
A Mac OS X EiffelVision port
based on a generated Cocoa

wrapper

Bachelor Thesis

Emanuele Rudel
ETH Zurich

erudel@student.ethz.ch

October, 2011 - February, 2012

Supervised by:
Benjamin Morandi
Prof. Bertrand Meyer

Abstract

EiffelVision 2 is a framework for developing graphical user interfaces with the
Eiffel programming language. Despite being a cross-platform library, a native
implementation for the Mac platform does not exist yet.

The goal of this project is to develop the basic functionalities of EiffelVision
2 by identifying and applying recurrent patterns to map the widgets from Eif-
felVision 2 to Cocoa. The port relies on an existing Cocoa wrapper framework.

Acknowledgments

I would like to thank my supervisor Benjamin Morandi for the precious
and continuous feedback received throughout the research. I would also like
to extend my deepest gratitude to Prof. Bertrand Meyer for giving me the
opportunity to work on this exciting topic and to Emmanuel Stapf from Eiffel
Software for the technical help.

Last but not least, thanks to my family and friends who supported me during
the whole time.

Contents

1 Introduction 5

2 Related work 6

3 Background 7
3.1 Port Architecture . 7
3.2 AutoLayout . 8
3.3 Cocoa Wrapper Callbacks . 9

4 Cocoa EiffelVision Implementation 11
4.1 Events Cluster . 11
4.2 Kernel Cluster . 12
4.3 Widgets Cluster . 14

4.3.1 Containers Cluster . 14
4.3.2 Primitives Cluster . 17
4.3.3 Mechanisms . 17

4.4 Items Cluster . 22
4.5 Support Cluster . 22
4.6 Properties Cluster . 22
4.7 Platform-specific Classes . 23

5 Guides 24
5.1 Developer Guide . 24
5.2 User Guide . 25

6 Conclusion 27

A Development Status 28
A.1 Kernel Cluster . 28
A.2 Widgets - Container Cluster . 30
A.3 Widgets - Dialogs . 34
A.4 Widgets - Primitive Cluster . 34

A.4.1 Widgets - Other Classes 40
A.5 Items Cluster . 41
A.6 Properties Cluster . 43
A.7 Support Cluster . 44

4

Chapter 1

Introduction

EiffelVision 21 is the main graphical user interface library available for the
Eiffel programming language. It runs on Windows and all major versions of
Unix, including Mac OS X. The Unix version of EiffelVision is implemented
using GTK+2, a multi-platform toolkit written in C. This port runs natively
on the X window system. Since X is not the default window system of Mac
OS X, EiffelVision runs on a simulator of the X environment called X11. The
disadvantage of this solution is that the user interface is not consistent with the
rest of the operating system.

Cocoa is a set of object-oriented frameworks for the Mac OS X and is the
main application environment for this operating system. The purpose of this
project is to provide an implementation of EiffelVision based on Cocoa. The
port significantly relies on the Cocoa AppKit framework, which contains all
the graphical elements to build a native Mac OS X application. This enables
applications to run natively on Mac OS X without the aid of X11.

This report presents the strategies adopted to map the widgets implemented
in EiffelVision to the ones available in the AppKit library. It also discusses
possible extensions, workarounds and the issues to achieve a complete widgets
mapping.

1Referred to as EiffelVision throughout the document
2GTK+ is an acronym for GIMP Toolkit. http://www.gtk.org/

5

http://www.gtk.org/

Chapter 2

Related work

In 2009 Daniel Furrer made an attempt to port the EiffelVision library to Mac
OS X [2]. He developed the Cocoa wrapper libraries and, relying on them, a
part of the EiffelVision framework, which was used as a starting point for this
work. Furrer’s EiffelVision implementation and the one of this work, from now
on, are referred to as the legacy port and the current port. Although Cocoa
frameworks were automatically wrapped in Eiffel, manual adjustments were
performed after the code generation. The adjustments involved adding generics
(not present in Objective-C) and adding contracts that could not be inferred
automatically because of a lack of specifications. These enhancements do yield
more robust code; however, they turn out to be time-consuming operations that
in the end do not heavily affect the EiffelVision implementation. Moreover, the
approach is not flexible as it needs to be performed to every new class added to
the system and each time the APIs are updated.

Another project, developed in 2010 by Matteo Cortonesi, focuses on the
automatic generation of Eiffel wrappers for Objective-C libraries [5]. The main
features of the generator are:

• There are no manual adjustments, i.e. the wrapped Objective-C libraries
do not have contracts and generics.

• Delegates and protocols are supported.

• A robust memory management is present. At the time of writing, no
memory leaks have been observed.

The first feature makes this tool the best choice to build a Cocoa wrapper in
Eiffel. Apple releases a new operating systems about once every two years. Each
release introduces new APIs, deprecates old ones, and modifies existing ones.
For that reason it is essential that the Cocoa wrapper can be quickly updated.

6

Chapter 3

Background

3.1 Port Architecture

Porting EiffelVision to Mac OS X is a procedure that requires a well-structured
foundation. The port is divided into three layers which make the interaction
between EiffelVision and Cocoa possible:

1. The first and lowest layer connects the Eiffel and Objective-C program-
ming languages. It allows to reference an object from the Cocoa to the Eif-
fel environment and vice versa. Moreover, this layer takes care of memory
management (there is no garbage collector in Objective-C) and callbacks
from Objective-C to Eiffel.

2. The second layer wraps the Cocoa libraries in Eiffel. This layer is gener-
ated using an automatic library converter [5]. Given a set of Objective-C
frameworks as input, the converter outputs a set of Eiffel classes that wrap
the Objective-C classes of the frameworks.

3. The third layer implements the Mac OS X version of EiffelVision. The
previous two layers, also called abstraction layers, hide the implementation
details of interfacing Cocoa with Eiffel. Thanks to this layer architecture,
the port can use the Cocoa libraries as if they were natively written in
Eiffel. The work of this thesis focuses on the third layer and relies on the
already available abstraction layers.

EiffelVision organizes its classes in a set of clusters according to their roles
and functionalities [3]. The next chapter describes for each cluster the similar-
ities and differences between Cocoa and EiffelVision, along with the strategies
adopted to bridge the gap between the two worlds.

The port should satisfy the two following requirements:

1. A widget must reflect the state specified by the application. This means
that a button, for example, is displayed with the title, color, position

7

Background - AutoLayout 8

and size that EiffelVision assigned to it. EiffelVision exploits the bridge
pattern to support multiple platforms, hence the set of possible features
applicable to a widget is defined by an interface class. For each feature of
the interface class, an equivalent feature — or the closest possible to an
equivalent — in the Cocoa frameworks must be called.

2. A widget must notify the application of events triggered by the user.
Events are triggered in the Cocoa environment using three distinct meth-
ods and must be forwarded to the EiffelVision widget, which deals with
events using action sequences. The corresponding techniques are described
in Section 4.1.

3.2 AutoLayout

AutoLayout is an automatic layout system that controls the appearance of ob-
jects in the user interface. AutoLayout has been introduced in Mac OS X 10.7
and it is not complete yet. The current Mac OS X is in fact in a transitional
state from the old model (not discussed in this thesis) to AutoLayout. Even
though it is not always possible to obtain the same exact behavior that EiffelVi-
sion offers to other platforms, future releases of Mac OS X are likely to expand
the AutoLayout APIs and fill these gaps.

The idea behind automatic layout is to encode simple human statements in
layout constraints. A layout constraint expresses a linear relationship between
two widgets — called views in the Cocoa environment.

Cocoa offers a convenient way to express constraints using ASCII art and
allows developers to define complex layouts with just a few lines of code. ASCII
art has the great advantage over plain code of being extremely easy to read for
humans. The statement “this text field should be horizontally aligned to the
right of this button and have a fixed distance of 7 pixels from it” can be written
as:

H:[button]-7-[text_field]

AutoLayout also allows to bind the size of two or more widgets. The next
layout constraint expresses the same statement above, and additionally requires
that the text field and the button have the same width:

H:[button]-7-[text_field(button)]

A container is represented in ASCII using the pipe character. In AutoLayout
the position of a widget is defined by the padding between the widget and its
container in the following way:

H:|-20-[button] -100|

V:|-14-[button] -100|

Once constraints have been assigned to a container, the Cocoa layout engine
takes care of displaying and resizing the widgets while respecting all the given

Background - Cocoa Wrapper Callbacks 9

constraints. Since adding and removing constraints are expensive operations,
Cocoa allows to change a subset of the properties of a layout constraint after
the constraint’s creation. Therefore, whenever possible, the port modifies the
layout constraint’s properties instead of replacing the whole constraint.

