
A constraint-based layout
manager for Eiffel

Master Thesis

Emanuele Rudel
ETH Zurich

erudel@student.ethz.ch

November 4th, 2013 - May 4th, 2014

Supervised by:
-Durica Nikolić
Prof. Bertrand Meyer

Abstract

EiffelVision 2 is an object-oriented library for developing graphical user in-
terfaces in Eiffel. It offers several strategies to organise widgets in windows, and
each strategy has its own specific language and features.

The goal of this master thesis is to design and implement a more abstract
language to develop user interfaces that is based on the mathematical model of
linear programming. The resulting framework is seamlessly integrated in Eif-
felVision 2 and offers developers a valid alternative to existing layout managers.

Acknowledgments

I would like to express my sincere gratitude to my mentor, Prof. Bertrand
Meyer, for giving me the opportunity of dedicating my master thesis to the topic
of constraint-based layout managers and for letting me work at Eiffel Software
in Santa Barbara, California.

I would like to thank my supervisor -Durica Nikolić for his valuable feedback
and continuous guidance during the whole duration of this thesis. I would also
like to thank Emmanuel Stapf for his insightful design decisions and suggestions
for solving technical issues.

Finally, I wholeheartedly thank my family and friends who unconditionally
supported me during my studies at ETH.

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Contributions . 7
1.3 Structure of Thesis . 7

2 Linear Programming 8
2.1 Introduction . 8

2.1.1 Minimum and Maximum Problems 9
2.1.2 Terminology . 10

2.2 Theory . 10
2.2.1 Geometric Interpretations 10
2.2.2 Duality . 11
2.2.3 Augmented Form . 12
2.2.4 Simplex Method . 12
2.2.5 Irreducible Infeasible Subsets 13

2.3 Implementation . 16

3 Constraint-based Layout Manager 19
3.1 Introduction . 19

3.1.1 Boxes . 20
3.1.2 Fixed Containers . 21

3.2 Mapping to Linear Programming 22
3.2.1 Minimum Problem Formulation 22
3.2.2 Terminology . 23
3.2.3 Fixed constraints . 24
3.2.4 Dynamic constraints . 25
3.2.5 Error Handling . 25

3.3 Implementation . 26
3.3.1 Autolayout . 26
3.3.2 Layout constraints . 29

4 Usage 34
4.1 Installation . 34
4.2 Using EV AUTOLAYOUT . 34

4

5 Use Cases 37
5.1 Linear Programming Tests . 37

5.1.1 Benchmarks . 37
5.2 Grid Application . 38

5.2.1 Benchmarks . 39

6 Conclusions 40
6.1 Conclusions . 40
6.2 Future Work . 40

A Layout Constraints Demo 42

Chapter 1

Introduction

Computer programs offer a mean for user interaction through graphical in-
terfaces. The actual representation of the program may vary across different
devices, yet the purpose is to provide a clear, functional design and a pleasant
user experience.

Developing the GUI is a process that primarily defines how the system is
going to work — while aesthetics may also play a role in the design of a program,
it is not our intention to discuss this subject. In order to create a user interface
that suit the needs of a program, developers should be provided with the tools
to achieve this goal in the easiest possible way.

From a user perspective, the graphical user interface (GUI) impacts the
productivity in two ways: the initial learning curve to get a hold of the program
and the time spent for executing a given task. An intuitive and functional user
interface will speed up the latter and thus increase the efficiency of the end user.

We want to closely examine the tools at developers’ disposal and come up
with an alternative that is compensates for the shortcomings of the currently
available solutions.

1.1 Motivation

EiffelVision — the framework for developing user interfaces in Eiffel — comes
with a number of components that allow to layout interface elements on a win-
dow that is displayed to the user.

The goal of this work is to introduce a new component relying on a math-
ematical model that presents a simple API to develop user interfaces. Each of
the existing components is meant to be used when a particular layout arises,
yet it becomes easily cumbersome to combine them together in order to obtain
a layout that cannot be expressed with one single component.

Our purpose is therefore to complement existing solutions with a component
that simplifies the development of complex layouts. Being backed by a mathe-

6

Introduction - Contributions 7

matical model, the component has well-defined set of rules to follow in order to
guarantee that the layout will be displayed as specified.

1.2 Contributions

The main contribution of this thesis is the implementation of a layout manager
for EiffelVision. The new component does not require any modifications to
existing applications using the framework and can be used together with all the
other EiffelVision elements.

As the layout manager relies on the optimisation of linear programs, we also
developed a reusable linear programming library that wraps lpsolve 1, a free
solver written in C.

1.3 Structure of Thesis

The remainder of this thesis is organised as follows:

• Chapter 2 gives an introduction to linear programming and highlights
its important features.

• Chapter 3 explains the relation between linear programming and its
application to layout managers.

• Chapter 4 illustrates how the layout manager API can be used in an
application with EiffelVision.

• Chapter 5 shows actual use cases of the layout manager in EiffelVision
applications. The benchmarks measure the performance of the linear pro-
gramming solver and of the layout manager.

• Chapter 6 presents the conclusion of this thesis and proposes enhance-
ments for future work.

1Available under LGPL license at http://lpsolve.sourceforge.net

Chapter 2

Linear Programming

A substantial part of this thesis revolves around linear programming and it
is therefore necessary to first know its basics in order to understand how the
constraint-based layout manager works. Linear programming is a generic and
low level abstraction for defining user interfaces; the layout manager builds on
top of it the abstractions to develop GUIs.

