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Abstract

SCOOP (Simple Concurrent Object-Oriented Programming) is designed to increase a pro-
grammer’s ability to reason statically about the correctness of a concurrent program. How-
ever, expectations regarding the degree of achievable parallelism may be misleading, as
seemingly asynchronous calls may be executed synchronously by the runtime system in
order to decrease the chances of deadlock scenarios. The aim of this thesis is to provide
users of EVE – the research branch of EiffelStudio – with additional insights that help them
understand and foresee the parallel behavior of their SCOOP programs.

We approached this goal by designing an inter-procedural user-guided abstract inter-
pretation in conjunction with an add-on for EVE that allows users to visualize, navigate
and manually refine the analysis’ findings. The analysis keeps track of the attachment of
variables to processor regions among and across routines and classifies every reachable
routine call in the source code depending on whether it is or may be asynchronous at run-
time or not. Results include the formal specification as well as the implementation of the
abstract interpretation, in addition to the integration of the add-on into EVE.
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Chapter 1

Introduction

Note that throughout this introduction, we assume the reader’s familiarity with the core
concepts of SCOOP1.

1.1 Problem

Parallel programming in Eiffel with SCOOP is easy. SCOOP is best described via its name:
Simple Concurrent Object-Oriented Programming. But what does it even mean, simple?

There are many ways to quantify this term. But one word summarizes the benefits of
SCOOP best: Reasonability. It measures the programmer’s ability to reason statically (i.e.
just by inspecting the source code) about the program’s execution.

In many ways, SCOOP adheres to reasonability. However, not every aspect of a pro-
gram’s execution can be reasoned about in equal measure. SCOOP does especially well
when it comes to reasoning about correctness of a program, but suffers a bit when it comes
to the assessment of the concurrent behavior of a program.

Oftentimes, it is not clear if a seemingly asynchronous separate routine call – as sug-
gested by the type system – is indeed asynchronous at runtime. There are many concepts
behind the scenes that strive to reduce the number of possible deadlocks. The most no-
table mechanism is called lock-passing, which causes an otherwise asynchronous call to
wait, while avoiding the possibility of a deadlock occurring later on.

Another uncertainty is the runtime type of entities that are statically declared with the
separate modifier. This type modifier only says that the runtime object may be located
on some other processor region. It may as well be on the same processor region, and
therefore act as a synchronous actor relative to the current object. The source code, when
inspected locally, does not give any hints concerning this ambiguity. A programmer would
have to simulate the whole program in his or her head, in order to grasp the topology of
SCOOP objects and regions. For authors of the program, it is often easier to know about
this topology than it is for non-authors that may want to understand the code or adapt it.

Despite all the efforts that aim at reducing deadlock scenarios, SCOOP is still not free
of them. As a matter of fact, the deadlocks that can occur, are at the same time extremely
obscure. Without dismantling the program’s execution traces, it is almost impossible to
find these deadlocks’ causes.

1A good introduction to SCOOP can be found here:
https://docs.eiffel.com/book/solutions/concurrent-eiffel-scoop, as retrieved on 2014/12/14
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12 Introduction - Existing Solutions

This situation poses a problem that asks for solutions.

1.2 Existing Solutions

Currently, there is only one possible solution to this problem. It comes under the name
of processor tags and was first introduced by Piotr Nienaltowski in [8]. Processor tags are
designed to statically assign names to processors. They can be used in the type declaration
of separate entities. An example declaration looks like this:

x: separate <px> X

y: separate <px> Y

where <px> is the processor tag. Entities x and y therefore are declared to be located on the
same processor region.

As soon as processor regions can be distinguished statically, more fine-grained control
over the runtime behavior of the program is obtained. This is an advantage over the current
SCOOP model2, where it is not possible to create new objects on already existing regions.

Processor tags are also useful in other applications. In his dissertation [11], Scott West
designed and implemented a static deadlock detection mechanism as a separate tool that
only works in conjunction with processor tags.

Limitations of this Solution

Sadly, processor tags are not yet implemented in EiffelStudio. But even if they were, the
problem is not entirely gone: Two distinct processor tags do not imply that the runtime
processors they refer to are also distinct. And in the example declaration above, it is not
clear if x and y are located on a different region than the Current object. Hence the still
existing separate keyword. The only thing processor tags can guarantee is that two objects
are located on the same processor region if their tags match.

A more general solution to the initial problem may therefore also benefit a future SCOOP
implementation that supports processor tags.

1.3 Our Solution

The approach taken in this thesis is different than what processor tags do. We did not
make any changes to the syntax and/or semantics of the existing SCOOP. Instead, we have
developed a static analysis that inspects the source code of a SCOOP program (not just a
single file or routine, but rather the whole system) and gathers useful information that
help programmers get a more accurate picture of the processor region topology as well as
the runtime nature of separate routine calls, which in turns helps evaluating the degree of
parallelism of a SCOOP program.

Furthermore, we implemented an extension to EVE3, the research branch of EiffelStu-
dio, that allows programmers to visualize the findings of the static analysis and refine it
with more precise information if desired. This turns the analysis into a user-guided one.

2the standard implementation of SCOOP in EiffelStudio 14.05
3Eiffel Verification Environment
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For the static analysis, we use an inter-procedural abstract interpretation framework [1],
specifically designed for SCOOP. We call it region analysis. It is implemented entirely in
sequential Eiffel, just as the visualization and interaction tool called parallelism visualizer
that comes with it. Both are tightly integrated into the architecture of EVE.

1.4 Research Contribution

The main contribution of this thesis is a fully formalized specification of an instance of a
user-guided abstract interpretation framework in the field of concurrent programming.
It may be generalizable to other programming languages that offer a similar model as
SCOOP, although the latter is quite unique in the field.

1.5 Outline

Apart from the introduction and conclusion, the thesis is broadly split into two main parts:

Theoretical part In the first part, we formally define the region analysis on a simplified
version of SCOOP.

Practical part In the second part, we discuss choices and details of the analysis’ implemen-
tation in EVE. Also, we are discussing the design of the visual tool in EVE.

A more detailed outline for these two parts is given in the following.

Theoretical Part

Throughout this part, we combine informal and formal descriptions in such a way, that it
benefits the understanding.

Simplified SCOOP Language and Semantics Eiffel (with and without SCOOP enabled)
is an advanced language with lots of features. In order to simplify and streamline
our discussion and formalization, we first define a simplified version of SCOOP. This
includes an informal specification of the syntax and some aspects of the semantics.
This language will then be the reference for the entire theoretical part of the thesis.

Concrete and Abstract Domains In this chapter, we describe the concrete state of a SCOOP
program, as well as the approximative abstract states that govern the analysis. We
show that the abstract states form a finite complete lattice, and we define the repre-
sentation function that abstracts a concrete state, and show that this approximation
is safe.

Abstract Interpretation Framework This is the core of the thesis. We describe the overall
inter-procedural abstract interpretation framework. All transfer functions are for-
mally specified, first on the intra-procedural level, later on a inter-procedural level.
Moreover, we introduce routine call classifications, which are the central information
used by the visualization tool.
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Practical Part

This part focuses on implementation aspects of the region analysis, and describes the par-
allelism visualizer in more detail.

Implementation In this chapter, we address implementation-specific adjustments to our
abstract interpretation framework. We are quickly talking about the integration into
EVE. The main focus however is on the data structures used to realize state graphs,
and how they can be refined by the user. Finally, we present a modification of the
region analysis to incorporate a simple deadlock detection scheme, as well as a more
sophisticated set of ideas that would allow for a more advanced deadlock detection.

Parallelism Visualizer Finally, we describe the goals and design decisions of the visual
tool. We give a few implementation-related comments and go over a step-by-step
real-world example of the tools’ usage in EVE.



Chapter 2

Simplified SCOOP Language and
Semantics

The Eiffel programming language with enabled SCOOP is quite extensive, and its seman-
tics are involved. In order to keep things simple and understandable, we focus on only
a subset of all language constructs, and define their semantics in an informal way. This
way, we can focus on only those aspects that are relevant for the region analysis, while still
retaining the key elements of the real SCOOP.

Notice that the implementation of the region analysis operates on the full-fledged Eiffel
SCOOP language, and not on this simplified version.

2.1 Simplified SCOOP Language

The following list informally yet precisely describes a simplified Eiffel language that is
entirely based on the features and semantics of the original language. All retained elements
are listed, while some thrown-away elements are mentioned for clarification. Everything
that is not mentioned is not part of the simplified language. The accompanying SCOOP
semantics will be described in-depth in a later section.

Type system
Only non-generic types are considered. User-defined expanded types as well as pre-
defined expanded types (integers, characters, etc.) are not considered. Every entity
in the program is of reference type. However, Void values are still allowed. The only
type modifier that is allowed is separate. This means in particular, that every type
has exactly one corresponding class and every class T has exactly two corresponding
types: T and separate T. Note that detachable remains unconsidered as well.

Inheritance
Inheritance and its associated concepts (polymorphism, dynamic binding) are power-
ful mechanisms in object-oriented programming. However, we do not consider them
for this simplified language, since this would hinder clarity and simplicity. Chapter 5
discusses how these mechanisms are incorporated into the analysis’ implementation.
In other words, the class hierarchy is completely flat, and classes as well as their
derived types are pairwise non-conforming.

15
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Conformance
Conformance is defined as follows: An entity of type T conforms to any entity of type
T or separate T, and an entity of type separate T only conforms to an entity of the
same type.

Features
As in the full language, features can be of two essential kinds: Routines and attributes.
Routines are further classified as procedures (no result) and functions (compute a re-
sult). Creation procedures are not distinguished from any other procedure. Also,
once routines, built-in (or external) routines, feature aliases, assigner commands and
converters are not considered.

Agents
Agents (objects representing delayed operations) are not considered.

Entities
Five kinds of entities are considered:

• formal routine arguments (not writable)

• local variables (must be declared at the beginning of a routine body)

• class attributes

• Current (not writable)

• Result (has local scope and is only allowed inside function bodies)

In particular, no ad-hoc local entities (as in attached as, or cursor names in across

loops) are considered.

Contracts
Contracts – preconditions, postconditions and invariants – are not considered. Pre-
conditions have special semantics in SCOOP programs, where they act as waiting
conditions. The region analysis does not give any insights into the runtime behavior
of waiting conditions, and therefore they can be safely ignored. Also, there is still
no agreed behavior on all the runtime effects of contracts in SCOOP programs. [9]
discusses this topic.

Expressions
Legal expressions consist of either the literal value Void or a chain of one or more en-
tity/feature accesses (separated by a dot). The involved accesses must be either func-
tions (with potential actual arguments that are also legal expressions) or attributes,
with the exception of the first access in the chain which can also be a local variable or
a formal argument.
Since we are dealing with SCOOP programs, there is an additional rule for legal ex-
pressions. For every access that is part of a non-empty access chain, exactly one of
the following conditions must hold:

• It is an access to a formal argument with a separate type at the beginning of the
chain.

• It is an access with a non-separate type.

Statements
The kinds of statements considered are:

• simple loops (i.e. until-condition and body)

• simple branches (only if and else, no elseif or inspect)
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Listing 2.1: Eiffel: simplified SCOOP program

1 class APPLICATION
2
3 create
4 make
5
6 feature
7 make
8 local
9 l_worker: separate WORKER

10 do
11 create l_worker.make
12 create toolkit.make
13 kick_on_worker (l_worker)
14 end
15
16 kick_on_worker (a_worker: separate WORKER)
17 do
18 if a_worker.is_motivated then
19 until
20 a_worker.done
21 loop
22 a_worker.do_work (toolkit)
23 end
24 else
25 a_worker.be_lazy
26 end
27 end
28
29 toolkit: separate TOOLKIT
30 end

• unqualified and qualified (i.e. applied on some expression) procedure calls with
potential actual arguments

• assignments

• creations (consisting of a writable entity name, followed by some procedure
name)

Note that the usual rules for assignments apply: Legal targets are only writable enti-
ties. The type of the source expression must conform to the type of the target.

Listing 2.1 shows a sample program containing at least one instance of all programming
constructs present in the simplified SCOOP language.

2.2 SCOOP Semantics

Describing the semantics of SCOOP programs is a rather involved task in and by itself.
This is why we are referring the reader to other publications/materials to get an in-depth
introduction into SCOOP. Among them are [8, 5].
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2.2.1 Ambiguous Semantics

There is not an agreed reference semantics for SCOOP programs. Some semantics have
been proposed only theoretically, others actually exist in the form of an implementation.
They all share the basic design decisions behind SCOOP, but there are still many subtleties
by which they differ. The following list names two key properties by which different se-
mantics can disagree.

Kinds of deadlocks It is possible that a given program may deadlock in one semantics,
but can not in the other.

Degree of parallelism Some programs can have a higher degree of parallelism in one se-
mantics than in the other, given that the number of physical cores and any other
environmental properties are kept invariant.

Note that many negative aspects of concurrent programming are eliminated in SCOOP
by design. Among them are race conditions and some forms of starvation.

The semantics we use for the region analysis is the one currently present in EiffelStu-
dio 14.05. Since there is no written specification for this semantics, an extensive test-suite1

was used to determine the exact behavior of the runtime in many different situations. The
empirically evaluated semantics can best be described as a mix of the ones described by
Benjamin Morandi in [5] and Scott West in [11] with some additional tweaks. In the fol-
lowing, we describe this semantics as precisely as possible, starting with the backbones of
SCOOP.

2.2.2 The separate Keyword

The key element that differentiates a SCOOP program from a sequential Eiffel program
is one keyword: separate. This keyword acts as a type modifier, i.e. it creates a new but
related type from a given class type. Then, the parallel behavior of the program is deter-
mined by which types have this modifier and which do not. The separate keyword is also
the only syntactic addition to the basic Eiffel language.

2.2.3 Stack, Heap, Regions and Processors

Like many other languages, Eiffel follows the stack and heap model. This means that en-
tities can either be dynamically allocated on the heap – which is an area in the virtual
memory space – at runtime using the create instruction, or they are automatically allo-
cated on the call stack by the Eiffel compiler at compile time. Note that object attributes are
always allocated on the heap before the associated creation procedure is called via create.
Routine arguments and local variables are always automatically allocated on the call stack
at the moment a routine gets called.

The SCOOP model refines the stack and heap model with two important notions: Re-
gions and processors. A region is a slice of the heap’s memory. All regions together form the
heap, and no two regions overlap. Every object at runtime can only be allocated on one
region for its entire lifetime. Note that a region may contain several objects.
A processor on the other hand is a logical independent computing unit (that may or may
not be directly mapped to a physical CPU core) that conceptually runs concurrently to

1An Eiffel project containing various manual tests that trigger all kinds of special conditions by which different
semantics may differ.
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other processors. Behind the scenes, it is still possible that two distinct processors can run
on the same physical core but in an interleaving fashion, just like threads can as well. Ev-
ery processor maintains its own stack, and is tightly coupled with exactly one region on
the heap. Therefore, a processor can only access objects that are allocated on its own re-
gion. Since every object and region is handled by exactly one processor, this processor is
uniquely referred to as the object’s or region’s handler.

Thanks to this simple yet effective design decision, data races are completely elimi-
nated, since shared memory accesses are not even possible. In fact, SCOOP closely follows
the actor model2: Processors are actors watching over their own memory, and communi-
cate with other actors via message passing.

2.2.4 Message Passing via Feature Calls

The message passing system is hidden behind standard feature calls. A non-separate fea-
ture call issued by some processor works just as in the sequential world: Actual arguments
are pushed onto the call stack and execution jumps to the called routine’s first statement.
However, if the feature call is issued on a reference to an object that is located on a different
processor region in the heap, special rules apply. A distinction is made between feature
separate call and feature application:

Separate call The client processor constructs a call message that contains the target object
reference, the name of the called feature and a copy of all actual arguments. This
message is then enqueued by the runtime system to the so-called request queue of the
processor that handles the target object – called the target processor.

Application The behavior of every processor in the system is as follows: It takes messages
off its request queue one after the other and executes them (or rather, what they ask
for) on its own call stack. This execution is then referred to as feature application.

If the client processor requires a result of the called separate feature (which in this case
must be an attribute lookup or function call), it waits for the feature application to finish,
retrieves the result, and continues its own execution. This kind of wait is referred to as wait
by necessity.

2.2.5 Ensuring Exclusive Access

The main benefit of the SCOOP model is that it injects the underlying synchronization
mechanisms tracelessly into a sequential program structure: Before a routine that was
called by some client processor gets executed, its handling processor atomically acquires a
private frame for call messages on each of the actual arguments’ handling processors. Then,
every separate call that gets issued to the same target processor inside the routine’s body is
guaranteed to be eventually applied by the target processor in that same order and without
interruption. This property enables programmers to reason locally.