Constraints are a set of linear equations and for that reason it is important
that they are neither ambiguous (underspecified) nor unsatisfiable (overdeter-
mined). In EiffelVision it is not always possible to define an unambiguous set
of constraints (e.g. in Section 4.3.1).

In AutoLayout the minimum size of a widget is computed taking into account
all the constraint it holds and the subviews in the widget, if any. On a widget
that inherits from NS_VIEW, the fitting_size method determines the minimum
size of the widget.

3.3 Cocoa Wrapper Callbacks

A recurring situation in the port is the need to subclass and redefine methods of a
wrapped Cocoa class. The goal is to obtain, at runtime, an instance of the Cocoa
class with the new functionalities implemented in the port, i.e., implemented
using the Eiffel language. Without any adjustments, it is impossible for the
Objective-C object to call the Eiffel feature because the object does not know the
address of the redefined feature. A simple solution to this problem is proposed
in [5] and it requires three steps:

• In the inheritance clause of the wrapped Cocoa class, say NS_A_CLASS,
redefine the make feature and the feature that needs to be redefined, e.g.,
do_something:

class MY_CLASS

inherit

NS_A_CLASS

redefine

make ,

do_something

end

[...]

end

• Implement the make procedure as follows:

make

do

add_objc_callback ("doSomething", agent

do_something)

Precursor

end

• Implement do_something in the subclass of NS_A_CLASS.

Background - Cocoa Wrapper Callbacks 10

The add_objc_callback feature intercepts all the Objective-C calls to doSomething

and redirects them to the redefined do_something feature. This process is called
hijacking and is described thoroughly in Cortonesi’s work [5]. Using this ap-
proach, it is also possible to hijack calls to Objective-C methods that do not
actually exist. On the other hand, the agent to which the call is hijacked must
be defined.

Chapter 4

Cocoa EiffelVision
Implementation

The basis for this work is a combination of the legacy EiffelVision port [2] and the
wrapper for the Mac OS X 10.7 libraries generated with the automatic library
converter [5]. To make the legacy port compatible with the newly generated
Cocoa wrapper, the following basic changes had to be performed:

• Replacement of deprecated (obsolete) methods since the legacy port is
based on the Mac OS X 10.6 libraries.

• Renaming of methods. Cortonesi’s report briefly explains the naming
conventions adopted and why they are important.

• Renaming of inheritance clauses for the classes that use categories or pro-
tocols.

• Removal of generics in arrays and other Cocoa containers.

The remainder of this chapter describes the continuation of the development
based on the new Cocoa wrapper.

4.1 Events Cluster

The EiffelVision library supports a wide range of user initiated events such
as single and double mouse clicks, pick and drop, dragging operations and
keystrokes. Event handling is elegantly implemented using agents: each event
keeps a list of agents that take a number of parameters such as the location on
the screen where the event happened. Whenever an event is triggered, EiffelVi-
sion traverses the list and calls the agents.

Cocoa has at least three different ways of handling events. In the first
method, a widget inherits from a class that responds to events (NS_RESPONDER)

11

Cocoa EiffelVision Implementation - Kernel Cluster 12

and implements its custom behavior by redefining those features that capture
events of interest. This method is mainly adopted to intercept mouse and key-
board events.

The second one, available only to a subset of classes, is similar to the Eif-
felVision action sequences, with the difference that a widget can subscribe at
most one action per event. The mapping from EiffelVision to Cocoa of this
method is described in Section 4.3.3.

In the third method, an object shifts the responsibility to a delegate object
which is capable of responding to a set of events.

The second method and third method are usually adopted when responding
to one and multiple events, respectively. Consequently, depending on the widget
being implemented, the method that fits best is chosen.

4.2 Kernel Cluster

The kernel cluster lays the foundations of the EiffelVision framework. The main
class of the kernel cluster is the application class, which provides the starting
point of all EiffelVision applications. Although the legacy port already provided
an implementation, there was a major issue with handling modal windows. In
order to understand and fix the problem, it is important to recall what the
application class does. The main job of the application class is to run a possibly
endless loop that wait for events. As soon as an event is detected, the application
forwards the event to the appropriate widget, i.e., the widget the user clicked
on. A Cocoa application object (an instance of NS_APPLICATION) receives events
from the window server and processes them one at a time. If the main loop is
busy handling an event, other events arriving from the window server are stored
in an event queue and processed later.

Window Server
event

Event
Event
Event

Event Queue

Main Loop
sendEvent:event

Widget

Figure 4.1: Main loop of the NS APPLICATION class

The implementation of the EiffelVision application main loop in the legacy
port is shown in Listing 4.1.

Cocoa EiffelVision Implementation - Kernel Cluster 13

Listing 4.1: Eiffel : EV APPLICATION IMP main loop: legacy implementation

1 process_underlying_toolkit_event_queue

2 −− Proce s s Cocoa event s
3 local

4 event: detachable NS_EVENT

5 l_loop_pool: NS_AUTORELEASE_POOL

6 do

7 create l_loop_pool.make

8 from

9 event := next_event ({ NS_APPLICATION_API }.

ns_any_event_mask , Void , default_run_loop_mode ,

true)

10 until

11 event = Void

12 loop

13 send_event (event)

14 update_windows

15 event := next_event ({ NS_APPLICATION_API }.

ns_any_event_mask , Void , default_run_loop_mode ,

true)

16 end

17 l_loop_pool.release

18 end

The legacy port had the issue that the application could not capture events
triggered outside modal windows because in Cocoa modal windows have their
own main loops. In other words, the application was stuck in the main loop
of the last shown modal window. As the name suggests, the feature’s task in
Listing 4.1 is to fetch events from the event queue and forward them to the
EiffelVision widget. The code, however, just receives events from the Cocoa
event queue and forwards them (line 13) to other Cocoa objects, which will
later notify the corresponding EiffelVision widgets.

The mistake in Listing 4.1 of the old port is trying to mimic the Cocoa
behavior of the NS_APPLICATION run method in the EiffelVision environment in-
stead of the other way around. The current port is hence just calling run on
the Cocoa application object and thus solves the problem of handling modal
windows.

Listing 4.2: Eiffel : Application main loop: new implementation

1 process_underlying_toolkit_event_queue

2 −− Proce s s Cocoa event s
3 do

4 application.run

5 end

6 [...]

7 application: NS_APPLICATION

Cocoa EiffelVision Implementation - Widgets Cluster 14

4.3 Widgets Cluster

The widgets cluster contains classes used to create objects the users can interact
with. A widget is either a container — an object that can contain other widgets
— or a primitive; a primitive cannot container other widgets. Primitives are
used for the communication between the user and the application.

4.3.1 Containers Cluster

Containers play a major role in this thesis. The legacy port relies on a two-step
mechanism triggered upon insertion or deletion of a widget into a container:

1. The container recursively computes the size of its widgets.

2. Should a widget have a different size compared to the previous one, it
notifies the parent container which in turn adjusts its size.

The drawbacks of this mechanism are:

• Containers look different and may have different ways of computing the
size necessary to display their children. Even primitives may have their
own way of computing the widget’s size. Consequently, the code is scat-
tered all over the EiffelVision port.

• The method is not efficient. Consider for example the case in which the
user resizes a window. Each time the window’s boundary changes, the
widgets in the whole hierarchy have to recompute the size needed to be
properly displayed. Of course the proposed improvement is going to have
to perform the same computations when resizing the window; the differ-
ence is that the latter defers the task to the Cocoa frameworks, which
highly optimize computations with respect to the legacy port.