Section 2.1 focuses on the theoretical aspects of linear programming, while
section 2.3 is dedicated to a brief description of its implementation as an object-
oriented library for Eiffel.

2.1 Introduction

Linear programming is a technique to find the best outcome — either the maxi-
mum or the minimum — of a mathematical model constrained by a set of linear
equations. Applications of linear programming span across a wide range of op-
timisation problems such as the traveling salesman problem, risk minimisation
in investments and profits maximisation in finance.

The idea of using linear programming to define user interfaces has already
been proposed, considering the fast-paced evolution in this field, a long time
ago in [1] and a decade later in [2]. The similarity between a constraint and the
natural description of a layout specification is remarkable: for instance, “this
widget must be placed 10 pixels to the right of this other widget” or “this button
must be at the center of its parent container” are very simple concepts that can
be easily translated to constraints and that even people who do not have any
programming experience can understand.

This concept has not seen a wide adoption until a few years ago, mainly
because of the advent of mobile devices of different sizes and screen resolutions,
it became apparent that linear programming would simplify the development of
layouts.

A linear program is a mathematical model represented by a cost function,
more commonly known as linear objective function, and a set of constraints that

8

Linear Programming - Introduction 9

consists of linear equalities and inequalities. The following example illustrates
a simple linear programming problem.

Example Find values for x1 and x2 such that the linear objective function
f(x1, x2) := x1 + x2 is minimised under the constraints

−x1 + x2 ≤ 1
2x1 + x2 ≤ 4
x1 + 3x2 ≥ 2

where x1 ≥ 0 and x2 ≥ 0. The non-negative constraints on x1 and x2 are
enforced because these values usually represent a cost or gain which would not
have a useful meaning when smaller than zero.

Since the problem only has two variables, the constraints can be represented
on a plane as follows:

2x + y = 4-x + y = 1

x + 3y = 2

Figure 2.1: The set of constraints — shown as equalities for clarity — corre-
sponding to the example problem.

The triangle enclosed by the three equations is the region where all con-
straints are satisfied, and thus the optimal value for the objective function must
be in that area. It is easy to see that the minimum value for the objective
function is attained at the intersection of the red and blue lines, that is (−14 ,

3
4).

However, the solution must be non-negative, i.e. x1 and x2 cannot assume
negative values, hence the optimal value is reached at (0, 23).

2.1.1 Minimum and Maximum Problems

The optimisation of a linear program can be performed by searching for either
a maximum or a minimum value and the exact formulation varies slightly de-
pending on the chosen direction. Although this section refers to minimisation
problems only, it is important to keep in mind that the same principles also
apply to maximisation problems.

A minimisation problem can be converted into a maximisation one and vicev-
ersa, even though the transformation is non trivial and may introduce additional

Linear Programming - Theory 10

constraints. Section 2.2.2 describes an alternative and more efficient way to
switching from one problem to the other.

2.1.2 Terminology

Given two vectors b ∈ Rm, c ∈ Rn and a matrix A ∈ Rm×n, the compact form
of the linear program is given by the following representation:

minimize c>x
subject to Ax ≥ b
and x ≥ 0

Where c is the objective function, x contains the variables to be determined
and A and b are the matrix and vector of coefficients representing the constraints
— the left and right hand side, respectively.

A linear program may or may not have a solution for a given problem, but
it could also have an infinite number of solutions. A problem is therefore said
to be infeasible when no solution exists and it is said to be feasible otherwise.
For example, a linear program becomes infeasible whenever two constraints are
contradictory.

When the linear program is feasible, it is bounded if the number of solutions
is finite (i.e. the problem has at least one solution) and it is said to be unbounded
when there are infinite solutions.

The constraint set is the space containing all the solutions for which the
constraints are satisfied. It is important to note that not all solutions achieve
the minimum value for the problem.

2.2 Theory

2.2.1 Geometric Interpretations

One often expresses a linear program just using its compact matrix form, how-
ever some of its properties and implications have an intuitive meaning when
analysing the problem from a geometric perspective.

The intersections of all equality and inequality constraints form a domain
where every point, including the ones on the boundaries, satisfies the constraints.
In the general case where the optimisation problem has n variables, every con-
straint defines a hyperplane that divides the space in two parts, and is of the
form:

a1x1 + a2x2 + · · ·+ anxn ? b, ? ∈ {=,≤,≥} (2.1)

Due to the linearity of the constraint, the half-space is convex, and therefore
the intersection of all half-spaces defines a convex polyhedron in a n-dimensional
space called feasible region.

Linear Programming - Theory 11

An interesting property of the convex polygon, called the fundamental the-
orem of linear programming, states that the maxima and minima of a linear
function over a convex polygon — defined by Ax ≤ b — occur at the poly-
gon’s corners. Minima and maxima can also occur at two different corners and
along the edge that connects them, i.e. there may exists more than one optimal
solution.

Proof By contradiction, assume the optimal solution x∗ lies inside the poly-
tope P = {x ∈ Rn : Ax ≤ b}, i.e. x∗ ∈ int(P). Let ε > 0 be an arbitrarily
small radius of the ball centered in x∗, such that Bε(x

∗) ⊂ P .

To show that there exists a better solution, take another point inside P, say

x∗ − ε
2

c
||c|| ,

and therefore

c>(x∗ − ε
2

c
||c||) = c>x∗ − ε

2
c>c
||c|| = c>x∗ − ε

2 ||c|| < c>x∗.

