((1) .max(precision),

precision)).formatted (f) + "%N")

56 Io. put_string ("A float with (to) small width: " + (
reate {FORMAT_DOUBLE }. make (6, 6)).formatted (f) +

"%N")

57 Io. put_string ("A float with variable width: " + (
reate {FORMAT_DOUBLE }. make (big_width .max (6) , 6)).

formatted (f) + "%N")

58 Io. put_string ("A double with width and precision : " +

(
reate {FORMAT_DOUBLE }. make (3, 3)).formatted (d)

+ "%N")

59 Io. put_string ("A double with variable width and

precision : " + (
reate {FORMAT_DOUBLE }. make (

small_width .max(precision), precision)).formatted (

d) + "%N")

60 Io. put_string ("A double with variable width and fix

precision : " + (
reate {FORMAT_DOUBLE }. make (

big_width .max (3) , 3)).formatted (d) + "%N")

61 Io. put_string ("A double with fix width and variable

precision : " + (
reate {FORMAT_DOUBLE }. make ((12).

max(precision), precision)).formatted (d) + "%N")

62 Io. put_string ("A constant float: " + (
reate {

FORMAT_DOUBLE }. make (6, 6)).formatted (1.234) + "%N"

)

63 s. ce_assign (ce_string ("A variable String"))

64 Io. put_string ("A string: " + eif_string (s) + "%N")

65 Io. put_string ("A constant string: Hello World%N")

66 Io. put_string ("An unsigned integer : " + ui.out + "%N"

)

67 Io. put_string ("An unsigned integer from int: " + i.

to_natural_32 .out + "%N")

68 Result := (0)

69 end
70 end

46

List of Tables

2.1 Supported printf specifiers and format tags 10
2.2 Number of translated printf statements 12

3.1 Standard C string functions and their Eiffel replacement 19
3.2 Eiffel strings as arguments to standard C string functions 20
3.3 Number of translatable strings in real projects 22
3.4 Statistics for individual flags and projects 22
3.5 Summarized statistics for individual flags 23

4.1 Number of translatable structs in real projects 28
4.2 Statistics for individual flags and projects 29
4.3 Summarized statistics for individual flags 29

5.1 Removed jump statements . 38
5.2 Functions with jump statements 38
5.3 Change in code indentation . 39
5.4 Number of statements . 39

47

48

List of Figures

3.1 Dependency graph . 20

49

50

Listings

2.1 C : Five exemplary printf statements 11
2.2 Eiffel : The five translated printf statements 11
3.1 C : Declaration of string variables 13
3.2 C : Program with string variables 17
3.3 Eiffel : The translation of the C program in listing 3.2 18
4.1 C : Declaration of structs . 25
4.2 Eiffel : The translation of the struct fpoint 2 from listing 4.1 . . . 26
4.3 C : Inheritance for structs . 27
5.1 C : Gcd Algorithm . 32
5.2 Eiffel : Gcd Algorithm from listing 4.1 33
5.3 Eiffel : Jump State class . 34
5.4 Eiffel : Gcd Algorithm from listing 4.1 (second version) 36
5.5 Eiffel : Nested skip blocks . 36
5.6 Eiffel : Nested skip blocks after optimization 37
5.7 Eiffel : Merged skip block and if statement 37
A.1 C : test printf transformer class 43
A.2 Output from the code in listing A.1 44
A.3 Eiffel : Translated test printf transformer class 45

51

Bibliography

[1] C2eiffel. http://c2eiffel.origo.ethz.ch.

[2] Less (version 382), 2 2004. http://www.gnu.org/software/less.

[3] Micro httpd, 12 2005. http://www.acme.com/software/micro_httpd.

[4] Xeyes (version 1.0.1), 1 2006. http://xorg.freedesktop.org/.

[5] Links (version 1.0), 12 2007. http://www.jikos.cz/~mikulas/links.

[6] Wget (version 1.12), 9 2009. http://www.gnu.org/software/wget.

[7] Curl (version 7.21.2), 10 2010. http://curl.haxx.se.

[8] Gmp (version 5.0.1), 2 2010. http://gmplib.org.

[9] Gsl (version 1.14), 3 2010. http://www.gnu.org/software/gsl.

[10] Vim (version 7.3), 8 2010. http://www.vim.org.

[11] Marco Trudel. Java sourcecode to eiffel sourcecode compiler. Master’s
thesis, ETH Zurich, 2008. Section 4.28
http://jaftec.origo.ethz.ch.

53

http://c2eiffel.origo.ethz.ch
http://www.gnu.org/software/less
http://www.acme.com/software/micro_httpd
http://xorg.freedesktop.org/
http://www.jikos.cz/~mikulas/links
http://www.gnu.org/software/wget
http://curl.haxx.se
http://gmplib.org
http://www.gnu.org/software/gsl
http://www.vim.org
http://jaftec.origo.ethz.ch

	1 Introduction
	1.1 Reference Projects

	2 Translation of printf statements to Eiffel's counterpart
	2.1 The printf statement in C
	2.2 Translatable printf statements
	2.3 Translation
	2.4 Translation in real examples

	3 Translation of C strings to Eiffel Strings
	3.1 C Strings
	3.2 Eiffel Strings
	3.3 Standard C string functions
	3.4 Translatable string variables
	Array indexing problem

	3.5 Translation of standard C string functions to Eiffel features
	3.6 Implementation of the analysis
	3.7 Statistics

	4 Translation of C structs to Eiffel classes
	4.1 Structs in C
	4.2 Translatable structs
	Pointer to structs
	Inheritance between structs

	4.3 Analysis Implementation
	4.4 Statistics

	5 Removing break, continue and return statements
	5.1 Code transformation
	5.2 Optimization
	5.3 Statistics

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	A Additional translations of printf calls