2.2.6 Queue of Queues

The request queue mentioned above is not just a single queue. In the model we are following
here, it is a queue of queues, as introduced in [13].

2http://en.wikipedia.org/wiki/Actor_model, as retrieved on 2014/12/14

http://en.wikipedia.org/wiki/Actor_model
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The top-level queue – referred to as request queue in the remainder – contains private queues
that are associated with other client processors in the system. A client processor (the caller)
always enqueues its call messages to its own private queue in the request queue of the tar-
get processor.
With this mechanism, a client processor never has to wait in order to issue new call mes-
sages, as no other processor has access to its private queue in a particular request queue on
a particular target processor.

2.2.7 Locks and Lock-Passing

Lock-passing [7] is a more advanced feature of the SCOOP runtime that aims at avoiding
certain types of deadlocks. Its existence is one of the main motivations for the usage of the
region analysis, as it influences the runtime behavior – especially the degree of parallelism
– substantially.

A lock in this context can be either of the following:

Call-Stack-Lock (CSL) Every processor in the system owns a unique CSL. Holding it gives
a processor (any processor) the exclusive right to execute statements on the call stack
of the owner of the lock. In particular, the owner of a CSL cannot make any progress
if it is not the holder.

Request-Queue-Lock (RQL) Every RQL is associated with a private queue in a request
queue of some processor in the system. It gives its holder the right to enqueue new
call messages to this private queue. Every time a new private queue is created by the
runtime system, a new RQL is created alongside it and given to the processor that
initiated the creation of this private queue.

At any time, a processor can hold zero or more CSLs, and zero or more RQLs. Together,
they are referred to as the processor’s locks.

Lock-passing refers to the act of passing locks from one processor to another, i.e. chang-
ing the locks’ holder. Lock-passing can only occur alongside issuing a new separate call
message, and if it occurs, all currently held locks of the client processor are passed (never a
subset of them). The following conditions must hold for it to happen:

• The call must be separate, because otherwise there is no call message created.

• The call must have at least one actual argument.

• At least one such actual argument must refer to an object that is handled by a proces-
sor for which the client processor holds a lock (CSL or RQL).

Whenever lock-passing is triggered, the client processor will wait for the call to be ap-
plied and completed by the target processor, essentially turning the call into a synchronous
one. Then, the runtime system will make sure that the target processor hands the passed
locks back to the client processor. So, lock-passing is a process that gets automatically in-
verted, eventually. Note that a lock can be passed multiple levels away from its original
holder. This happens when the target processor itself calls another processor in a way that
triggers lock-passing. And so on.

The upside of this mechanism is that several types of deadlocks can be avoided. The
downside of it is two-fold: On one hand the degree of parallelism is reduced, since asyn-
chronous calls are turned into synchronous ones, and on the other hand programmers can-
not always know if lock-passing may happen at runtime by looking at part of the source
code alone. The region analysis aims at improving this situation.



Chapter 3

Concrete and Abstract Domains

Before we specify the region analysis, we have to define the runtime states our simplified
SCOOP language operates in. These states are part of a concrete domain. The elements of
the abstract domain on the other hand are where the region analysis operates in. These two
domains are related via a representation function that maps an element from the concrete
domain to an element of the abstract domain, where the latter approximates the former.

3.1 Concrete Domain

The concrete domain is a mathematical description of a part of the state a SCOOP program
can be in at runtime at a given program point. As described in chapter 2, the program
state of a SCOOP program consists of a set of regions that each contains at least one object.
Every region is handled by a distinct logical processor which maintains its own call stack.
Since our analysis operates from the viewpoint of some executing routine – called the target
routine – on some target object in the heap, we only focus on the topmost frame in the call
stack, i.e. the one corresponding to the currently executed routine.

We disassemble this part of the stack into formals (also containing the Current pointer),
locals, and expression evaluation results. Furthermore, we record the set of held locks (ei-
ther call stack locks or request queue locks) of only the processor that executes the target
routine. Note that for the formalization of the region analysis, the type of a lock is not
important. Therefore, we unify them into just locks. Also, it does not matter who actually
owns a lock. Only a lock’s holder is important, since this is what influences lock-passing.

In the following, we develop the mathematical model that describes the concrete do-
main. We do not specify the SCOOP semantics formally (which can be done by using e.g.
denotational semantics or structural operational semantics). This has been done before in
[5] respectively [11].

We abbreviate the concrete domain with V , and define it as follows.

V := Formals× Locals× Stack× P(Reg)× P(Reg),

(formals, locals, stack, locks, heap) ∈ V

Note that Stack only contains the temporary expression evaluation results. So, if we
have an expression that consists of an access to a local variable, the effect of the evalua-

21
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tion of this expression will be that another element is pushed onto the stack, while locals
remains unchanged.

From now on, we use the notation tupleentry to access a certain element (here entry) in
a certain tuple (here tuple). For this purpose, we have to name all entries of a tuple. We
usually do this alongside the definition of the corresponding set, just like in the definition
of V above.

Formals := Lab→ Loc

Locals := Lab→ Loc

Stack := (Loc ∪ {Void})∗

Reg := Loc→ Lab→ Loc ∪ {Void}

Note that none of the above functions is a total function (that is, they are all partial
functions). There might be objects that do not have any attributes. This is why Reg is
allowed to map a location to the empty function, which does not map any attribute names,
but nevertheless exists as a mathematical object.

The set Lab consists of all legal entity names. We adopt the rules of the Eiffel language
itself, and use a regular expression for the definition:

Lab := [A-Za-z][A-Za-z0-9 ]∗

The set Loc contains all legal locations in the heap. A location is an address in the vir-
tual memory space of the executing process, so we may set Loc := N. Note that in reality,
the address space is bounded. But for the sake of simplicity, we assume it is unbounded.
The special value Void denotes the value of a non-attached reference, just as in Eiffel.

Not all states of V are actually legal. Whether or not a state is legal is determined by the
set Iconcrete of the following invariants. All of these invariants are viewed as functions that
take a concrete state v ∈ V and evaluate to either true or false, depending on whether or
not v satisfies the proposition.

Invariant 3.1.1 (all regions are non-empty).

∀r ∈ vheap :
∣∣dom(r)

∣∣ > 0

Invariant 3.1.2 (regions are pairwise disjunct).

∀r1, r2 ∈ vheap, r1 6= r2 : dom(r1) ∩ dom(r2) = ∅

Invariant 3.1.3 (no unknown locations).

∀x ∈ im(vformals) ∪ im(vlocals) ∪ vstack : x ∈
⋃

r∈vheap

dom(r)

Invariant 3.1.4 (locks on existing regions).

∀r ∈ vlocks : r ∈ vheap

Invariant 3.1.5 (Current always exists).

Current ∈ dom(vformals)
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Invariant 3.1.6 (all regions containing a formal label are locked).

∀r ∈ vheap : (∃l ∈ im(vformals) : l ∈ dom(r)) =⇒ r ∈ vlocks

Invariant 3.1.7 (no formal has the same label as a local).

dom(vformals) ∩ dom(vlocals) = ∅

Invariant 3.1.8 (heap attributes point to existing locations).( ⋃
r∈vheap

∪l∈im(r) im(l)

)
⊆
( ⋃

r∈vheap

dom(r)

)

In addition to the above invariants, there is a restriction stating that heap attribute labels
must conform to the their object’s static type. Also, attribute labels on the Current location
cannot have the same name as any of the formal or locals.

Using these invariants, we define Vlegal to be the set of all legal concrete states, thus:

Vlegal ⊂ V and ∀v ∈ Vlegal : (∀i ∈ Iconcrete : i(v))

Remember that these invariants only guarantee the consistency of the program state. It
is up to the semantics to make sure that the program text transforms this state in the correct
manner, while keeping it consistent.

3.1.1 Viewpoint-Adapted Concrete Domains

The concrete domain as defined so far is still too big. Nothing is known about the num-
ber and names of formals. Since a concrete state is always relative to a given routine’s
viewpoint, we further divide Vlegal into subsets that conform to routine signatures (i.e. a
sequence of formal argument names and corresponding types, and – if present – a result
type).

Routine is defined as follows:

(name, signature) ∈ Routine := Lab× Signature

(formals, returntype) ∈ Signature := (Lab×Type)∗ × (Type ∪NONE)

(classname, is separate) ∈ Type := Lab× B

NONE stands for no type, and is used for routines that have no return value – also
referred to as procedures.

We write Vrout to denote only the concrete states that conform to routine rout ∈ Routine.
We call these sets viewpoint-adapted concrete domains.

Definition 3.1.1 (viewpoint-adapted concrete domains).

∀rout ∈ Routine :

Vlegal ⊃ Vrout := {v ∈ Vlegal | dom(vformals) = {l | ∃t : (l, t) ∈ (routsignature)formals}}
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3.2 Abstract Domain

The abstract domain approximates the concrete domain in such a way that interesting prop-
erties about the topology of the processor regions are maintained, and that a static analysis
actually terminates on both an inter- and intra-procedural level. An element of the abstract
domain is called a state graph, since it represents a state and can be visualized as a graph.
Figure 3.1 shows an example of such a state graph.

Current

l_foo

l_bar

Current.attr_foo

Current.attr_bar

Result

a_baz

a_fez
a_fez.attr_foo

a_baz.attr_bar

Current + Attributes

Local Label / Result

Formal Label + Attributes

Standard Region

Fresh Region

Locked Region

Separating Edge

Figure 3.1: visualization of a state graph

Just as concrete states, state graphs must be interpreted from the viewpoint of a given
routine. The following list describes the components of a state graph.

Abstract regions An abstract region represents a concrete processor region. However, two
or more abstract regions may represent the same concrete processor region. A state
graph consists of at least one such abstract region, and an abstract region only exists
if at least one label is attached to it. Abstract regions can be marked with up to three
different flags.

Flag locked An abstract region is locked, if the processor executing the target routine
holds at least one lock (request queue lock or call stack lock) associated with the
concrete region’s handler. Note that this flag is a must flag, i.e. when it is present,
we know that the processor holds a lock, and otherwise it may or may not hold
one.

Flag fresh An abstract region is fresh, if the associated concrete region has been cre-
ated in either the target routine, or any other routine higher in the call chain.
This flag is a must flag, so it is possible that some actual fresh concrete regions
are not marked as such in the abstract counterpart.

Flag leaked An abstract region is leaked, if it is fresh and the associated concrete
region is reachable (or rather, a location inside it) via the heap (that is, with at
least one attribute lookup, or directly via formals or locals). This flag is a may
flag.

Labels The labels of a state graph closely resemble variable names in the concrete program.
There are labels for formals, locals, Current, Result, and unqualified and qualified
attributes. Every label exists at most once per state graph and is attached to some
abstract region. The meaning of this is, that the variable that is represented by the
label stores a reference to some location on the processor region represented by the
label’s abstract region. There are three types of labels:
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Controlled labels stand for formal routine argument names, as well as the constant
Current.

Attribute labels stand for attribute names of the objects represented by the con-
trolled labels. Therefore, an attribute label is only defined together with an ex-
isting controlled label.

Local labels stand for local variable names present in the target routine.

Note that controlled labels cannot change the abstract region they are attached to,
since in Eiffel, formal routine arguments are not writable. Attribute labels can only
change their abstract region when they are on Current (i.e. unqualified in the target
routine). However, the other attribute labels may get changed over time via routine
calls.

Separating edges Abstract regions may be connected via undirected edges called separat-
ing edges. Two separated abstract regions are known to represent distinct concrete
processor regions. Labels attached to one such abstract region cannot possibly be
aliased by labels attached to the other abstract region.

Evaluation stack Since Eiffel expressions can be arbitrarily nested, we need to keep track
of intermediate, temporary results that are not represented by named variables in
the program, but are rather stored directly on the call stack. A state graph therefore
maintains an evaluation stack whose elements are a special kind of label as well: Such
a label is denoted with the number of its position on the call stack (the label with
the highest number is at the top of the stack), and attached to the abstract region it
points to. If the evaluation stack contains an alias of some of the controlled labels,
the evaluation stack label consists not only of its position on the stack, but also of the
controlled label it represents. This allows us to keep track of the actual call target’s
attributes of separate routine calls.

3.2.1 Motivation and Justification

Having introduced the abstract domain’s elements – the state graphs – in detail, we now
examine the underlying design decisions. There are three important requirements that
must be fulfilled by the abstract domain:

1. It must be possible to describe the set of all valid concrete program states soundly
with a finite number of state graphs.

2. The abstract domain must form a complete lattice, that is, given two arbitrary state
graphs, there must exist some state graph that best describes all concrete states that
are described by both other state graphs together – and possibly more.

3. The state graphs must allow us to answer the questions we are interested in as pre-
cisely as possible.

The first requirement is satisfied by the flexible notion of an abstract region. When we
do not know anything about the location of a particular label, we attach it to some abstract
region that is not separated to any other abstract region. This way, the abstract region
could stand for a unique concrete region, or it may also stand for any concrete region also
represented by other abstract regions in the state graph. When two labels are attached
to the same abstract region, then we know that in the concrete state, they must point to
locations on the same concrete region. However, we do not have to know which concrete
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region this is. Since we are interested in only a fixed number of labels, we can express every
possible concrete state with a finite amount of abstract regions and labels.

The second requirement is fulfilled as well, since we are able to specify a least upper
bound operation on any two state graphs. We will give this definition in section 4.4.1 of the
next chapter.

The last requirement cannot be shown as clearly as the first two. There are just ar-
guments for and against it. The abstract regions’ flags play the central role in classifying
routine calls – one of the ultimate goals of the whole analysis. Recall the main questions
about separate routine calls the analysis tries to answer:

• Does a separate routine call trigger lock-passing?

• Is a separate routine call synchronous or asynchronous?

The analysis cannot give precise answers in every situation, since it is a static analy-
sis run on the source code in a finite and reasonable amount of time. The goal is to be as
precise as possible without sacrificing too much performance. We first analyze what prop-
erties of the concrete state are relevant for answering the above questions. Note that in the
concrete state, it is indeed possible to answer them precisely, but at the expense of very
high performance costs that are not much lower than actually executing the program.

Lock-passing occurs while calling a routine on an object that is located on a different
concrete region than the calling routine’s current object, and the calling processor holds
some lock associated with the processor region of any of the actual routine arguments
passed on to the callee routine.
The important kind of information therefore is, what locks the processor executing the tar-
get routine currently holds. This information is captured by the locked flag of some abstract
region.

In order to answer the second question, we have to determine what questions influence
the asynchrony of a separate routine call. There are three observations:

• The region of the call target has to be separated from the region of the currently
executing processor, in order for the call to potentially be asynchronous.

• Lock-passing causes a call to be synchronous, not matter what.

• Function calls are always synchronous, since the caller necessarily needs to wait for
the result.

Telling if a routine call is a function call is trivially given by the called routine’s definition.
Lock-passing has been described already, and telling regions apart is done via separating
edges in the state graph.

A Word about the Heap

The choice of just including one level of attributes, and the reason why they have to be
attached to controlled labels, are motivated by the SCOOP model itself.

SCOOP guarantees that inside a given routine body, the executing processor has ex-
clusive access to all of the routine’s formal argument’s regions (called formal regions in the
following). No other processor can influence the state as seen and modified by this routine,
although it is possible that separate call messages (denoted by foreign messages in the fol-
lowing) are enqueued on the formal regions by other processors. But these messages can
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Listing 3.1: Eiffel: asynchronous calls synchronously interpreted

1 class APPLICATION
2 feature
3 ...
4 two_async_calls (a_worker, another_worker: separate WORKER)
5 local
6 l_worker: separate WORKER
7 do
8 a_worker.work
9 another_worker.work

10 l_worker := a_worker
11 end
12 ..
13 end
14
15 class WORKER
16 feature
17 ...
18 progress: PROGRESS
19 ...
20 work
21 do
22 −− Assign something to ‘ progress ’
23 progress := ...
24 end
25 ...
26 end

only be enqueued on the private request queues corresponding to the issuing processors.
Because of the strict ordering of private request queues on each formal region, we can be
sure that either all foreign calls are applied before all the calls issued by the target routine,
or after them, but not in-between. See the description about the queue of queue model in
section 2.2.6 for more details.

This explains why only attributes of controlled labels are captured in a state graph.
Everything else can be interrupted by some foreign processor at any time, and therefore, it
is not safe to assume anything about it.