Since x∗ is not an optimal solution for any point inside the boundary, then x∗

must be on the boundary of P . It may also be the case that the optimal solution
can be defined as a linear combination of P ’s vertices, i.e. there exist multiple
solutions on the edge between two vertices.

2.2.2 Duality

As already discussed above, linear programming problems can be either max-
imised or minimised. An interesting property of optimisation problems is that
they can be viewed from different perspectives, which means a maximisation
problem is representable as a minimisation problem and the other way around,
without any necessary transformations to take place. The original problem is
also called primal problem and its counterpart is known as dual problem.

The connection between the primal and the dual problem is that the latter
provides a lower bound on the solution of the first — as in the previous sections,
the minimisation problem is taken into consideration.

Referring to the problem in section 2.1.2, the primal problem

minimize c>x
subject to Ax ≥ b
and x ≥ 0

has a correspondent dual problem of the form

maximize y>b
subject to y>A ≤ c>

and y ≥ 0

Depending on the formulation of the problem, the number of constraints and
variables, the solver might choose to optimize the dual instead of the primal in
order to improve the running time of the algorithm.

Linear Programming - Theory 12

2.2.3 Augmented Form

Once the linear programming problem has been defined, it must be converted in
the standard form for finding the optimal solution through the simplex method.
A problem is transformed into the standard form by following these four rules:

1. if the objective function f is being minimised, then change the optimisa-
tion direction to max − f ;

2. an inequality constraint of the form ai1x1+ · · ·+ainxn ≤ bi is transformed
to the equality constraint ai1x1 + · · ·+ ainxn + si = bi, where si is a non-
negative variable called slack variable;

3. an inequality constraint of the form ai1x1+ · · ·+ainxn ≥ bi is transformed
to the equality constraint ai1x1 + · · ·+ ainxn − si = bi, where si is a non-
negative variable;

4. if a variable xj does not have any sign restrictions, replace it everywhere

with the expression x
′

j − x
′′

j , where both variables are non-negative.This
does not usually happen when specifying layout constraints as the value
of the variables must always be positive.

The original problem can be thus rewritten as:

max − f subject to Ax + xs = b

A constraint at position i that is already an equality constraint will have the
corresponding slack variable xsi equal to zero.

The linear program in the standard form can be represented in the following
block matrix form.

[
1 −c> 0

0 A I

] z

x

xs

 =

[
0

b

]

Solving the left hand side multiplication yields the objective function on the
first row, while the second row represents the constraints in the augmented form
(i.e. with slack variables).

2.2.4 Simplex Method

The simplex method is a well-known algorithm for solving linear programming
problems and is at the core of the lpsolve library, on which the constraint-based
layout manager relies.

Section 2.2.1 ensures that if the problem has a solution, then this will be on a
corner of the convex polytope. Since the number of corners grows exponentially
as the number of variables and constraints increases, the brute force approach

Linear Programming - Theory 13

that compares the value of the objective function at each corner is too slow. The
idea behind the algorithm can be easily expressed using once again a geometric
interpretation of the linear programming problem and is broken down in three
essential steps:

1. find an initial corner of the polytope. The problem is infeasible if no initial
corner can be found;

2. compute the cost of each edge leading from the current corner to its neigh-
bours;

3. if there is a decreasing cost with respect to the current one, move in that
direction until encountering the next corner and go to the second step
again. If there is no decreasing cost, then the solution is optimal and the
algorithm terminates.

Essentially, the algorithm follows a path, starting from a random corner,
where the cost of each path segment is always decreasing. The actual procedure
for the algorithm is more formally described using two rules:

Rule 1 If all variables in the first row (the one describing the objective func-
tion) have a non-negative coefficient, the current solution is optimal; oth-
erwise, choose a variable xj with a negative coefficient in the first row,
also called entering variable.

Rule 2 For each constraint containing the entering variable, compute the ratio
between the right hand side and the coefficient of the entering variable.
Choose the pivot row as the one with the minimum ratio.

The two steps are repeated until Rule 1 guarantees that the solution is
optimal. In the second step, after a column and row have been chosen, the
algorithm performs a Gaussian elimination based on the selected pivot element.

2.2.5 Irreducible Infeasible Subsets

It is of real interest to analyse an infeasible linear programming problem in order
to find the cause of the error. In a layout manager, for example, the user might
unknowingly specify contradictory constraints which would prevent the solver
from finding an optimal layout configuration.

A manual inspection of all constraints is not a viable option because when
the number of constraints becomes too large, it is difficult to establish which
ones are in conflict. In some cases it is even possible that for a large problem
defining thousands of constraints, only a few are actually causing conflicts.

While the task of understanding and fixing conflicts is ultimately up to the
developer, the computer can help speeding up the process by reducing the com-
plexity of the linear program. There are in fact different algorithms that make
it possible to find irreducible infeasible subsets (IIS). An irreducible infeasible
subset is a subset of the original set of constraints that becomes feasible if any

Linear Programming - Theory 14

of them is removed. For instance, if there is only one IIS with 2 constraints,
one can remove either the first or the second constraint from the original lin-
ear program, which will now become feasible. This is particularly useful as it
isolates a small number of conflicting constraints and allows the developer to
quickly inspect and resolve the problem.

We have chosen to combine two algorithms for finding an IIS because this
solution provides an efficient performance in terms of execution time.