• Changes are applied lazily, i.e., the changes are postponed until the wid-
gets are about to be displayed to the user. Although in the end the
outcome is correct, it adds unnecessary complexity to the overall process.

• In some cases, the legacy port needs the widget to be in a container to
compute the height properly (see Section 4.3.3). This requirement is not
always satisfied because the height’s computation might be triggered be-
fore the widget is inserted into a container.

The following subsections describe implementations of different types of con-
tainers to overcome those limitations. To explain the solution adopted to handle
the size of containers it is necessary to introduce AutoLayout (Cocoa automatic
layout constraints) [1]. A brief overview of AutoLayout is given in Section 3.2.

Cocoa EiffelVision Implementation - Widgets Cluster 15

Vertical and Horizontal Boxes

Vertical and horizontal boxes are containers that stack widgets from top to
bottom and from left to right, respectively. Widgets expand by default to fill
the available space. Suppose that four widgets wi with zero padding should be
inserted into a box. The corresponding layout constraints (actually 8 combined
in one ASCII art) are shown in Listing 4.3.

Listing 4.3: Layout constraints for horizontal and vertical boxes

V:|[w_1]-0-[w_2(w_1)]-0-[w_3(w_1)]-0-[w_4(w_1)]|

H:|[w_1]-0-[w_2(w_1)]-0-[w_3(w_1)]-0-[w_4(w_1)]|

Applying layout constraints is a much more involved process than just defin-
ing the above ASCII layout for a number of different reasons:

• Widgets can only be inserted one at a time and can be assigned to an
arbitrary position.

• Widgets may be removed. If the removed widget is referenced in con-
straints (e.g. w 1 is removed in Listing 4.3) it is necessary to reflect the
changes.

• Some widgets may not be resizable. This causes a problem with verti-
cal boxes because widgets such as buttons and text fields have a fixed
height. In this case, the Unix and Windows EiffelVision versions leave
a padding of equal size between widgets of fixed height. This behavior
cannot be achieved in Cocoa because the layout engine does not allow
to resize paddings equally (only widgets can be bound to have the same
size, as explained in Section 3.2). In the current port if a widget cannot
change its height, then the height of its container is fixed too. It suffices
to have one resizable widget into a container to resize the container itself,
as shown in Figure 4.2.

Cells, Frames, Notebooks and Windows

Cells, frames, notebooks and windows are simple containers because they can
display at most one item at a time. These widgets have the same layout con-
straints even if their graphical representation differ. Notebooks are widgets that
can hold multiple widgets, each assigned to one tab; only one item at a time is
displayed on the screen. The constraints to satisfy for an item inserted in one
of the first three type of containers are to stick to the container’s borders:

V:|-border -[item]-border -| −− the border i s 0 i f
H:|-border -[item]-border -| −− not s e t or not changeab le

Like cells, frames and notebooks, windows can hold at most one item. Yet
they differ from them because in the actual implementation windows also al-
locate space for an upper and a lower bar which can neither be removed nor
replaced. The layout constraints to satisfy become:

Cocoa EiffelVision Implementation - Widgets Cluster 16

Figure 4.2: An example of a vertical box layout. The window’s height can be
resized since it has a widget (a frame) whose height is not fixed.

V:|-border -[upper_bar][item][lower_bar]-border -|

H:|-border -[item]-border -|

Viewports and Scrollable Areas

Viewports and scrollable areas are containers that may hold one widget whose
size is bigger than the container itself. While viewports simply clip the invisible
part of the item they contain, scrollable areas allow the user to access the whole
widget by providing horizontal and vertical scroll bars.

The scrollable area is a widget for which each feature has a direct Cocoa
equivalent. The scrollable area widget corresponds to the NSScrollView class.

There is no need to apply layout constraints to the item contained in one of
the two widgets because viewports and scrollable areas automatically clip the
item if it is bigger than the container.

Split Areas

Split areas are containers that give users the possibility to adjust the size of two
widgets stacked either horizontally or vertically. Such behavior has the benefit
of letting users decide on which widget to focus. They are often used to compare
two similar resources, e.g., differencing and merging tools.

Cocoa offers a NSSplitView class which is a generalization of the EiffelVision
split area, as it can contain more than two widgets. Each item of the split area
must stick to the borders of its container (where the splitter is also considered
to be a border) and thus the constraints to apply are:

Cocoa EiffelVision Implementation - Widgets Cluster 17

V:|-0-[item]-0-|

H:|-0-[item]-0-|

Fixed Containers

Fixed containers are the natural equivalent of the Cocoa NSView class. In both
Cocoa and EiffelVision, widgets can be positioned anywhere inside the container
and can also overlap (in which case clipping occurs). The visibility order of
widgets is determined by the sequence in which they are added to the container,
i.e., the last item will be the top-most widget. A widget does not expand to fill
the available space because it could potentially cover widgets behind it.

The constraints to define the position and size of an element are listed below:

V:|-y_offset -[item(height)]

H:|-x_offset -[item(width)]

4.3.2 Primitives Cluster

Primitives are widgets users typically interact with; they do not contain other
widgets, although certain primitives allow to reference other items (e.g. a list
may contain list items). Some primitives share common patterns to achieve a
mapping of the functionalities from EiffelVision to Cocoa. These patterns are
described in the next section because even though they are mostly used in the
primitive cluster, other type of widgets can take advantage of them too.

The complete list of the primitives’ implementation status can be found in
Appendix A.

4.3.3 Mechanisms

This section describes the different implementation solutions adopted through-
out the EiffelVision port to map the widgets to Cocoa. Each solution is accom-
panied with a practical example of how it has been employed in the port. At the
end of this section, a summary shows which widgets adopted which strategies.

Target-Action Mechanism

The target-action mechanism was briefly mentioned in Section 4.1 as a common
Cocoa pattern to respond to user actions such as clicking on a button. The
target-action mechanism is implemented in NS_CONTROL and its descendants. In
the port, this mechanism is used to respond to a single event per class. A Cocoa
widget that wants to execute an action upon user invocation must specify both
a target and an action (the feature) to be called on the target. In the port, the
target-action mechanism is typically adopted subclassing the wrapped Cocoa
class as shown below in the simplified button implementation.

Cocoa EiffelVision Implementation - Widgets Cluster 18

Listing 4.4: Eiffel : Target-action mechanism in button implementation

1 class EV_BUTTON_IMP

2
3 inherit

4 [...]

5 NS_BUTTON

6 redefine

7 make

8 end

9
10 create

11 make

12
13 feature {NONE} −− I n i t i a l i z a t i o n
14
15 make

16 do

17 add_objc_callback ("did_press_button:", agent

did_press_button)

18 Precursor {NS_BUTTON}

19 set_target_ (Current)

20 set_action_ (create {OBJC_SELECTOR }. make_with_name("

did_press_button:"))

21 [...]

22 end

23
24 did_press_button (sender: NS_BUTTON)

25 do

26 select_actions.call ([])

27 end

28 end

In the creation procedure of Listing 4.4, an instance of EV_BUTTON_IMP takes
the responsibility of responding to user actions. While Cocoa requires to spec-
ify both a target and an action to apply on the target (the latter known as
selector), Eiffel just uses the notion of agents. The target is thus set to Current

through set_target_ and the action to did_press_button through set_action_.
Cocoa will call did_press_button whenever the user clicks on the button and
this feature then triggers the select_actions action sequence.

Data Sources and Delegates

In Cocoa, data sources and delegates are objects that help another object — typ-
ically a widget — controlling the data model and responding to events, respec-
tively. Data sources and delegates are required to implement a set of methods
that Cocoa frameworks are automatically going to call whenever it is needed.
This is also known as the Hollywood principle “don’t call us, we will call you”.

Data sources act as controllers between the application models and the
graphical representation of these models. Consider, for example, the process
of populating an EV_LIST in EiffelVision. The data and the Cocoa widget are

Cocoa EiffelVision Implementation - Widgets Cluster 19

already available in the form of a sequence of list items and a NS_TABLE_VIEW.
The data source only asks to specify the number of rows to be displayed and
the object (the list item) associated to each row. It then automatically takes
care of displaying and redrawing the list’s content. The widget still needs to
be manually updated by calling reload data as changes to the list’s model are
applied; Cocoa then calls the data source’s methods and applies the changes
accordingly.