The region analysis interprets the source code in a completely synchronous fashion, i.e.
whenever a routine call is encountered, it is followed and the results of the interpreted
callee are used in order to continue the interpretation right after the call. This behavior is
strictly respected, even in the case where the routine call may be asynchronous at runtime.
In chapter 4, we describe this scheme in more detail.

Assume that the two formal arguments in the SCOOP routine two_async_calls of
figure 3.1 are actually located on separate regions. Then, the first two statements will call
two asynchronously executed routines, and the last statement – which will not wait for
the work calls to finish – will assign one of the formal arguments to a local variable. Let
us further assume that each worker has exactly one attribute (here: progress) that gets
assigned to by work.

The state graph at the end of the interpretation of two_async_calls may reflect a sit-
uation that does not exist at a single point in time, but rather as a combination/blend of
several points in time in the future. In particular, the state graph contains the progress

attributes of both workers, just as if their work routine already finished, and at the same
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time, it contains the local label l_worker. In reality, this situation may never occur, because
both work routines may start executing long after two_async_calls has returned.

However, this seemingly strange situation is still valid, at least from the viewpoint of
the two_async_calls routine: The possible real-time sequence of actions does not matter
to this routine, as long as it is executed sequentially consistent to the calls as issued (in the
program text) to each formal argument in isolation. This kind of reasoning is exactly what
was intended by SCOOP to begin with. And it is perfectly respected by the region analysis.

3.2.2 Formalization of State Graphs

Just as in the concrete state, a central element in a state graph is a label. Here, they are clas-
sified a bit differently. Labels represent variable names, i.e. formals and Current (together
referred to as controlled labels), locals and Result (together referred to as locals), qualified
and unqualified attributes. Therefore, a legal label must again obey the Eiffel rules of legal
entity names, which are described by using regular expression syntax:

Lab := [A-Za-z][A-Za-z0-9 ]∗

(target , attribute) ∈ QLab := Lab× Lab

Note that QLab denotes a qualified label, that is, a 2-tuple of labels, which corresponds to a
qualified attribute in Eiffel.

The evaluation stack can contain two kinds of elements: Controlled labels and anony-
mous regions. This difference is important, since controlled labels do not only specify the
region they they are attached to, but also the actual object they refer to – which is important
for keeping track of attributes –, whereas an anonymous region is just the abstract region
an intermediate evaluation result is attached to.

(idx , eval) ∈ Eval := N× (Lab ∪ ε)

Eval contains the elements of the evaluation stack. The stack itself is modeled implicitly
by idx , which denotes an element’s position on the evaluation stack. The top element of
the stack has the highest index of all stack elements present in a state graph. The special
value ε is used for anonymous regions.

Abstract regions are the main component of a state graph. An abstract region’s identity
is defined entirely by the labels and/or evaluation stack elements that are attached to it.
This is in contrast to a region’s identity in the implementation, as described in section 5.4.1.

(ctrls, attrs, locals, evals) ∈ AReg := P(Lab)× P(QLab)× P(Lab)× P(Eval)

Regions have internal properties as well. They can be locked, fresh or leaked.

Props := AReg→ P({K,F ,L})

The three constants on the right stand for the three properties in the order they are
written above.

Invariant 3.2.1 (only fresh regions can leak).

∀p ∈ Props : ∀e ∈ im(p) : L ∈ e =⇒ F ∈ e
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Separating edges are undirected and connect two abstract regions.

Sep := {{r1, r2} | r1, r2 ∈ AReg ∧ r1 6= r2}

Regions can also be representatives of other regions.

Rep := AReg→ P(AReg)

The regions in the map’s domain are considered representatives of the regions in the
map’s image. We explain the motivation behind representatives in section 4.5.2.

Finally, we define the abstract domain A, the set of state graphs.

(regs, sep, props, rep) ∈ A := P(AReg)× P(Sep)×Props×Rep

Queries over State Graphs

The set A, as defined so far, still contains illegal elements, much as was the case with the
concrete domain as well. Thus, we formulate several invariants that restrict A to only the
legal state graphs.

In order to simplify the formulation of these invariants, we define some auxiliary func-
tions. All of these functions have a subscript a, which denotes the state graph they operate
on.
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Definition 3.2.1 (gather all controlled labels, local labels, and attributes labels).

controlled : A→ P(Lab)

locals : A→ P(Lab)

attributesOf : A× Lab→ P(QLab)

allAttributes : A→ P(QLab)

labels : A→ P(Lab ∪QLab)

controlleda :=
⋃

r∈aregs

rctrls

localsa :=
⋃

r∈aregs

rlocals

attributesOf a(c) :=
⋃

r∈aregs

{l | l ∈ rattrs ∧ ltarget = c}

allAttributesa :=
⋃

r∈aregs

rattrs

labelsa := controlleda ∪ localsa ∪ allAttributesa

Definition 3.2.2 (query properties of regions).

locked : A×AReg→ B
fresh : A×AReg→ B

leaked : A×AReg→ B
separate : A×AReg ×AReg→ B

lockeda(r) := K ∈ aprops(r)
fresha(r) := F ∈ aprops(r)

leakeda(r) := L ∈ aprops(r)
separatea(r1, r2) := {r1, r2} ∈ asep

Definition 3.2.3 (get representatives, and check for representation).

reps : A×AReg→ P(AReg)

isRepBy : A×AReg ×AReg→ B

repsa(r) := arep(r)

isRepBya(r1, r2) := r1 ∈ arep(r2)

Definition 3.2.4 (query a region of a given label).

regOf : A× Lab ∪QLab→ AReg

regOf a(l) := {r | r ∈ aregs ∧ l ∈ rlocals ∪ rctrls ∪ rattr}

Invariant 3.2.2 (exactly one region per label).

∀l ∈ labelsa :
∣∣regOf a(l)

∣∣ = 1
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Definition 3.2.5 (extract the evaluation stack as a sequence).

evalStack : A→ (Eval)∗

evalStacka 7→ (e)i, where (i, e) ∈
⋃

r∈aregs

revals

The above definition is only legal if the indexes of all evaluation elements in the state
graph form an ascending chain starting at 1, stated by the next invariant.

Invariant 3.2.3 (valid evaluation stack).

∀a ∈ A, s = {i | (i, e) ∈ ∪r∈aregsrevals} : |s| = max(s)

Definition 3.2.6 (query the top of the evaluation stack).

top : A→ Eval

topa 7→ (evalStacka)|evalStacka|

Note that top, like other queries as well, can be undefined. In the case where the evalua-
tion stack is empty, this query is undefined.

Legal State Graphs

While introducing the definitions above, we have already stated some invariants that must
be fulfilled in order for a state graph to be legal. In the following, more invariants will be
stated. Every such invariant acts as a boolean function on some a ∈ A. Together, we denote
the set of all invariants with Iabstract.

Invariant 3.2.4 (no local label is identical to any controlled label).

controlleda ∩ localsa = ∅

Invariant 3.2.5 (attributes are only defined on controlled labels, not on local labels).

∀(c, t) ∈ allAttributesa : c ∈ controlleda

Invariant 3.2.6 (Current is always a controlled label).

Current ∈ controlleda

Invariant 3.2.7 (regions that have a controlled label attached are always locked).

∀c ∈ controlleda : lockeda(regOf a(c))

Invariant 3.2.8 (the labels on the evaluation stack must be controlled).

∀e ∈ evalStacka : eeval ∈ Lab =⇒ eeval ∈ controlleda

Invariant 3.2.9 (legal separation graph).

∀s ∈ asep : s ⊆ aregs
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Invariant 3.2.10 (regions only represent regions that are identified with labels from the state
graph).

∀r ∈
⋃

r′∈aregs

repsa(r′) : rctrls ⊆ controlleda

∧ rlocals ∪ revals = ∅ ∧ rattrs ⊆ allAttributesa

Since our model does not incorporate full static type information, we have to state the
final invariant informally: Similar to the concrete domain, attribute labels of controlled la-
bels must exist in the controlled label’s associated class, and the attribute labels of Current
cannot have the same name as the controlled labels or local labels.

Using these invariants, we define Alegal to be the set of all legal abstract states, thus:

Alegal ⊂ A and ∀a ∈ Alegal : (∀i ∈ Iabstract : i(a))

3.2.3 Viewpoint-Adapted Abstract Domains

Just as we have divided the concrete domain into subsets of routine-conforming elements,
we do the same with the abstract domain: Arout denotes only the subset of the abstract
domain whose elements conform to routine rout . We call these domains viewpoint-adapted
abstract domains.

Definition 3.2.7 (viewpoint-adapted abstract domains).

∀rout ∈ Routine :

Alegal ⊃ Arout := {a ∈ Alegal | controlleda = {l | ∃t : (l, t) ∈ (routsignature)formals}}

3.3 Representation Function

The abstract domain has a notion of region that is not equivalent to that of the concrete
domain. In the latter, different concrete regions are also different in the real program state.
However, in the abstract domain, different abstract regions may represent the same concrete
region, unless they are pairwise separated via a separating edge in the state graph.

In the abstract domain, local labels and attribute labels point to regions, whereas in the
concrete domain, they point to locations (objects) that are part of a region. However, one
exception of this rule are the controlled labels of a state graph: They also point to actual
objects. Otherwise, attribute labels would not be meaningful.

The following table outlines how individual aspects of a concrete state can be translated
to aspects of an abstract state.
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Aspect Translation from concrete to abstract domain
Labels and Regions In the concrete state, we can for each concrete region gather all lo-

cations that are directly known to formals, locals or elements on the
stack, or indirectly (i.e. via one attribute lookup in the heap) to for-
mals. Once we have identified all of these labels respectively stack
indexes, we have a unique description of the corresponding abstract
region in the abstract domain.

Freshness Given a concrete state, it is not possible to determine whether or not
a concrete region is fresh, since freshness is a concept that requires
more information than what is contained in a concrete state. There-
fore, no abstract region gets marked as fresh by the representation
function.

Locks In the concrete state, locks correspond to concrete regions. In the
abstract state, we translate these concrete regions to their abstract
counterparts. If this translation succeeds (i.e. we actually know
about the abstract region), we mark the abstract region as locked.

The representation function takes an element of the concrete domain, and returns the
best matching element in the abstract domain, that is, the state graph that most precisely
describes the given concrete state.

The representation function, βrout , is declared as follows:

βrout : Vrout → Arout

where Vrout denotes a viewpoint-adapted concrete domain andArout a viewpoint-adapted ab-
stract domain, for some rout ∈ Routine. The representation function therefore only makes
sense between domains associated to the same routine.

Our next goal is to define a ∈ Arout in terms of v ∈ Vrout , one aspect at a time. But before
that, we introduce some convenience queries that allow us to formalize the representation
function much more concisely.

In some situations, we have singleton sets (i.e. sets containing only one element) as a
result of some queries. In order to extract the element from such a set, we use a designated
function:
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Definition 3.3.1 (extracting an element from a singleton set).

extract : P1(Ω)→ Ω

extract({x}) := x

The set Ω denotes an arbitrary set.

Definition 3.3.2 (reachable concrete regions).

regOfLoc : V × Loc→ Reg

regOfLocv(l) 7→ extract({r | r ∈ vheap ∧ l ∈ dom(r)})

reachableRegions : V → P(Reg)

reachableRegionsv 7→
{r | r ∈ vheap ∧ ∃l ∈ im(vformals) ∪ im(vlocals) ∪ vstack : l ∈ dom(r)}
∪regOfLocv(l′) | l′ 6= Void ∧ l′ ∈

⋃
l∈im(vformals)

im(regOfLocv(l)(l))


buildEvalOf : V × Loc→ Lab ∪ ε

buildEvalOf v(l) :=

{
min({c | vformals(c) = l}) if ∃c : vformals(c) = l

ε otherwise

Reachable concrete regions are the ones the target routine knows about with the finite
horizon constraint that it can at most follow one attribute access. Note that in buildEvalOf ,
we use the minimal controlled label (in the lexical order sense), in case there is more than
one formal label pointing to the given location. This way, the function remains determinis-
tic.

Definition 3.3.3 (define abstract regions from concrete ones).

abstractRegion : V ×Reg→ AReg

abstractRegionv(r) 7→ (

{l | vformals(l) ∈ dom(r)},

{(lt, la) | regOfLocv

(((
regOfLocv(vformals(lt))

) (
vformals(lt)

))
(la)

)
= r},

{l | vlocals(l) ∈ dom(r)},
{(i, e) | e = buildEvalOf v((vstack)i)})
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The representation function is defined via these queries.

Definition 3.3.4 (definition of the representation function).

βrout(v) 7→ (regs, sep, props, rep),

where
regs = {abstractRegionv(r) | r ∈ reachableRegionsv}
sep = {{r1, r2} | r1 6= r2}

props = {(abstractRegionv(r), {K}) | r ∈ vlocks ∩ reachableRegionsv}
rep = ∅

Using the representation function, it is easy to infer the concretization and abstraction
functions.

Definition 3.3.5 (definition of the concretization and abstraction function).

γrout : Arout → P(Vrout)

γrout(a) 7→ {v | βrout(v) v a}

αrout : P(Vrout)→ Arout

αrout(V ) 7→ {βrout(v) | v ∈ V }

Note that the concretization function is not computable, because there are infinitely
many concrete states represented by an abstract state. However, both αrout and γrout form
a Galois insertion1, which we are not going to proof in this thesis.

1The Galois insertion fixes the shortcoming of a Galois connection, where there may be several elements of
Arout that best describe the same element in Vrout .





Chapter 4

Abstract Interpretation Framework

In this chapter, we describe the inter-procedural abstract interpretation framework, both
formally and informally.

4.1 Overview

The concrete and abstract domains introduced in chapter 3 are both view-point-adapted to
a given target routine. The representation function establishes the link between concrete
states and abstract states. However, the overall framework operates inter-procedurally, so
it is not enough to limit our viewpoint to only a single routine. Instead, we need to find
ways of transitioning between different viewpoints.

The region analysis is referred to by the term context-sensitive analysis in the literature
[6]. This means that we include a context. Without contexts, we would not be able to
distinguish different calls to the same routine, and as a consequence, we would have to
analyze a given routine in a more generic way. The addition of contextual information
allows us to differentiate between calls, and therefore tremendously improve the precision,
at the expense of additional iterations in the solving process.

Routine A

Routine B

Routine C

δ1

δ2

δ3

𝛿𝑖 ∈ Δ = { }

δ1

Figure 4.1: different calling contexts
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Figure 4.1 schematically demonstrates what a context is. The colored arrows stand
for different calling contexts, which are special kinds of state graphs carrying information
about the state that was established by the calling routine.
In the figure, routine A has two calls to routine C in its body, but both calls are issued
under different conditions – or contexts. The analysis therefore interprets routine C once
for every context. However, routine B issues a call that has the same context as the call
from routine A, so in this case, the same result can be used by routine B, and no additional
interpretations of routine C are necessary.

4.2 Default Contexts

Since the region analysis is usually started on the root routine of the SCOOP system, no
context is yet available. However, the type system already provides enough information to
construct a default context for each routine in the system, not just for the root routine.

The default context is obtained by examining the static declaration of a given routine’s
signature. We create new abstract regions for every formal argument that is declared as
separate. Then, we distribute the controlled labels that correspond to formals over them.
Non-separate controlled labels are attached to the same abstract region as the controlled
label Current. However, no attribute labels are inserted, as the shape of the heap can not
be derived from the type system.

4.3 Embellished Monotone Framework

We are going the specify the region analysis as an embellished monotone framework (the full
theory can be found in [6]), which consists of the following:

• An abstract domain that forms a complete lattice which satisfies the ascending chain
condition1

• A set of transfer functions which transfer an element of the abstract domain and a
program fragment into another element of the abstract domain.

• A labeled finite flow (i.e. the flow-graph of the program text).

• Extremal labels for the beginning and end of the flow.

• An extremal element of the abstract domain to start the analysis with.

• A mapping that associates labels in the flow (i.e. program fragments) to the corre-
sponding transfer functions.

• A context domain that is paired with the abstract domain to enable a context-sensitive
analysis.

The ascending chain condition is trivially fulfilled by the fact that our abstract domain
is finite. The construction of the flow is straightforward: We decompose the program text
into its fragments, and connect them according to the source code structure. The fragments
are fine-grained on the level of single expressions and statements, even if they are nested.
The program labels denote the entry and exit points of a given program fragment like an

1Every strictly ascending sequence (in terms of the less-than operator) of elements eventually terminates.
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assignment or a routine call. The extremal labels denote the entry and exit points of the
root routine. The extremal elements of the abstract domain are the default context state
graphs. What remains to be specified are the complete lattice properties and the transfer
functions of the analysis. The mapping thereof to the corresponding program labels is also
straightforwardly given by a transfer function’s purpose.

