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Abstract

In this work, a novel gesture recognition system is presented that allows the control of
the SmartWalker by performing simple gestures. The SmartWalker is a normal walker
equipped with sensors and actuators that can move autonomously. It is constructed as a
walking aid for elderly people. Therefore our gesture recognition system is developed for
the same target group which means that gestures with more deviation from the specified
gestures need to be supported.

We developed two gesture recognition systems. User tracking uses skeleton information
extracted from the stream of an RGB+D camera and calculates relative distances and
angles between body joints as features. Hand tracking uses the center position of one
hand to extract features based on the current hand position relative to a gesture starting
point. With the help of Dynamic Time Warping, gestures can be performed at different
speeds compared to the training data. For elderly people this is important as persons with
physical constrains perform the gestures with irregular movements.

To evaluate the performance of our gesture recognition system, we did a performance
study where we tested both hand and user tracking at different distances. Additionally,
we visited several nursing homes to test our robot and the new gesture recognition system
with elderly people.

The achieved recognition rates are lower than state-of-the-art gesture recognition sys-
tems. Our system on the other hand can handle gestures that are given with large deviations
from the specified gestures, it works in unknown environments and supports distances of
up to 3.5 meters.

Zusammenfassung

In dieser Arbeit wird ein neues Gestenerkennungsystem vorgestellt, welches die Steuerung
des SmartWalkers ermöglicht. Der SmartWalker ist ein normaler Rollator, welcher mit
Sensoren und Aktoren ausgerüstet wurde und sich automatisch bewegen kann. Da der
SmartWalker als Gehhilfe für ältere Leute entwickelt wurde, muss auch das Gestenerken-
nungssystem für diese Zielgruppe angepasst sein. Deshalb wurde bei der Entwicklung
speziell auf die Erkennung von Gestern wertgelegt, welche abweichend von ihrer Spezi-
fikation und mit unregelmässigen Bewegungen ausgeführt werden.

Wir haben zwei Gestenerkennungsalgorithmen entwickelt. Der User Tracker benutzt die
3D Koordinaten verschiedener Körperpositionen, welche aus einem RGB+D Kamerabild
berechnet werden. Für die Erkennung der Gesten werden relative Distanzen und Winkel
zwischen Körperpositionen als Features verwendet. Der Hand Tracker verwendet die
aktuelle Handposition relativ zu einem Gestenstartpunkt. Mit Hilfe von Dynamic Time
Wapring ist es möglich, Gesten zu erkennen, die mit abweichender Geschwindigkeit
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Abstract

gegenüber den aufgezeichneten Gesten ausgeführt werden. Dies ist für unser System von
spezieller Wichtigkeit, da ältere Leute die Bewegungen oftmals sehr langsam und zum
Teil unregelmässig ausführen.

Um die Leistungsfähigkeit unseres Systems zu analysieren, haben wir einen Test des
Systems durchgeführt, bei welchem der User und der Hand Tracker mit verschiedenen
Distanzen getestet wurden. Weiter haben wir verschiedene Altersheime besucht, um unser
System mit älteren Personen zu testen.

Der erreichten Erkennungsraten liegen unter denen aktueller Gestenerkennungsalgorith-
men. Unser System ist jedoch fähig, Gesten mit starken Abweichungen gegenüber der
Spezifikation zu erkennen. Zudem funktioniert das System in unbekannten Umgebungen
und mit Distanzen von bis zu 3.5 Metern.
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1 Introduction

1.1 Background

Walkers are used a lot by elderly people or persons with physical constraints with the need
of help during walking. As this device has a great popularity it makes sense to think about
more functions that such a device could be used for.

The SmartWalker project started in may 2012 as a collaborative project between ETH
Zurich and the iHomeLab of Hochschule Luzern. The idea of the project was to create
a Walker equipped with sensors and actuators that can serve for additional purposes
as for example supporting the users during a shopping trip with information on where
products are placed in the store. Additionally, the SmartWalker has been developed as an
application of the Roboscoop framework in the area of Ambient Assisted Living (AAL).
With the ageing population we have, this is an interesting topic where a lot of research is
undertaken.

The sensors and actuators in robots require the concurrent processing of large amounts
of data. The Roboscoop framework facilitates the creation of robotic applications a lot.
It is based on SCOOP, an Eiffel concurrency model for easier reasoning about parallel
processes. Adapted for robotic applications, Roboscoop allows the reception of data
from sensors and other software components of the robot. After processing, messages for
controlling the robot can be generated.

The SmartWalker is equipped with a PrimeSense RGB+D camera. RGB+D cameras
became popular with the Microsoft Kinect, first sold in November 2010. The initial
usage of these cameras was the development of video games which were controllable by
movements in front of the TV screen. These cameras provide a normal RGB image as
well as a depth image, which records the distance from the camera to the captured object
for every pixel. Since the introduction of this camera, a lot of research has been done to
adopt this sensor type to other fields of usage.

1



1 Introduction

1.2 Contributions

This thesis contributes a novel function to our SmartWalker, namely the control of the
walker by gestures and the determination of the position of the user. The goal of the
created user interface is that it should be intuitive, which means that natural movements
should be used for commanding the robot. The gestures used in the system should be easy
to learn and people with physical constraints should be able to perform them.

As a second achievement, our work adds a face recognition and detection system to
the SmartWalker. Face detection allows the device to achieve higher accuracy for the
detection of the user position and to measure the user attention. Face recognition is used
to recognize the owner of the robot by its face and to only react on its commands.

1.3 Outline

Chapter 2 describes the software and hardware used during the development of the gesture
recognition system and that is required to use the developed solution. In chapter 3, the
robot control application is described which serves as interface for the user and sends
commands to the robot. Chapter 4 introduces the software component used for recognizing
user and hand gestures. In chapter 5 the face detection and recognition are described. The
evaluation of an in-house study and a study in elderly homes can be found in chapter 6.
Related work on the same topic is summarized in chapter 7 and the conclusion of this
work can be found in chapter 8.

2



2 System setup

In this chapter, the Software and the hardware used for our gesture recognition system is
explained. To have an overview of the system, the architecture and the interaction between
the different components are explained.

2.1 Software

2.1.1 Robot Operating System (ROS)

The robot operating system (ROS) [9] used in this work, enables the parallel execution
of the different components of the robotic application and the communication between
them. The different components of the system that run in parallel are called nodes. A node
is essentially a normal application that fulfils its dedicated task and communicates with
other nodes. To facilitate the development of nodes, ROS provides libraries for C/C++
and Python. They contain everything that is necessary for the communication between the
nodes and other useful functions that allow the developer of a node e.g. to limit the rate of
a processing loop. The communication between the nodes is very important as in a robotic
application nearly every component needs to communicate with others.

In ROS the communication is organized in topics. A node can advertise a topic and
publish messages on it, whereas other nodes can subscribe for this topic. Every topic
transports messages of a certain type which is understood by the publisher and the
subscriber.

For the SmartWalker, ROS is mainly used to synchronize the different components of
the gesture recognition system and to exchange messages. The component that detects
the face of a user for example, publishes this information to the robot control application
where the information is used to deduce if a user is looking towards the robot and to
recognize the owner of the robot.

3



2 System setup

2.1.2 OpenNI / NiTE

OpenNI1 is an open source framework for developing applications using RGB+D cameras.
It supports a wide range of sensors including the popular Microsoft Kinect, Asus Xtion or
the Primesense Carmine sensors. OpenNI facilitates the access to the hardware. It allows
applications to read information from the connected camera or to change settings on the
camera. It also enables easy access to the video streams of the cameras.

NiTE is a closed source middleware library developed by PrimeSense which is based
on OpenNI. To run NiTE, an OpenNI device object is required. NiTE can be used with all
the devices that are supported by OpenNI.

NiTE offers user and hand tracking capabilities. For user tracking, 15 body joints are
tracked and can be read from a UserData object. For every joint, the exact 3D position
relative to the camera is available as well as the orientation in the from of a Quaternion.
The following joints are tracked by NiTE: left hand, left elbow, left shoulder, right hand,
right elbow, right shoulder, neck, head, torso, left hip, left knee, left foot, right hip, right
knee and right foot (see figure 2.1).

In this work, OpenNI is used to access the PrimeSense RGB+D camera. The data
received is used for two purposes: Firstly, it is used by our face detection system and
secondly it is used as input data for NiTE. The user and hand tracking capabilities of NiTE
are used in this work to receive 3D position data of the users joints. This information is
required by our gesture recognition system to extract features.

2.1.3 OpenCV

Open Source Computer Vision (OpenCV) [6] is a computer vision library for processing
static images or video sequences. The library has an interface to ROS and supports
conversion of ROS image messages to image formats that are used within OpenCV. The
library has C, C++, Phyton and Java interfaces which makes the library usable for a
wide range of operating systems. Some of the available algorithms can also be used on
Android devices such as tablet computers or smart phones. The C++ interface of OpenCV
supports multicore processing. With the help of threading building blocks (TBB) [2] most
algorithms can have parallel working threads which speeds up the computations.

This library is used on the RGB data of the camera for doing the face detection as well
as the face recognition (see section 5.1).

1Unfortunately the OpenNI framework as well as the NiTE middleware are discontinued as PrimeSense
has been bought by Apple. The official websites for downloading the libraries, the support forums and
the documentation webpages are not online any more.

4



2.1 Software

Figure 2.1: Depth image with joints tracked by NiTE
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2.1.4 Transformation framework

The transformation framework (TF) [10] is a ROS package that publishes position infor-
mation in different coordinate frames. Position information can be published in TF which
is sent to ROS via a /tf topic. Transformations from one coordinate frame to another are
done automatically and can also include past position information. TF uses a tree structure,
starting from a common world frame. Except the world frame, every other node in the TF
structure has to have a parent node. For robotic applications, this framework is very useful
as several positions are known with respect to an other position.

As an example for the SmartWalker, the user position is known with respect to the
camera. As the camera can be turned, the camera position is known with respect to the
base of the robot. With TF, the position of the user with respect to the robot base can be
calculated easily.

2.2 Hardware

2.2.1 SmartWalker

The SmartWalker has been developed collaboratively at the Chair of Software Engineering,
ETH Zurich and at the iHomeLab of Hochschule Luzern. It is a high-tech extension of a
normal walker. It is equipped with a laser sensor at the bottom, which is able to recognize
the distances to the surrounding by one degree steps. At the handle bar, it is equipped

Figure 2.2: The SmartWalker with an additional Laptop for face and gesture recognition.

6
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with a Primesense Carmine 1.08 long range RGB+D camera. This camera is mounted to a
servo motor which is able to turn the camera around by 360 degrees. For mobility, the
SmartWalker has two wheel hub motors which can move the walker automatically.

The actuators and the laser sensor are connected to a Beaglebone micro-controller board.
As the RGB+D camera needs more processing power to handle the camera input, the
PrimeSense sensor is directly connected to the tablet computer mounted on the handle bar.
The tracking software as well as the robot control application are installed on the tablet
computer. For controlling the robot, messages over a wired LAN network are sent to the
Beaglebone board. For navigation, the robot publishes odometry information to ROS. This
information is gathered by sensors in the wheels that register every movement of the robot
no mater if a user pushed the robot or if it moved automatically.

The robot is powered by an e-bike battery, which supplies the motors as well as the
beaglebone boards. The primesense camera gets its power from the tablet computer which
has its own battery.

2.2.2 PrimeSense RGB+D cameras

For this work, two versions of the PrimeSense Carmine camera have been used. For local
testing a PrimeSense Carmine 1.09 short range camera was used. This camera has an
operating range from 0.35 up to 1.4 meters. The robot is equipped with a PrimeSense
Carmine 1.08 long range camera with an operating range of 0.8 up to 3.5 meters. Both
cameras provide a normal RGB image as well as a depth image, which is generated from
a reflected infra-red light that was emitted by the camera. The PrimeSense sensor only
works in indoor environments with no direct sunlight exposure. For the depth as well as
for the RGB image, a VGA resolution of 640 x 480 pixels is captured. This camera is very
low cost in comparison with conventional stereo cameras.

The camera provides RGB+D data. These consist of a normal RGB image and a depth
image, which provides the distance for every pixel from the camera to the captured object.
In figure 2.3 the left image shows the RGB camera image. On the right side, the depth
image is shown, with white pixels for distances longer and black pixels for distances
shorter than the range of the camera.

2.3 Architecture

The software architecture of the SmartWalker consists of the Robot control application, the
SmartWalker tracker and the Face tracker. These applications are developed as ROS nodes.
ROS offers publish and subscribe mechanisms to all nodes of the system and organizes

7



2 System setup

Figure 2.3: RBG and depth image of the Primesense camera

the communication with topics. It also maintains a directory of available services that can
by used in the system.

An overview over the architecture of the system is shown in figure 2.4. The robot
control application is the interface between the gesture recognition and the robot. This
software controls all actions of the SmartWalker. The actions implemented in the robot
control application depend on input data of the face tracking, the SmartWalker tracker and
feedback of the robot.