Although custom drawing for a list item is achievable, it is not needed for
the EiffelVision port.

Listing 4.5 illustrates how to setup the delegate and the data source of a
NS_TABLE_VIEW. The setup only consists of specifying which object, at runtime,
implements the data source and the delegate. In the same way as the target-
action mechanism, delegates and data sources have to hijack the Objective-C
methods they are required to implement.

Listing 4.5: Eiffel : List implementation: delegate and data source setup

1 class EV_LIST_IMP

2 inherit

3 NS_TABLE_VIEW_DELEGATE_PROTOCOL

4 NS_TABLE_VIEW_DATA_SOURCE_PROTOCOL

5 [...]

6 feature {NONE} −− I n i t i a l i z a t i o n
7 make

8 do

9 add_objc_callback ("numberOfRowsInTableView:", agent

number_of_rows_in_table_view_)

10 add_objc_callback ("tableView:

objectValueForTableColumn:row:", agent

table_view__object_value_for_table_column__row_)

11 add_objc_callback ("tableViewSelectionDidChange:",

agent table_view_selection_did_change_)

12 [...]

13 table_view.set_delegate_ (Current)

14 table_view.set_data_source_ (Current)

15 end

16
17 table_view: NS_TABLE_VIEW

18 end

As mentioned before, the class EV_LIST_IMP must specify who is in charge to
respond to the data source and delegate protocol calls. In this case it is Current
because it provides the data model to be displayed on the screen.

Once the setup is complete, the data source and the delegate (which happen
to be the in the same class in this case) implement the following features:

feature −− Data Source

number_of_rows_in_table_view_ (a_table_view:NS_TABLE_VIEW)

: INTEGER_64

do

Result := count

Cocoa EiffelVision Implementation - Widgets Cluster 20

end

table_view__object_value_for_table_column__row_ (

a_table_view: detachable NS_TABLE_VIEW; a_table_column:

detachable NS_TABLE_COLUMN; a_row: INTEGER_64):

detachable NS_OBJECT

do

Result := create {NS_STRING }. make_with_eiffel_string (

i_th (a_row.as_integer_32 + 1).text)

end

feature −− Delegate

table_view_selection_did_change_ (a_notification:

NS_NOTIFICATION)

−− The s e l e c t i o n o f the t ab l e view changed
do

select_actions.call ([])

if attached selected_item as l_item then

l_item.select_actions.call ([])

end

end

The first feature (line 3) tells the table view a_table_view to instantiate a
number of rows equal to the number of items in the list. The second feature
(line 8) returns the object associated to the row at index a_row. The value must
conform to NS_OBJECT and thus instead of the EV_LIST_ITEM object only its text
content as a NS_STRING is returned. The table view is smart enough to create a
graphical element containing the text specified for each row. In fact, there is no
drawing code involved in the list implementation.

The last feature, table_view_selection_did_change, is triggered when the
selected row in the table view changed. It then calls the EiffelVision action
sequences for both the list and the list item.

Flipped View

Cocoa is based on a classic Cartesian coordinates system with the origin (0, 0)
placed on the bottom-left of the plane, while in EiffelVision the origin lies on
the upper-left corner. In the legacy port the following simple coordinate trans-
formation was applied to convert EiffelVision coordinates to Cocoa ones:

view.xcocoa = view.xvision (4.1)

view.ycocoa = view.superview.height− view.height− view.yvision (4.2)

An issue that often arises using Equation 4.2 is that the view may not have
been added to a container yet and thus its superview attribute is void. In that
case, it is not possible to determine the correct value for the y-coordinate of the
Cocoa widget. Furthermore, the above equations do not hold for widgets that

Cocoa EiffelVision Implementation - Widgets Cluster 21

have graphical elements on the borders like frames and notebooks because they
require even more sophisticated coordinate transformations.

A simpler and more robust approach is to flip the Cocoa coordinates —
and therefore avoid to compute the coordinates transformation — by subclass-
ing the NS_VIEW class and redefining the origin’s location. Listing 4.6 shows
EV_FLIPPED_VIEW, a class identical to NS_VIEW except for the origin’s location.

Listing 4.6: Eiffel : Implementation of EV FLIPPED VIEW

1 class EV_FLIPPED_VIEW

2 inherit

3 NS_VIEW

4 redefine

5 make ,

6 is_flipped

7 end

8
9 feature {NONE} −− I n i t i a l i z a t i o n

10 make

11 add_objc_callback ("isFlipped", agent is_flipped)

12 Precursor

13 end

14 feature −− Access
15 is_flipped: BOOLEAN = True

16 end

The primitive (or container) widgets with coordinate system can now inherit
from EV_FLIPPED_VIEW instead of NS_VIEW. Equation 4.1 and 4.2 are therefore not
needed anymore. Flipping coordinates also facilitates the task of drawing points,
lines and text on a canvas.

Summary

The mechanisms covered in the above sections are used in a number of classes
spread not just over the primitive cluster, but also across the kernel and con-
tainer clusters. The table below indicates in which classes the aforementioned
patterns have been implemented. Although not reported in Table 4.1, descen-
dants of the listed classes adopt the same patterns as the classes themselves.

Target-
Action

Data Sources, Dele-
gates

Flipped
View

EV BUTTON IMP X
EV HORIZONTAL SCROLL

BAR IMP

X

EV VERTICAL SCROLL BAR

IMP

X

EV COMBO BOX IMP X
EV LIST IMP X
EV MULTI COLUMN LIST

IMP

X

Cocoa EiffelVision Implementation - Items Cluster 22

EV TEXT FIELD IMP X
EV DRAWING AREA IMP X
EV GRID IMP X
EV TOOL BAR IMP X
EV WINDOW IMP X X
EV BOX IMP X
EV CELL IMP X
EV FIXED IMP X
EV FRAME IMP X
EV APPLICATION IMP X

Table 4.1: Classes that implement at least one of the three solu-
tions, ordered by cluster.

4.4 Items Cluster

An item is an object that displays information inside certain primitives. Widgets
that represent data using items range from menu bars and tool bars to multi-
column lists and trees.

Menu items are fundamentally different with regard to geometric attributes
(such as position and size) which makes it impossible to achieve a complete
mapping between EiffelVision and Cocoa. In the former, menu items inherit
from EV_POSITIONED, which is “an abstraction for objects that have geometric
attributes”. In the latter, menu items do not have a geometric position because
the menu bar is fixed by the operating system at the top of the screen and does
not interact with the rest of the GUI. A solution to map geometric attributes
in Cocoa is not available yet.

4.5 Support Cluster

The support cluster provides a set of helper classes used throughout EiffelVision.
Helper classes add functionalities for default and constant features of existing
widgets. The classes in this cluster are not discussed since the interesting be-
havior of widgets is implemented in other clusters.

4.6 Properties Cluster

This cluster contains classes that define common properties for EiffelVision wid-
gets and items. The properties available are:

Colorizable The widget can change color.

Dockable Source The widget represents the source for a pick and drop action.

Dockable Target The widget represents the target for a pick and drop action.

Cocoa EiffelVision Implementation - Platform-specific Classes 23

Drawable A widget onto which graphical primitives can be drawn.

Fontable The widget can change font.

Pick and Dropable The widget can be both a source and a target for a pick
and drop action.

Pixmapable The widget can have a pixmap.

Sensitive The widget may ignore user input.

Textable The widget has a text label.

Tooltipable The widget has a tooltip.

Except for the pick and drop mechanism, which is not supported in the cur-
rent port, most functionalities of the property classes are platform independent
and thus implemented in the port in a similar way to the GTK version.

4.7 Platform-specific Classes

The port also contains platform-specific abstractions, such as EV_NS_VIEW and
EV_FLIPPED_VIEW. EV_NS_VIEW is a class for adding NS_VIEW functionalities to
EiffelVision. The port has completely rewritten this class in order to replace
the layout handling of the legacy port with automatic layout constraints. The
Unix and Windows ports put platform-related classes in the support cluster,
hence this port adopts the same grouping rule.