4.4 Complete Lattice

The elements of the abstract domain – the state graphs – form a finite and complete lattice,
but only relative to a given written routine, that is, number, order, and names of formals
must match, and all existing attribute labels must indeed exist in the corresponding class
definitions.

Arout = (Arout ,v,t,u, ,>) ∀ rout ∈ Routine

where Arout ⊂ A is a viewpoint-adapted abstract domain corresponding to rout ∈
Routine, v is the less-or-equal operator, t is the least upper bound operator, and u is the
greatest lower bound operator. ⊥ = t∅ = uArout is the least element, and> = u∅ = tArout

the greatest element.

We show thatArout is indeed a complete lattice by defining a binary least upper bound t
operator. However, the operator can also be applied to any subset of Arout , by successively
reducing pairs of elements, until only one is left, which is then the least upper bound of the
whole subset. Using t, we can infer u and v.

4.4.1 The Join Operator

The binary least upper bound operator – or join operator – takes two state graphs that are
associated to the same routine, and returns a new state graph which is their best possible
common representation.

t : Arout ×Arout → Arout ∀ rout ∈ Routine

Note that t is only defined on pairs of state graphs belonging to the same viewpoint-
adapted abstract domain and that its result also belongs to this domain.

In order to easily specify t, we introduce three types of binary relations between labels
of a state graph.
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Definition 4.4.1 (binary boolean relations on labels).

R
==== ⊆ Arout × (Lab ∪QLab)× (Lab ∪QLab)

R⇐==⇒ ⊆ Arout × (Lab ∪QLab)× (Lab ∪QLab)

R←−−→ ⊆ Arout × (Lab ∪QLab)× (Lab ∪QLab)

∀l, l′ ∈ allLabelsa :

l
R

====a l
′ ⇐⇒ regOf a(l) = regOf a(l′)

l
R⇐==⇒a l

′ ⇐⇒ separatea(regOf a(l), regOf a(l′))

l
R←−−→a l

′ ⇐⇒ ¬separatea(regOf a(l), regOf a(l′)) ∧ regOf a(l) 6= regOf a(l′)

In a simplified form, table 4.1 shows how two labels relate in the joined state graph (en-
tries inside the table), depending on their relation in the two operand state graphs (upper
row and left column). This table’s information is also present in the definition of the join
operator, although in a more formal form.

R←−−→ R⇐==⇒
R

====
R←−−→ R←−−→ R←−−→ R←−−→
R⇐==⇒ R⇐==⇒ R←−−→
R

====
R

====

Table 4.1: Separation combination (symmetric)
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Using these binary relations, we define the join operator:

Definition 4.4.2 (the join operator).

∀al, ar ∈ Arout : al t ar := aj such that

aj ∈ Arout ∧ ∀l, l′ ∈ allLabelsal
∪ allLabelsar

, l 6= l′ :

l
R←−−→al

l′ ∧ l
R←−−→ar

l′ =⇒ l
R←−−→aj

l′

l
R←−−→al

l′ ∧ l
R⇐==⇒ar

l′ =⇒ l
R←−−→aj

l′

l
R←−−→al

l′ ∧ l
R

====ar
l′ =⇒ l

R←−−→aj
l′

l
R⇐==⇒al

l′ ∧ l
R⇐==⇒ar

l′ =⇒ l
R⇐==⇒aj

l′

l
R⇐==⇒al

l′ ∧ l
R

====ar
l′ =⇒ l

R←−−→aj
l′

l
R

====al
l′ ∧ l

R
====ar

l′ =⇒ l
R

====aj
l′

lockedal
(regOf al

(l)) ∧ lockedar (regOf ar
(l)) ⇐⇒ lockedaj (regOf aj

(l))

freshal
(regOf al

(l)) ∧ freshar
(regOf ar

(l)) ⇐⇒ freshaj
(regOf aj

(l))

leakedal
(regOf al

(l)) ∨ leakedar
(regOf ar

(l)) ⇐⇒ leakedaj
(regOf aj

(l))

repsaj
(regOf aj

(l)) =


repsal

(regOf al
(l)) ∪ repsar

(regOf ar
(l))

if repsal
(regOf al

(l)) 6= ∅ 6= repsar
(regOf ar

(l))

∅
otherwise

Note that The following rules are obeyed:

∀a, b, c ∈ A :

a t b = a t b (commutativity)
a t (b t c) = (a t b) t c (associativity)

a t a = a (idempotency)

This is necessary for t to be a legal join operator. We are not going to proof these
properties formally, but we give the general idea as to why they hold:

• The definition of t makes assertions about pairs of labels. However, it does not re-
strict the order of the labels. The definition is the same no matter how the two labels
get ordered. Therefore, the operator is commutative.

• Associativity follows from the associativity of all the logical operations present in the
definition, and the fact that the separation relations are associative as well. This last
claim can be verified easily by looking at all possible combinations of the separation
relations. We do not do this for all combinations, but we show that the claim holds
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for a single combination:

(
R⇐==⇒, R⇐==⇒)︸ ︷︷ ︸

R⇐==⇒

,
R

====

︸ ︷︷ ︸
R←−−→

is the same as R⇐==⇒, ( R⇐==⇒,
R

====)︸ ︷︷ ︸
R←−−→︸ ︷︷ ︸

R←−−→

• Idempotency holds since all mathematical operations present in the definition are idem-
potent as well.

4.4.2 Completing the Complete Lattice

We define the missing operators that belong to the complete lattice in terms of the join
operator.

Definition 4.4.3 (the partial order operator v).

∀a, b ∈ Arout : a = a t b =⇒ b v a

Definition 4.4.4 (the greatest lower bound – or meet – operator u).

∀Y ⊆ Arout : uY = t{a ∈ Arout | ∀a′ ∈ Y : a v a′}

Having a complete lattice as our abstract domain is of importance to the region analysis.
It allows us to always find a safe approximation of the state in finite time.

4.5 Treatment of Routine Calls

The general scheme of all transfer functions is to mimic the actual computation on every
piece of the program text, in the same order the program would be executed at runtime.
Just like a real interpreter2, the region analysis examines a program fragment (statement or
expression), and replicates its effect as precisely as possible on the state graph that acts as
the input to this program fragment. For example, every expression that gets evaluated will
result in a new entry on the evaluation stack of the state graph.

A bit more involved are routine calls. We first describe a solution for approximating the
effects of routine calls without analyzing the called routine’s body. Then, we show how the
interpretation of the routine’s body can greatly increase the precision.

A given routine’s type signature tells us if a result is returned, and – if so – if it is
statically declared as separate or not. In the former case, the only save thing to assume
in the caller is that the result is on a new abstract region that is not separated from any
other abstract region in the caller’s state graph. This way, we do not commit ourselves to a
concrete location of the returned object reference and leave every possibility as an option.

Besides returning a result, the called routine may have an arbitrary effect on the heap. In
fact, the routine may be called on the same object as the one the calling routine is executed
on, that is, if the static types conform or if the call is unqualified. But even if it is not directly
called on the same object, it may reach it nonetheless by calling other routines recursively.
So from the viewpoint of the calling routine – and without inspecting the called routine’s

2Interpreters are programs that read and execute the program text piece after piece. This is contrasted with
compilers, which first translate the whole program text into machine code, before execution.
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body – nothing about the state of the heap can be assumed after the call returns, and all
we can do is remove any attribute label present in the target routine’s state graph. That is,
unless the analysis can assure that the call is asynchronous. In this case, we know that the
call will be scheduled for later execution, and that it cannot possibly mess with the heap as
seen by the target routine, at least not until after the target routine itself returned.

We can do better than this, at the expense of additional computations that need to be
performed for every routine under consideration. The approach is straightforward: We
inspect the body of the called routine and continue the analysis there. This is why the
region analysis is called a context-sensitive analysis. So we expand from a purely intra-
procedural to an inter-procedural abstract interpretation. This expansion gives rise to three
main challenges:

• How to come up with an initial state graph for the called routine?

• What to do with the resulting state graph of the called routine?

• How efficient is this approach? Does it terminate?

We give answers to each of these questions in the following sections.

4.5.1 Callsite Transfer Function

The callsite transfer function takes care of the construction of the initial state graph passed on
to a called routine. As always, the most important criterion is to be safe while maximizing
the precision of the analysis.

Before the analysis can change its context from the target routine to the callee, it must
go over all actual arguments and the target on which to call the routine, if any. Because a
target/actual argument has to be an expression, we can be sure that the topmost elements
on the evaluation stack correspond to the actual arguments. This information can thus be
used to set up the abstract regions of the called routine’s controlled labels. Remember that
en element of the evaluation stack is not necessarily only an abstract region. It may also be
a controlled label of the state graph. If so, we can not only take over its abstract region, but
also the associated attribute labels and their regions. The callee will have exclusive access
to the local heaps of its controlled arguments, since in this case, we know that lock-passing
will be triggered and the caller will have to wait before reclaiming its locks.

We can also take over all separating edges between abstract regions as present in the
state graph of the target routine, as long as both abstract regions are taken over as well.

The initial state graph passed to the called routine may vary depending on the calling
context, i.e. the state of the caller while issuing the call. But we can be sure that the number
of possible initial state graphs for some given routine is finite, since the abstract domain is
finite as well. This property is important when it comes to the termination criteria of the
region analysis.

4.5.2 Return Transfer Function and Representations

Once the region analysis completed the interpretation of the called routine, the calling rou-
tine’s interpretation can continue. Recall that the region analysis interprets the chain of
calls in a sequential fashion, no matter if some routine calls are actually asynchronous at
runtime.
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Listing 4.1: Eiffel: reference code for the callsite and return transfer functions example

1 ...
2
3 −− In some c l a s s :
4 foo (x,y: separate EXAMPLE)
5 do
6 x.bar (y)
7 end
8
9 ...

10
11 −− In some other c l a s s , EXAMPLE:
12 a: separate ANY
13
14 bar (z: separate EXAMPLE)
15 do
16 if some_condition then
17 a := z
18 else
19 a := Current
20 end
21 end
22
23 ...

The task of the return transfer function is to inject the state graph as obtained by the
interpretation of the called routine body back into the state graph of the calling routine.
The caller will just take over as much information from the callee as possible. Some infor-
mation, like attribute labels attached to controlled labels not known to the caller, will get
lost.

Representations

In order to further improve the precision of the return transfer function, we make use of
an abstract region’s representation set. We briefly introduced this concept when we were
formalizing the state graph in section 3.2.2, but did not further elaborate on it.

Every region in the state graph may represent an arbitrary number of other regions
that do not necessarily have to exist in the same state graph at all times. Their purpose
is to maintain a correspondence between the regions in the callee and the regions in the
caller. Right after the region analysis starts the interpretation of a called routine, the initial
state graph’s regions that are known to the caller are representatives of themselves. Then,
whenever two abstract regions with non-empty representations get combined via a join
operation, we take the union of their representations as the resulting region’s representa-
tion set, because the latter may represent anything its two operands have. However, when
we merge a region with an empty representation set with any other region, the resulting
region will still have an empty representation set. In this case, the caller does not know the
merged region, so it may be any region. The caller either knows everything, or nothing.

Once we return to the caller, we can inspect the representation sets of the returned state
graph’s abstract regions and regain the correspondence to the abstract regions in the caller.

Figure 4.2 shows an example of such a routine call. The underlying code can be seen
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Figure 4.2: callsite and return transfer functions working with representation sets

in listing 4.1. The two controlled formal arguments in the caller (foo), x and y, reside on
separate abstract regions, both relative to each other, and relative to the region of Current.
The caller will pass both controlled labels over to the callee, which in turn either assigns
its attribute a to z or Current. The abstract interpretation can not know which choice will
be taken, so it has to interpret both branches and combine the outcomes with the join op-
eration, resulting in the state graph at the bottom right. This state graph also combines the
representatives, drawn as red arrows. This means that the abstract region at the beginning
of the arrow represents the abstract region at the end of the arrow. Notice that at the be-
ginning of bar’s interpretation, both regions represent themselves, because they are both
known to the caller, as indicates by the blue arrows.

Upon returning, the caller will see that the just modified attribute a (now correctly
viewpoint-adapted to be attached to the caller’s controlled label x) will point to some newly
added abstract region. The reason why representation sets are useful is demonstrated by
the additional separating edge (green) that we can add between the regions of Current
and x.a. The following chain of reasoning explains why we can safely add this edge:

1. The return transfer function of foo still knows the association between its regions
and the regions of bar’s initial state graph at the top right (green arrows).

2. It also knows that the region containing x.a comes from the region containing Current

.a (topmost blue arrow from right to left) in the final state graph of bar (bottom
right).

3. This region also represents the initial two regions (red arrows, labeled with 3).

4. Therefore, the caller can conclude (in the state graph at the bottom left) that the region
of x.a must represent the regions both the region of x and the one of y.

5. Since both of these are separated from the region containing Current (still in the state
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graph at the bottom left), it follows that also the region of x.a must be separate from
the one of Current.

4.5.3 Efficiency and Termination

Termination is guaranteed by the fact that the abstract domain is finite. So there could be
many different contexts for a single routine, but eventually, every possible context must be
covered. Special care must be taken when handling recursive calls under the same context.
We have a closer look at this problem when discussing implementation-specific issues in
section 5.1.3.

The region analysis is designed to give programmers useful insights into the region
topology of the program. Therefore, not using contexts and instead computing summaries
for every routine that hold under all circumstances would have been too imprecise. In
fact, it may not have been much more than what the type system tells us anyway. Using
different contexts on the other hand improves the precision, but also introduces quite a
bit of extra work. However, this overhead is not that big of a deal, since the viewpoint-
adapted abstract spaces are manageable, even more so if the routines have only few formal
arguments, which is recommended as a good programming style anyway.3

We use only contexts that are independent of any of the routines in the call-hierarchy,
which further reduces the number of possibilities. They only contain elements known
to the particular routine, but at the same time, concepts like the representation sets and
freshness flags let the callers of a routine (and – transitively – even their callers) make
precise adoptions to their own state graphs as well.

4.6 The Inter-Procedural Context

The context remains constant during the analysis of a given routine, and for each context,
a routine gets analyzed individually.

δ = (rout , a) ∈ ∆ := Routine×A (context information)

The context is just another state graph that reflects the current situation of the abstract
state in which the routine gets called. Naturally, different starting conditions may yield
different analysis results.

For a context to be legal, certain rules have to be obeyed. These are (a denotes any input
state graph, and rout denotes the routine):

Invariant 4.6.1 (The state graph must be an element of the corresponding viewpoint-adapted
abstract space.).

∀(rout , a) ∈ ∆: a ∈ Arout

Invariant 4.6.2 (The state graph has no locals, and nothing on the evaluation stack.).

∀(rout , a) ∈ ∆: dom(alocals) = ∅ ∧ dom(aevals) = ∅

3Too many formal arguments bloat the API and make it difficult for the programmer to understand the mean-
ing of actual arguments involved in a routine call.
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Invariant 4.6.3 (Every region in the state graph represents itself or nothing.).

∀rout ∈ allRegionsa : representsa(rout) = rout ∪ undefined

4.7 Call Classification

One of the goals of the region analysis is to provide classifications for every reachable
routine call in the system’s source code. These classifications should provide information
about the concurrent nature of the call. In this section, we informally describe and formally
define a routine call classification.

A classification is fully determined by the state graph (a) in the calling routine, right be-
fore the call is issued, but after all actual arguments have been evaluated. We are interested
in two core properties: Lock-passing and asynchrony.

Lock-passing Lock-passing is the act of the calling processor handing all currently held
locks over to the processor that handles the call target’s region. We say that lock-
passing also occurs if the call is issued on a target located on the same region as the
calling processor’s region (i.e. a non-separate call). Because in this case, all locks are
“passed” trivially.

• A routine call involves lock-passing if and only if any of the actual argument’s
regions is locked or the call is non-separate.

• A routine call involves no lock-passing if and only if the call has no arguments
and the call target is on an abstract region that is separate to the caller’s region.

• A routine call potentially involves lock-passing if and only if neither of the
above holds.

Asynchrony The calling processor may either wait for the call to finish, or it may con-
tinue with the execution of successive instructions concurrently to the issued call’s
execution.

• A routine call is synchronous if and only if it involves lock-passing or it awaits
a result (i.e. is a function call).