Elastic Filtering

The idea behind elastic filtering is the following: to every constraint is added
a non negative variable called elastic variable, and the objective function to be
optimised becomes the sum of the elastic variables. Conceptually, the objective
function now represents the sum of constraints violations in the original formu-
lation of the problem, which is often referred to as the sum of the infeasibilities
(SINF). When the problem is solved — and of course it will now be feasible since
there are elastic variables, there are two possible outcomes for each constraint:

• the values of the original variables remain the same because the constraint
did not cause any conflicts, and therefore the elastic variable has a value
of 0;

• the constraint was infeasible before, but the elastic variable made it pos-
sible to stretch it. The value of the elastic variable represents in fact how
far is the constraint from being feasible and contributes to the final SINF
value.

Every constraint whose elastic variable has a positive value is enforced by
removing said variable; the constraint is then added to the IIS set. The linear
programming problem is solved again and the constraints are enforced — which
can be seen as a way of tightening the linear program step by step — until it
becomes infeasible.

The method is efficient because it ignores constraints that are not part of an
IIS, making it possible in practice to identify an irreducible infeasible set in just
a few iterations. The resulting set contains all the enforced constraints, which
may represent more than a single IIS. It is thus necessary to combine the elastic
filter algorithm with a deletion filter in order to reduce the output to only one
IIS.

Deletion Filter

The deletion filter is a brute-force approach for finding a single IIS in a set of
infeasible constraints. As the name suggests, the algorithm temporarily drops
one constraint at a time and checks whether the linear programming problem
has become feasible. If the problem is not feasible it means that the dropped
constraint does not contribute to the infeasibility and can therefore be discarded.
The remaining constraints at the end of the algorithm represent exactly one IIS.

Linear Programming - Theory 15

Algorithm 1 Elastic Filter

Input: { infeasible constraints }
1: procedure filter
2: for all constraint in constraints do
3: if constraint.sign is ≥
4: add nonnegative elastic variable ei then
5: else if constraint.sign is ≤
6: subtract nonnegative elastic variable ei then
7: else
8: add elastic variable e

′

i

9: subtract nonnegative elastic variable e
′′

i

10: repeat
11: program.solve
12: remove positive elastic variables
13: until program is infeasible

Output: { constraints containing at least one IIS }

The algorithm is not very efficient compared to the elastic filtering because
it requires the linear program to be solved at each iteration, i.e. as many times
as the number of constraints. Some solvers can actually reuse the solution
computed before and thus improve the running time, yet deletion filtering is
still bounded by the amount of constraints.

If there are multiple IISs, the deletion filter will find the one whose first
constraint (compared to other IISs) come last in the original set of infeasible
constraints.

Algorithm 2 Deletion Filter

Input: { infeasible constraints }
1: procedure filter
2: for all constraint in constraints do
3: delete the constraint from the set
4: solve the program
5: if is feasible then
6: add back constraint in the set
7: else
8: drop the constraint

Output: { constraints forming one IIS }

An irreducible infeasible set is found running the elastic filtering algorithm
first, and the deletion filter afterwards. This approach reduces the execution
time and yet is able to find a single subset.

Linear Programming - Implementation 16

2.3 Implementation

The linear programming library on which this work relies is written in C, which
requires to adapt it to the Eiffel language through the so called external mech-
anism.

In the lpsolve library, a linear program is expressed in a matrix form where
the first row defines the objective function and each subsequent row is a con-
straint (in)equality. Columns, on the other hand, represent the unknown vari-
ables. Optional variable bounds — i.e. minimum and maximum value, even if
not directly stored in the matrix representation, are set and retrieved accessing
the column index of the given variable.

Below is illustrated a simple linear programming problem written with lpsolve.

C1 C2 C3 C4 C5 C6

Minimize 1 1 1 1 1 1

R1 0 0 0 0 -1 1 >= 86

R2 0 -1 1 0 0 0 >= 25

R3 0 0 -1 0 1 0 >= 55

R4 1 0 0 -1 0 0 >= 23

R5 -1 0 0 0 1 0 = 10

R6 0 1 0 0 0 -1 = 20

Type Real Real Real Real Real Real

upbo 0 457 0 436 Inf Inf

lowbo 0 457 0 436 0 0

Figure 2.2: Output representation of a linear programming problem defined
using lpsolve.

The lpsolve library also offers other features that are not relevant to the
scope of this thesis — e.g. integer linear programming — and therefore have
not been wrapped in the Eiffel library.

Although the conceptual mapping to an object-oriented library is relatively
simple and straightforward, the actual implementation required a significant
amount of time due to the lack of proper documentation and complex APIs.
The class diagram 2.3 shows the relevant components of the Eiffel linear pro-
gramming library.

As one can see from figure 2.2, each cell at position (i, j) in the matrix
expresses the coefficient for the j-th variable at the i-th constraint. Instead
of just storing the coefficients in the constraint in the Eiffel library, it makes
sense to have a reference to both the variable and its coefficient. The TERM class
therefore wraps a linear programming variable and its corresponding coefficient
in the left hand side of constraints and also in the objective function.

An important aspect for the performance of the linear programming problem
is to always use the a sparse representation of the constraints and the objec-
tive function: the terms only contain variables specified by the user. All the
remaining variables have by default a coefficient equal to zero. As the number

Linear Programming - Implementation 17

LINEAR_!
PROGRAM CONSTRAINT

VARIABLE TERMISS_FINDER

Figure 2.3: The class diagram of the Eiffel linear programming library.

of constraints and variables increases, this choice greatly impacts memory re-
quirements since it avoids storing a large amount of unused terms. Inserting,
updating or deleting constraints also become faster operations to perform, as
modifications apply only to a small subset of the matrix.