In this work, delegates are implemented either in the class that needs to
respond to certain events or in a separate class. In the latter case, for a matter
of convention, we have decided to place delegate classes in the support cluster.

Chapter 5

Guides

5.1 Developer Guide

This guide is intended to help developers to quickly get familiar with the Cocoa
EiffelVision implementation and continue working on it.

The port relies on the wrapped Cocoa frameworks generated by the auto-
matic library converter [4] using Mac OS X 10.7. This is the minimal version
required to be able to run the Cocoa EiffelVision library. The library converter
automatically generates wrappers for the AppKit, Foundation, CoreData and
QuartzCore libraries. They are made available in the objc wrapper library of
the Eiffel Verification Environment repository1. To generate more up to date
frameworks or to add new Objective-C frameworks, follow the developers guide
in [5]. Assuming that EiffelStudio is already installed, the steps necessary to
start working on the port are the following:

1. Define two new environment variables in ∼/.profile.

export EIFFEL_SRC=path/to/eve/Src

export ISE_LIBRARY=$EIFFEL_SRC

2. Check out the latest source code from the EVE branch.

$ svn co https ://svn.origo.ethz.ch/eiffelstudio/

branches/eth/eve/Src/ $EIFFEL_SRC

3. From a console, compile the C code for the objc wrapper library.

$ cd $EIFFEL_SRC/library/objc_wrapper/Clib

$ finish_freezing -library

1The wrapped Cocoa frameworks are available at https://svn.origo.ethz.ch/

eiffelstudio/branches/eth/eve/Src/library/objc_wrapper/

24

https://svn.origo.ethz.ch/eiffelstudio/branches/eth/eve/Src/library/objc_wrapper/
https://svn.origo.ethz.ch/eiffelstudio/branches/eth/eve/Src/library/objc_wrapper/

Guides - User Guide 25

4. Download the python script from https://svn.origo.ethz.ch/eve/scripts/

compile_es/compile_ec.py and execute it to compile the workbench.

$ python compile_ec.py −−t a r g e t bench cocoa

5. Open EiffelStudio and add the ec project located in $EIFFEL SRC/Eiffel/Ace.
Choose the bench cocoa target and open the project.

Running the project causes EiffelStudio to launch natively on the Mac, but
it is not fully working yet.

5.2 User Guide

The user guide explains how to run a project using this port. Please note that
it is also necessary to perform the first three steps of the developers guide above
because the Cocoa implementation is not part of the official EiffelStudio release.

Open the .ecf file of the project to be compiled using the Cocoa EiffelVision
version and add the following line to the target:

<variable name="vision_implementation" value="cocoa"/>

Alternatively, open the project with EiffelStudio and click Project Settings

under the Project menu. Then add a new variable to the target as depicted in
Figure 5.1.

https://svn.origo.ethz.ch/eve/scripts/compile_es/compile_ec.py
https://svn.origo.ethz.ch/eve/scripts/compile_es/compile_ec.py

Guides - User Guide 26

Figure 5.1: Adding a new variable to the project’s target.

Chapter 6

Conclusion

This work focused on improving the legacy port by taking a more systematic
approach under two different aspects:

• The layout system for containers and widgets has been simplified and
extended to support resizing.

• A number of methods to map widgets have been defined and applied in a
consistent manner throughout the port.

As a consequence, the complexity of the port reduced both in terms of struc-
ture (throwing away abstract helper classes) and code size. The current port,
while adding more functionalities, has lost about 10% lines of code with respect
to the legacy port. Although a solid foundation for the Cocoa EiffelVision imple-
mentation is provided, there are situations in which a mapping from EiffelVision
to Cocoa is simply not achievable with the current support from Cocoa. Some
of those issues have already been identified in [2]:

• EiffelVision provides an icon for each window, while Cocoa only allows
one icon per application.

• Keyboard shortcuts often include the command key, which is only avail-
able on Mac keyboards. These shortcuts are therefore not recognizable in
EiffelVision.

• The font, color and print panels are one per application in the Cocoa
environment, while EiffelVision allows to have multiple instances of these
panels.

Possible future work include completing the functionalities of widgets and
proposing new solutions to situations in which there is a substantial difference
between EiffelVision and Cocoa.

27

Appendix A

Development Status

This appendix provides a description of the implementation status of each Eif-
felVision class. The goal is to give future developers an overview of what is left
to implement or what could be improved. Where a mapping from EiffelVision
to Cocoa is difficult to achieve, a brief explanation of why that is the case is
provided.

The whole event cluster has been successfully implemented and its classes
are not discussed in this section because the implementation is trivial.

The pick and drop mechanism is currently not supported on Mac OS X.

Note that even if a class is (in part) implemented, it cannot be assumed
that its behavior is correct because testing a GUI library is a difficult and time
consuming task. The lack of documentation makes it even harder to understand
what is assumed to be the correct behavior of a widget and its functionalities.

A.1 Kernel Cluster

EV ACCELERATOR IMP

All the functionalities of this class have been implemented. As already men-
tioned before, the command key is not recognized by EiffelVision.

EV ANY IMP

All the functionalities of this class have been implemented.

EV APPLICATION IMP

The functionalities of this class are only partially implemented.

28

Development Status - Kernel Cluster 29

• Detection of pressed keys such as ctrl, shift, alt, caps is not working.
In Cocoa the so called modifiers keys are specified for each keyboard or
mouse event triggered by the user. The idea behind this approach is
that in practice it is useful to know which modifier key is pressed only in
combination with another key or mouse button.

• system color change actions is never called because NS APPLICATION

cannot detect changes of the screen color’s depth.

• Cocoa does not allow to change the tooltip delay and therefore set tooltip delay

cannot be mapped.

EV BITMAP IMP

The functionalities of this class are only partially implemented.

• set default colors only assigns the default background color to the
bitmap. The foreground color property does not exist in Cocoa.

EV CHARACTER FORMAT IMP

The functionalities of this class are only partially implemented.

• Features exported to EV RICH TEXT IMP are not functional because this
class is not fully implemented yet.

EV CLIPBOARD IMP

All the functionalities of this class have been implemented. The Cocoa clipboard
allows any kind of object to be copied in the clipboard, hence the port restricts
the clipboard to just contain strings.

EV COLOR IMP

All the functionalities of this class have been implemented. Most features are
platform independent and are equivalent to the GTK implementation.

EV ENVIRONMENT IMP

All the functionalities of this class have been implemented, but the image for-
mats supported could be further extended to more than just PNG.

Development Status - Widgets - Container Cluster 30

EV FONT IMP

The functionalities of this class are only partially implemented. An important
addition to the implementation in [2] is the conversion of font size from pixel to
points and vice versa; before that, a bug caused the text to be displayed very
small (1 or 2 points tall). The missing functionalities are listed below.

• set_family (a_family: INTEGER) has to map the integer argument to a
string because they are handled as such in Cocoa.

• update_font_face could not be implemented because of a lack of specifi-
cations.

EV INTERMEDIARY ROUTINES

The functionalities of this class have not been implemented. It may be a helper
class borrowed from the GTK implementation in the legacy port.

EV PARAGRAPH FORMAT IMP

The functionalities of this class are only partially implemented.

• new_paragraph_tag_from_applicable_attributes could not be implemented
because of a lack of specifications.

EV POINTER STYLE IMP

The functionalities of this class are only partially implemented. In Cocoa, the
hotspot of a pointer cannot be changed after the creation procedure. It is
therefore necessary to create a new cursor — equal to the previous one — each
time set_x_hotspot or set_y_hotspot are called.

EV TIMEOUT IMP

The functionalities of this class are only partially implemented. The Cocoa
timeout, when fired, does not call the timeout action on the proper target. It
might be necessary to implement the target-action mechanism by subclassing
NS_TIMER.

A.2 Widgets - Container Cluster

EV BOX IMP

The functionalities of this class are only partially implemented.