• A routine call is asynchronous if and only if it involves no lock-passing and
does not await a result (i.e. is a procedure call).

• A routine call is undecided if and only if neither of the above holds.

Note that the static type system can never guarantee that a separately declared entity
is on a different concrete region at runtime or not. Statically deciding that lock-passing
happens is also only possible when at least one of the actual arguments is a separate for-
mal of the calling routine, any non-separate entity, or any non-separate query applied to a
separate formal.

The region analysis improves this situation with more accurate classifications than what
the type system can provide. But it is always at least as precise as the type system.

The formal description of a classification is based on some state graph a and a called
routine rout .
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Definition 4.7.1 (call classification set).

(must lockpass,no lockpass,may lockpass, synchronous, asynchronous, undecided) ∈
Classification := B× B× B× B× B× B

Definition 4.7.2 (call classification query).

classification : A×Routine→ Classification,

classificationa(rout) 7→ c such that:

cmust lockpass ⇐⇒
(
∃r ∈ Ractuals : lockeda(r)

)
∨ regOf a(Current) = rt

cno lockpass ⇐⇒
∣∣routsignature

∣∣ = 0 ∧ separatea(regOf a(Current), rt)

cmay lockpass ⇐⇒ ¬cmust lockpass ∧ ¬cno lockpass

csynchronous ⇐⇒ cmust lockpass ∨ isFunction(rout)

casynchronous ⇐⇒ cno lockpass ∧ ¬isFunction(rout)

cundecided ⇐⇒ ¬csynchronous ∧ ¬casynchronous

where

Ractuals = {regOf a(eval) | eval ∈ (evalStacka)
|evalStacka|
|evalStacka|−|routsignature|+1

}

rt = (evalStacka)|evalStacka|−|routsignature|
isFunction(rout) := (rout returntype 6= NONE)

4.8 Formal Description of Transfer Functions

Transfer functions produce a new state graph from one or two given state graphs and a
program fragment. There are two main types of transfer functions:

Intra-procedural These transfer functions always take one state graph and a program frag-
ment, and compute an updated state graph. The functions belonging to this category
operate entirely inside a given routine body.

Inter-procedural There are exactly two such transfer functions: The callsite transfer function
and the return transfer function. Together they specify the semantics of a routine call
in our abstract framework. Note that the return function is the only one that operates
on two state graphs.

First, we have a look at the intra-procedural transfer functions. In general, they are
defined as follows:

φRA
l,rout : (∆→ Arout)→ (∆→ Arout),

φRA
l,rout((δ, ai)) 7→ (δ, ao)

where rout ∈ Routine is the currently analyzed routine. l denotes the program fragment
on which the transfer function is applied. There are as many intra-procedural transfer
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functions as there are different l’s. In the following, we refer to the input state graph as ai
and to the output state graph as ao.

For our convenience, we define auxiliary functions that help us express the various
effects of the intra-procedural transfer functions more readily.

The following operation modifies a given state graph by adding an additional label (of
any kind but controlled) to one of its abstract regions.

Definition 4.8.1 (add a label to a region).

withLabel : A×AReg × Lab ∪QLab ∪Eval→ A,

withLabel(a, r, l) 7→ a′ such that
a′regs = (aregs \ r) ∪ (ctrls, attrs, locals, evals),

where

ctrls = rctrls

attrs =

{
rattrs ∪ l if l ∈ QLab

rattrs otherwise

locals =

{
rlocals ∪ l if l ∈ Lab

rlocals otherwise

evals =

{
revals ∪ l if l ∈ Eval

revals otherwise

a′sep = {s ∈ asep | r /∈ s} ∪ {{rt, regOf a′(l)} | (rt, r) ∈ asep}
a′props = aprops

a′rep = arep[r 7→ ∅][regOf a′(l) 7→ repsa(r)]

The notation m[k 7→ v] is only meaningful if m is an existing map that gets modified by
changing (or adding if not yet present) the mapping from the key k ∈ dom(m) to the value
v ∈ im(m).

The next operation will just do the opposite: Remove a non-controlled label from an
existing state graph.
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Definition 4.8.2 (remove a label from a state graph).

withoutLabel : A× Lab ∪QLab ∪Eval→ A,

withoutLabel(a, l) 7→ a′ such that

a′regs =



aregs \ regOf a(l)

if ∀l′ ∈ allLabelsa, l 6= l′ : regOf a(l′) 6= regOf a(l)

aregs \ regOf a(l) ∪ (ctrls, attrs, locals, evals),

where
ctrls = rctrls

attrs =

{
rattrs \ l if l ∈ QLab

rattrs otherwise

locals =

{
rlocals \ l if l ∈ Lab

rlocals otherwise

evals =

{
revals \ l if l ∈ Eval

revals otherwise
otherwise

a′sep = {s ∈ asep | regOf a(l) /∈ s} ∪ {{rt, regOf a′(l)} | (rt, r) ∈ asep}
a′props = aprops

a′rep = arep[r 7→ ∅][regOf a′(l) 7→ repsa(r)]

With these operations at our disposal, we move on to the actual definitions of the trans-
fer functions.

4.8.1 Expressions

An expression e in the simplified SCOOP language has to be legal, as defined in chapter 2.
e can be one of the following:

Dynamic label e = J l K where l ∈ Lab ∪QLab is the name of a local variable (including
Result) or an attribute name of some existing controlled label of the target routine.
The output state graph ao can be specified in terms of the input state graph ai:

evalStackao = evalStackai + ε

ao =

{
withLabel(ai, regOfai

(l), topao
) if l ∈ allLabelsai

((ai)regs ∪ ({}, {}, {}, topao
), (ai)sep, (ai)props, (ai)rep) otherwise

Note that + in the first line means appending an element to the evaluation stack (which
is a sequence).
Informally, the evaluation of a local label puts a new element on the evaluation stack.
If the label is already present in the state graph, we attach the evaluation element to
the same abstract region as the one containing the local label. However, if the local
label does not yet exist, we create an entirely new abstract region (not separate to any
other region) and attach the evaluation element to it. This makes sense, since we have
no information whatsoever about the region the unknown local label refers to.



Abstract Interpretation Framework - Formal Description of Transfer Functions 51

Controlled label e = J c K where c ∈ controlledai is the name of a formal routine argument
or Current. The output state graph ao can be specified in terms of the input state
graph ai:

evalStackao
= evalStackai

+ c

ao = withLabel(ai, regOfai
(c), topao

)

This transfer function is similar to the one before. However, it is not possible that
a controlled label does not yet exist, since it must be in the state graph since the
beginning of the target routine’s interpretation (we will see later how the initial state
graph of some routine gets constructed). Also, note that the evaluation stack gets
extended with the name of the controlled label, instead of the anonymous ε.

Unqualified function call e = Jm(a1, . . . , an) K where m is the unqualified name of some
function that has actual argument expressions a1 to an for some n ≥ 0.
First, the Current controlled label must be pushed onto the evaluation stack (to give
the call a proper call target and treat it the same way as a qualified one). Then the
corresponding transfer functions are applied to all actual argument expressions (in
the order from left to right), if any. Finally, the transfer function for routine calls is
applied, like so:

(δt, at) = fRA
rout((δi, ai))

Then, (δt, at) will be sent to the called routine, rout . Next, the result of the called
routine’s interpretation (denoted by (δf , af )) will be combined with ai to get ao, the
desired result.

(δi, ao) = gRA
rout((δi, ai), (δf , af ))

Notice that the context of the target routine, δi, will not have changed by the call.
Also, g takes care of adding an element onto the evaluation stack, since rout denotes
(here) a function that produces a result.
We have a closer look at the definitions of f (callsite function) and g (return function)
in the next section.

Qualified function call e = J et.m(a1, . . . , an) K where et is the target expression, m is the
name of some function that potentially has actual argument expressions a1 to an for
some n ≥ 0.
The corresponding transfer functions are first applied to the target expression, then
to all actual argument expressions (in the order from left to right), if any. Finally,
the callsite and return transfer functions are applied, just as in the unqualified case
above.

Boolean expression e = J (el = er) K where el and er are two expression whose result
ought to be compared on equality.
Note that in our simplified SCOOP language, this is the only boolean expression
allowed. The transfer function in this case is best explained informally: First, the
transfer functions of el is applied, then the one of er. Finally, the evaluation stack
gets emptied since we are not interested in the result of the expressions.

The literal value Void e = J Void K This is the only literal value that is included in our
simplified language. When evaluating it, a new abstract region will be added to
the state graph, with only one label – an anonymous element on top of the stack
– attached to it. Note that semantically, this is a bit of a hack, because there is no
valid location on this abstract region. However, this solution is still safe, since if the
program will try to access this location, it will fail anyway. And the job of the analysis
is not to prohibit or detect any void-safety issues.
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4.8.2 Statements

As opposed to expressions, statements do not alter the evaluation stack of a state graph.
The output state graph will always have an empty evaluation stack. A statement s can be
one of the following:

Assignment s = J t := es K where t is the target of the assignment, which can only be a
local variable of the target routine, Result, or an unqualified attribute name of the
target routine’s enclosing class. es is the source expression of the assignment.
First, the transfer function for es gets applied. This ensures that a new element gets
pushed onto the evaluation stack. The output state graph ao can then be specified in
terms of the input state graph ai:

ao := (regs, sep, props, rep) such that:
a′o = (regs, sep, props ′, rep) = withoutLabel(withLabel(ai, regOfai

(topai
), t′), topai

)

∧

props =



props ′[r′t 7→ P ′ |
F ∈ P =⇒ L ∈ P ′∧
F ∈ P ⇐⇒ F ∈ P∧
L ∈ P ⇐⇒ L ∈ P ′

]

if t′ ∈ allAttributesa′
o

props ′ otherwise

where

t′ =

{
(Current, t) if t denotes an unqualified attribute
t otherwise

r′t = regOf a′
o
(t′)

P = props ′[r′t]

The effect is easily described: The target label gets attached to the region denoted by
the top of the evaluation stack, while the top of the stack gets removed.
In case t denotes an unqualified attribute, we have to make sure that the region t was
attached to becomes leaked if it was fresh before, because then it may be reachable
via the heap.

Loop s = J until ec loop sb end K where ec is a boolean expression and sb is the statement
in the body of the loop. ao will be the fixpoint of the following function, if ao gets
initialized to ai:

ai t φRA
ec,rout

(
φRA
eb,rout

(
φRA
ec,rout(ao)

))
That is, we apply the transfer functions for the condition, the loop body, and again
the condition, combine the result and ai with the least upper bound operation, and
repeat until convergence). This fixpoint does always exist, and is computable in finite
time, because the transfer functions are monotone, and the complete lattice of state
graphs is finite.

Branch s = Jif ec then si else se end K where ec is a boolean expression and si and se are
the bodies of the respective branches.
ao can be described in terms of ai:

ao = φRA
si,rout(φ

RA
ec,rout(ai)) t φ

RA
se,rout(φ

RA
ec,rout(ai))
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In other words, we build the least upper bound of the results of the transfer functions
applied to the condition followed by the if-branch, and the condition followed by the
else-branch.

Unqualified procedure call s = J m(a1, . . . , an) K where the constituents are equal to the
ones already encountered by unqualified function calls, with the exception that m here
denotes the name of a procedure (not a function). Finally, we apply the callsite trans-
fer function, just as we did when encountering unqualified or qualified function calls.
The difference here will be that no element will be pushed onto the evaluation stack,
since the called routine does not return anything.

Qualified procedure call s = J et.m(a1, . . . , an) K where the constituents are equal to the
ones already encountered by qualified function calls, with the exception thatm here de-
notes the name of a procedure (not a function). Finally, we apply the callsite transfer
function.

Creation procedure call s = J create t.m(a1, . . . , an) K where t stands for either a local
variable or an unqualified attribute name of the enclosing class of the target routine.
The effect of the transfer function is as follows:

• If t is declared as a separate entity, a completely new abstract region gets added
to the state graph. This region is fresh, non-leaked, and separate to any other
region currently present in the state graph. If t is declared as a non-separate
entity, the abstract region that contains the newly created object is the same as
the one containing Current.

• Then, this region gets anonymously pushed onto the evaluation stack, and acts
as the call target for the creation procedure call. Also, transfer functions for all
actual arguments get applied.

• Finally, the transfer function for a regular procedure call gets applied.

4.8.3 Callsite Transfer Function

This callsite transfer function is declared like this:

fRA
rout : (∆→ A)→ (∆rout → Arout),

fRA
rout((δc, ac)) 7→ (δi, ai)

For clarity, we used a different symbol for this function, f (as opposed to φ), because it is
a transfer function that acts across different routines in the system, while most of the others
act within some routine. But in order to stay compatible with the definitions of the intra-
procedural transfer functions, we may regard fRA

rout as an alias of φRA
call,rout . Furthermore,

we refer to the current state (context and state graph) in the calling routine with subscripts
c (for current), and to the initial state in the called routine with subscripts i (for initial).
rout denotes the called routine, since we have to know which routine gets called (formal
argument names, body the analysis should continue with, etc.). The calling routine on the
other hand is of no importance to the callsite function.

We define f by describing δi and ai in terms of δc and ac. As a precondition, we require
that there are at least n + 1 elements on the evaluation stack, if n is the number of formal
arguments required by rout . The additional element is the target on which the routine gets
called.
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The callsite function takes the elements on the caller’s evaluation stack, and translates
them over to the callee by using the following rules:

• If the evaluation element corresponds to one of the actual arguments to the callee, we
look up the corresponding formal argument name in the callee’s signature.

• If the evaluation element corresponds to the call target, we know that in the callee,
the corresponding controlled label must be called Current.

Definition 4.8.3 (translate an evaluation stack element to a controlled label in the callee
routine).

translateEval : A×Eval×Routine→ Lab

translateEvala((i, e), rout) 7→



((routsignature)formals)(n−i+1)

if 0 ≤ (n− i) <
∣∣(routsignature)formals

∣∣
Current

if (n− i) =
∣∣(routsignature)formals

∣∣
undefined

otherwise

where n = |evalStacka|

An evaluation stack element can correspond to a controlled label in the caller, if it is not
anonymous. If one of these gets passed to the callee, we have a one-to-one correspondence
between a controlled label in the caller and a controlled label in the callee. The following
function allows us to query the corresponding controlled label in the callee, if it exists. This
correspondence is important, since the attributes of these controlled labels are also shared
between the caller and the callee.

Definition 4.8.4 (translate a controlled label from the caller to the callee).

translateCtrl : A× Lab×Routine→ Lab

translateCtrla(c, rout) 7→



((rsignature)formals)i

if ∃(i, e) ∈ evalStacka :

0 ≤ (n− i) <
∣∣(routsignature)formals

∣∣ ∧ eeval = c

Current

if ∃(i, e) ∈ evalStacka :

(n− i) =
∣∣(routsignature)formals

∣∣ ∧ eeval = c

undefined

otherwise

where n = |evalStacka|

The abstract regions that are associated to the evaluation elements in the caller get trans-
lated to the callee as well. In order to simplify their definitions in the callee, we introduce
two functions that both take a region in the caller, and determine the set of controlled la-
bels respectively attribute labels that are attached to the same region in the callee. This
is important because regions are fully and exclusively identified by the labels attached to
them.
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Definition 4.8.5 (controlled labels and attribute labels in the callee attached to a region
passed from the caller to the callee).

calleeCtrl : A×Routine×AReg→ P(Lab)

calleeCtrlac(rout , r) 7→ {c | ∃eval ∈ revals : translateEvalac(eval , rout) = c}

calleeAttr : A×Routine×AReg→ P(QLab)

calleeAttrac
(rout , r) 7→


{(t, a) | ∃(t′, a) ∈ rattrs : translateCtrlac(t′, rout) = t}

if labels t′ and Current may not be aliased
∅

otherwise

Notice the case distinction of the calleeAttr function. We only take over attribute labels
for controlled labels that may not be aliased (i.e. whose types do not conform, and/or
whose regions are separated) by the Current controlled label in the caller’s state graph.
Because if they are indeed aliases of each other at runtime, the analysis would not be safe
any more.

When specifying the callsite transfer function – and later on also the return function –,
we have to be able to easily switch between corresponding entities in the caller and callee.
The following two functions allow the querying of corresponding abstract regions.

Definition 4.8.6 (export/import an abstract region from the caller to/from the callee).

export : A×Routine×AReg→ AReg

exporta(rout , r) 7→ (calleeCtrla(rout , r), calleeAttra(rout , r), ∅, ∅)

import : A×Routine×AReg→ AReg

importa(rout , r) 7→

{
r′ if exporta(rout , r′) = r

undefined otherwise
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Using the just defined auxiliary functions, we are able to specify the callsite transfer
function in a constructive way.