Roboscoop uses signalers to store the newest informations received from other com-
ponents or sensors. The robot control application contains several signalers that hold the
updated information from the SmartWalker tracker and the face tracker. Two of them
are of special importance for this work: The User position signaler holds all positions of
the tracked users. If faces are tracked, also the face positions are available. The gesture
signaler stores the last gesture given to the system. Additionally, it can notify subscribers,
if a new gesture arrives in the system. For controlling the robot, more signalers are
required. There are for example two pose signalers. One stores the current position of the
robot, whereas a second pose signaler holds the position of the target that the robot has to
approach.

Depending on the data stored in the signalers, the robot control application decides
actions. For example the control application will move the robot in front of a person,
when an updated user position and a COME HERE gesture have been received. As the
proportional-integral-derivative (PID) control is also part of the control application, the
control application sends low level information such as the wheel speeds to the robot.
The robot keeps track of the movements and provides odometry information back to the
control application.

A separate node is dedicated to face detection and recognition. These two tasks are
implemented in two separate modules. Face detection first detects faces in the camera

8
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image. After that, the face recognizer tries to find known faces in the camera image
and reports the found user id’s. These separate modules form a hierarchy and also allow
parallel execution of the two tasks.

The SmartWalker tracker is the central unit for gesture recognition. It is split into three
parts which can all execute in parallel. First there is a camera publisher, that publishes the
RAW camera data to ROS. The second component is the hand tracker, which is responsible
for finding and tracking hands. After that, the data is analysed to find hand gestures and
report them to ROS. For estimating the location of the user, the hand center position is
also reported to ROS. The user tracker is the last component. It does full-body tracking
of the users and reports all joint positions to ROS (as TF frames). It performs gesture
recognition on this data and if gestures were detected, these are also reported to ROS. The
camera is connected to this node and can be accessed directly for getting the input data for
the gesture recognition.

2.4 Communication

The communication between the software components of our gesture recognition system
is message-based via ROS topics. In figure 2.5 all nodes of the system and the most
important topics are shown. The SmartWalkerTracker2 node is the main component for
the gesture recognition. The arrows from this node to the camera show the four topics
published containing the camera info and the image raw data. Face tracking is also a
separate ROS Node. It uses the camera data and publishes the face position data for user
and hand tracking. This data contains the results from face recognition. Roboscoop ros
is a ROS node that is used as an interface between ROS nodes written in C or C++ and
Roboscoop, which is an Eiffel framework. The SmartWalkerTracker publishes data about
the recognized gestures and the current user position detected by the user or the hand
tracker.

2.5 Gestures

For commanding the robot, three different gestures have been defined. The gestures should
be done efficient and uninterrupted but not extremely fast. The chosen gestures have been
selected as they should be similar to natural movements if humans communicate to each
other.

The arm-raise gesture is used for calling the robot. If consists of a straight upward
movement of at least 20 centimetres, with the palm directed to the camera. When the hand
is up, the hand should return back the to initial position without waiting. This gesture can
be made at an arbitrary starting position, but it should not go out of the visible range of

9
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SmartWalker tracker

Camera publisher

Hand tracker

User tracker

Face tracker

Face detection

Face recognition

Robot control application

User position signaler

User gesture signaler

To go user behavior

ROS

Figure 2.4: Architecture of the system. Every software component is coloured differently.
The software components are split into modules which can run in parallel.
Arrows show the messages that are exchanged in the system.
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Figure 2.5: ROS nodes and topics. Ovals represent software nodes that process incoming
data and publish data to other topics. Rectangular boxes represent topics. The
arrows show where nodes publish information or subscribe for data.

the camera. This gesture has been chosen because humans often signal their positions to
others in a crowd by raising their arm.

The hand-front gesture is used to stop the robot at the current position. The hand is
held in front of the body, with the palm visible for the camera. Then the hand is moved
perpendicular to the front of the body for at least 30 centimetres. Without waiting at this
position, the hand is returned to the initial position. This gesture is often used in daily
life to signal a stop command to other people. For regulating the traffic for example, this
gesture is used to make traffic participants stop.

The arm-out gesture is used to send the robot back to a defined position, such as a
charging station. For this gesture, the hand with the palm turned towards the camera is held
10 to 20 centimetres in front of the chest. Then the hand is moved at least 30 centimetres
to the left, if the left hand is used, or to the right, when it is the right hand. Without waiting
at the outer position, the hand is immediately returned to the initial position. A pointing
direction to the side is a natural way of commanding someone to a place. In our case the
robot can not follow the direction of the pointing but the gesture should still be natural.

11





3 SmartWalker control application

The gesture control for the SmartWalker consists of two components. One component is
the gesture recognition itself called SmartWalkerTracker and the control application for
the robot. This chapter explains, the control application.

3.1 Roboscoop

The robot control application is based on the Roboscoop framework. The Roboscoop
framework [11] is divided into three layers which are all using SCOOP to handle con-
currency. The Roboscoop framework manages the communication between the different
layers:

• Control layer: Contains stateless feedback control loops to couple sensors to
actuators. The control of the robot is written in this layer, which incorporates all
primitive robot behaviour.

• Sequencer layer: This layer interacts with the control layer to fulfil a task. It is
stateful and relies on primitive behaviours from the control layer.

• Deliberator layer: The Deliberator layer performs time-consuming deliberative
computations.

The robot control application written in this work is done in the Sequencer Layer. A
new behavior called ”Go to user behavior” has been created. It can be used like the
other behaviors that are already present in Roboscoop. For this behavior an event based
architecture has been chosen.

The general process of this behavior is as follows: First the behavior has to be started by
a Roboscoop application. Then the behavior waits until a RS UserGesture message arrives
from the SmartWalkerTracker, which tells the application that a gesture was received.
Depending on the gesture id, a STOP, a GO BACK or a COME HERE command will be
executed.

To operate the SmartWalker, currently only a ”go to goal behavior” is supported. This
behavior works with two signalers. One holds the current position of the robot, whereas
the other signaler can be used to set a goal position for the robot. In a later state of the
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SmartWalker project, other behaviors will be added that support obstacle avoidance for
example. The following actions are executed after a gesture has been received:

• STOP: Update the goal position with the current position of the robot, which makes
the robot stopping immediately.

• COME HERE: Update the goal position of the robot with the newest user position
that has been received from the SmartWalkerTracker via a RS UserPosition message.
When obtaining the current user position, available user positions messages are
always prioritized as follows: UserTracker messages have the highest priority as
they deliver the best results. The stopping position is determined by the two knee
positions of the user, which is exactly the position where the robot should stop.
Second priority have the messages from face tracking. They use the users face
position to determine the goal position of the robot. The lowest priority have the
messages of the HandTracker. As the hand moves around for giving the gestures
and the gesture can be recognized at different points during the movement, larger
deviations from the optimal stopping position are possible.

• GO BACK: Update the goal position of the robot with the position where the robot
should move back. In the current implementation, we send our robot back to the
position where we started from. Therefore the goal position is updated with the
origin (i.e. x=0, y=0).

3.2 Operating modes

The control application supports additional operation modes that can be enabled by the
user in the graphical user interface. Besides the normal operation the following operation
modes are supported:

3.2.1 User Position Updates

This mode updates the goal position, after the user gave the COME HERE command. If
the user moves after commanding the robot to come by more than 30 cm, the goal position
of the robot will be updated. If the robot is closer than 50 cm to the user, the updating
process stops again.

3.2.2 Attention Check

If this mode is enabled, the robot only reacts on gestures if the attention of the user is
directed towards the robot. The attention estimation is done by checking how much the
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user looks in the direction of the robot. The details of the attention estimation are described
in section 5.1.2. If the attention check was successful, the gesture command is executed.
Otherwise the gesture is ignored. As the attention check only works if there are faces
detected, this mode can be turned off, as for long distances or bad lighting conditions, the
face detection does not work anymore.

3.2.3 Registered Users Check

This mode enables the face recognition of the robot. If this mode is turned on, only
registered users are allowed to operate the robot. In this mode, the robot recognizes the
faces in the camera image and only executes commands of users that are registered in its
face database. Details about the implementation can be found in section 5.2.

3.3 Additions to Roboscoop

Besides the control application some additions to the Roboscoop framework have been
created. One part of the additions concern the new message types that were used in
Roboscoop. For the two new message types a signaler had to be created. Signalers in
Roboscoop hold the newest value that was published on a topic, as the signalers are
updated with every arriving message. The two created signalers are more sophisticated,
because there is not just one user position to keep, but every user has its position that has
to be accessible. Furthermore the event based setup does not regularly check the contents
in the signaler, but the signaler has to notify observers about new gestures that have been
received.

Additions were also made to the graphical user interface of the SmartWalker. A switch
for every additional mode has been added to the GUI and better support for termination of
Roboscoop after closing the GUI has been added.
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In this work we developed a gesture recognition system for SmartWalker. As walkers are
mostly used by elderly people, the created gesture interface should be easy to use and not
require users to carry additional tools such as remote controls. The gestures should be
easy to understand and the required movements should be easy to perform for elderly. As
the SmartWalker is a mobile device, the gesture interface needs to work in many different
environments and should adapt to different lighting conditions and backgrounds.

In this thesis we developed a software component called SmartWalkerTracker for
recognizing user gestures based on skeleton data that contains 3D positions of the joints
of a user. Our gesture recognition system provides a hand tracking and a user tracking
mode. In user tracking mode, all tracked joints above the hip are used for generating
feature vectors. Additionally, angles at the shoulder and the elbows are used as features.
This tracking mode provides good accuracy and higher recognition rates, as many features
can be calculated with the available skeleton data. Furthermore, the position information
is very accurate because the joint positions can be verified by adjacent joints. As this
solution requires the user to stand in front of the camera or at least to move the whole
body to allow the recognition of the different joints, this tracking technique cannot be used
by every person of our target group. Elderly persons often need the help of the walker to
stand up and are not able to move without any assistance. The hand tracking mode has the
advantage that the users of the walker can sit and it requires less movement for calibration.
As only the center of one hand is tracked, parts of the body may also be occluded by
obstacles. The drawback of this method is the lower detection rate as fewer features are
present and the less accurate position information that is available for finding the target
position if the robot should approach its user.

4.1 Overview

Our gesture recognition system takes a feature-based approach. The system extracts
features from skeleton or hand center data. In user tracking mode, relative distances
between body joints and angular information are used as features. In hand tracking mode,
the 3D position of the hand with respect to a gesture starting point is used as features.
Classification is done with a k-NN classifier. The costs for matching online data to
recorded gesture templates are calculated by a dynamic time warping approach. Thus the
system allows for different execution speeds of the gestures.
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4.1.1 k-NN classifier

With a k-nearest neighbor (k-NN) classifier, a feature vector is classified by a selectable
number k of closest neighbors, which need to be classified already. In the case of gesture
recognition, the already classified feature vectors are taken from the training set of the
classifier. For these feature vectors, it is known to which gesture class they belong.

The classifier needs to find the closest neighbors. In order to be able to do this, the feature
vector which should be classified needs to be compared to all stored gesture templates. For
this, the matching costs of the live data to the gesture templates is calculated. Afterwards
the k lowest costs are used to count the number of occurrences that each gesture class
has within this k cost values. This can be done, as every cost is related to a gesture class
depending on the affiliation of the involved feature vector out of the training set. The
gesture class with the most occurrences is then selected as output of the classification.

4.1.2 Dynamic time warping

Dynamic time warping (DTW) is an algorithm in time series analysis, which measures the
similarity of two timeseries of data. DTW can be applied to different kinds of data such
as audio, video and other data to find an optimal match between two temporal series of
data. When calculating this optimal match, several conditions have to be applied: When
matching the data of the first timeseries to the data of the second series, we can either go
to the next frame or wait at the current frame in the first timeseries, depending on which
variant produces the lower error. It is never possible to go back in the first timeseries.

DTW is implemented with a dynamic programming approach. In the dynamic program-
ming table, every cell contains the lowest possible cost when matching the two timeseries
of data up to time index i in the first timeseries, for the i’th table row and up to time index
j in the second timeseries, for the j’th table column. With this scheme, the two timeseries
are completely matched in the table cell at position (n,m), with n being the number of
columns and m the number of rows. Therefore the total, minimal cost for matching the two
timeseries of data can be read from this table cell.

Pattern Recognition [13] describes dynamic time warping in speech recognition. Speech
and gesture recognition are very similar topics as with a Fourier transform, a timeseries of
feature vectors can be extracted from speech. DFT is applied to speech segments and the
highest coefficients are used as features. Therefore, for skeleton data and speech we have
feature vectors for comparison. Thus the methods described in the book can easily be
adapted for gesture recognition. Besides the description of the algorithm, different types
of constraints are described:

18



4.2 Feature extraction

• Global constraints: The global constraints limit the field in which an optimal path
is searched. The global constraints define for example the limit of stretching and
compression of the comparison vector.