Development Status - Widgets - Container Cluster 31

• set_border_width has been disabled because it only works properly for a
single box in a container. When multiple widgets are present, it must be
first checked which borders are touched by the box.

EV CELL IMP

All the functionalities of this class have been implemented.

EV CONTAINER IMP

The functionalities of this class are only partially implemented. In Cocoa, there
is no notion of radio groups for a container (the only way to achieve this is by
creating a NS_MATRIX, but it only works for a restricted set of widgets) and thus
the functionalities offered in EiffelVision cannot be mapped to Cocoa.

EV DYNAMIC LIST IMP

All the functionalities of this class have been implemented.

EV FIXED IMP

The functionalities of this class are only partially implemented.

• set_item_position has been disabled because otherwise the EV_GRID is not
drawn correctly. This problem occurs because the grid widget tries to set
the item’s position way out of the visible rectangle (e.g. set_item_position

(a_widget, 15000, 15000).

EV FRAME IMP

All the functionalities of this class have been implemented. Note that in Cocoa
the background color can only be set under certain conditions.

EV HORIZONTAL BOX IMP

The functionalities of this class are only partially implemented.

• Expandable widgets in a horizontal box do not have the same width be-
cause if an item is removed the layout constraints can potentially break (if
the removed item is present in layout constraints of other widgets). This
can be fixed, but it requires a more involved implementation and thorough
testing.

• As a consequence of the above issue, items cannot be set to be non-
expandable.

Development Status - Widgets - Container Cluster 32

EV HORIZONTAL SPLIT AREA IMP

All the functionalities of this class have been implemented.

EV MENU ITEM LIST IMP

The functionalities of this class have been implemented, but the radio group
features need to be tested more thoroughly.

EV NOTEBOOK IMP

The functionalities of this class are only partially implemented.

• pointed_tab_index In Cocoa the notebook widget does not offer this func-
tionality. It may be possible, however, to compute the cursor coordinates
and check it they are in a notebook tab region

• Notebook tabs do not support pixmaps in Cocoa.

EV POPUP WINDOW IMP

All the functionalities of this class have been implemented.

EV SCROLLABLE AREA IMP

All the functionalities of this class have been implemented.

EV SPLIT AREA IMP

The functionalities of this class are only partially implemented.

• disable_item_expand and enable_item_expand have been disabled because
they are not working properly yet. The layout constraints need to be
fixed.

• set_split_position cannot be mapped because Cocoa does not offer this
functionality.

EV TABLE IMP

Some functionalities of this class have been implemented in the legacy port,
but it is not complete yet. This class, however, is a combination of horizontal
and vertical boxes and is thus not essential for the basic implementation of
EiffelVision.

Development Status - Widgets - Container Cluster 33

EV TITLED WINDOW IMP

The functionalities of this class are only partially implemented.

• EiffelVision allows to set a pixmap for each window, while Cocoa allows
only one pixmap per application. A mapping is not achievable in this case.

EV VERTICAL BOX IMP

The functionalities of this class are only partially implemented.

• Expandable widgets in a vertical box do not have the same height because
some widgets in Cocoa have a fixed height.

• Widgets that can expand their height do not have all the same height
because of the issue above.

EV VERTICAL SPLIT AREA IMP

All the functionalities of this class have been implemented.

EV VIEWPORT IMP

The functionalities of this class are only partially implemented. Even if in
section 4.3.1 the mapping is said to be trivial, there are issues with the EV_GRID

widget.

• set_x_offset and set_y_offset have been disabled because, once again,
the EV_GRID widget tries to set offsets way out of the visible range. Since
the grid widget is widely used, it has been decided, for now, to disable
these two functionalities. This might cause problems to other widgets.

EV WIDGET LIST IMP

All the functionalities of this class have been implemented.

EV WINDOW IMP

The functionalities of this class are only partially implemented. In EiffelVision
each window can have its own menu, while in Cocoa there is only one menu
per application. We proposed a solution that tries to mimic the one-menu-per-
window EiffelVision behavior. The port detects the Cocoa event of a window
becoming the main one (i.e. the one that will respond to user actions) and
changes the application menu to the one held by the window.

Development Status - Widgets - Dialogs 34

• set_maximum_width and set_maximum_height have not been implemented
yet. Note that in Cocoa the maximum size can only be set once using
set_max_size_, and thus these two features should be somehow called to-
gether otherwise only one of the two dimensions will be set.

• Interaction with accelerators (called shortcuts or key bindings in Cocoa)
has not been implemented yet.

• hide is crashing whenever calling the Cocoa equivalent. The functionality
has been disabled but it needs to be fixed.

A.3 Widgets - Dialogs

Dialog widgets could not be further implemented from the legacy port for a
lack of time. Moreover, it may be extremely difficult — if not impossible — to
map some of these widgets (e.g. the color, font and print dialogs) because they
are one per application in the Cocoa environment, while EiffelVision supports
multiple instances of the mentioned widgets.

A.4 Widgets - Primitive Cluster

EV BAR ITEM IMP

This class has been implemented, although it does not offer any functionalities.

EV BUTTON IMP

The functionalities of this class are only partially implemented.

• enable_default_button causes the application to crash. The causes of this
bug are currently not known yet, but it might have something to do with
the animation of the button (the pulsing effect) performed in another GUI
thread.

EV CHECK BUTTON IMP

All the functionalities of this class have been implemented.

EV CHECKABLE LIST IMP

All the functionalities of this class have been implemented.

Development Status - Widgets - Primitive Cluster 35

EV CHECKABLE TREE IMP

The checkable tree has not been implemented yet. The strategy to implement
this widget is to adopt the mechanism described in Section 4.3.3 using the
NS_OUTLINE_VIEW_DATA_SOURCE_PROTOCOL and NS_OUTLINE_VIEW_DELEGATE_PROTOCOL

.

EV COMBO BOX IMP

The functionalities of this class are only partially implemented. In contrast to
EiffelVision, Cocoa allows at most one selected item per combo box and thus
selected_items always returns a list with one item, which is equal to the result
of selected_item.

EV DRAWING AREA IMP

The functionalities of this class have been implemented, although redraw_rectangle

is not efficient because of an unresolved conflict with the grid widget.

EV GAUGE IMP

All the functionalities of this class have been implemented. All features are
platform independent.

EV GRID IMP

The functionalities of this class are only partially implemented. The grid is a
very difficult widget to map even if most of the implementation is done in the
interface class, i.e. it is platform independent. In Figure A.1 it is showed how
the widget is built in the interface class.

Two reasons of why the mapping would work better if the widget was com-
pletely platform dependent are given here:

• The EV_GRID mainly contains two viewports: one for displaying the headers
and one for drawing the grid items. The widget re-implements the whole
scrolling machinery because only the second viewport needs to be scrolled
vertically, while both the first and second viewport must scroll together
horizontally. The platform independent code to adopt this behavior works
well with the GTK and WEL implementations, but it is not working with
the Cocoa one. For the Cocoa implementation it would suffice to put
a NS_TABLE_VIEW inside a NS_SCROLL_VIEW and the behavior described is
automatically handled by the Cocoa frameworks.

• The EiffelVision implementation of the grid has an additional platform-
independent helper class (EV_GRID_DRAWER_I) in charge of drawing the grid
items and line separators, which would not be necessary in the Cocoa

Development Status - Widgets - Primitive Cluster 36

EV_VERTICAL_BOX

EV_HORIZONTAL_BOX

EV_VERTICAL_BOX
EV_VIEWPORT

EV_HEADER

EV_VIEWPORT
EV_FIXED

EV_VIEWPORT
EV_DRAWING_AREA_IMP

EV_VERTIC
AL_SC

R
O

LL_BAR

EV_HORIZONTAL_SCROLL_BAR

EV_C
ELL

Col 1 Col 2 Col 3 Col 4

Figure A.1: Structure of the EV GRID widget class

implementation as the appearance of the items is handled by the table
delegate and the line separators are automatically drawn by the system.

The EV_GRID widget, implemented specifically for Mac OS X, would require
much less code and look simpler in terms of structure of the widget. Figure
A.2 depicts a possible implementation of the grid widget for this port. Such
implementation is only possible if the current implementation of the grid is
moved from the interface class, EV_GRID_I, to the platform dependent (Unix,
Windows and Mac) classes, EV_GRID_IMP.