Definition 4.8.7 (callsite transfer function).

fRA
rout((δc, ac)) 7→ (δi, ai) such that:

(ai)reg = Rexported

(ai)sep = {{r̂1, r̂2} | r̂1 = exportac
(rout , r1) ∧ r̂2 = exportac

(rout , r2)

∧ r̂1 6= emp 6= r̂2 ∧ {r1, r2} ∈ (ac)sep}
(ai)props = [r 7→ P | r ∈ Rexported,

K ∈ P ⇐⇒ (lockedac(importac
(r))

∧ (classification(ac, rout))must lockpass) ∨ rctrls 6= ∅,
F ∈ P ⇐⇒ freshac

(r) ∧ ¬leakedac(r),

L /∈ P
]

(ai)rep = [r 7→ {r} | r ∈ Rexported]

δi = ai

where
Rexported = {r̂ | r̂ = exportac

(rout , r′) ∧ r′ ∈ (ac)reg ∧ r̂ 6= emp}
emp = (∅, ∅, ∅, ∅)

Notice that the context in the caller δc does not play any role in the transfer function’s
definition, and the context in the callee δi is just the initial state graph ai. Concerning the
properties of the regions in the callee, the following must hold:

• If at least one controlled label is attached to it, it has to be locked. If not, it can still be
locked, namely when the call triggers lock-passing and the corresponding region in
the caller was locked to begin with.

• Fresh regions that are passed to the callee remain fresh, but only if they are not leaked.
Leaked fresh regions are of no use to the callee, because we can not be sure if an alias
is encountered via the heap at a later point in the callee’s analysis. But if the region
is fresh and not leaked, we can be sure that it will remain a unique region during the
analysis of the callee.

• Following this argumentation, it becomes clear the no region in the callee’s initial
state graph can be leaked.

The role of abstract regions’ representations is explained in detail in section 4.5.2. All
regions that are known to the caller represent themselves in the initial state graph of the
callee.

4.8.4 Return Transfer Function

The return transfer function is declared like this:

gRA
rout : (∆→ A)× (∆→ Arout)→ (∆→ A),

gRA
rout((δc, ac), (δi, ai)) 7→ (δu, au)
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Just as with the callsite transfer function, we use a different symbol (g) to denote this
inter-procedural function. The return function determines an updated version of the state
graph in the calling routine (au, u for updated), based on both the state graph of the caller
as it was before the routine call, and the state graph at the end of the callee’s analysis, here
still denoted by ai (although the state graph is not initial any more).

Note that the return function is only defined for matching call/return pairs, that is, δi
must be the context that was established by the callsite function beforehand.

In addition to the auxiliary functions export and import , we define functions that allow
us to translate labels.

Definition 4.8.8 (auxiliary functions that translate attribute labels between caller and callee).

exportAttr : A×Routine×QLab→ QLab

exportAttr(a, rout , (c, v)) :=


(translateCtrla(c, rout), v)

if translateCtrla(c, rout) 6= undefined

undefined

otherwise

importAttr : A×Routine×QLab→ QLab

importAttr(a, rout , (c′, v)) :=

{
(c, v) if exportAttr(a, rout , (c, v)) = (c′, v)

undefined otherwise

The attribute labels’ correspondence can only be judged based on the controlled label
they are attached to and based on the evaluation stack at the moment of the call.

A special case needs to be considered when the called routine is a function. With the
simplified SCOOP language, we made sure that every function assigns to a local variable
called Result in its body. The effect of the return function then is to add another element
to the evaluation stack that represents the result of the function. In order to determine this
element, we have to examine the local label Result in the final state graph of the callee.

Definition 4.8.9 (constructs an evaluation stack element for function call results).

fnRes : A×Routine→ P(Eval)

fnResa(rout) 7→

{
{(i, σ) | i = |evalStacka| −

∣∣routsignature
∣∣} if isFunction(rout)

∅ otherwise

where
isFunction(rout) := (rout returntype 6= NONE)

Next, we define a function that can take an arbitrary label from the caller and translate
it – if possible – to the callee.
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Definition 4.8.10 (auxiliary function that translates arbitrary labels from the caller to the
callee).

exp : A×Routine×QLab→ (Lab ∪QLab ∪Eval)

expa(rout , l) :=


l′ if translateCtrla(rout , l) = l′ 6= undefined

l′ if exportAttr(a, rout , l) = l′ 6= undefined

Result if {l} = fnResa(rout)

undefined otherwise

As a preparation step for the definition of the return function, we determine all the la-
bels that will still be present in the updated state graph of the caller. This decision depends
on the classification of the call under analysis:

• If the call may trigger lock-passing, everything that was established about the heap
must be reset. This means in particular, that all attribute labels will be removed from
the caller’s state graph, such that the only remaining labels are the controlled labels,
the local labels and the evaluation elements that are not used by the call as actual ar-
guments and/or call target of the caller, in addition to all attribute labels established
by the callee that have a correspondent in the caller.

• If the call must be asynchronous, the remaining labels are all the labels of the caller,
except the attribute labels that may be aliases of the call target’s attribute labels and
the evaluation elements that were used by the call, in addition to all attribute labels
established by the callee that have a correspondent in the caller.

Definition 4.8.11 (the set of labels that are present in the updated state graph of the caller).

updatedLabels : A×Routine×A→ P(Lab ∪QLab ∪Eval)

updatedLabels(a, rout , a′) :=



controlleda ∪ localsa ∪ (evalStacka)
|evalStacka|−|routsignature|−1
1

∪ fnResa(rout) ∪ {importAttr(a, rout , l) | l ∈ allAttributesa′}
if (classification(a, rout))may lockpass

withoutAliasesa(callTargeta(rout))

∪{importAttr(a, rout , l) | l ∈ allAttributesa′}
otherwise

where
withoutAliasesa(t) = allLabelsa \ {(c, a) ∈ allAttributesa |

c conforms with t ∧ t ∈ controlleda ∧ ¬(c
R⇐==⇒a t)}

callTargeta(rout) = (evalStacka)|evalStacka|−|routsignature|

The potential aliases of the call target are those controlled labels whose static types
conforms with the one of the call target’s controlled label (if the target is a controlled label),
and which are located on a non-separate abstract region relative to the region containing
the call target.

Similar to the definition of the join operator in section 4.4.1, we specify the properties
of the updated state graph of the caller in terms of the relationships of two distinct labels
from our previously constructed set of labels. In addition to the invariants that apply for
state graphs, these properties ensure that au is uniquely determined.
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First, we specify those cases where two abstract regions (of two different labels) are
different abstract regions without a separating edge between them.

• In the case where one label (l′) is untouched by the callee and the other (l) is manipu-
lated by the callee, the following must hold: l resides on an abstract region that is not
known to the caller (i.e. one that does not represent anything), or it resides on some
abstract region that represents at least one region that in the caller, is different than l′

but not separate to it.

• In the case where both labels are untouched by the callee, their respective regions
must be distinct but not separate in the caller.

• In the case where both labels are manipulated by the callee, their respective regions
must be distinct but not separate in the callee.

∀l, l′ ∈ updatedLabels(ac, rout , ai), l 6= l′ :

l
R←−−→au

l′ ⇐=



(repsai
(regOf ai

(expa(rout , l))) = ∅ ∧ ¬freshai
(regOf ai

(expa(rout , l))))

∨ ∃r ∈ repsai
(regOf ai

(expa(rout , l))) :

importac
(rout , r) 6= regOf ac

(l) ∧
¬separateac

(importac
(rout , r), regOf ac

(l))

if expac
(rout , l) 6= undefined ∧ expac

(rout , l′) = undefined

l
R←−−→ac

l′

if expa(rout , l) = undefined = expa(rout , l′)

expa(rout , l)
R←−−→ai expa(rout , l′)

if expa(rout , l) 6= undefined 6= expa(rout , l′)

Next, we specify those cases where the regions of the two labels are separated.

• In the case where one label (l′) is untouched by the callee and the other (l) is manip-
ulated by the callee, one of the following must hold:

– l resides on some region that represents only regions (but at least one) that in
the caller, are separate to the region of l′ in the caller.

– l resides on some region that is fresh.

• In the case where both labels are untouched by the callee, their respective regions
must be separate in the caller.

• In the case where both labels are manipulated by the callee, their respective regions
must be separate in the callee.
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∀l, l′ ∈ updatedLabels(ac, rout , ai), l 6= l′ :

l
R⇐==⇒au

l′ ⇐=



(
∣∣repsai

(regOf ai
(expa(rout , l)))

∣∣ > 0 ∧ ∀r ∈ repsai
(regOf ai

(expa(rout , l))) :

importac
(rout , r)

R⇐==⇒ac
regOf ac

(l′))

∨
(freshai

(regOf ai
(expa(rout , l)))∧

if expac
(rout , l) 6= undefined ∧ expac

(rout , l′) = undefined

l
R⇐==⇒ac

l′

if expa(rout , l) = undefined = expa(rout , l′)

expa(rout , l)
R⇐==⇒ai expa(rout , l′)

if expa(rout , l) 6= undefined 6= expa(rout , l′)

Finally, we specify those cases where the regions of the two labels are equal.

• In the case where one label (l′) is untouched by the callee and the other (l) is manip-
ulated by the callee, the following must hold: l resides on some abstract region that
represents exactly one region that in the caller, is the same as the region of l′.

• In the case where both labels are untouched by the callee, their respective regions
must be equal in the caller.

• In the case where both labels are manipulated by the callee, their respective regions
must be equal in the callee.

∀l, l′ ∈ updatedLabels(ac, rout , ai), l 6= l′ :

l
R

====au l
′ ⇐=



∃r : repsai
(regOf ai

(expa(rout , l)) = r ∧ importac
(rout , r) = regOf ac

(l′)

if expac
(rout , l) 6= undefined ∧ expac

(rout , l′) = undefined

l
R

====ac
l′

if expa(rout , l) = undefined = expa(rout , l′)

expa(rout , l)
R

====ai
expa(rout , l′)

if expa(rout , l) 6= undefined 6= expa(rout , l′)

Concerning the properties, the following can be said about an abstract region of some
label in the caller:

• If the label is untouched by the callee, its region’s properties remain untouched as
well.

• If the label is manipulated by the callee, its region’s properties are defined as follows:

– If the region in the callee is fresh, the corresponding region in the caller is fresh
as well.

– If the region in the callee is leaked, the corresponding region in the caller is
leaked as well.
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∀l ∈ updatedLabels(ac, rout , ai) :

expac
(rout , l) = undefined =⇒ (au)props[regOf ac

(l)] = (ac)props[regOf ac
(l)]

expac
(rout , l) 6= undefined =⇒ (

freshai
(regOf ai

(expa(rout , l))) =⇒ freshau
(regOf au

(l))∧
¬freshai

(regOf ai
(expa(rout , l))) =⇒

freshau
(regOf au

(l)) = freshac
(regOf ac

(l))∧
leakedai(regOf ai

(expa(rout , l))) =⇒ leakedau(regOf au
(l))∧

¬leakedai(regOf ai
(expa(rout , l))) =⇒

leakedau(regOf au
(l)) = leakedac(regOf ac

(l))

)

Finally, we need to specify the representations of all the regions in the caller defined so
far. So for each label’s region in the caller:

• If the label is untouched by the callee, the existing representations remain.

• If the label is manipulated by the callee, its region’s representation consists of the
union of all representations of all the regions in the caller that are represented by the
label’s region in the callee.

∀l ∈ updatedLabels(ac, rout , ai) :

expa(rout , l) = undefined =⇒ (au)rep[regOf ac
(l)] = (ac)rep[regOf ac

(l)]

expa(rout , l) 6= undefined =⇒

repsau
(regOf au

(l)) =
⋃

r′∈repsai
(regOf ai

(expa(rout,l)))

repsac
(importac

(rout , r′))





Chapter 5

Implementation

In this chapter, we are taking the theoretical basis developed so far as the groundwork for
an actual implementation in the research branch of EiffelStudio (EVE in short). Since the
implementation has to work for the full-blown Eiffel language, several features need to be
supported in addition to what we used in our simplified SCOOP language before.

Besides the increased feature set, the implementation also supports a simple form of
deadlock detection.

5.1 Abstract Interpretation Framework in Practice

When specifying the embellished monotone framework for the region analysis in chapter 4, we
mentioned the program flow, which connects different program labels in the source code.
We use transfer functions for every single statement and expression, even when they are
nested. This means that we have a lot of program labels in our framework. The elements
of our abstract domain – the state graphs – do not have a very economical representation
in memory, no matter how much we are able to compress them.

In terms of the space complexity, it would be a rather bad choice to store state graphs at
each program label of every routine (under all encountered contexts) in the system. Luck-
ily, we do not have to either. The interesting kind of information are not the state graphs,
but rather the classifications (see section 4.7) of routine calls, for which state graphs are used.

5.1.1 From a System of Equations to a Program

In principle, every monotone framework is nothing more than a huge system of equations.
As such, it does not know a beginning or end. We are just interested in a solution that
satisfies the system at every program label. However, when we are supposed to write a
program that actually solves these equations, different techniques come into play. Among
them are chaotic iteration1 or the worklist algorithm2. But these approaches rely on the exis-
tence of a flow graph that allows the storage of state graphs (in our case) at every program
label, which we have just ruled out due to performance concerns.

Instead, we directly traverse the abstract syntax tree (AST in short) of a routine’s source
code. The region analysis is an abstract interpretation that is considered a forward analysis,

1Apply transfer functions randomly at each program label, until no more changes can be observed.
2Maintaining a pool of program labels for which transfer functions need to be recomputed.
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because information travels forward in the source code order. Thus, a natural choice for
the traversal order is post-order. As an introductory example, we consider a simple if-then
-else branch as shown in figure 5.1.

if

then else

⋮ ⋮

1

2 3

4

Figure 5.1: AST of a simple branch instruction

The ellipses represent AST nodes, and the boxed area is the subtree that represents the
branch.

1. First, we send the current state graph along edge #1. At the if node, we interpret the
condition expression on it.

2. Then, we create a copy of the state graph and remember it.

3. Next, we send the original state graph along edge #2, where all the statements in the
then branch get interpreted.

4. The state graph that results in the left branch will be remembered at the if node as
well.

5. Then, we send the previously remembered copy of the original state graph along
edge #3, where all statements in the else branch get interpreted.

6. Finally, we combine the resulting state graph of the else branch with the remem-
bered state graph of the if branch with the least upper bound operation, which yields
a new state graph.

7. This new state graph represents the effects of the whole branch, and will be used in
the continuation, i.e. it will be sent along edge #4, to whatever AST node follows the
branch.

This procedure perfectly reflects the mathematical specification of the branch instruc-
tion, but it does not leave any traces in the memory at all. We may temporarily use several
copies of state graphs, but we delete them as soon as they are no longer needed. To put it
another way: We can always delete state graphs that are known to be part of the final solu-
tion of the underlying equation system. We have to remember them temporarily whenever
we know that at some later point they get updated. This is all possible in one single AST
traversal per routine and context.

Notice that we will not further explain how the other transfer functions are imple-
mented, because they all follow the same principle as in this example.
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5.1.2 Contexts

For each routine in the system, we store a map – called the context map – that associates
context state graphs with the final state graph obtained by interpreting the routine under
this context. In particular:

• Whenever we start the interpretation of a routine under a new context, we put the
context as a key into the map, but without the associated value (that is, we store
Void).

• Whenever the interpretation for a given context finishes, we add the resulting state
graph as the value into the map.

• Whenever the interpretation tries to call a routine under some context for which a
result was previously computed, it can directly use that result and continue with the
return transfer function.

5.1.3 Recursive Calls

In section 4.5.3, we briefly hinted at a delicate problem regarding recursive calls under the
same context. Figure 5.2 shows the simplest instance of a recursive call in our abstract
interpretation framework.

Current.foo(x,y,z)

Routine foo

δ

1

2

Figure 5.2: a recursive self-call of routine foo

Let us assume that we enter routine foo in context δ, and then perform the transfer
function at #1. Then, we encounter a recursive call to routine foo under the very same
context δ. It is possible to apply the callsite transfer function, but applying it will bring us
into the exact same situation as before. The interpretation can only continue if it can apply
the return transfer function before continuing with #2.