• Local constraints: Local constraints define which transitions from one time
combination (time first vector, time second vector) to which other combinations are
allowed. A constraint that is always required is monotonicity. Which means, that it
is never allowed to go back in time during the comparison of the vectors.

• End-point constraints: It is required, that every recorded gesture starts somewhere
after the first frame of the recording and ends before the last frame. The frames
before the gesture start and after the gesture end should approximatively match the
compared data. These can be feature vectors from the neutral pose of the user.

When calculating the cost for matching two feature vectors, a suitable norm has to be
found. In section 6.3 an evaluation of different norms for usage during the calculation of
DTW has been done. For the user tracker we chose the euclidean norm with weighting
the features by their variance in the training set. This norm provided the best results
in the evaluation. For hand tracking the normal euclidean distance is used as the three
coordinates are approximately equally important for the gestures we use.

4.2 Feature extraction

The user tracking mode uses relative distances between all the joints above the hip and
the angle between the joints as the feature vector. These are the distances that usually
change when hand gestures are given. Additionally, smaller obstacles like a chair or a
table will not occlude these joints. As users have different arm or leg lengths, the relative
distances for the same gestures may vary. To overcome this problem, all relative distances
are normalized by the length of the path on the body between the two joints. The distance
between the left and the right arm for example is normalized by the length of the two arms.
Additionally, angular features are used containing the measured angles at the elbows, the
shoulder and the rotation of the arms.

In hand tracking mode, the 3D position of the hand with respect to a gesture starting
point is used as feature vector. With hand tracking the user can remain seated as the hand
tracker can be started by simply waving the hand.

Using relative distances as it is done for user tracking leaded to wrong detections for
some of the gestures we use for our gesture interface. In our system we use the STOP
gesture (see section 2.5), which is one arm stretched to the front of the body. The GO
BACK gesture, for which the users stretches one arm to the side, is a completely different
gesture but in terms of relative distances, there are only very few differences. As in both
cases, the arm which is not involved in the gesture, is resting loosely, the distance between
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joints of this arm (hand, elbow, shoulder) approximately equals the distance of the hand
involved in the gesture. Also the distance between the gesture hand and the head or the
torso position (see figure 2.1 for tracked joint positions) is about the same for the two
gestures. To avoid such wrong detections, we added angular information to the feature
vectors. We calculate the angles at the elbows, between the arm and the body and the
rotation of the arms. For the two gestures mentioned before, this angular information
allows for better distinction. The rotation of the arm has a difference of 90 degrees
between the two gestures. In this example, the arm rotation is of permanent importance
for a reliable recognition between the two gestures. Weighing of the features with more
variance between the recorded gesture templates is used to emphasize important features
(see section 4.1.2).

For the hand tracker, the gesture starting point is set to the position where the hand was
located when the hand tracking started. After that, this position is updated if the hand does
not move more than 0.1 mm between two successive frames for twenty camera frames.
This settings were made heuristically to avoid updates of the gesture starting point when
the user is currently performing a gesture. The system on the other hand is still able to
update the gesture starting point if a user has a trembling hand.

4.3 Gesture classification

Gesture classification is done by a k-NN classifier. The classifier matches the online data
from the camera to every recorded gesture template. The costs calculated during the
matching are then sorted and the classifier takes the k lowest cost values and counts which
gesture occurred most. The recognized gesture is then published for usage by our control
application.

Depending on the number of recorded gesture templates, the parameter k of costs
considered can be changed. As every person recorded every gesture three times, we use
k=3. If a gesture is performed closely to the recordings of a person in the training set,
usually all recordings of this person have low errors (except the person performed the
gestures in different ways during training phase).

When comparing between online data from the camera with the recorded gesture
templates, different gesture execution speeds are possible. To allow for this, we use
Dynamic Time Warping (DTW). With DTW, an execution of the gesture can be slower or
faster than the recorded template by a maximum of the used window size. Our algorithm
captures skeleton data with a framerate of 15 frames per second. This framerate is sufficient
for a reliable recognition of the gestures and uses an acceptable amount of system resources.
With a window size in DTW of 30 frames, the gesture could be performed at maximum
two seconds faster or slower than the gesture template.
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For gesture detection, features generated from live data of the camera need to be cached,
as the detection of the gestures can only occur when the gesture has been performed
completely. As we use dynamic time warping to allow for different gesture performing
speeds, it is necessary to store more data than the actual length of the gesture templates.
The gesture templates for user tracking have been recorded with a length of 25 frames. In
DTW we allow a time shift for another 25 frames. Therefore feature vectors of 50 frames
need to be buffered in order to allow for usage of the full window size of DTW. For hand
tracking we also keep the feature vectors of 50 camera frames. As the recordings of the
hand tracker are shorter (only 18 frames in average) we allow for a larger timeshift of 35
frames in DTW.

4.3.1 Gesture specific improvement for the COME HERE
gesture

The tracking middleware we use for retrieving the hand position data, requires the exe-
cution of a built-in gesture to activate hand tracking. As most of these build-in gestures
are prone to false-positive detections we used the wave gesture. For activating the hand
tracker, the user needs to wave the hand he wants to be tracked. As soon as the hand
tracker is started, the gesture recognition takes place. With this setup, parts of the wave
gesture may become part of the executed gesture, if the gesture is executed immediately
after the hand tracker has been started. This happens because the gesture starting point
is set as soon as the hand tracker started. If the user continues waving after the tracking
started, the gesture starting point cannot be updated, but is not in the place where the
gesture starts. For the GO BACK gesture this was found to be unproblematic, because
this gesture contains a similar movement as the wave gesture and therefore only requires a
larger movement to the side. For the COME HERE gesture on the other hand, the upwards
motion is recorded as a skew movement because of the misplaced starting position.

To overcome this problem we implemented a detection enhancement for the COME
HERE gesture, which updates the gesture starting point if necessary. Figure 4.1 shows how
this improvement works. As the gesture starting point has not been updated before gesture
execution, it is on the right side of the executed COME HERE gesture. The hand returned
from this position back to the position where the COME HERE gesture is executed. As
there was no waiting period at this point, the gesture starting point was not updated to this
position. We therefore check for upward movements that start with a wave like movement
at the beginning. This is done by calculating the step-wise area below the line drawn
by the hand movement and the y-coordinate axis. Additionally the area of the triangle
between the gesture starting point to the current hand location and y-axis is calculated. If
the area of the second calculation (direct line from the gesture starting point to the current
hand position) is at least 1.3 times as large as the step-wise area, the gesture starting point
is updated to the current y position whereas the x position is not changed. The threshold
value for updating the starting position has been chosen empirically by performing the
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Figure 4.1: Automatic updating of the gesture starting point

COME HERE gesture directly after waving. With the factor used, the main priority lies
on the reliable recognition of all gestures with waiting after starting the hand tracker. As a
second priority, this improvement can be used.

After updating the gesture starting point, 15 intermediate points between the current
hand position and the updated gesture starting point are added. This helps to avoid the
usage of the DTW window to overcome the gap between the updated gesture starting point
and the current hand position (the feature vectors recorded, starting from the old gesture
starting point, become obsolete). If the gesture detection is then run again, it should be
able to recognize the COME HERE gesture.

4.4 Analysis of the used features

Xin Zhao et al [19] found three key challenges for online gesture recognition:

• Viewpoint and anthropometry variations: The gesture recognition system should
be independent in case of variations in the camera viewpoint. Also different body
sizes, e.g. the arm length should not influence the recognition.

• Execution rate variations: The gesture recognition should work independent of
the execution speed of the gestures.
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• Personal style variations: The gesture recognition should allow for smaller per-
sonal variations of performing the gestures.

The features we selected adhere to these challenges:

Viewpoint and anthropometry variations: As mentioned before, the SmartWalker-
Tracker uses pair-wise joint distances as features. As these distances are always relative to
some other body joint, they are moved together, which makes them viewpoint invariant.
Another problem is the different anthropometry of the users. As we use normalization of
the relative distances by the length of the path on the body between the joint positions, our
system is anthropometry invariant.

Execution rate variations: The difference in how fast a user executes a gesture is
an important criterion. The variations here are very high and inclusion of all possible
execution rates in the training set of the gesture prediction is impossible. To cope for dif-
ferent execution speeds, a dynamic time warping (DTW) approach has been implemented.
Employing DTW, the user can perform the gestures at arbitrary speeds as long as it fits
into the time window that DTW allows (see section 4.1.2).

Personal style variations: For a gesture recognition system it is important to carefully
define the gestures. But also after explaining to a user, how a gesture has to be performed,
there are personal style variations of the gestures. To recognize the gestures, even if they
are done in various styles, a large training set should be used. Like this, a lot of possible
execution variants are covered. If the differences between the used gesture commands are
higher, the recognition can be made more tolerant, which also helps to recognize gestures
more easily.

4.5 Training set

The training set for gesture recognition consists of gesture templates. A gesture template
is a time series of feature vectors that contains the measurements recorded during a
performance of the gesture. For good performance of the system, an extensive training
dataset should be used. We recorded gestures from ten people in their 20’s and 30’s. Every
person performed the STOP, the COME HERE and the GO BACK gesture three times
which results in 90 recorded gesture templates.

To record gestures, we implemented a tool that extracts the features and records a
customisable number of frames from the camera input. When recording gestures, it is
important to avoid non-gesture parts in the gesture template. There are two reasons why
non-gesture parts should be avoided: Firstly, the detection is slowed, as the non-gesture
part after the gesture must also be matched to the template. Secondly, after activating
the gesture recognition system, the user has to wait before the gesture can be performed,
because the gesture template also contains a waiting period.
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As it is not trivial to record gestures such that all recorded frames are used for performing
the gesture, we added a pre-processing step for hand tracking. After the gestures have been
recorded, the pre-processing step is used to eliminate non-gesture parts from the templates.
During pre-processing, the feature vectors that describe the hand position which did not
move at least five centimetres from the initial position, are eliminated. Likewise, feature
vectors at the end of the gesture that do not contain any movement are deleted.

4.6 Determining the user position

After the COME HERE gesture has been given, the robot has to move to the person that
gave the command. Therefore the current position has to be detected. Running user
tracking, this is a simple task as all body joints are tracked. In this case, the position of the
knees are used to calculate a position 40 cm in front of the user. If hand tracking is used, it
is more difficult to find an appropriate position for the robot to stop. The COME HERE
gesture consists of an upwards movement of the hand. Therefore the hand position at the
time of the gesture detection provides an approximate position of the user. As this gesture
can be performed in front of or besides the body depending on personal preference, errors
in the target position of the robot can occur. To overcome this, the face position of the user
is used (see section 5.1.1) to determine the target position of the robot.
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For locating faces, face detection can be used. It’s goal is to find faces in the camera image,
locate them and extract them from the image. After that, face recognition can be applied
to find out, if this extracted face belongs to a known user in the database.

5.1 Face detection

During the testing of the first versions of the SmartWalkerTracker, the problem arose,
that the walker started moving without intentionally giving gestures. As the gestures are
designed to be very easy, they can be given inadvertently. The idea of face detection is
therefore twofold. Firstly, face detection should estimate the attention of a user towards
the robot and second, it should deliver the face position to be used as goal position when
the robot is called.

For the face detection, the OpenCV implementation of the Viola and Jones face detector
[15] is used. Haar features are calculated using so called integral images that contain black
and white regions arranged as a line or edges. The integral images are used as a pattern
for the following calculation. For calculating the features, the pixel below the black parts
of the integral image are summed up. Afterwards the sum of all pixel below the white
region of the integral image are subtracted. This calculation has to be done at all possible
locations in the large image, which leads to a very high number of features. The problem
is that too many features exist and it is not possible to use all of them during the detection
phase. Therefore the features are tested during the training phase, where positive images
(images of faces) and negative images (images of other objects) are read. The features that
have the highest variance between the positive images and the negative ones are chosen.
Starting from a large amount of possible features, the best 6000 features are taken for
image patches of 24 x 24 pixels.

To improve the speed of the detection, a cascade is used. The goal of the cascade is to
successively eliminate non-face images (or patches out of a larger image) at very high
speed. Therefore the images are processed by a cascade of classifiers. The first classifiers
apply only a very low number of features that determine if this image could be a face. If
this is the case, the image is processed by the next classifier of the cascade. The Viola and
Jones face detection cascade has 38 stages where as the first stage starts by checking for
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only one feature. Successive stages contain more and more features and the images that
passed all the stages are then classified as positive face detections.

This implementation of OpenCV allows for fast face detection in the regular RGB
image coming from the PrimeSense sensor. This detection algorithm is quite fast for most
applications. For SmartWalker it is required that face detection also works with rather
long distances of up to 3.5 meters (which is the specified limit of the camera). In order
to make face detection work at this distance, high resolutions are required, which lowers
again the face detection speed. Our current solution works with the maximum supported
resolution of the Primesense Carmine sensor, which is 1280 x 1024 pixels.