EV HEADER IMP

The functionalities of this class are only partially implemented.

• call_item_resize_actions is not triggered when the Cocoa widget is re-
sized.

• Cocoa header items do not support pixmaps, therefore set_pixmap is not
working and pixmaps_size_changed is never called.

EV HORIZONTAL PROGRESS BAR IMP

All the functionalities of this class have been implemented.

EV HORIZONTAL RANGE IMP

All the functionalities of this class have been implemented.

Development Status - Widgets - Primitive Cluster 37

EV_CELL

NS_SCROLL_VIEW

NS_TABLE_VIEW

Figure A.2: Structure of the EV GRID widget class using a platform dependent
implementation

EV HORIZONTAL SCROLL BAR IMP

All the functionalities of this class have been implemented.

EV HORIZONTAL SEPARATOR IMP

All the functionalities of this class have been implemented.

EV LABEL IMP

The functionalities of this class are only partially implemented.

• set_font has been disabled because the font received as formal argument
does not always have the correct size. This bug is caused by the incomplete
implementation of EV_FONT_IMP.

EV LIST IMP

The functionalities of this class are only partially implemented. Selection and
deselection of (possibly multiple) items has not been implemented yet.

EV LIST ITEM LIST IMP

The functionalities of this class are only partially implemented. Insertion of text
and a pixmap has not been implemented yet.

Development Status - Widgets - Primitive Cluster 38

EV MULTI COLUMN LIST IMP

The features of this class have not been implemented yet. The legacy port
uses the delegate and data source of a NS_OUTLINE_VIEW while it should actually
implement the NS_TABLE_VIEW ones.

EV PASSWORD FIELD IMP

All the functionalities of this class have been implemented.

EV PND DEFERRED ITEM PARENT

The functionalities of this class have not been implemented because of a lack of
specifications.

EV PRIMITVE IMP

The functionalities of this class are only partially implemented.

• It is not clear, from the available documentation, what are the function-
alities of enable_tabable_to and disable_tabable_to.

EV PROGRESS BAR IMP

The functionalities of this class are only partially implemented.

• enable_segmentation and disable_segmentation have been disabled be-
cause a crash occurs when animating the progress bar. This bug could
happen for the same reason as the bug in EV_BUTTON_IMP.

EV RADIO BUTTON IMP

All the functionalities of this class have been implemented.

EV RANGE IMP

The functionalities of this class are only partially implemented. The Cocoa
widget does not call change_actions when the value of the slider changes.

EV RICH TEXT IMP

The functionalities of this class are only partially implemented. More research
must be done to understand how rich text is handled in the Cocoa frameworks.

Development Status - Widgets - Primitive Cluster 39

EV SCROLL BAR IMP

All the functionalities of this class have been implemented.

EV SEPARATOR IMP

All the functionalities of this class have been implemented.

EV SPIN BUTTON IMP

The functionalities of this class are only partially implemented. To create a spin
button in Cocoa a NS_TEXT_FIELD and a NS_STEPPER must be bound in order to
reflect accordingly the changes.

• The Cocoa stepper does not trigger change_actions. The target-action
mechanism described in Section 4.3.3 should be used.

EV TEXT COMPONENT IMP

All the functionalities of this class have been implemented.

EV TEXT FIELD IMP

The functionalities of this class are only partially implemented.

• capacity is not available in Cocoa, which assumes a possibly infinite se-
quence of characters in a text field.

• Insertion or removal of text at a given position is not functional yet, as
well as selecting portions of the text.

EV TOGGLE BUTTON IMP

The functionalities of this class are only partially implemented.

• set_pixmap is not applicable to a toggle button yet. Changing the bezel
style of the Cocoa button, however, should solve the problem.

EV TOOL BAR IMP

The functionalities of this class are only partially implemented.

• remove_item has not been implemented yet. Particular care for the layout
constraints must be taken.

Development Status - Widgets - Primitive Cluster 40

EV TREE IMP

The functionalities of this class have only been partially implemented because
of a lack of time. The strategy to follow is to implement the NS_OUTLINE_VIEW

delegate and data source using the mechanism described in Section 4.3.3.

EV VERTICAL PROGRESS BAR IMP

All the functionalities of this class have been implemented.

EV VERTICAL RANGE IMP

The functionalities of this class are only partially implemented and they need
to be thoroughly tested.

EV VERTICAL SCROLL BAR IMP

All the functionalities of this class have been implemented.

EV VERTICAL SEPARATOR IMP

All the functionalities of this class have been implemented.

A.4.1 Widgets - Other Classes

EV MENU IMP

The functionalities of this class are only partially implemented.

EV PIXMAP IMP

The functionalities of this class are only partially implemented.

• set_with_default should set the pixmap to the default EiffelVision2 logo,
however it is not specified where this pixmap can be found.

• raw_image_data needs to read the bitmap values and write them as data
in the result.

EV SCREEN IMP

The functionalities of this class are only partially implemented.

Development Status - Items Cluster 41

• widget_at_position and widget_imp_at_pointer_position have not been
implemented yet, but a suggestion of how these features could be imple-
mented is given. In Cocoa, to find the widget at a certain position, it
is necessary to find the active window and to perform a hit_test on a
given coordinate point; the method will return the farthest view in the
hierarchy.

• The fake pointer button press features have not been implemented yet.
To fake a keystroke in Cocoa, one needs to create a new instance of a
NS_EVENT and then forward it to the NS_APPLICATION application by calling
application.post_event__at_start_ (event, True).

EV WIDGET IMP

The functionalities of this class are only partially implemented.

• pointer_position has not been implemented yet. It must be first deter-
mined which coordinate systems the widget and the screen are using.

• is_displayed is partly based on the legacy layout implementation and thus
does not always return the correct result.

• on_key_event needs more testing.

A.5 Items Cluster

Note that, as already mentioned in section 4.4, some items that inherit from
EV_POSITIONED do not have an equivalent mapping in Cocoa.

EV CHECK MENU ITEM IMP

All the functionalities of this class have been implemented.

EV HEADER ITEM IMP

The functionalities of this class are only partially implemented.

• Header items cannot hold a pixmap in Cocoa.

EV ITEM IMP

All the functionalities of this class have been implemented.

Development Status - Items Cluster 42

EV LIST ITEM IMP

The functionalities of this class are only partially implemented.

• is_selected, enable_select and disable_select are not working properly.

EV MENU BAR IMP

All the functionalities of this class have been implemented.

EV MENU ITEM IMP

The functionalities of this class are only partially implemented.

• The select_actions action sequence must be triggered using the target-
action mechanism described in Section 4.3.3.

EV MENU SEPARATOR IMP

All the functionalities of this class have been implemented.

EV MULTI COLUMN LIST ROW IMP

Previously implemented in [2], but testing is still necessary.

EV PND DEFERRED ITEM

All the functionalities of this class have been implemented.

EV RADIO MENU ITEM IMP

All the functionalities of this class have been implemented.

EV TOOL BAR BUTTON IMP

The functionalities of this class are only partially implemented.

• select_actions must be triggered using the target-action mechanism de-
scribed in Section 4.3.3.

• set_vertical_button_style is not supported yet.

EV TOOL BAR DROP DOWN BUTTON IMP

There are no functionalities to implement for this widget.

Development Status - Properties Cluster 43

EV TOOL BAR RADIO BUTTON IMP

All the functionalities of this class have been implemented.

EV TOOL BAR SEPARATOR IMP

All the functionalities of this class have been implemented.

EV TOOL BAR TOGGLE BUTTON IMP

All the functionalities of this class have been implemented.

EV TREE ITEM IMP

There are no functionalities to implement for this widget.

EV TREE NODE IMP

Previously implemented in [2], but testing is still necessary.

A.6 Properties Cluster

EV COLORIZABLE IMP

The functionalities of this class are only partially implemented.

• Setting the background color in Cocoa is a procedure that may change
from one widget to another and therefore must be done at a deeper level
in the class hierarchy.