Remember that in routine foo, there has to be some path that bypasses the recursive call.
Otherwise, the program would never terminate. One solution therefore would be to first
identify this path in advance, compute an analysis result just for this path, and use it in
the return function at the call. However, this would not yet yield a safe approximation.
The analysis would have to further repeat this strategy until it reaches a fixpoint right after
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the return transfer function. But since all of our transfer functions are monotone, such a
fixpoint exists (just like when interpreting a loop construct), and the result would indeed
be the most precise safe approximation.

However, we did not implement this approach, due to a very simple reason. In this
basic example that we have just seen, it is easy to find the path that does not involve the
recursive call. However, in a real program, there may be arbitrary long indirect recursive
calls, and even multiple of them in a single routine. It would require a special prepro-
cessing phase just to identify all potentially recursive routines, i.e. routines that are part
of a cycle in a directed routine call graph, then for each such cycle we would have to find
some non-recursive paths on which we could start the fixpoint iteration scheme. This is
not impossible, but it would break the simple forward interpretation algorithm and would
further decrease performance. Nevertheless, it is an option for future improvements.

The present solution in our implementation makes use of default state graphs (see sec-
tion 4.2) that are retrieved from the recursively called routine’s signature. These graphs
represent the most general solution for a routine (i.e. the top element of the complete lat-
tice of the corresponding viewpoint-adapted abstract domain), and are safe approxima-
tions, although not very precise. Recursive calls are identified when the AST traversal tries
to jump from a routine call to the called routine’s body AST, and realizes that for this con-
text, a computation was started but not finished, that is, there is a key for this context in
the routine’s context map, but the associated value is Void. Then it can conclude that the
current call must be part of this computation, and in particular, that it must be recursive
for this context.

5.2 Enhanced Region Analysis

The region analysis as described in the theoretical part of this thesis worked on a simplified
SCOOP language, as defined in chapter 2. This let us formalize it much more concisely, and
it was enough to explain the key workings of the analysis. However, for the implementa-
tion, the region analysis has to work on the full-blown Eiffel language. We therefore need
to consider many more features like the following:

once routines Routines that are executed only once per processor the first time they are
called, are treated like recursive calls by our implementation. This is because we
can not determine what the first call is. This highly depends on the concrete state at
runtime. Recursive calls directly return with a default state graph. And since default
state graphs represent the most general state, they are the only safe option to use.

Type system based on multiple inheritance and generics In our simplified language, we
do not allow any kind of inheritance. But the real Eiffel language has a sophisticated
type system. Surprisingly enough, we do not have to make many changes to the
analysis. The only moment where types actually play a role is in the callsite transfer
function. There, we copy the attribute labels of some passed controlled label only if
the passed controlled label cannot be an alias of any of the other controlled labels of
the caller. Labels can only be aliased if their types conform to each other, one way
or the other. Therefore, we only have to refine the notion of type conformance when
deciding this question for real Eiffel programs.

Dynamic binding Dynamic binding is dealt with by first determining, for each call in the
source code, all routines that may be dynamically called at runtime. This can be
done for each routine in a preprocessing stage. Then, the callsite transfer function
is modified in such a way, that it calls every possible routine in isolation, and then
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combines all the resulting state graphs with the least upper bound operation. This is
the only way to do it, and the precision suffers quite a bit from it.

Renamed attribute names Another problem is posed by the renaming mechanism of Eif-
fel, in combination with dynamic binding. Since we are using attribute labels in state
graphs, we have to uniquely name them. So when combining multiple state graphs
that resulted from several dynamically callable routines, not all attributes that are ac-
tually equal may also be equally named. This problem is overcome by determining,
for each attribute, the name it had when it was first introduced in the class hierarchy.
In the case where it was introduced in multiple classes and later merged, we take the
name of the first of these classes as dictated by the lexical ordering of their names.

Expanded types Expanded types in Eiffel cover simple types such as integers and char-
acters. But it is also possible for programmers to define their own expanded types.
Since objects of these types are always copied when assigned, care must be taken in
the region analysis to reflect this behavior properly.

5.3 Integration into EVE

The region analysis is implemented as an Eiffel library project that itself depends on exist-
ing libraries of EVE, such as the compiler kernel, or parts of the general program analysis
framework developed by Stefan Zurfluh in [14]. The data structures provided by the com-
piler exist on several levels of the compilation process, and contain all information that is
required by the region analysis. The region analysis needs a fully and successfully com-
piled SCOOP project in order to work properly.

The region analysis library consists of these clusters:

Framework Contains classes related to the overall abstract interpretation framework, like
light-weight representations of routines, contexts and classifications.

Interface Contains classes that heavily cooperate with existing data structures of the EVE
compiler, like the AST visitor (including many of the routine-local transfer functions)
and the overall controller of the region analysis.

State Graph Contains the classes like regions, labels and maps, that together comprise
state graphs.

Transfer Functions Contains the callsite and return transfer functions and the least upper
bound operation.

User Refinement Contains the operations required to refine state graphs.

The analysis can be started either on the system’s root procedure, or on any user-
specified routine. It starts with a default context graph, and runs until convergence. It
stores routine classifications in a map that associates them with AST nodes, such that they
are easily queried after the analysis completed. At any time after the initial run-trough, a
new context state graph associated to any of the routines can be provided, and the analysis
incrementally runs again until convergence. This is useful for the parallelism visualizer
that enables user to manually refine the analysis.



68 Implementation - Data Structures of State Graphs

Stopping Criteria The region analysis’ is most useful on programs that include lots of
separate entities and calls. However, there are many sequential libraries like EiffelBase3.
Whenever a given program calls into one of these libraries, a potentially large chain of
nested sequential calls may follow. One example is the call of the print feature, which is
declared in class ANY. The region analysis may take a long time to examine all of these calls,
and yet, the benefit is non-existing, since everything is sequential anyway.

There exist sophisticated approaches to a special treatment of large libraries in program
analyses, like [10]. For our purposes, we opted for a simple and flexible solution: We in-
tegrated an upper bound on the number of completely sequential routine calls, i.e. static
non-separate calls with only non-separately declared formal arguments. Once this upper
bound is reached, the region analysis stops applying the callsite transfer function and in-
stead directly uses the default return transfer function, which examines that static signature
of the called routine only. There is always a chance that deeper in a sequential call chain
there are again separate calls, but mostly, this is a harmless limitation.

As a final resort, the user will be able to pick any routine and restart the analysis with a
default context graph anyway.

5.4 Data Structures of State Graphs

The core data type used by the region analysis’ implementation is the state graph, together
with core operations such as identifier extraction and least upper bound. In this section, we
focus on these, although there are quite a few related operations such as the callsite and
return transfer functions, and the classification generation.

Let us begin with a state graph’s data structure. The most important goal in design-
ing this data structure is to keep it’s memory footprint as small as possible. Although we
are already reusing a given state graph instance during the interpretation, there are still
quite a few copy and remember operations involved. Another important goal is to identify
the required operations and their expected frequency in the algorithms that use them. The
following table lists the ones with the highest frequencies.

Operation Description
Identifier
generation

Whenever we are comparing state graphs e.g. during fixpoint com-
putations or when we check for already existing contexts in the call-
site transfer function, we have to efficiently determine if two given
state graphs are equal or not. For this purpose, we shall be able to
compute a unique identifier for each state graph.

CRUD4 region
separateness

Given a single abstract region of some state graph, we should be able
to quickly determine all regions that are separated from it. Likewise,
given two distinct abstract regions, we want to now if they are sep-
arated. Adding and deleting separating edges should also be fast.

CRUD labels
and region
access

Quickly changing the attachment of an attribute or local label to
some abstract region must be a priority, as well as adding and delet-
ing them on the fly. Furthermore, accessing a label’s abstract region
should be easy.

We chose to use the following sub structures to satisfy the established requirements.

Regions & Region IDs In the mathematical model, we identify regions implicitly via their
associated labels. Since a region must at least have one label attached in order to exist,

3See https://docs.eiffel.com/book/solutions/eiffelbase, as retrieved on 2014/12/16
4Create, Read, Update, Delete

https://docs.eiffel.com/book/solutions/eiffelbase
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this approach is legitimate. This way, we also set the stage for cleaner mathematical
descriptions of the transfer functions and the least upper bound operation. In the
implementation however, such a representation is neither intuitive nor efficient. In-
stead, regions are represented by their own object type.
Since regions may be shared internally (by more than one label) and even among dif-
ferent state graphs (during the callsite function for example), they have to be easily
identifiable. One possibility would be to just use and identify them as object refer-
ences. However, this solution – although feasible – is quite cumbersome to work with
(e.g. for debugging purposes), since objects are dynamically allocated on the heap,
and might have different addresses at different times. A much more explicit solution
is to use self-made identifiers for regions, like canonically ordered natural numbers.
The association between these region identifiers and the region objects themselves is
established via a hash map called the region map, which is the pivotal constituent of
every state graph.

Region properties The region objects additionally have private properties like boolean
flags for locked, fresh and leaked, a set (implemented as a sorted linked list) that con-
tains the represented region IDs, and a sorted list of region IDs to which it is con-
sidered separate. Note that this separated list is symmetric, i.e. for every entry y in
the list of region x, there has to be an entry x in the list of region y. Sorted lists are
preferred since it is faster to query, and there is a fixed order that simplifies identifier
generation (as described shorty).

Labels We implement controlled labels as an arrayed list, in order to be able to directly
access a controlled label with its index in a routine’s signature, where the first index
is always occupied by the Current label. A controlled label itself is an object that
stores a region ID (of the region it is attached to) and contains a private hash map that
associates attribute names with region IDs as well. This way, we can reach attribute
labels directly via their controlled labels, which is the only kind of access we require.
Lastly, local variables are modeled just like controlled attributes, that is, by a single
hash map that associates local variable names with region IDs.

Figure 5.3 shows an illustration of the main components of a state graph’s representa-
tion in memory.

5.4.1 State Graph Identifiers

On a logical level, the only thing that distinguishes two distinct regions are still the labels
that are associated with it. But in the implementation, we model regions with their own
identifiers. So we may run into ambiguity problems, if we do not make sure the IDs we
assign don’t change a state graph’s logical identity. [3] discusses the general problem of
object identity and inspired our choices.

Note that region IDs may not even be densely seeded, since the transfer functions and
the least upper bound operation may arbitrarily add new abstract regions or remove exist-
ing ones. Instead of keeping a pool of free IDs to choose from, we keep a global counter
for each state graph that is fetched and incremented whenever an operation needs a new
region ID. This approach has the advantage of being fast and simple.

The problem is addressed by computing an identifier (which is simply a string) for a
state graph that internally re-identifies all the regions with a strictly and densely increasing
set of region IDs starting from 1. It does so by following a deterministic order. Note that
the computation of this identifier is completely side-effect free and leaves no traces on the
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Figure 5.3: qualitative representation of some state graph in memory

state graph itself. This way, we compare state graphs whenever we need, by computing
their identifiers and comparing them on string equality.

Algorithm 1 outlines the generation of the identifier in pseudo code. The function SIG-
NATURE takes as input a state graph a, and produces as output the signature string s. The
central idea is to traverse all labels in the order given by their positions (controlled labels)
or names (attributes and locals), and output a region’s properties whenever we first en-
counter it. Regions are marked with a constantly increasing temporary ID tmp id > 0 that
will also be used to identify the region in the identifier.

This is how the identifier of the state graph of figure 3.1 looks like:

’Current@1K;.attr bar@2;.attr foo@3;a baz@4K|1;.attr bar@4;a fez@1;.attr foo@2;l bar@5F|1|2|3|4;l foo@5;Result@3;’

Notice that the identifier ignores the evaluation stack entirely. This is because whenever
we require a state graph comparison, the evaluation should be empty anyway.

5.4.2 Callsite and Return Transfer Functions

In our mathematical description, the callsite and return transfer functions are specified
completely independently of each other. However, in the implementation, we use various
intermediate data structures that are created and stored while executing the callsite func-
tion, and reused again by the following return transfer function (which will follow in any
case). These data structures primarily consist of hash maps that associate labels and re-
gions in the caller with labels and regions in the callee. This way, the return function can
easily inject parts of the callee’s resulting state graph back into the state graph of the caller
at the right places.
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Algorithm 1 Signature extraction

1: global counter = 0
2:
3: function SIGNATURE(in : a, out : s)
4: s← ”
5: for all c ∈ a.controlledLabels do
6: s← s+ REGIONSIGNATURE(c, regionOf(c.region id))
7: for all attr ∈ sorted(c.attributes) do
8: s← s+’.’+REGIONSIGNATURE(attr, regionOf(attr.region id))
9: for all l ∈ a.localLabels do

10: s← s+ REGIONSIGNATURE(regionOf(l))
11:
12:
13: function REGIONSIGNATURE(in : label, r, out : s)
14: local r′

15:
16: s← label+ ’@’
17: if r.tmp id = 0 then
18: r.tmp id← counter
19: counter← counter + 1
20: s← s+ r.tmp id
21: if r.locked then
22: s← s+ ’K’
23: if r.fresh then
24: s← s+ ’F’
25: if r.leaked then
26: s← s+ ’L’
27: for all rid ∈ sorted(r.represents) do
28: r′ ← regionOf(rid)
29: s← s+ ’r’ +rid.tmp id
30: for all rid ∈ sorted(r.separated from) do
31: r′ ← regionOf(rid)
32: if r′.tmp id 6= 0 then
33: s← s+ ’|’ +r′.tmp id
34: else
35: s← s+ r.tmp id
36: s← s+ ’;’
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5.5 State Graph Refinement

So far, both the theoretical description and the implementation-specific considerations of
the region analysis do not assume any user interaction or guidance that may improve the
precision. In the parallelism visualizer that we integrated into EVE, there is a mechanism
that allows a user to refine a given state graph. However, a refinement can only be applied
to an initial state graph of some routine, also known as a routine’s context. There might
be several of these contexts after the analysis completed. So the user may pick any of
them, refine it, and re-execute the region analysis on this routine using the newly refined
context. The analysis will then incrementally add new results to all affected routines, until
it converges again.

Mathematically, a refinement is defined by traversing the complete lattice (see 4.4.2) of
a given viewpoint-adapted abstract domain downwards (in terms of v), starting from a
state graph that ought to be refined. Conversely, we can define for a given state graph the
set of all state graphs that are legal refinements for it.

Definition 5.5.1 (refinement set).

refinements : Arout → P(Arout)

refinementsa 7→ {aref | aref v a}

The mathematical description of a refinement set does not yet tell us how a refined state
graph can be obtained in practice. Therefore, we have implemented a set of operations that
can be applied to a given state graph such that after such an operation is completed, the
modified state graph can only be a refinement of the original. The following table infor-
mally describes each of these operations.

Operation Description
Merge regions Given two abstract regions in the original state graph that are not

connected with a separating edge, merge them into a new abstract
region that contains the union of all labels and all outgoing separat-
ing edges of its constituents. Furthermore, the merged region is:

• locked if and only if at least one of the constituents is,

• fresh if and only if at least one of the constituents is,

• leaked if and only if at least one of the constituents is.

Separate
regions

Given two abstract regions in the original state graph that are not
connected with a separating edge, connect them.

Lock region Given an abstract region of the original state graph that is not locked,
lock it.

Make fresh Given an abstract region of the original state that is not fresh, make
it fresh.

Remove leaked Given an abstract region of the original state that is leaked, remove
the leaked flag.

Add attribute
label

Add a not yet existing attribute label of some existing controlled la-
bel to one of the state graph’s abstract regions.

As we explain in chapter 6, not all of these operations are offered to the user, since they
are not all equally intuitive and useful from a user’s perspective.
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5.6 Deadlock Hints

Although the region analysis is designed for an entirely different purpose, it is still possible
to detect a certain kind of deadlock as an added bonus, by modifying the analysis only
slightly. In general, deadlock detection is a rather involved task on its own. In [12], this
topic is approached with a static solution that requires additional annotations made to the
source code.

5.6.1 Blocked Regions

We enhance abstract regions with yet another flag called blocked. The meaning of a blocked
region is, that there must exist some processor that is holding a lock on this region while
waiting for the currently executing target routine to finish, and the lock has not been passed
over. This situation is quite critical, because whenever the target routine issues a syn-
chronous call to a blocked region, it will never make any progress due to a circular waits-for
relationship between processors. Note that this is only one type of deadlock. There are
others not covered by this strategy.

A blocked region cannot unblock during the interpretation of a routine.

Adapted callsite transfer function The callsite transfer function marks a region as blocked
while it passes it to the callee, if and only if:

• The passed region is not the region the callee operates on (the region of Current in
the callee), and:

– The call is synchronous and the region is already blocked in the caller, or

– the call does not involve lock-passing and the region is locked in the caller.