To further improve the face detection speed, a method described in [1] has been im-
plemented. The authors of this paper use the depth information of an RGB+D camera
to restrict the area in which faces need to be searched. They call this additional depth
information depth cues. First of all they use this information to limit the scales at which a
face needs to be searched and secondly they exclude regions with too large distance to the
camera from the search. A similar approach has been used in our work. OpenCV allows
the implementation of own masks which are then used during face detection. A mask
specifies the areas in which the algorithm has to look for faces, whereas the rest of the
image is not considered. To create such masks a DepthMaskGenerator has been developed.
This class uses the depth image of the camera to filter out regions where no face has to be
detected. The filter gets for every pixel of the rgb image the distance by reading out the
appropriate pixels from the depth image. As a lower resolution of the depth image is used
than for the RGB image, the depth image is first scaled to the size of the RGB image and
then the distances for every pixel of the RGB image is read. If a pixel is farther distant to
the camera, as the depth sensor can recognize, then the pixel is marked as background and
therefore not used for face detection. If the pixel is closer, the pixel is considered for face
detection. This mask improves the speed of the face detection for larger rooms if there is
no wall or larger object behind the user.

Face detection regularly leads to false detections. To eliminate these, more depth cues,
also described in [1], can be used. If a face is detected, the depth information of the camera
is used to calculate the size of the image. For this, the face bounding box is calculated
which contains only the frontal region of the face (e.g. without ears or the wider back of
the head). Then the width of the face (the calculated bounding box) is checked if it is larger
than 8 cm and smaller then 23 cm. If this is the case, the face detection is considered as a
valid detection, otherwise the detection is discarded. By the help of this validation, objects
that differ significantly from regular face sizes, are ignored. Figure 5.1 shows an example
of false positive detections, which can be identified by the help of the depth information.
The face images in the prospectus are detected by the haar cascade face detector. As the
face images are too small for real faces, they are not considered (red ovals around the
detected faces). The real face on the right side is also detected and as the size lies within
the defined bounds, the detection is considered as correct (green oval around the face).
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5.1 Face detection

Figure 5.1: A real face and faces from a company brochure.

5.1.1 Face used as goal position

In case hand tracking was used to give a COME HERE command to the robot, the face
position is used to determine the goal position of the robot. As the face position leads to
a better goal position for the robot than the position of the commanding hand, the face
position is preferred for determining the target position of SmartWalker. In order to map a
commanding user to a face, faces in the closer region of the commanding hand need to be
searched. This is done by using the data published in TF by the hand tracker. If a face has
been detected, the euclidean distance between this face and the currently tracked hand is
calculated. If this distance is lower than 50 centimetres (currently configured threshold),
the face detection is assigned to this hand. For every detected face, two RS UserPosition
messages are sent to ROS. The following data is sent: x,y and z position of the face, the
id of the user that was recognized by the face recognition (recognized id), the id of the
tracked hand by the hand tracker (user id) and an id showing that this position message
comes from the face tracker. Then the same massage is sent again but this time with the
id of user found by the user tracker (user id). To have only one message sent by the face
tracker, the message type could be changed to include both hand tracker and user tracker
id’s for every detected face. Two messages have been preferred, to allow for other tracking
variants that might be used later (e.g. with the help of the laser sensor).
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5.1.2 Attention estimation

On the touch screen interface of the SmartWalker, the user can choose if the walker should
only react on gestures given by a person that is looking towards the robot. A similar idea
has been described by [5]. A group of unmanned areal vehicles (UAV) where measuring
how well a face looks into the direction of this robot. Every measurement was registered
as a face score. All UAV’s then sent their face score to a central server which then used
the best value (if above a threshold) to tell which UAV should get the command for
execution. In our case only one robot with one sensor is available. As we are using the
haar-based face detection cascade of OpenCV, there is no confidence value returned that
could be used as face score. To overcome this, two methods can be used. To calculate a
face score, the minNeighbours parameter of the detectMultiScale function in OpenCV
is set to 0. In this way, every real face is detected several times, as the face detection
is ran with very small shifts all over the image. Then the number of detections in the
neighbourhood can be counted and used as face score. As for our purposes the actual
face score is not important, because we do not need to compare it with other face scores,
it is sufficient to have a threshold to only detect faces that match the trained faces well
enough. Important for this to work is, that the face detector is trained on frontal face views
only. Therefore the minNeighbours parameter can be used directly to only recognize faces
that look towards the robot. In the documentation of OpenCV, the use of minNeighbors
= 3 is proposed which works well for a reliable detection without double detections. In
this work, minNeighbors = 10 was used, to enforce the frontal view constraint. With this
setting, faces are recognized reliably, but must be oriented towards the camera, in order to
be recognized. Figure 5.2 shows the face detection in action. If the user presents its face
frontally to the camera, the face is recognized. The more the head is turned away from the
camera, the detection stops.

Figure 5.2: Face detector trained with frontal face images.
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Figure 5.3: Debug output window of the face recognition

5.2 Face recognition

A more restrictive way to limit the number of users that can operate the robot is user
recognition. This part has been cascaded to the face detector. In this way the face detector
detects faces out of the camera image. If a face was detected, it is cut out of the image and
forwarded to the face recognition. The face recognizer then tries to map this image to one
of the pre-taught faces in the database. For face recognition, the Local Binary Patterns
Histograms (LBPH) [7] Face Recognizer of the OpenCV library was used. LBPH uses
LBP operators to capture also very fine grained details in images by comparing single
pixels with its neighbourhood, which are placed in a circle around the pixel in observation.
To cope for different scales of details in an image, these LBP operators can be applied
with different sizes. Different LBP operators are used to record different kinds of details.
There are operators for details as spots, lines, edges and corners. As these binary operators
record differences in intensity between pixels in the image, they are invariant to different
lighting conditions. To allow the comparison of images from a database to the captured
faces from the camera, feature vectors have to be created. This is done by dividing the
LBP image into local regions and calculating histograms of them. The final feature vector
is created by stacking the data of all local histograms on top of each other to form a larger
vector. When a recognition is done, the feature vector from the current camera input is
compared to the feature vectors of all stored images. All faces in the database are stored
as face views with a size of 200 x 200 pixels. The images are cropped with the help of
face detection. If the faces of the stored user are not well recognized, manual cropping of
the faces could help to improve detection rate. It is very important to crop the faces very
tight and to exclude as much from the background as possible. If too much background
is part of the training data, the background has too much influence of the detection. It is
possible to store several images for every user. For good detection rates, about ten images
per user should be trained and stored in the face recognition database.
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5 Face detection and recognition

5.2.1 Teaching faces to the face recognizer

To facilitate the teaching of new faces to the face recognition, an application has been
created. This application grabs the RGB image of the camera and again uses the Viola
and Jones face detector of OpenCV to detect the faces within an image. For the training
of the face detection, it is required, that only the face that should be trained to the face
recognition is visible in the camera image. Therefore only the first recognized face will be
marked in the output window. As explained in section 5.1 the face detector is only trained
on frontal face images. Therefore, the images that are stored during the training of the face
recognition should also be frontal or with a very small angle. For a reliable recognition of
the faces, every trained face should be recorded 10 - 15 times to the database with a small
movement of the head.
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6 Evaluation

6.1 Performance analysis

To evaluate our gesture recognition system, a performance analysis of the system has
been made. For this experiment we asked the test persons to perform a COME HERE,
a GO BACK and a STOP gesture at four different distances. If the gesture has not
been recognized, the test person repeated the gesture several times until the gesture was
recognized or we skipped this gesture at the current distance. The test has been done
twice, once for the user tracker and once for the hand tracker. For testing the user tracker,
we asked the person to stand for this test. During the experiment of the hand tracker, the
test candidates were sitting. Additionally we checked, if the face detection was able to
recognize the users face at all the distances tested.

13 persons participated in this study (two elderly persons were not able to participate
in the user tracker experiment, as they cannot stand without help). We trained the hand
tracker with 10 persons from our group where every person performed all gestures 3 times
with one hand. The GO BACK gesture has been trained with both hands as the movement
of the second hand goes to the opposite direction. The user tracker has been trained with
three persons, performing the gestures five times for each hand. This leads to 30 gesture
templates per person.

In figure 6.1 the recognition rates at the distances of 2.0, 2.5, 3.0 and 3.5 meters are
shown for hand tracking. Except for the GO BACK gesture, shorter distances seem to work
better for hand tracking. For the GO BACK gesture, the recognition rate did not change
much. As this gesture consists of the longest hand movement, it seems to be recognized
also with larger distances. For all gestures, some test candidates seemed to learn how to
perform the gestures for better recognition. As the test always started at two meters, some
persons performed better for larger distances. This could explain the small increase of the
recognition rate for the GO BACK gesture. The STOP gesture was the most difficult for
recognition. A possible explanation could be the difficulty for recognition of the hand for
this gesture: As most of the test candidates performed this gesture in front of their bodies,
the tracking of the hand was more difficult than the gestures that were besides the body of
the person. During testing, the hand tracker sometimes lost the hand when it was too close
to the body. The candidates then had to wave again (to restart hand tracking) to continue
the test with the next gesture.
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Figure 6.1: Recognition rates of the hand tracker

Figure 6.2 shows the recognition rates for the user tracker. Except for the STOP gesture,
the recognition rates for the user tracker are generally slightly higher. Most probably, this
is because of the more sophisticated feature vectors used with this tracking technique.
Instead of having the 3D displacement of the hand position, relative distances between
the joints above hip and the angles at the shoulder and the elbow are used. Except for
the STOP gesture, which worked badly with large distances, the distance to the camera
seems to have a rather small influence. As for hand tracking, the COME HERE and the
GO BACK gestures worked about equally well whereas the STOP gesture worked worse.

Table 6.3 shows the precision of the two tracking techniques. The precision of the
hand tracking is higher than the one for user tracking. The reason for this is, that the
hand usually gets lost if a person moves around and the hand tracking has to be started
by waving the hand explicitly. For user tracking, the tracker is always running and every
movement is tracked. Like this, it can happen more easily, that a false recognition occurs.
Most false positives have been recorded for the GO BACK gesture. In hand tracking it
happened several times, that a GO BACK gesture was recognized because of the strong
waving that has been done to activate the hand tracker.

The face detection has also been tested at the four distances used for the gesture
recognition test. The results are shown in table 6.4. Face detection worked for most of
the test candidates at all distances. For one person, the face detection did not work at all.
After repeating the test without wearing glasses, the detection worked for all distances.
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Figure 6.2: Recognition rates of the User tracker

COME HERE GO BACK STOP
Hand tracking 93% 89% 94%
User tracking 90% 78% 88%

Figure 6.3: Precision of the SmartWalkerTracker
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The recognition rate varied between 79% for a distance of two meters to the camera and
93% for a distance of 3.5 meters. For this test a minNeighbor setting of 5 has been used.
This means that five, slightly overlapping detections, are required to detect a face. During
this experiment we saw, that some faces are detected faster than others. The faces that are
detected more easily are allowed to look in the direction of the robot, other people had to
exactly look at the robot to have their faces detected. For the face detection we also tested
how much light is required for the face detection to work. We generally found that strong
sunlight from the back or the side of the camera poses problems, because the faces are
then over illuminated. The general lighting conditions of the room are less important as
the camera adapts automatically and brightens the camera image if necessary. Table 6.5
show the results we collected at different distances under various light conditions. There
was a row of lamps starting at the position of the camera and ending behind the test person,
which ensured an equal lighting at every position. The light intensity has been measured
with a lux meter at head position. The first measurement with 340 lux has been done with
a good office light. With 7 lux, the face detection was still working but the camera was not
able anymore to brighten the image to the normal level. At a light intensity of 2 lux, the
camera was not able to adapt anymore and stopped publishing data.

6.2 Study in elderly homes

For evaluating the gesture recognition system, we visited five nursing homes. 23 residents
tested our SmartWalker. 14 men and 9 women participated in our study. 16 of the
candidates never used a computer or a Smart Phone, 6 use such devices and one person
uses a computer and a Smart Phone every day. Only three persons were able to walk
without any assistance, 6 persons use and 14 persons require walking assistance. 14
persons always use their walking assistances when they walk outside of the building, 5
persons use them regularly outside and 4 persons can walk outside without any help.

6.2.1 Setup of the study

For the gesture recognition tests in this study we used the hand tracker with the same
training data as for the performance evaluation. The training set has been recorded with
10 people from our group at ETH, performing every gesture three times. The hand tracker
has been trained with one hand only, except the GO BACK gesture that has been trained
with the second hand as well.