Listing 2.1 shows the basic interface for the LINEAR_PROGRAM class. The cre-
ation of constraints and variables is deferred to their respective classes and is
not presented here.

Listing 2.1: Eiffel : Linear Program class

1
2 class LINEAR_PROGRAM

3
4 feature −− Access
5
6 constraints: LIST [CONSTRAINT]

7
8 variables: LIST [VARIABLE]

9
10 objective_function: LIST [TERM]

11
12 last_result: INTEGER

13
14 feature −− Operat ions
15
16 maximize

17
18 minimize

19
20 solve

21
22 feature {NONE} −− Implementat ion
23
24 c_make_lp (a_rows , a_columns: INTEGER): POINTER

25 external

26 "C signature (int , int): EIF_POINTER use <lp_lib.h>"

27 alias

28 "make_lp"

29 end

30
31 −− Other C ex t e r n a l c a l l s

Linear Programming - Implementation 18

32
33 end

The IIS_FINDER class is responsible for running the elastic and deletion filters
on a given linear program. Since it directly operates on the given argument and
does not create a copy of the problem, one must pay attention when keeping
external references to constraints and variables since the may be removed from
the original linear programming problem. The objective function is modified
as well, hence the linear program is not reused in the layout manager, but
rather the execution terminates because a violation of the layout constraints is
considered to be a programmer’s error.

To ensure that the Eiffel linear programming problem has been correctly im-
plemented, aside from using contracts, a series of tests taken from the NETLIB
repository. The tests compare the results obtained with the Eiffel version and
the C one. Section 5.1 describes more in depth the performances of the solver.

Chapter 3

Constraint-based Layout
Manager

Chapter 2 focused on linear programming problems from a mathematical point
of view; this chapter shows the transition from the low level and generic as-
pects of linear programming to a more abstract level, easier to understand and
optimised to define layout specifications.

EiffelVision is the standard library for GUI programming in the Eiffel envi-
ronment. This chapter discusses the different technologies that the framework
offers for laying out interfaces and identifies the domains for which they are
most suited in order to compare them to the constraint-based layout manager.

3.1 Introduction

The goal of a layout manager is to arrange interface elements in a container, and
it is usually the case that the container itself directly takes care of organising
its children. There is a clear distinction between the two concepts though: a
container is just the holder of its children, while a layout manager is the entity
that adopts the strategy to lay out the children widgets. The tasks of a layout
manager may include:

• positioning the widgets;

• spacing the elements from one another;

• spacing the elements from the container;

• adapting the size of widgets whenever the size of the container changes.

The EiffelVision framework offers several layout managers that revolve around
the concept of rows and columns, which are well suited for displaying interface
elements in a sequential order. There also exists a table layout manager that
organises content in its adjustable cells.

19

Constraint-based Layout Manager - Introduction 20

All of these containers have different ways for specifying the layout interface
due to their specific implementation. Unfortunately there is no universal lan-
guage to express a layout and it is therefore required that the users know about
each individual layout manager before opting for the most convenient container.

3.1.1 Boxes

A box is a container that displays widget elements in a linear fashion, that is
either horizontally or vertically. Layout managers for box containers lay out
widgets according to these rules:

• the order of the widgets on the x- or y-axis is determined by the order of
insertion;

• the default space between two widgets is zero pixels, but it can be changed
by the user. The spacing is the same among all widgets;

• the default space between a widget and its parent container is zero pixels,
but it can be changed by the user. This spacing is applied to all four sides
of the container;

• the minimum size — width and height for horizontal and vertical boxes,
respectively — of the container is defined by the minimum size of the
biggest element in the container, multiplied by the number of elements;

• whenever the size of the container increases, the widgets’ sizes are evenly
increased. It is also possible to disable resizing for single widgets, in which
case the size remains always fixed to its minimum. The user is thus not
allowed to set a custom size to a widget.

Box containers offer a very simple API to arrange widgets and is particularly
useful for displaying an array of conforming elements.

However, it is challenging to arrange widgets both horizontally and vertically
by just using boxes. Albeit creating a nested hierarchy of horizontal and vertical
containers can be used as a workaround, there are several disadvantages with
this approach. Nested hierarchies obviously require more code to set up the
layout. This also goes at the expense of readability and understandability of
the code because as the hierarchy deepens, one must take into account the
different resizing behaviours. Additionally, the semantical grouping of widgets
(in one row or column) might be lost in order to accomplish the desired layout.

As an example, a simple form with two labels and two text fields is created as
follows: each form component, composed of a label and a text field, is contained
in a horizontal box; each horizontal box is inserted in a vertical box. The labels
must also be of the same width in order to show the text fields aligned, but the
widgets belong to different containers, and creating a relationship between them
is not very intuitive. One must in fact disable the two labels to automatically
extend and set their minimum width to the maximum width between the two
widgets. Listing 3.1.1 illustrates the code necessary to generate such the layout.