Detection of critical calls Whenever a synchronous call on a blocked region is encoun-
tered during the interpretation of the target routine’s body, the analysis reports the detec-
tion of a deadlock.

Since this deadlock detection strategy produces must assertions, the programmer can
easily identify the source of a deadlock, or even better, prevent it from occurring entirely.
However, only a small amount of all potential deadlocks of this type are detected this way.
The recall is not very high.

If we would slightly relax the above conditions for a region to get blocked, we could
increase the number of deadlock alarms produced. For example, we could relax the condi-
tion that no lock-passing does happen while passing a region to the callee, to the condition
that there may be no lock-passing involved. In this case, the analysis conservatively cap-
tures many situations where there is a possibility of a deadlock occurring. But at the same
time it would become unsound (in addition to being incomplete anyway), because it may
produce false alarms. This is why we persist on the sound version.

5.6.2 Advanced Approach

An advanced approach has been theoretically developed as part of this thesis. However,
we did not implement it as it would introduce many new operations and data structures to
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our existing region analysis. Also, it was not the main task of the region analysis to detect
deadlocks. A full specification as well as implementation may be part of future work.

Enhanced State Graphs We propose the addition of two new directed edges that connect
abstract regions:

wait-now The presence of this edge means that the handler of the region at the start of
the edge will at some point synchronously call a routine on the region at the end of
the edge, and the handler of the target routine (i.e. the routine the state graph is
associated with) holds locks for both of these regions. In this situation, we know that
the handler of the region at the start already holds the lock it needs to issue a call.

wait-then The presence of this edge means that the handler of the region at the start of the
edge will at some point synchronously call a routine on the region at the end of the
edge, and the target routine does not hold a lock for the region at the end of the edge
(so it may or may not hold a lock for the routine at the start). In this situation, we
know that the handler of the region at the start must allocate a new private queue on
the request queue of the region at the end, which will be granted at some point in the
future with possible actions interleaving.

With these additions in place, we must adapt the callsite and return transfer functions.

Adapted Callsite Transfer Function If the issued call is synchronous, add a new wait-now
edge from the abstract region with the Current label to the abstract region on which the
target of the call resides, but only if both regions are different and separated.

Adapted Return Transfer Function Upon returning, we add all wait-now and wait-then
edges from the callee’s resulting state graph to the state graph of the caller, as long as both
abstract regions are also known to the caller. For the wait-now edges, we additionally do:
If the region at the end of the edge is not locked, we turn a wait-now edge into a wait-then
edge. Then, for all newly added edges and the existing wait-then edges in the caller’s state
graph, we check if they form a cycle that includes at least one newly added and one existing
edge. If so, we may have detected a deadlock and can report it.

The reason why this work is because the calls represented by the wait-then edges may be
overtaken by many other calls, including the ones represented by other wait-then or wait-
now edges. So depending on the actual scheduling of these calls, the detected cycle may
indeed be a true interdependency that leads to the deadlock. The reason why we do not
let the wait-now edges of the caller be part of a cycle is because we know that all of these
calls must happen before the ones collected by the callee and therefore can not be part of
a true interdependency. These edges are again meaningful when the caller itself returns to
its own caller.

Since this is possible future work, we will not go into all the detail of these transfer
functions or how the least upper bound operation must be adapted.



Chapter 6

Parallelism Visualizer

The implementation of the region analysis forms the basis of the parallelism visualizer, which
is a visual tool integrated into the research branch of EiffelStudio, also known as EVE. This
tool consists of a widget and a pop-up and is seamlessly integrated into the user experience
of EiffelStudio.

6.1 Goals

The goal is four-fold:

1. Provide the user with feedback about the possible region topologies encountered at
runtime for a given routine.

2. Visually classify routine calls inside a given routine according to lock-passing, asyn-
chrony and deadlocks, to provide the user with deeper knowledge about the parallel
nature of the program.

3. Let the user navigate through the program by following routine calls (referred to as
drilldown) and switching different contexts for a given routine.

4. Let the user influence the analysis results by refining a chosen context state graph
with a number of modifications.

6.2 Design

Navigation in EiffelStudio is a key element. There already exists a designated panel that
offers an interactive view of a selected routine’s body. Since our analysis offers results
also on a routine-level, we used a similar panel that shows a routine’s body with special
formatting.

We chose to use differently colored formal argument names (including Current) to in-
dicate the regions these entities reside on (see figure 6.1 for more details). If two entities
have the same color, they must reside on the same concrete region. If they have different
colors, they may be either on the same region, or on different ones. The user can open a
pop-up that will show which regions (represented as colors) are known to be separated
from each other.
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We do not color attribute names or local variable names, because the regions they are as-
signed to may change over the course of the routine body, and as such, would force the
region analysis to store state graphs at almost every program point, which is a drastic per-
formance decrease. Also, too many colors on the screen may distract the user from the
essential information.

#1

#2

#3 #4

#8

#6#7

#5

#9

Figure 6.1: Colors are generated via the color wheel1in such a way that a newly added color is as visually different
to all the colors before. In addition to the hue of the color, we also varied the saturation and lightness. The
algorithm works for an arbitrary number of colors. In practice however, not that many are simultaneously used.

The routine calls inside the currently viewed routine’s body are visually classified by
using different font styles. However, only the information about asynchrony is displayed
like this, because it is the most useful. Via a right-click on a routine name, the user is
presented with the remaining information about lock-passing, and an option to drilldown,
which switches the panel’s currently viewed routine to the called one. Already assigned
colors in the original routine are taken over to the new routine if they do indeed represent
the same concrete region.

Figure 6.2 shows the conception of the panel and the actions that may be applied to it.

The user can either switch a selected context, display it as a real graph (see figure 6.9),
or refine it. The last option opens a pop-up that shows the separateness of the regions and
offers actions for manipulation. Note that not all actions as described in section 5.5 are
offered, due to a lack of usefulness and intuition. Figure 6.3 illustrates the conception.

1Image retrieved from
http://www.thoth-adan.com/de/beitrag/die-welt-der-farben.html,
as per 2014/12/11

http://www.thoth-adan.com/de/beitrag/die-welt-der-farben.html
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Classification for routine {APPLICATION}.foo with context: X

foo (a_house: separate HOUSE; a_str: STRING)

local

l_house: HOUSE

do

a_house.some_command (a_str, a_house.some_query (Current))

a_house.some_other_command

l_house := a_house.query1.query2.query3

end

Context #1 refine

Steps done on startup/re-initialization:
• Given a written routine body in some class, 

retrieve the list of stored contexts.
• If a pre-selection is requested, select it, or

otherwise default to the first context.
• Format the text according to the newly selected

context state graph.

Steps done on context switch:
• Re-format the text according to the newly

selected context state graph.

Steps done on «refine»:
• Open the popup with the current context state

graph as input.

Steps done on «drilldown» (activated via right-click):
• Re-initialize the panel with the clicked routine and

the selected context as pre-selection.

Legend:
synchronous
asynchronous
potential deadlock

Figure 6.2: conception of the parallelism visualizer’s panel

6.3 Implementation

Since the parallelism visualizer is an add-on for EVE, it is built on top of the existing ar-
chitecture, which in turn makes heavy use of the Eiffel Vision 22 GUI library. Many compo-
nents of the visualizer are directly programmed against the API of Eiffel Vision, which is
well documented and easy to use.

The visualization of a state graph as a real graph makes use of the DOT program, which
is part of the freely available graphviz3 package. DOT turns a plain text graph description
into a rendered image with optimized layout of nodes and edges. Figure 6.9 shows two
examples.

6.4 Sample Usage

To demonstrate the parallelism visualizer’s usefulness, we go over a small real-world ex-
ample. Listings 6.1 and 6.2 contain the source code of a basic SCOOP program, and fig-
ure 6.4 shows the heap topology thereof.

In the parallel visualizer’s panel, we can click on the “kick on” button, which identifies
the root procedure – feature {APPLICATION}.make – and starts the region analysis on it
using a default state graph as the context. Figure 6.5 shows the state of the panel right after
the region analysis converged. By right clicking on the setup feature call name, the user
can choose to “drilldown” in order to show setup’s body under the context given by the
call. In the menu, it can also be seen that this call is synchronous and causes lock-passing,
which is the case for any non-separate call.

In figure 6.6, we can see the routine setup. The formal argument a_logger is high-
lighted in green, indicating the region it is located on. Note that in figure 6.4, we used the
same colors as the ones used by the tool.

2See https://docs.eiffel.com/book/solutions/eiffelvision-2, as retrieved on 2014/12/16
3See http://www.graphviz.org/, as retrieved on 2014/12/16

https://docs.eiffel.com/book/solutions/eiffelvision-2
http://www.graphviz.org/
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Listing 6.1: Eiffel: real-world SCOOP sample program / part 1

1 class
2 APPLICATION
3
4 inherit
5 ARGUMENTS
6
7 create
8 make
9

10 feature
11 make
12 do
13 create logger
14 setup (logger)
15 end
16
17 setup (a_logger: separate LOGGER)
18 −− I n i t i a l i z e the logger and s t a r t the cooking .
19 local
20 l_cook: separate COOK
21 do
22 a_logger.init
23 create l_cook
24 run (l_cook)
25 end
26
27 run (a_cook: separate COOK)
28 −− Prepare i n g r e d i e n t s and l e t the cook use them .
29 local
30 l_spaghetti: SPAGHETTI
31 l_sauce: SAUCE
32 do
33 create l_spaghetti
34 create l_sauce
35 a_cook.work (l_spaghetti, l_sauce, logger)
36 end
37
38 feature
39 logger: separate LOGGER
40
41 end



Parallelism Visualizer - Sample Usage 79

Listing 6.2: Eiffel: real-world SCOOP sample program / part 2

1 class
2 LOGGER
3
4 feature
5 init do
6 −− I n i t i a l i z e
7 end
8
9 log do

10 −− Log something .
11 end
12 end
13
14 ...
15
16 class
17 COOK
18
19 feature
20 work (a_spaghetti: separate SPAGHETTI; a_sauce: separate SAUCE;

a_logger: separate LOGGER)
21 do
22 −− Cook the meal .
23 a_logger.log
24 end
25
26 end
27
28 ...
29
30 class SAUCE end
31
32 ...
33
34 class SPAGHETTI end
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Refine Context #1 X

Regions:

Actions:





merge

separate

OK

Steps done on startup:
• Make a fresh copy of the given context state graph.
• Initialize the «Regions» view.

Steps done on «X»:
• Close the popup and do nothing else.

Steps done on «OK»:
• Save the resulting state graph as new context, if not 

already present.
• If a new context was created, run the region analysis

with it again (do not drop existing results).
• Close the popup, re-initialize the panel with the 

resulting context as pre-selection.

Steps done on «merge»:
• If exactly two regions are selected, merge them and

re-initialize the «Regions» view.

Steps done on «separate»:
• If exactly two regions are selected, separate them

and re-initialize the «Regions» view.

Steps done on «lock»:
• Mark each selected region locked.

lock

Figure 6.3: conception of the pop-up, where the user can select colored regions and an action to perform on them

Drilling down into feature call run, the user sees the panel as shown in figure 6.7, where
another color (blue) is used for the region a_cook is located on. The interesting part here
is the procedure call a_cook.work, which, from a static point of view, is separate and does
not involve any lock-passing. However, the tool gives the insight that the call is indeed
synchronous because of some hidden lock-passing going on. The actual argument logger
– which is an attribute of APPLICATION – was already locked by the processor executing
routines make and setup. By viewing the body of run in isolation, this situation is not
identifiable. The region analysis helps in this case, because it works inter-procedurally.

Finally, if the user drills down into work, he can see that both separate arguments are –
in this particular context – located on the same region, which again is not statically deter-
minable by just looking at the source code of routine work.
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LOGGER

COOK

SPAGHETTI

SAUCE

APPLICATION

logger

Figure 6.4: runtime heap topology of a real-world SCOOP program

Figure 6.5: The user can follow routine calls by choosing “drilldown” in the context-menu.

Figure 6.6: Only formal argument names and Current are highlighted with a region color, mainly because they
remain constant throughout the routine’s body.
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Figure 6.7: The selected separate call, work, is found the be synchronous, because it triggers lock-passing.

Figure 6.8: The first two formal arguments are located on the same region (colored red) in this particular context
(#1).

Figure 6.9: left: context state graph with which routine run gets called; right: context state graph with which
routine work gets called; These graphs show up in a pop-up when the user pressed the “show graph” button in
the panel.



Chapter 7

Conclusion

In this thesis, we have designed an original static analysis for SCOOP programs, which
helps programmers get a better understanding of the parallel nature of their code. We
specified the analysis formally and implemented it in EVE, the research branch of Eiffel-
Studio. In addition, we developed a visual tool called parallelism visualizer in EVE that
enables programmers to interact with the results of the analysis, and refine it if necessary.

7.1 Summary

SCOOP’s type system alone is not powerful enough to provide a fine level of control over
aspects like entity-to-processor mappings. Also, the runtime system does a rather obscure
job of avoiding potential deadlocks via a mechanism known as lock-passing, which has
the downside of reducing the degree of parallelism by turning asynchronous calls into
synchronous ones. The goal of this thesis was to develop a solution to this problem in the
form of an interactive visual tool that makes use of an underlying static code analysis.

As a first step, we specified a simplified version of the SCOOP programming language,
in order to lay a simple but still realistic foundation for the formal description of the region
analysis, an inter-procedural abstract interpretation following an embellished monotone
framework.

We formalized the region analysis by first defining the concrete and abstract domains,
the representation function, and the associated concretization and abstraction functions.
We then introduced state graphs as contexts and developed the overall inter-procedural
framework while carefully balancing performance and accuracy. We showed that the ab-
stract domain is a complete lattice, and continued with the various transfer functions that
specify what effects program expressions and statements have to the elements of the anal-
ysis.

Following the theoretical groundwork, we implemented the region analysis as a library
in EVE, working not just on the simplified SCOOP language, but rather on the real lan-
guage with many more features to cope with. In order to improve the overall performance,
we designed the data type of state graphs by heavily deviating from the mathematical
objects, in particular by giving abstract regions their own identity in the form of natural
numbers that are used as a short-form representation in various related data structures. As
an additional goal, we also integrated a simple deadlock detection scheme directly into the
existing framework.
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We made the region analysis’ findings accessible via the parallelism visualizer, a visual
tool integrated into the graphical user interface of EVE, that highlights entity names in the
program text with colors associated to processor regions, and gives programmers options
to navigate along routine calls. There is an option to show an abstract heap topology as a
graph, and the ability to refine these topologies as desired.

7.2 Future Work

The following list contains areas of potential future work.

Support for agents Agents are delayed operations in Eiffel. They are essentially objects
that store some routine to call, alongside some actual arguments (if any) to pass. An
agent’s creation and application are two distinct events. In SCOOP programs, special
care must be taken, since agents can only be called when the processor region of the
associated target object is locked (otherwise, we have a traitor1). The region analysis
does not yet support agents explicitly, because it treats them the same way as any
other object. In particular, whenever call is invoked on an agent, some external code
gets executed, which is not tracked by the region analysis. However, since agents are
dynamic objects, it would require some other form of analysis to determine which
routine gets actually called at runtime.

Recursive calls There is still room for improvements when it comes to direct or indirect
recursive calls. The current solution fits well into the analysis’ overall framework,
but is less accurate than possible. Improving the transfer functions for these calls
may require the specification and implementation of preprocessing phases. For the
sake of accuracy, this may be worth investigating.

Improved alias analysis The region analysis is conservative with respect to potential ob-
ject aliases. It resets a state graph’s attribute labels whenever there is a possibility that
two labels may refer to the same object at runtime. Also, only one level of attributes
is considered for every controlled label. This limited horizon could be extended, but
the benefits decrease drastically with every additional level of attributes introduced,
since the potential for aliases increases exponentially. The problem of handling side
effects is an entirely separate research area. Some approaches focus on extending the
program specification, like [2]. Other approaches are concerned with the use of ded-
icated static analyses, such as [4], which might be a candidate for the region analysis
to cooperate with.

Advanced deadlock detection As described in section 5.6.2, we partly specified a more
advanced approach for detecting some forms of deadlocks. These ideas can be in-
vestigated more thoroughly, and integrated into the region analysis, if they are not
worth an analysis on their own.

Tool improvements The parallelism visualizer is not yet tightly integrated into EVE. There
are several opportunities to make the look-and-feel more closely resemble the rest of
EVE’s graphical user interface.

1Agents that are callable on a non-locked processor region.
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