2.0m 2.5m 3.0m 3.5m
79% 89% 93% 93%

Figure 6.4: Recognition rates for face detection

34



6.2 Study in elderly homes

Lighting [lux] 2.0m 3.0m 4.0m
340 3 3 3

220 3 3 3

80 3 3 3

23 3 3 3

10 3 3 3

7 3 3 3

2 7 7 7

Figure 6.5: Face recognition with different light conditions

Figure 6.6: An elderly person using SmartWalker
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Our study was split into three sections (for reference the original questionnaire can
be found in the appendix A.3). First we asked the participants some general questions
about age, aids they use for walking and their skills with computers and smart phones.
All answers have been recorded on a 5-valued likert scale. After the first set of questions,
we asked the participants to use our walker as they would use a normal walker and walk
around in the room. In a second set of questions, we then asked the people about their
general impression of the walker. Furthermore we asked questions about the size, weight
and easiness of using the walker. In the last part of the test, the elderly were asked to
call the robot by performing the ”COME HERE” gesture and sending it back to its initial
position using the ”GO BACK” gesture. In the last set of questions, we asked again about
the general impression of the walker and how well the people were physically able to
perform the gestures. We also asked if it was difficult to understand how the gesture
recognition system works and what their impression of how well the system understood
the gestures was.

6.2.2 Research questions

The goal of the performed study was to find answers to the following questions:

• How useful is a walker that can approach its user?

• Are the users capable of performing the necessary gestures for commanding the
SmartWalker?

• Does the performance of the gesture recognition system change the users general
opinion about the walker?

• Can the users easily understand how they have to perform the gestures and is there a
correlation with the recognition rate?

• Is it comfortable when the robot approaches and does it stop in the right place?

• Does a good working gesture recognition system increase the acceptance of a
motorised walker?

Furthermore we collected data about the recognition rates to analyse the performance
of the system.

6.2.3 General findings

We asked the elderly if it is useful to have a walker that can automatically come and
return back to a predefined position (results in Figure 6.7). About half of the persons
liked this function. Another 5 persons found this function rather useful and only 4 persons
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6.2 Study in elderly homes

0 2 4 6 8 10 12 14 16 18 20 22

Interesting topic

Automatic coming useful

Number of participantsAgree Partially agree Neutral Partially disagree
Disagree

Figure 6.7: The test persons found the function that the robot can approach automatically
useful. The topic of robotic walkers was interesting for our test candidates.

found this function rather useless or completely useless. We also asked, if they find the
topic of robotic walkers interesting. The scale was ranging from very interesting to very
dangerous. 19 of the 23 candidates found the topic very interesting or interesting. One
person was neutral about the topic whereas the remaining 3 persons judged robotic walkers
as dangerous.

The function which allows the robot to approach users seems to be generally liked
by the test persons. In section 6.2.8 test candidates also mention problems that they see
for the gesture recognition system. The test candidates seem to be interested in this new
technology and are willing to test a robotic walker.

6.2.4 Change of general impression about the robot

0 2 4 6 8 10 12 14 16 18 20 22

After calling

After walking

Number of participantsLike Rather like Neutral Rather dislike
Dislike

Figure 6.8: General impression of the walker after trying it without any assistance and
after using the gesture based interface.

As shown in figure 6.8, the experiment helped the test persons to form their opinions.
After testing the gesture recognition system, the number of participants that responded
”rather yes” or ”rather not” reduced whereas the values increased for ”yes” and ”no”.
Before and after testing the gesture recognition, nobody answered ”neutral”. The number
of persons that answered ”yes” or ”rather yes” and ”rather no” or ”no” remains stable (one
blind person did not want to answer the question before she tried the gesture recognition).
The relative amount of candidates that are positive about the SmartWalker did not change
significantly. However there are people that changed their opinions after testing the gesture
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recognition system. 5 persons that initially answered positive to the question whether they
like the robot, changed to a negative answer. But also the opposite happened for 2 persons
which changed from a negative answer to a positive one.

Figure 6.9: Recognition rate versus liking the robot.

In figure 6.9 the average number of tries for a successful recognition is shown versus the
impression of this test candidate of the robot (numbers next to the dots show the number
of data points at this position). Persons with only a few tries until the robot recognized
the gesture, also liked the robot more. Except one person, all candidates with 5 or less
tries in average liked the robot with a rating of 4 or 5 (highest score) on the Likert scale.
Candidates where at least one gesture did not work after several tries, rated the robot 1
(lowest score) or 2.

6.2.5 Evaluation of the stopping position

With two questions we tried to find out if the persons felt comfortable when the robot
moved towards the inhabitants and if the position where the robot stopped in front of the
persons was good. The intention of the first question was to find out if the speed of the
robot and the speech announcement was sufficient for the user to have a good feeling when
the robot moved towards them or if they feared being hit by the walker.

This question was asked to 20 persons (all participants for which the COME HERE
gesture worked). Except for one person, all candidates were satisfied of how the robot
moved towards them. The person that voted to be rather uncomfortable, the robot came
too close. Instead of stopping with a distance of 40cm, the test supervisor had to stop the
robot to protect the test person. The second question aimed to find out if the orientation
and the position of the robot were comfortable in order to reach the SmartWalker. 15 of 20
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6.2 Study in elderly homes

persons found the position good or rather good, 5 persons found it rather uncomfortable or
uncomfortable. In one case the robot went to the person sitting next to the test candidate
as the gesture was given with the left arm just in the middle of this two persons. As the
wrong face position was used, the robot stopped in front of the wrong person. A second
problem is that the robot currently does not support the definition of an orientation when
stopping. Therefore the orientation of the robot when reaching the stopping position was
sometimes not optimal.

We also asked if more visible or audible feedback during the movement of the robot
would be required. 11 people liked or rather liked such an idea, whereas again 11 persons
found it rather unnecessary or completely unnecessary. Interestingly there is no significant
difference in the answers of visually impaired inhabitants. About half of this group would
like to have an acoustic signal when to robot moves, the other half found that they can
hear the robot approaching.

0 2 4 6 8 10 12 14 16 18 20 22

More feedback desired

Stopping position accurate

Robot aproaching comfortable

Number of participantsyes rather yes neutral rather no
no

Figure 6.10: Questions asked after the usage of the gesture based interface.

6.2.6 Gestures

For testing the gesture based user interface, the test persons were sitting between 2.5 and
3 m distance in front of the robot. After explaining how they can enable the hand tracker
by waving and how to perform the ”COME HERE” gesture, we asked them first to call
the robot. We asked the candidates to perform the gesture several times until the robot
reacted. If it was necessary, hints were given on what should be done differently for the
next tries. The test subjects did not use the system before the test.

After the SmartWalker came, we explained how to send the robot back. Then, the test
persons where able to try this gesture. Again we gave hints on how to perform the gesture,
if the last try was not recognized. We encouraged the participants to try the gestures
several times. If they were not successful after 5-6 tries we told them to stop whenever
they like.
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We asked questions about the difficulty of the gestures. We wanted to know if the
gestures can be performed well physically and also if they are easy to learn. We also asked
the people if they found the gesture recognition system understood them well.

0 2 4 6 8 10 12 14 16 18 20 22

Understand gestures

Perform gestures

Learn gestures

Number of participantsVery easy Easy Neutral Difficult
Very difficult

Figure 6.11: Difficulty for learning and performing the gestures. Impression of the test
persons of how well the robot understood the gestures.

Most people found the required gestures easy to understand. Only 5 persons found the
gestures difficult to learn. We saw that performing the gestures we defined seems to be
no problem. Only 2 candidates found it difficult to perform the gestures; one of these
people was suffering Parkinson’s disease and therefore a gesture based interface is rather
inappropriate for this person. Interestingly, the gesture recognition worked quite well
(3 tries for COME HERE, 1 try for GO BACK) for this person, even though the person
supported the performing hand with the second arm. The questions about the test persons
opinion on how well the robot was able to recognize the gestures, was answered mainly
positive. Only 4 candidates found the robot did not understand them. For three of them, at
least one command was not recognized after several tries and the test had to be aborted.

Figure 6.12 shows the average number of tries that were required for a gesture recog-
nition. The average recognition rate of the COME HERE gesture was 44%. For the GO
BACK gesture it was 38%. These rates are inferior to state-of-the-art gesture recognition
systems. The fact, that the elderly persons often made the gestures different from what
we showed them, was a challenge for our system. Additionally, some persons where not
able to turn their palm towards the camera as we did for recording and in order to have
a good tracking of the hand position. Another problem was that some person required
more tries until they understood how to activate the hand tracker (for which we use NiTE
and is separate from our gesture recognition). This is done by performing a wave gesture,
namely waving the hand from the left to the right and repeat this again. Two of the test
persons only moved the palm instead of the hand which was not recognized by NiTE to
activate the hand tracker. Another problem was that some persons did not understand that
we switched to a second test and performed again the COME HERE gesture instead of the
GO BACK gesture.

The design of the gestures seemed quite good, as they were easy to perform for the
participants and they do not require sophisticated movements. The gestures differ signifi-
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Figure 6.12: Recognition rates for the test persons
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cantly from each other. Therefore the gesture recognition can be configured more tolerant,
which also helps to recognize gesture executions, which deviate from the specified gesture.

6.2.7 Software adaptations

During the first week of testing in nursing homes, gestures were often not recognized
because the inhabitants did not wait for 1 or 2 seconds after waving, before performing the
gesture. However, this waiting time is necessary for two reasons: Firstly, NiTE has to start
the hand tracking, which needs less than a second. Secondly, since the stored gestures
templates are used directly from gesture teaching, it often happened that there were frames
without any hand movement before the actual gesture. This was because it was not always
possible to perform the gesture to fit in the number of frames that are defined for recording.
Often there was a period without any hand movement before and after the real gesture. As
this waiting period was also part of the gesture template, a gesture was not well recognized
if it was performed without enough waiting time before and after the gesture.

We can not influence the start-up time of NiTE as it is closed source. However, the
second problem can be eliminated. This is has been done by adding an automated post
processing step to the learned gesture templates. All gestures are processed and periods
without any movement before and after the gesture were cut from the gesture template (see
section 4.3.1). After applying the described post processing to the already created gesture
templates, we had a second week of experiments in elderly homes and were therefore able
to compare the recognition rates before and after the change:

In figure 6.12 we can see how many tries every test subject needed for a successful
recognition of the tested gesture. In the first week of testing, we tested the candidates 1 to
12, the other persons did the test in the second week after applying post processing. If we
calculate the recognition rate of the two test groups separately we get the following data:

The data shows a big improvement in the detection of the COME HERE gesture. Before
applying the changes we had a recognition rate of only 27%. Afterwards this rate increased
a lot to 63%. The post-processing of the gesture templates allowed us to eliminate the
waiting time after activating the hand tracker from approximately 2 seconds to nearly no
required waiting. If the hand is not moved too fast, no waiting is necessary any more.
When testing the improved version in the second week of testing in the elderly homes,
we increased the error threshold for the COME HERE gesture. We did not increase the
threshold for the go back gesture, as a strong waving for activating the gesture recognition

Gesture type Without post processing With post processing
COME HERE 27% 63%
GO BACK 37% 39%

Figure 6.13: Recognition rates for post-processing
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could be confused with the GO BACK gesture. The higher threshold for the COME
HERE gesture leaded to two false positives for the same person. This person did long
wave movements for activating the hand tracker with rather large displacement in x and
y direction. The COME HERE gesture was therefore recognized just after the person
stopped waving.

6.2.8 Additional comments

As a last question of our study, we asked every participant, what should be changed
or added to the robot, to make it better. We received valuable feedback for feature
improvements. The following comments have been made concerning the gesture control:

• Remote control A person mentioned the problem, that the walkers are placed out-
side the dining room, from which there is no intervisibility to the parking positions
of the walker. Therefore this person proposed to have a remote control with a button
to call the robot.

• Identification of the user One person wanted the SmartWalker to know its owner.
Otherwise a lot of walkers could react to a command, when they are placed next
to each other. (This function is already available, but was not tested in the elderly
homes)

• Recognition of gestures from all sides A blind participant remarked that it is not
possible for him to know if the robot is oriented towards him. Therefore the robot
should turn its camera automatically to recognize gestures from every direction.

• Good working functions One person mentioned that a device for elderly should
not have too many functions, but the basic functions should work reliably.

6.3 Evaluation of different error measures

For choosing en error function for the comparison of feature vectors, the following error
function have been evaluated:

• Error sum This was the first error function we used during the development of
the gesture recognition. It calculates the absolute value of the difference for every
feature of the feature vectors under comparison. Then it sums up all this differences.
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• Cosine similarity The cosine similarity, opposite to error functions, is increasing if
two vectors match better. It is calculated with the following formula [16]

similarity = cos(θ) = A·B
‖A‖‖B‖ =

n
∑

i=1
Ai×Bi√

n
∑

i=1
(Ai)2×

√
n
∑

i=1
(Bi)2

• Euclidean distance The euclidean distance calculates the distance between two
feature vectors in the n-dimensional space (with n, the number of features). The
following formula is used: [18]
d(p,q) =

√
(p1 −q1)2 +(p2 −q2)2 + · · ·+(pi −qi)2 + · · ·+(pn −qn)2.