Constraint-based Layout Manager - Introduction 21

Listing 3.1: Eiffel : A form with two components using nested box containers.

create_form

local

name_label , location_label: EV_LABEL

name_field , location_field: EV_TEXT_FIELD

vb , hb: EV_HORIZONTAL_BOX

min_width: INTEGER

do

create vb

window.extend (vb)

−− I n i t i a l i z e l a b e l s and t ex t f i e l d s
create name_label.make_with_text ("Project Name:")

create location_label.make_with_text ("Project

Location:")

create name_field

create location_field

create hb

hb.extend (name_label)

hb.extend (name_field)

hb.disable_item_expand (name_label)

container.extend (hb)

container.disable_item_expand (hb)

create hb

hb.extend (location_label)

hb.extend (location_field)

hb.disable_item_expand (location_label)

min_width := name_label.minimum_width.max (

location_label.minimum_width) + 10

name_label.set_minimum_width (min_width)

location_label.set_minimum_width (min_width)

container.extend (hb)

container.disable_item_expand (hb)

end

3.1.2 Fixed Containers

An alternative to automatic layout management is provided by fixed containers.
In this case the container simply organises its content as described by the devel-
oper, who has to specify size and position for every widget inserted. There are
two main reasons for choosing a fixed container: first, it provides a really simple
API to assign a widget a position and a size (one method call is often enough);
secondly, as a consequence of the first reason, it allows to lay out complex and
unconventional user interfaces.

Fixed containers, on the other hand, are known for lacking many features

Constraint-based Layout Manager - Mapping to Linear
Programming 22

that other layout managers have built-in:

• automatic resizing triggered when resizing the window;

• automatic resizing when translating software into another language. La-
bels and any other widgets containing text can potentially be truncated
and result in a very bad user experience;

• adaptation to right-to-left languages. Boxes can for example flip their
content to display the content right-to-left, but there simply exists no way
to accomplish this task using fixed containers.

• inserting or deleting an item requires to recompute all the other widgets’
attributes, which in the long run is clearly a problem for maintenance.

Fixed containers may be useful for example for presenting content that does
not need — or does not want — resizing, such as videos, photos or even games.
The constraint-based layout manager can express any layout defined in a fixed
container, even though it may require a little more code to set up.

3.2 Mapping to Linear Programming

A linear programming problem can directly represent a layout interface, yet
such connection would be very generic and also requires the user to understand
the underlying theory.

This section abstracts from a generic linear programming problem and pro-
vides a language for expressing layout constraints that is simple to understand
and at the same time powerful enough to build complex layouts.

3.2.1 Minimum Problem Formulation

Since the goal of a linear programming problem is to find an optimal solution
that satisfies all the given constraints, it is therefore important to relate the
concept of optimization with layout interfaces.

The size of the container defines the bounds in which items can be positioned.
The bounds are defined, just as the other widgets, with four variables in the
linear programming problem and they always have fixed values of (0, 0) for the
x- and y-position, while the width and height are set to be equal the size of the
container. As the container resizes, the bounds always need to be updated to
reflect its new size.

In terms of performance, it is better to set variable bounds rather than
defining new constraints since the model will not increase in size.

The size of the widgets must be minimized in order to fit them in the con-
tainer while satisfying the given constraints. The objective function is therefore
defined as the sum of the widgets’ attributes:

Constraint-based Layout Manager - Mapping to Linear
Programming 23

min

n∑
i=1

xi + yi + wi + hi (3.1)

where n is the number of widgets in the layout manager. Note that since
horizontal and vertical attributes are combined it is possible to define ratio
relationships between widgets. A ratio relationship is a constraint that binds a
horizontal widget’s attribute with a vertical one.

3.2.2 Terminology

In a linear program, constraints are n-dimensional equations where the unknown
variables are to be optimised. In the layout manager, each variable represents
the x or y coordinate of a point in the container’s area.

In order to represent the complete position for a widget is therefore nec-
essary to define four variables in the linear programming problem. Recalling
that EiffelVision uses a top-left coordinate system, (x, y) represents the top-left
corner of a widget. The bottom-right corner can be expressed either by defining
a bottom and right or width and height variables. There are two reasons for
choosing the latter pair over the former:

1. the linear programming API is consistent with the EiffelVision API for
managing the size of widgets. The variables x, y, width and height are
in fact equal to the EV_WIDGET attributes x position, y position, width
and height;

2. it is possible to set bounds for the minimum and maximum size of a
widget. The advantage of this approach is the huge save of constraints —
up to four per element — that would be needed when using the right and
bottom sides.

This choice is purely technical and the user should still able to refer to any
side of a widget. It is not ideal, though, that the variables of the linear program
are directly exposed to the user. Variables can be represented in a more abstract
way through attributes, which describe positions of the visual object making use
of one or more variables. For example, right and bottom attributes are defined
as

right attribute = left position+ width (3.2)

and
bottom attribute = top position+ height (3.3)

An attribute is thus represented as a linear combination of variables and
their respective coefficients — implicitly set to 1 in this case. One can also
define more complex attributes and, as shown later in section 3.3, the design of
the layout manager allows developers to easily extend the list of attributes.

Constraint-based Layout Manager - Mapping to Linear
Programming 24

3.2.3 Fixed constraints

Sometimes it may be useful to define properties of a layout that should not
adapt to changes, for instance when resizing the constraint-based container.
Fixed constraints are especially used for spacing widgets in the container, often
referred to as padding and margin.

In a box container, the margin represents the distance between the container
itself and any other widget it contains, while the padding is the space among
each item in the box. Margins are applied to all four directions — left, right, top
and bottom — and they all assume the same value. Obviously, in the context of
horizontal and vertical boxes, padding only applies to two out of four directions
of the container. Figure 3.1 shows the difference between padding and margins.