EV DOCKABLE SOURCE IMP

Currently not supported.

EV DOCKABLE TARGET IMP

Currently not supported, although this class has actually no functionalities.

EV DRAWABLE IMP

The functionalities of this class are only partially implemented. Drawing arcs,
ellipsoid text, rotated text, ellipses and polylines is not supported yet. This is in
partly due to the fact that the wrapper does not support doubles as arguments

Development Status - Support Cluster 44

and return values. In most drawing functions, however, doubles as arguments
and return values are required.

EV FONTABLE IMP

All the functionalities of this class have been implemented. Note that the font
can be set to the Cocoa widget only at a more specific level.

EV PICK AND DROPABLE IMP

Currently not supported.

EV PIXMAPABLE IMP

All the functionalities of this class have been implemented. In a similar way
to the fontable property, also the pixmap must be later applied to the Cocoa
widget.

EV SENSITIVE IMP

The property of being sensitive or insensitive is not very well defined in Cocoa.
Some widgets can be set to be enabled or disabled, other widgets must be set
to either respond to or ignore user events. It is therefore not really meaningful
to talk about achieving a mapping for this widget.

EV TEXTABLE IMP

The functionalities of this class have been implemented, but the Cocoa text
label must be specified at the widget level.

EV TOOLTIPABLE IMP

All the functionalities of this class have been implemented.

A.7 Support Cluster

EV APPLICATION DELEGATE

The application delegate takes care of terminating the application when the
last window is closed, in order to match the behavior in the Unix and Windows
implementations.

Development Status - Support Cluster 45

EV BEEP IMP

The functionalities of this class have been implemented.

EV COCOA KEY CONVERSION

The functionalities of this class have been implemented in the legacy port. This
class provide functionalities for converting key codes between Cocoa and Eif-
felVision.

EV COMBO BOX DELEGATE

This helper class allows Cocoa combo boxes to be notified whenever the selection
changes.

EV FLIPPED VIEW

The EV_FLIPPED_VIEW is needed by Cocoa widgets to flip their coordinates system
and match the EiffelVision one.

EV ITEM LIST IMP

This class has been implemented and it is the abstraction for widgets that
contain a list of items.

EV MODEL PRINT PROJECTOR IMP

A class that makes a standard projection of a model on a printer device. The
implementation is identical to the GTK version.

EV NOTEBOOK TAB IMP

The functionalities of this class are only partially implemented.

• A Cocoa notebook tab cannot be assigned a pixmap, therefore set_pixmap

and remove_pixmap have not been mapped.

EV NS RESPONDER

This class has been implemented in the legacy port. It provides functionalities
for capturing Cocoa key events and forwarding them to EiffelVision.

Development Status - Support Cluster 46

EV NS VIEW

The EV_NS_VIEW class abstracts the functionalities of NS_VIEW to apply to Eif-
felVision widgets, such as the position (relative to both their superviews and
screen coordinates) and the size attributes.

EV_NS_VIEW also implements the functionalities for dealing with layout con-
straints. A brief overview of the applicable constraints is given in the list below.

• set_ATTRIBUTE_constraint, where ATTRIBUTE is one of left, top, right or
bottom, applies a fixed padding constraint to the current widget and its
superview, e.g. H:|-10-[button].

• set_minimum_ATTRIBUTE_constraint are equivalent to the previous features,
but they allow the padding to be greater or equal the given argument, e.g.
V:|-(>=10)-[frame].

• set_fixed_width_constraint and set_fixed_height_constraint block the
size of the current widget. The former feature applies a constraint of the
type H:[button(100)] to set the width of a button to be 100 pixels.

• set_minimum_width_constraint and set_minimum_height_constraint are equiv-
alent to set_fixed_width_constraint and set_fixed_height_constraint,
respectively, but they allow the widget to expand its size. The latter
feature applies a constraint of the type V:[vertical_box(>=200)] to set
the minimum height of a vertical box to 200 pixels.

• The EV_FIXED_IMP widget also uses the set_position_constraints to place
widgets anywhere in the container. This feature is actually a combination
of set_left_padding and set_top_padding.

• The operations for updating the constraints must be called whenever the
padding of a widget changes (by calling set_padding).

EV NS WINDOW

This class has been implemented in the legacy port and it abstracts NS_WINDOW

functionalities for EiffelVision windows and dialogs.

EV PIXEL BUFFER IMP

The functionalities of this class are only partially implemented. Writing to a
buffer data is not supported because the Cocoa wrapper currently does not
handle byte streams as arguments and return values.

EV PRINT PROJECTOR IMP

All the functionalities of this class have been implemented.

EV RADIO PEER IMP

This class has been implemented in the legacy port and needs to be tested.

EV REGION IMP

The features of this class have not been implemented yet.

EV SINGLE CHILD CONTAINER IMP

This class abstracts common functionalities for containers that can hold at most
one item, i.e. EV_CELL_IMP and EV_WINDOW_IMP (and respective descendants).

EV STOCK COLORS IMP

The functionalities of this class have been implemented, although the specifica-
tions are not really clear.

EV STOCK PIXMAPS IMP

The functionalities of this class are only partially implemented, because not all
stock pixmaps are included in Mac OS X.

EV TABLE CHILD IMP

This class has been implemented in the legacy port and needs to be tested.

EV TEXT FIELD DELEGATE

This is a helper class that detect changes in a Cocoa text field.

47

Bibliography

[1] Apple Inc.: Cocoa AutoLayout Guide. http://developer.apple.

com/library/mac/documentation/UserExperience/Conceptual/

AutolayoutPG/AutolayoutPG.pdf (2011)

[2] Daniel Furrer: EiffelVision for Mac OS X. http://se.inf.ethz.ch/old/
projects/daniel_furrer/report.pdf (2011)

[3] Eiffel Software: EiffelVision Library Reference
Manual. http://docs.eiffel.com/book/solutions/

eiffelvision-library-reference-manual

[4] Matteo Cortonesi: Objective-C Frameworks to Eiffel Converter. http://

objc-frameworks-to-eiffel-converter.origo.ethz.ch/

[5] Matteo Cortonesi: Objective-C Frameworks to Eiffel Converter. http://

se.inf.ethz.ch/old/projects/matteo_cortonesi/report.pdf (2011)

48

http://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/AutolayoutPG/AutolayoutPG.pdf
http://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/AutolayoutPG/AutolayoutPG.pdf
http://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/AutolayoutPG/AutolayoutPG.pdf
http://se.inf.ethz.ch/old/projects/daniel_furrer/report.pdf
http://se.inf.ethz.ch/old/projects/daniel_furrer/report.pdf
http://docs.eiffel.com/book/solutions/eiffelvision-library-reference-manual
http://docs.eiffel.com/book/solutions/eiffelvision-library-reference-manual
http://objc-frameworks-to-eiffel-converter.origo.ethz.ch/
http://objc-frameworks-to-eiffel-converter.origo.ethz.ch/
http://se.inf.ethz.ch/old/projects/matteo_cortonesi/report.pdf
http://se.inf.ethz.ch/old/projects/matteo_cortonesi/report.pdf

	1 Introduction
	2 Related work
	3 Background
	3.1 Port Architecture
	3.2 AutoLayout
	3.3 Cocoa Wrapper Callbacks

	4 Cocoa EiffelVision Implementation
	4.1 Events Cluster
	4.2 Kernel Cluster
	4.3 Widgets Cluster
	4.3.1 Containers Cluster
	4.3.2 Primitives Cluster
	4.3.3 Mechanisms

	4.4 Items Cluster
	4.5 Support Cluster
	4.6 Properties Cluster
	4.7 Platform-specific Classes

	5 Guides
	5.1 Developer Guide
	5.2 User Guide

	6 Conclusion
	A Development Status
	A.1 Kernel Cluster
	A.2 Widgets - Container Cluster
	A.3 Widgets - Dialogs
	A.4 Widgets - Primitive Cluster
	A.4.1 Widgets - Other Classes

	A.5 Items Cluster
	A.6 Properties Cluster
	A.7 Support Cluster