• Euclidean distance with weighing features by their variance in the training set
This error function uses the normal euclidean distance but weights the features
by the variances they have in the training set. This helps to give more priority to
features which are more distinctive.

• Mahalanobis distance The Mahalanobis distance is used in statistics where it
calculates the distance in a multidimensional vector space. The covariance of two
vectors is used for weighting. We used a slightly modified version of this distance
in which we replaced the covariance of the points with the confidence of the data
that we received from NiTE.

For evaluating the error functions, a recorded camera sequence has been used, in which
the supported gestures have been performed twice. At the beginning of the sequence, the
COME HERE gesture has been performed twice. It was followed by two executions of
the STOP and the GO BACK gestures. All the tests have been performed in hand tracking
mode.

The Mahalanobis distance has been tested during the implementation of the SmartWalk-
erTracker but is not evaluated here as the confidence values of the tracked joints did not
contain enough information. The tracking middleware returns a confidence value of 0 for
inferred joints (which are currently not visible to the camera) and 0.7 for the tracked joints.
As there are no intermediate values, it turned out that the results are better without using
the confidence values. Additionally NiTE infers the positions of occluded body joints by
its neighbours. This positions are often quite precise, which leads to better error values if
they are used for the error computation.

The error sum was an easy measure for doing the first tests of the gesture recognition.
But as shown in figure 6.14, especially for the STOP gesture, the error for the COME
HERE gesture was also low. As this evaluation was performed under good conditions (2.5
meters to camera), the recognition would be feasible in this case. Under more challeng-
ing conditions or with test persons that perform the gesture differently, the recognition
wouldn’t be possible anymore.

The evolution of the similarity values for the cosine similarity are shown in figure 6.15.
The cosine distance is a good error measure for angular feature vectors. In contrast to the
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Figure 6.14: Recorded gesture sequence by using the error sum

error functions, this similarity function signals occurrences of gestures with higher values.
Therefore the two COME HERE gestures that we tested at the beginning are represented
with higher values. The STOP and the GO BACK gestures have quite similar values,
especially if the GO BACK gesture is executed, which makes this error norm inappropriate
for the hand tracking.

The Euclidean error function is especially useful for spatial information. For hand
tracking, the 3D positions of the hand with respect to a gesture starting point is used.
Therefore the euclidean error function seems to be appropriate for the usage with the hand

Figure 6.15: Recorded gesture sequence evaluated using the cosine error function. Average
similarity values for all templates of a gesture class are drawn.
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tracker. As shown in figure 6.16 this error function has a desired behaviour that was not
visible as clearly for the other error functions we evaluated before. If a gesture has been
performed, the error for this gesture decreases massively and at the same time, the error
of the other gesture classes increases. This makes a classification of the live data to the
gesture classes more precise.

As a last variant we evaluated the euclidean distance with a weighting of the individual
features with their variance in the training set. This error measure is very useful for the
user tracking, as there are much less angular features than relative position features. For
hand tracking, the three coordinates of the hand position, which are used as features, are
approximately equally important. Therefore a weighing of the features does not make
sense. In figure 6.17 the recorded video sequence has been used to determine the error
values with this method. A small improvement of the STOP gestures can be seen. On the
other hand, the error function for the GO BACK gesture gets worse.

Based on the evaluations done in this chapter, we decided to use the euclidean distance
with weighting features based on their variance in the training set for user tracking.
For hand tracking the normal euclidean distance is used as an error function for DTW
calculation.

Figure 6.16: Recorded gesture sequence evaluated by using the euclidean error function.
Average errors for all templates of a gesture class are drawn.
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Figure 6.17: Recorded gesture sequence evaluated using the euclidean error function and
weighing features with their variance in the training set. Average errors for
all templates of a gesture class are drawn.
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7 Related work

Several papers have been published about the subject of general hand gesture recognition.
Suarez and Murphy [12] categorized and summarized different techniques used for hand
gesture recognition with the help of RGB+D cameras. Zhou Ren et al. [8] measures
the dissimilarity of different hand shapes using Finger-Earth Mover’s Distance (FEMD)
to detect static gestures. Van den Bergh et al. [14] used the OpenNI library to detect
hand positions. Image segmentation was used to get the arm orientation with the aim
of recognizing pointing commands to direct a robot. Kishore Konda et al. [3] used a
convolutional neural network to extract the arm movements of a human guide to manoeuvre
a robot. Another project [4] created a walker for visually impaired persons called PAM-
AID. This device also has a manual and an assistive mode. In manual mode the device
provided information of the environment with a speech interface. In automatic mode the
device was able to guide the user to a target by avoiding obstacles.

Our walker provides a novel gesture based user interface and supports autonomous
movement. The used gestures have been optimized for, and tested with elderly persons that
might have physical constraints. The focus of our system lies in the easiness of usage, the
natural design of the gestures and the recognition of gestures which are done not precisely
as specified. Furthermore, our gesture recognition systems does not require a well defined
setup and is supposed to work in many different environments and lighting conditions
with distances up to 3.5 meters.
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8.1 Conclusions

We have presented a gesture based interface for the SmartWalker. The implemented
solution allows the control of our walker by instrumented persons. Furthermore, natural
gestures have been used that are intuitive to use and easy to remember. As the system
is developed for the usage by elderly persons, it does not require an exact execution of
the specified gestures. Our system has been evaluated with an in-house performance
evaluation and with an experiment in nursing homes.

During our test we found that a gesture interface seems to be an intuitive way of
controlling the SmartWalker. Inhabitants of nursing homes generally liked the fact that a
robot can move towards them after giving hand gestures. A gesture interface has of course
also some drawbacks. One of the main problems is the rather small operating range of
only 3.5 meters and the restriction that the SmartWalker needs to be placed such that the
user is always in the visible range of the camera.

The current implementation of the SmartWalkerTracker relies on NiTE for user and hand
tracking. The advantages are that NiTE offers an easy to use and very precise interface
for accessing the position data for the users joints and the hand center for hand tracking
respectively. As it entirely relies on the depth data it is also not sensitive to changing
lighting conditions. As NiTE is released as a closed source project, no improvements can
be made for aspects which are not entirely satisfactory for our usage. One problem is that
a fixed camera position is assumed, which is not the case for SmartWalker. When the
walker is moving, users are often re-detected as a different user. Sometimes also objects
in the background are detected as users as they seem to move in the perspective of the
middleware. As the COME HERE and GO BACK gestures are given when the robot is not
moving, this restriction does not pose any problems for these two gestures. The gesture
recognition system also implements the STOP gesture. This gesture would immediately
stop the robot at its current position. Unfortunately it is nearly impossible to give this
gesture in hand tracking mode, as hand tracking first needs to be started by waving and
afterwards the hand is lost because of the movement of the walker. In user tracking mode,
the STOP gesture performs better, but did not meet expectations, because of the mentioned
user re-detection. When the STOP gesture is given during such a re-detection, which
always starts with the calibration phase, no gesture is recognized.
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The recognition rate of 63% for the COME HERE gesture and 39% for the GO BACK
gesture is low in comparison with other gesture recognition systems, especially as only
simple gestures have been used. The difference is that gesture recognition systems are
generally tested with persons that know how to perform the gestures and are physically
capable of performing the needed movements. Additionally the test environment is
optimized for best possible recognition. Our system was tested in nursing homes with all,
except one candidate, older then 70 years. Some of the inhabitants were not capable of
opening their hands completely or turning the palm towards the camera. Others needed
several tries and further explanations to understand on how the gesture has to be performed.
One person did not understand that a different gesture is needed for sending the robot
back. This factors can be mentioned as reasons for lower recognition rates. Generally
the gestures we implemented seemed to be well adapted for elderly persons because all
participants were able to perform the gestures. Also most of the persons, for which the
gesture recognition did not work, responded that they were physically able to perform the
gestures.

Two gesture recognition systems have been tested. For the study in the nursing homes
only the hand tracking was used. As the user tracker has difficulties to calibrate if a user is
sitting in front of the camera, the hand tracking solution has to be used, if a person is not
able to stand before the walker arrives. For the hand tracking it is no problem, if parts of a
person are covered by obstacles. It has also the advantage, that the same gestures can be
done with both hands without training them separately. The detection of the user position
is not very accurate for hand tracking but this problem has been successfully solved by
using the face position as target for the robot.

During the tests it turned out, that the training sets used were rather small. If the test
persons did new variations of the gestures, the recognition often failed. If persons that
trained the walker tried to give gestures, the recognition worked well. Therefore larger
training sets would cover more variations of the gestures and help to recognize more
different ways a gesture is performed.

8.2 Future Work

8.2.1 Stopping position

During the evaluation in the nursing homes, once the robot would have hit a test person
because the position of the person was not measured well. It is essential that this never
happens when the walker is used in a real scenario. Therefore the laser sensor of the robot
should be used to have better precision when approaching the user.
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8.2 Future Work

8.2.2 Gesture recognition

As mentioned before, NiTE does not work well, when the camera is moving. For most
of the applications this does not pose any problems. Nevertheless is it not possible to
continuously track the users in front of the robot. Therefore, the target position can not be
updated once the robot started moving. The robot is also not able to recognize additional
gestures during its movement. If NiTE could be replaced by a tracking middleware
that is able to compensate the movement of the camera, this would improve the gesture
recognition in these situations.
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A Appendix

A.1 User Documentation

A.1.1 Installing the requirements

The following software and libraries need to be installed in order to run the software of
this master thesis:

• ROS Hydro: http://www.ros.org

• OpenNI 2.2: http://www.openni.org (Offline as OpenNI is discontinued, mir-
rors for downloading are available)

• NiTE 2.2: http://www.openni.org (Offline as OpenNI is discontinued, mirrors
for downloading are available)

• OpenCV 2.4.9 or newer, compiled with TBB support: http://www.opencv.org

• Eiffel Studio 13.11: http://sourceforge.net/projects/eiffelstudio/

Some of this software packages can be installed in Ubuntu with the Synaptic package
manager. In Ubuntu version Precise Pangolin, the available OpenCV version had no
TBB support. Therefore an installation from the sources was required with an additional
argument to enable the TBB support.

A.1.2 Robot Control Application

Installation

The installation of the Robot Control Application is done with the following steps:

• Download the source code from the repository and copy it to your catkin workspace
directory. The robot control application does not require the catkin build system,
but roboscoop ros, which is the communication part between Roboscoop and ROS,
needs to be built.

• Run catkin make in your workspace. This will generate all message files and the
classes that are required for the communication between Roboscoop and ROS.
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A Appendix

• Start Eiffel Studio with the command

ec -gui

and add ”Roboscoop app as a new project. You will find the necessary ”ro-
boscoop app.ecf” file in the folder ”roboscoop/roboscoop app”.

• Finalize the code by clicking the down array next to the compile button in the toolbar
of Eiffel Studio and select ”Finalize”.

Starting the application

To run the application, you can either manually execute the generated executable in the
folder ”roboscoop/roboscoop app/EIFGENs/roboscoop app/F code” or you use Eiffel
Studio to run the application by clicking to the down array next to run and select ”Run
Finalized System”.

Using the graphical user interface

The graphical user interface provides a mode switch where you can choose between
”autonomous mode” or ”assisted mode”. When changing the mode, the camera will turn
as it has to face forward in assisted mode and face backwards in autonomous mode. The
three buttons at the lower left corner of the GUI are used to select additional operation
modes. The first button enables automatic position updates. If this function is enabled,
the robot ties to update the position of the user, after the COME HERE command has
been given. Furthermore there is a button to enable the attention check. If this function is
turned on, the robot reacts only on users that look into the direction of the robot. The last
button controls the user check. If this is enabled, only users whose faces are registered in
the face database are allowed to control the robot. If the last two functions are used, it is
important to retain a maximum distance between the robot and the user of about 3 meters
and the lighting conditions have to be relatively good. Otherwise face detection will not
work and the robot does not react on gestures any more.

A.1.3 SmartWalkerTracker

Installation

To install the SmartWalkerTracker, download the source code from the repository and copy
the code to your catkin workspace directory. If this is done, just execute the catkin make
command, which builds the application. As a final step, you should extract all data from
the archive SmartWalkerTracker Files.tar.gz to the .ros directory in your home folder.
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Starting the application

To start the application, two launch files are present. One variant simulates the odometry
information of the robot to be able to test the application with using a robot. To start the
application with simulated odometry, type:

roslaunch smart walker tracker2 smart walker tracker with simulated odo.launch

If the SmartWalkerTracker should be started in normal mode, to be used together with
the robot, type:

roslaunch smart walker tracker2 smart walker tracker.launch

A separate roscore can be started before executing the launch files. If no roscore is
running, the launch files will start it automatically.