Figure 3.1: A horizontal box containing three elements. Margins are shown in
blue lines, while padding is identified by the red lines.

A constraint-based layout manager enables users to define custom spacings
between any two widgets in any direction as well as their distances from the
parent container.

For instance, toolbars are a standard way to easily access actions and they are
often organised in different groups of buttons. Instead of using the same padding
for all elements (which would be the case when choosing a box container), a
constraint-based layout manager can define a large padding between groups
and a smaller one between widgets within the same group.

As the constraint-based layout manager does not make any assumptions
about the location of widgets, it cannot infer automatically padding between
them. On the other hand, since the container inherits from EV_FIXED, a default
margin of zero pixels is applied to widgets — given that they are initially placed
completely inside the container. The lack of information about relative positions
thus requires the developer to specify a number of different constraints in order
to space out widgets.

In the layout language, a fixed constraint can be expressed in the following
ways:

width = constant (3.4)

or
attribute1 + constant = attribute2 (3.5)

Constraint-based Layout Manager - Mapping to Linear
Programming 25

Depending on the choice of attributes, the second form may actually also
represent dynamic constraints, which are treated in the following section.

3.2.4 Dynamic constraints

We define constraints that adapt to changes as dynamic constraints. Rather
than relying on constant values, dynamic constraints express a relationship be-
tween two or more attributes, which makes it possible to react to changes au-
tomatically. While dynamic constraints are mainly used to resize widgets, they
can also define relations between widgets’ attributes, i.e. that the width of one
element be equal to the width of a second one. Relations enable the developer
to create layouts that are quite difficult to achieve using the existing containers,
for example:

• anchoring an element to an attribute of its container. One can place a
widget to be pinned at the vertical center of the container even when the
window is resized.

• maintaining proportions of an area. If the GUI is displaying an image, it is
desirable that the ratio of the picture always remains the same in order to
avoid stretching. A constraint that puts in relation the width and height
attribute of the widget can easily define such a property.

A constraint describing the anchoring in the layout language might be de-
fined as

container.vertical center = widget.vertical center (3.6)

The abstraction of attributes proves to be particularly effective here because
it maps a relatively complex constraint from the linear program to a simple,
human-readable statement. The same exact constraint, for a container c and a
widget w, is represented in a linear programming problem as

ctop position +
1

2
cheight − wtop position −

1

2
wheight = 0 (3.7)

The constraints defined in the layout language are automatically rearranged
to be in a suitable form for the linear programming problem.

3.2.5 Error Handling

Containers in EiffelVision make extensive use of Design by Contract in order
to signal any incorrect uses to the programmer. Unfortunately in a constraint-
based layout manager it is not possible to establish a priori (e.g. in a precon-
dition) whether the given constraints are conflicting, thus generating an invalid
layout. As a consequence, it is not possible to trace back the constraint(s) that
caused the linear program to be infeasible; as the number of constraints grows,
it increases the difficulty of finding and fixing the mistake. In addition, there
is the chance for a constraint to be satisfied up until a certain condition, for

Constraint-based Layout Manager - Implementation 26

instance a resize event up to a given threshold, and to have no feasible value
after that.

Section 2.2.5 describes in depth the process for recovering the smallest set of
constraints from the original one. Whenever the linear programming problem
does not find a feasible solution for the given constraints, the layout manager
executes the elastic and deletion filters in sequence in order to find an IIS.
The final step consists of raising an exception and displaying to the user the
problematic constraints in the console log. The layout manager keeps a reference
to all constraints defined by the user but does not preserve the semantics of
the layout language: the layout attributes, in fact, do not keep a reference to
the widget they represent. It is therefore not straightforward to translate the
constraints of the irreducible infeasible subset back to a readable representation.
Instead of displaying the conflicting attributes, the layout manager expresses the
contradictory constraints in terms of the variables used in the constraint.

3.3 Implementation

This section describes the implementation details of the constraint-based layout
manager: the first part is dedicated to the actual strategy for laying out wid-
gets, while the second one describes the different approaches for defining layout
constraints.

3.3.1 Autolayout

The constraint-based layout manager needs to be paired with a container. Since
the fixed container, contrarily to box containers, does not perform any widgets
arrangement, it is reasonable to choose it as the basis for building a new type
of container. We will call it autolayout because of its ability to automatically
recompute the optimal layout of widgets when it is needed, e.g. immediately
after a resize event.

The EV_AUTOLAYOUT class inherits from EV_FIXED and defines methods for cre-
ating and removing constraints. The features for managing the children widgets
are in fact already defined by the parent class. Although fixed containers allow
the user to customise the position and size of widgets, the autolayout container
will most likely immediately override the given values with the ones resulting
from the linear programming solver.

An issue that needs to be addressed is mapping the variables of each widget
in the container. In addition, one must make sure that variables are accessible
(and thus are not void) only if a widget is contained in an autolayout. The
justification for this requirement is that if the widget belongs to a box or fixed
container, then the memory footprint should not increase and there should be
no additional computations involved.

Each autolayout container has in its internal implementation exactly one
linear program that is keeping track of all widgets’ attributes. The appropriate
time to create the four variables (left, top, width and height) is when the

Constraint-based Layout Manager - Implementation 27

widget is added to the container using the extend routine. Upon removing the
widget, on the other hand, the container will remove the its variables. The
developer is in charge of deleting any constraints referring to the pruned wid-
get since the four variables have also been removed from the underlying linear
program. In both cases the layout manager also takes care of updating the ob-
jective function, ensuring thus that all widgets’ attributes are being optimised
at each iteration.