Training the gestures

To train new gestures, you can use the ”GestureTeacher” application. The following steps
have to be performed: First check if a roscore is running. If this is not the case, start a new
console and run ”roscore”. Open another console and change to the .ros directory in your
home folder. Here you should backup the files user gestures.csv and hand gestures.csv.
Then you can start the ”gestureTeacher” by typing:

smart walker tracker2 gesture teacher2

After starting the application, you will be asked which gesture you want to train. Enter
the id of the gesture you want to teach (currently the id’s are: 1: stop, 2: come here and
3: go back). Then you can choose if you want to train a hand gesture or a user gesture.
Type ’h’ for hand gesture and ’u’ for a user gesture. Then you will have to enter how
many times you want to repeat the gesture recording. As a last option, you can choose
how many frames you want to record. As the gesture recognition operates at a frame rate
of 15 frames per second, 30 frames correspond to 2 seconds recording time, which should
be enough for most gestures.

For the hand gestures, a post-processing step has been added, to cut off the part of the
recorded gesture, which is essentially a neutral pose and does not belong to the actual
gesture. Hand gesture recognition works also without this post-processing step, but post-
processing avoids the required waiting period before performing the gesture. Furthermore
the gestures are detected faster, as there is no non-gesture part after the real gesture. For
doing the post-processing on the hand gesture data, open a console and switch to the .ros
folder of your home directory. Here type:

rosrun smart walker tracker2 data preprocessor
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After the gestures have been trained to the SmartWalkerTracker, it might be nec-
essary to adapt the error thresholds for the different gestures. The threshold settings
can be changed in the file smart walker tracker constants.h. There are two constants
MAX ALLOWED ERROR USER and MAX ALLOWED ERROR HAND for the thresh-
old settings of the user and the hand tracker respectively. The value at position 1 is for the
STOP gesture, position 2 for the COME HERE and position 3 for the GO BACK gesture.

A.1.4 Face detection

Installation

For installing the face detector, download the source code from the SVN repository. Then
copy all files into your catkin workspace and run catkin make. The face detector needs
an image directory in the .ros folder, which is located in your home directory. Create
this directory by changing to the /.ros directory and typing mkdir images. Then run the
face teacher to store new faces.

Starting the application

A launch file has been created to facilitate the start-up of the face tracker. To start the
face tracking, first check that roscore and the SmartWalkerTracker are already running in
separate console windows. The second mentioned is required because face detection uses
the raw data of the camera, which is published in ROS by the SmartWalkerTracker. Then
launch the Face Tracker by calling

roslaunch smart walker tracker2 face tracking.launch

Training new faces to the face recognition

For adding new faces to the face recognition, an application has been created for this
purpose. The following steps show how a new face can be trained to the face recognition:
Check if roscore is running. If this is not the case, open a new console and type ”roscore”.
Open a second console and change to the .ros directory in your home folder. Then start
the face teacher application by calling

rosrun smart walker tracker2 face teacher

First you will have to enter the id of the user you want to teach. If you want to add
more images of an existing user, you can enter his or her id here. If you want to add a new
user, use the next unused id. For training new faces, it is important that no other faces
except the one you want to train are visible in the camera image. You will then see a the
camera image with a bounding box around the detected face. If you want to record an
image of this face in the current pose, you can press the ’c’ key, which then stores the
image. It is recommended to store several images for every user of the system. Therefore
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move your head a little bit and press the ’c’ key about 10 to 15 times per user. To leave the
application, press the ’q’ key. After recording new faces you should check the recordings.
You will find the stored faces in the /.ros/images folder. The first number of the images
file name is the id of the user, whereas the second number is a is a unique id for every
recorded image. If you found images that are unsatisfactory, you can delete them and also
remove the line, corresponding to the deleted image file name, from the trained user.csv
file, which is also located in the .ros folder.

A.2 Developers Guide

A.2.1 SmartWalkerTracker

The SmartWalkerTracker is the core application of this thesis. It is responsible for the
gesture recognition and the publication of position data in TF and via messages in ROS.
The SmartWalkerTracker consists of several parts which are explained in more detail in
the following sections. For the explanation I try to adhere to the order of the data that is
processed in the application.

After starting the SmartWalkerTracker, a connected 3D sensing device connected to
the computer is searched. Only one sensor is required and supported. If several sensor
would be connected to the same computer, it is not defined which one would be used.
After opening the device, the video modes that the camera should use, need to be set. The
PrimeSense Carmine sensors support the following video modes:

Depth image:

• 160 x 120, 30 fps

• 320 x 240, 30 fps

• 320 x 240, 60 fps

• 640 x 480, 30 fps

RGB image:

• 320 x 240, 30 fps

• 320 x 240, 60 fps

• 640 x 480, 30 fps

• 1280 x 720, 30 fps

• 1280 x 1024, 30 fps

For the depth resolution we had to use 320 x 240 pixels with a frame rate of 30 frames
per second. For larger distances to the camera it would have been useful the have a
higher depth resolution, but the NiTE middleware was not working with higher resolutions
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even though nothing about this restriction was found in the documentation. For the RGB
resolution we decided to use the highest resolution that is supported by the camera which
is 1280 x 1024 with a frame rate of 30 frames per second. This resolution has been chosen
to have better performance in face detection and face recognition (see chapter 5.1).

A.2.2 Camera publisher

As part of the SmartWalkerTracker a separate thread is used to publish the camera raw
data in ROS. This is done in the SmartWalkerTracker because NiTE requires direct access
to the device object that can only be created once in OpenNI as it gets exclusive access
to the USB camera. The frame rate of the raw data publication is configurable in the
configuration file. Currently only 2 frames per second are published, as the published raw
data in ROS is only used by the face detection and for this purpose this rate is sufficient. If
other nodes or image viewers would require higher publication rates, this setting can be
set up to the maximum frames per seconds that is supported by the chosen video mode.

The raw data publication itself loops with the chosen frame rate and gathers images
from the depth and/or RGB video streams as chosen by the user. This images are published
in ROS as messages of the type sensor msgs/Image. In order to use the published camera
data in other applications, a camera info topic is required as well. The camera info topic
contains information about the current video frame that is published, such as the frame id,
the used resolution, camera calibration data and so on.

A.2.3 User Tacking

The user tracker is one possibility for commanding the SmartWalker by gestures. The user
tracker uses full body tracking for gesture recognition. It is split into several parts which
will be explained in the order of the processing pipeline:

Tracking the joints of the user

As a first step, the user tracker has to publish the position and the orientation of the joints
of a user. 15 joints explained in section 2.1.2 are tracked. The tracking itself is done by
the NiTE middleware of PrimeSense, which returns the tracked joints for every user as
UserData object. The data of this object is used to know which users are currently tracked
and to publish its position and orientation in the transformation framework (TF). Every
tracked user gets an ID and a state assigned by NiTE. The id is a unique identifier for this
user as long as it is tracked. If a user disappears, the id will be reused. NiTE uses different
tracking states: If a user appears in the scene, his state is ”new” which means that this is
the first frame in which this user appears. As long as the user is visible by the camera, his
state is ”visible”. If the user leaves the range of the camera, his state is ”lost”. If a user is
visible, the state of the skeleton tracking can be checked. First the user is in ”calibrating”
state in which the user should move around to allow NiTE to identify the body joints.
In older NiTE versions, the user had to perform a PSI pose for calibration which is not
required any more. If calibration is done, the skeleton state changes to ”tracking” which
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is the phase in which data of the joint positions and orientations is returned. If skeleton
state switches to ”none”, the tracking stopped. There are more states that signal problems
during calibration, which are not explained in detail.

An important point for the user tracker is the calibration phase. During this phase the
user should move a little bit in order to allow NiTE the identification of the joints. During
this phase the more of the body is visible, the better the calibration can be done. If this
is not the case, the calibration can take very long or is not possible at all. If a person is
sitting, calibration can become a very difficult step, as the joints are not well visible to the
camera and not enough movement can be done for calibration.

For the user tracking, code has been used from the openni2 tracker, an open source
ros package of the ros-drivers git repository (https://github.com/ros-drivers/
openni2_tracker). The code for managing the tracking states of the users as well
as the publication of the skeleton positions in TF are adaptions of the functions of the
openni2 tracker.

Determining the goal position

If the user commands to robot to come, a goal position for this command is required.
Therefore the user tracker publishes a message with the current user position once every
second, which corresponds to one message per 30 camera frames. For this purpose a new
ROS message type has been introduced for the communication between the SmartWalker-
Tracker and the robot control application.

Figure A.1 shows the content of a RS UserPosition message. x,y and z are the coor-
dinates of the goal position, which is 40 cm in front of the user. Of course, the stopping
distance to the user can be configured. As the robot moves on the ground, the z coordinate
is not read when sending the robot to the user but this information can be useful when
for example the position of a face is required. Theta is the orientation of the user. It
is published by the SmartWalkerTracker but Roboscoop currently does not support an
orientation at the goal position of the robot. The robot just stops when the goal is reached.
The userId is the id given in the UserData object. The recognized id is not used in the user
tracker. The tracking method contains an id that shows if the user position was detected
by the user tracker, the hand tracker or the face detection to allow prioritisation of the
incoming position data in the robot control application. Additionally to the message that
is sent to ROS, the goal position of the robot will also be published in TF.

1 time stamp

2 float64 x

3 float64 y

4 float64 z

5 float64 theta

6 int8 userId

7 int8 recognizedId

8 int8 trackingMethod

Figure A.1: The RS UserPosition message
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User gesture recognition

As soon as the joints positions and the goal position of the robot are determined, the
gestures given by a user can be detected. This process is described step by step:

Creating features: In a first step, feature vectors have to be created. This is done by
calculating the pair-wise distances between all the joints above hip. These are the joints
that are moved for the gesture we used in our gesture recognition system and these joints
should be always visible by the camera, also if the user is close to the camera or an object
is in between the walker and the commanding person.

Building a camera input buffer: To be able to recognize a gesture as a series of camera
frames, the camera data needs to be buffered from gesture start until the gesture has been
performed. As it is not known in advance when a gesture has started and when the gesture
is performed, a fixed window size of 50 frames has been chosen. All recorded gesture
templates are scaled to a size of 25 frames. With 50 stored camera frames, it is possible to
execute a gesture 2 times slower than the template.

Comparing the input buffer to the recorded gesture templates: After buffering the
frames and reading the gesture templates into the memory, classification of the gesture can
be performed. For the classification of the gestures, a dynamic time warping approach is
applied. The implementation in SmartWalkerTracker is a improved C++ implementation
of the pseudo code of DTW in Wikipedia [17]. To compare the feature vectors, the
euclidean distance is computed and weighted with the variance of the features. Like this,
features with more variance account more to the calculated cost. After applying DTW,
a total cost in the sense of a sum of the calculated euclidean distances is returned. After
comparing the input buffer with the stored gesture templates, a cost is calculated for every
template. This costs are sorted and the gesture is predicted using a k-NN classifier. The
gesture with the most matches using the lowest 3 error values, is taken.

Publish the recognized gestures: After a gesture has been recognized, it needs to be
published in ROS, so that the Eiffel robot control application can process the command
assigned to this gesture. For publishing gesture messages in ROS, a new message type
shown in figure A.2 has been created:

Stamp holds the timestamp when the gesture was recognized by the SmartWalkerTracker.
The field ”userGesture” contains the id of the gesture, ”userId” holds the id of the user
that performed the gesture and ”trackingMode” contains an id that tells the recipient of
this message, that this gesture has been recognized by the user tracker. After creating the
message, it is published in ROS in the topic /SmartWalkerTracker/user gesture.

1 time stamp

2 int8 userGesture

3 int8 userId

4 int8 trackingMethod

Figure A.2: The RS UserGesture message
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Applying DTW to user tracking

DTW has been explained in section 4.1.2. DTW is a general approach and can be used
for all kinds temporal data series. In user tracking, the data item to compare is a feature
vector which contains distances and angular information. The knowledge of the kind of
the data under comparison is important for the selection of an appropriate cost function.
For this type of data either a cosine similarity could be good (because of the angular
information) or an euclidean distance could be a good choice (because of the stored
distances). Is is also imaginable to use combinations of the two (e.g for parts of the feature
vector) or adaptations of them. One adaptation would be to use a modified Mahalonobis
distance, which weights data items more, if their confidence is higher. This approach
seemed promising to us, as sometimes parts of the body are occluded and therefore not
actually tracked but only inferred by NiTE. During testing we found out that NiTE returns
a confidence value for the tracked joints, but this values were binary. Either a joint is
tracked or it is inferred. We then tried to weight the joints less when they are inferred.
Informal tests showed no improvement at all. Sometimes it was even better not to use the
weighting, as NiTE infers the joint positions quite well and if a big part of the body is
not visible there is not much data present any more. As only very few angular data items
are present in the feature vectors, euclidean distance provides the best error measurement.
Since the confidence values of NiTE seemed not very helpful to get better error estimates,
we tried statistics over the used features. First of all the mean value for every feature has
been calculated. This allows the normalization of the error values to have an equal weight
of the feature vector items. Furthermore the variance for every feature vector item has
been calculated. This allows to weight items with higher variance more than the ones with
lower variance. During another informal test we got better error values than before. The
term ”better error values” is very imprecise, because it very difficult to say if it is better
to have higher or smaller errors. Generally it does not matter is the error values are very
small numbers or larger values. They should be adapted to the data type that is used. As
the errors will be used to say if the currently performed gesture is the same as a recorded
gesture template out of the database, the error should be as much distinctive as possible.
The error should be as low as possible, if a performed gesture is from the same gesture
class as a recorded gesture. On the other hand, the error should be as high as possible, if
the recorded gesture is of a different class.

When training the gesture recognition with more people, we found out, that different
persons have quite large variations of how the gestures are performed. Therefore it seems
to be the case that some gestures, even if they are in the same gesture class, lead to an
increase in the variance of some items of the feature vectors. Unfortunately this increase
is only desired, if it also leads to a better distinction between the gesture classes. This was
not always the case as some features varied very much between the recorded instances of
the same gesture. Therefore another variation of an error measurement has been developed.
We call them ”inter gesture variances”. This is a calculation of the variance values for
every feature in which, during the calculation of the variance, a mean per gesture has been
used. Therefore this variance measures the deviation of this feature from the mean value
of this gesture class. In chapter 6 you can find an evaluation of this error estimate.
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Teaching the user gesture recognition

Before gesture recognition can be used, gestures must be trained to the gesture recog-
nition system to be used as gesture templates. For this purpose an application called
GestureTeacher has been created. This application is a simple console application that
asks the user to enter the id of the gesture he wants to train, the number of frames that
should be recorded and how many times the chosen gesture should be recorded. After
that, the user can stand in front of the camera and wait for NiTE to start tracking the body
joints. As soon as body tracking data is available, a countdown of 5 seconds starts, before
the user can perform the gesture. The desired number of frames are then recorded at a
speed of 15 frames per second (which is also the frame rate during gesture recognition).
After the gesture has been performed, the countdown comes up again until the requested
number of recordings have been made.

A.2.4 Hand Tracking

Besides the user tracker, hand tracking has been implemented. In contrast to user tracking
the hand tracker requires only the hand to be visible by the camera.

Tracking the hand of the user

For user tracking several body joints had to be tracked. For hand tracking only the center
position of the hand is required. For tracking the hand, the hand tracker of NiTE is used.
In order to start the tracking process, the approximate hand position has to be known. This
can either be done by getting the hand position from the user tracker, which makes no
sense in this case, as either hand tracking or user tracking is used, or the hand position
can be determined by a build-in gesture. The NiTE middleware supports three different
gestures: Wave, click and arm-raise. For the hand tracker, the wave gesture has been used,
which requires the user to wave the hand he wants to track. As soon as the wave gesture
has been recognized, the hand tracking starts. After starting the hand tracking, a unique
continuous id is given to this hand and a HandData object is created. In this object the
current state of the hand tracker can be read as well as the coordinates of the hand center.
The tracked hand position is published to TF.

Determining the goal position

When hand tracking is used, the goal position of the robot has to be calculated either by
face tracking (see section 5.1.1) or if there is no face detected, by the current hand position.
Face tracking is preferred over the hand position because gestures can be given at various
positions. If the hand position has to be used, to robot will stop 40 cm away from the hand
position at the time, the gesture was recognized. Also for hand tracking, the goal position
is published as a RS UserPosition message to ROS and to TF.
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A.2 Developers Guide

Hand gesture recognition

The hand gesture recognition process works as follows: A feature vector for the hand
tracker consists of the 3D displacement of the hand from a gesture starting point. As for
the user tracker, we also want to analyse the features used in hand tracking, if they are
viewpoint, anthropometry, execution rate and personal style invariant: The gestures are
clearly viewpoint invariant, as the hand tracker of NiTE returns the 3D positions of the
hand centers and compensates for different camera viewpoints. It is not entirely clear, if
arbitrary gestures with the hand tracker would be anthropometry invariant. If a gesture
would be recorded with a long arm movement, it would be impossible for a person with
smaller arms to redo it. The gestures we specified should be antropometry invariant as we
require very small movements which are possible for every healthy person. With a large
training set, differences in movements and different lengths of the gesture are covered
and also personal style variations are possible. To ensure execution rate variations, the
same DTW scheme as for user tracking has been used for hand tracking as well. The hand
gestures in our training set contain 18 frames on average. Which means, that the recorded
gestures require a bit more than a second to be executed. As DTW has an allowed shift of
35 frames, a timeshift of a bit more than 2 seconds is allowed.

The gesture starting point is determined at the position where the hand tracker has been
started trough the initial wave gesture. This starting point is updated, if the user does not
move the hand for 20 camera frames. During this 20 frames, the distance travelled with
the hand between two consecutive frames must be smaller or equal to 0.1 mm. With this
settings, a person with a trembling hand can still update the gesture starting position. A
gesture consists of a time series of feature vectors. These are then compared to the stored
gesture templates using a k-NN classifier which considers the 7 lowest errors under the
euclidean distance. The output of the classifier is only published to ROS if the final error is
below a threshold, which can be set for every gesture class separately. This allows to boost
more difficult gestures, which are often done with a higher error than others. For publishing
gestures to ROS, it is important to publish gestures only once when they are recognized.
To achieve this, the gesture recognition system has several states and a publication to
ROS is only possible upon a state change. There are states for every supported gesture
and an additional state called NEUTRAL STATE. This state is used when currently no
gesture is recognized, i.e the calculated error under the euclidean distance is higher than
the threshold value. A parameter sets how many detections in a series are required for a
gesture to be published. At the moment 5 consecutive detections are required for a state
change. This restriction is no problem for normal gesture detections as a lot of detections
occur, but it successfully removes flickering between NEUTRAL STATE and the state of
a gesture at the beginning and the end of a detection. The state flickering would lead to a
lot of publications of this gesture, even though only a single gesture has been performed
by the user.
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A Appendix

Teaching the hand gesture recognition

As for the UserTracker, also the HandTracker needs training for creating gesture templates.
For this purpose the same application called GestureTeacher can be used. The process is
exactly the same as for user tracking except that the hand recognition work differently.
After all settings of the GestureTeacher have been made, the recording can be started by
placing the hand in front of the camera and wave twice from left to right and back or the
other way round. After that, the countdown starts and the gestures can be performed. For
hand gestures it is important to remain the hand still during the countdown to allow the
hand tracker to find the starting position of the gesture.

A.3 Original questions of the nursing home study

Part 1

1. Geschlecht:
( ) Männlich ( ) Weiblich

2. Wie alt sind Sie?:
( ) unter 70 ( ) 70 – 79 ( ) 80 – 89 ( ) über 90

3. Benutzen Sie ?:
( ) nichts ( ) Gehstock ( ) Gehbock ( ) Rollator ( ) Rollstuhl

4. Wenn ja, wie lange haben Sie ? benutzt?:
( ) weniger als 1 Jahr ( ) 1 – 2 Jahre ( ) 3 – 5 Jahre ( ) mehr als 5 Jahre

5. Wie oft benutzen Sie ? ?:
( ) nie ( ) selten ( ) manchmal ( ) oft ( ) immer

6. Wie oft benutzen Sie ? ausserhalb von Gebäuden?:
( ) nie ( ) selten ( ) manchmal ( ) oft ( ) immer

7. Wie oft benutzen Sie ein Smartphone, ein Computer, etc.?:
( ) nie ( ) selten ( ) manchmal ( ) oft ( ) immer

Part 2

8. Gefällt Ihnen der Rollator?:
( ) ja sehr ( ) eher ja ( ) neutral ( ) eher nicht ( ) überhaupt nicht

9. Wie finden Sie die Grösse?:
( ) zu gross ( ) ein bisschen zu gross ( ) perfekt ( ) ein bisschen zu klein ( ) zu klein

10. Wie finden Sie das Gewicht?:
( ) zu schwer ( ) ein bissichen zu schwer ( ) perfekt ( ) ein bisschen zu leicht ( ) zu
leicht
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A.3 Original questions of the nursing home study

11. Wie angenehm ist es, mit dem Rollator zu laufen?:
( ) sehr angenehm ( ) angenehm ( ) neutral ( ) unangenehm ( ) sehr unangenehm

12. Wie einfach ist es, den Rollator einzuparken?:
( ) sehr schwierig ( ) schwierig ( ) neutral ( ) einfach ( ) sehr einfach

Part 3

13. Gefällt Ihnen der Rollator?:
( ) ja sehr ( ) eher ja ( ) neutral ( ) eher nicht ( ) überhaupt nicht

14. Ist es nützlich, dass der Rollator zu Ihnen kommen oder fortgehen kann?:
( ) ja sehr ( ) eher ja ( ) neutral ( ) eher nicht ( ) überhaupt nicht

15. Wie angenehm war es für Sie, als der Rollator zu Ihnen gekommen ist?:
( ) sehr angenehm ( ) angenehm ( ) neutral ( ) unangenehm ( ) sehr unangenehm

16. War die Anhalteposition für Sie angenehm und konnten Sie den SmartWalker gut
erreichen?:
( ) sehr angenehm ( ) angenehm ( ) neutral ( ) unangenehm ( ) sehr unangenehm

17. War es für Sie schwierig zu verstehen, wie Sie den Roboter bedienen können?:
( ) sehr schwierig ( ) schwierig ( ) neutral ( ) einfach ( ) sehr einfach

18. Waren die nötigen Handzeichen für Sie schwierig auszuführen?:
( ) sehr schwierig ( ) schwierig ( ) neutral ( ) einfach ( ) sehr einfach

19. Hat der Roboter Ihre Handzeichen gut verstanden?:
( ) ja immer ( ) meistens ( ) neutral ( ) manchmal nicht ( ) überhaupt nicht

20. Hätten Sie Sich mehr Rückmeldung vom Roboter gewünscht (z.B. indem der
Roboter mehr spricht oder Anzeigeleuchten hätte)?:
( ) ja sehr ( ) eher ja ( ) neutral ( ) eher nicht ( ) überhaupt nicht

21. Wie finden Sie einen Robotikrollator?:
( ) sehr spannend ( ) spannend ( ) neutral ( ) gefährlich ( ) sehr gefährlich

22. Würden Sie unseren Rollator verwenden, oder würden Sie lieber bei Ihrem gewohn-
ten Rollator bleiben?:
( ) ja ( ) eher ja ( ) neutral ( ) eher nicht ( ) sicher nicht

23. Gibt es weitere Funktionen, die der Rollator haben sollte?

69


	Abstract
	Acknowledgments
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Outline

	2 System setup
	2.1 Software
	2.1.1 Robot Operating System (ROS)
	2.1.2 OpenNI / NiTE
	2.1.3 OpenCV
	2.1.4 Transformation framework

	2.2 Hardware
	2.2.1 SmartWalker
	2.2.2 PrimeSense RGB+D cameras

	2.3 Architecture
	2.4 Communication
	2.5 Gestures

	3 SmartWalker control application
	3.1 Roboscoop
	3.2 Operating modes
	3.2.1 User Position Updates
	3.2.2 Attention Check
	3.2.3 Registered Users Check

	3.3 Additions to Roboscoop

	4 Gesture recognition
	4.1 Overview
	4.1.1 k-NN classifier
	4.1.2 Dynamic time warping

	4.2 Feature extraction
	4.3 Gesture classification
	4.3.1 Gesture specific improvement for the COME HERE gesture

	4.4 Analysis of the used features
	4.5 Training set
	4.6 Determining the user position

	5 Face detection and recognition
	5.1 Face detection
	5.1.1 Face used as goal position
	5.1.2 Attention estimation

	5.2 Face recognition
	5.2.1 Teaching faces to the face recognizer


	6 Evaluation
	6.1 Performance analysis
	6.2 Study in elderly homes
	6.2.1 Setup of the study
	6.2.2 Research questions
	6.2.3 General findings
	6.2.4 Change of general impression about the robot
	6.2.5 Evaluation of the stopping position
	6.2.6 Gestures
	6.2.7 Software adaptations
	6.2.8 Additional comments

	6.3 Evaluation of different error measures

	7 Related work
	8 Conclusions and future work
	8.1 Conclusions
	8.2 Future Work
	8.2.1 Stopping position
	8.2.2 Gesture recognition


	Bibliography
	A Appendix
	A.1 User Documentation
	A.1.1 Installing the requirements
	A.1.2 Robot Control Application
	A.1.3 SmartWalkerTracker
	A.1.4 Face detection

	A.2 Developers Guide
	A.2.1 SmartWalkerTracker
	A.2.2 Camera publisher
	A.2.3 User Tacking
	A.2.4 Hand Tracking

	A.3 Original questions of the nursing home study