Layout attributes are inherent properties of the widget and, following the
convention of EiffelVision we define a EV_LAYOUTABLE class that lists the basic
layout attributes. The property class also keeps track of the actual linear pro-
gramming variables so that attributes can be immediately expressed through a
combination of these variables, without having to query the autolayout container
first. There are two ways a widget can represent its layout attributes: through
inheritance or object composition. We analyse the advantages and disadvan-
tages of each approach and then choose the one that best fits the performance
criteria just defined above.

EV_WIDGET

EV_LAYOUTABLE

left_attribute: EV_LAYOUT_ATTRIBUTE
top_attribute: EV_LAYOUT_ATTRIBUTE
…

EV_WIDGET

EV_LAYOUTABLE
left_attribute: EV_LAYOUT_ATTRIBUTE
top_attribute: EV_LAYOUT_ATTRIBUTE
…

Inheritance Composition

Figure 3.2: The two architectural choices for implementing layout attributes.

The main benefit of using inheritance is basically a matter of consistency:
imitating property classes such as EV_COLORIZABLE and EV_FONTABLE, the widget
gains a new whole set of attributes with very small (and backward compatible)
changes to the EV_WIDGET class.

While at first it might seem a good idea to follow the inheritance strategy as
other properties do, it must be taken into consideration that in the future one
might want to add new layout attributes. If that is the case, then the only way
to extend the set of attributes is by changing the EV_LAYOUTABLE class, which
violates the Open/Closed principle (described in [3]). The implication is that
external developers (with respect to the EiffelVision library) have to change the
internal structure of the framework — a clearly undesirable side effect.

The approach that uses object composition does not suffer from this problem
and therefore is preferred over the other. Custom widgets can now simply
subclass EV_LAYOUTABLE to add new attributes and then redefine the layout

property of EV_WIDGET to conform to it.

The only minor drawback of using object composition is that accessing layout
attributes requires one more level of indirection, i.e. instead of

Listing 3.2: Eiffel : Accessing layout attributes using the inheritance strategy.

Constraint-based Layout Manager - Implementation 28

a_widget.left_attribute

one needs to first access the layout properties, and thus write

Listing 3.3: Eiffel : Accessing layout attributes using the object composition
strategy.

a_widget.layout.left_attribute

Now that we have decided the structure of the constraint-based layout man-
ager, we can examine more in detail the operations performed in the autolayout
container. Figure 3.3 illustrates how to setup the autolayout container and also
how it works internally.

Setup constraints

Build UI

Display UI

Update LP

Solve LP

Update UI

Resize event

Infeasible

Find IIS

Figure 3.3: The autolayout container pipeline.

The first step to perform, as with any other container, is to create the con-
tainer itself and then the items it should hold. After inserting the widgets in the
container, the user can define layout relations between the different elements.
It is fundamental that the insertion of widgets happens before defining con-
straints: recall that a widget does not have any layout attributes mapped to a
linear program before it is assigned to an autolayout container. The last step,
from a developer point of view, is to display the container to the end user. The
rest of the process is handled by the autolayout container as follows:

1. the container receives an event change regarding its size. The variables’
bounds in the linear program representing the container attributes are
updated to reflect its current size;

2. the linear program is solved. There are two possible outcomes:

• the program is feasible and the solver found a solution. For each
widget in the autolayout container, its position and size are updated
according to the new values of the corresponding variables in the

Constraint-based Layout Manager - Implementation 29

linear program. The user interface is then updated to reflect the
changes;

• the program is infeasible and therefore no solution exists. In this case,
the layout manager examines the given linear program with the infea-
sible irreducible subset finder. When the algorithm has completed,
the program execution is interrupted and the error log is printed to
the console.

The above steps are repeated as soon as an external event (e.g. user resizes
a window) is triggered. Since the linear program always reuses the previous
solution as a basis for the new problem, the simplex method only performs
very few iterations to compute the optimal layout; this allows the autolayout
container to achieve resizing in real time. Performances of the layout manager
are further discussed in chapter 5.

3.3.2 Layout constraints

Layout constraints are simple wrappers of constraints as defined in linear pro-
gramming problems. The motivation behind it is similar to the abstraction
elaborated for widgets’ attributes: the user should not directly interact with
them and possibly compromise the linear program.

If the user wants to change the constraint, it is therefore necessary to remove
it and add a new one with the updated values. An exception is made for the
right hand side of the constraint, which can be adjusted at any time and the
change will be reflected in the successive UI update. This allows users to change
fixed constraints and dynamically fine-tune padding between widgets or the size
of an element.

The main task of layout constraints is to convert a given linear equation in
a suitable form for a linear programming constraint. The standard form of a
linear equation is in fact given by

ax + b = y, (3.8)

while a constraint is defined as having all the variables on the left hand side
and a single coefficient on the right hand side. The equation 3.8 is therefore
rearranged as

ax− y = −b (3.9)

Both x and y are expressed as vectors since they represent layout attributes
and may thus be formulated through more than just one variable.

We chose to create layout constraints using the form of equation 3.8, since
it provides a more intuitive way of expressing layout specifications.

Listing 3.4: Eiffel : Creating layout constraints using the standard linear equa-
tion form.

class EV_LAYOUT_CONSTRAINT

create make

Constraint-based Layout Manager - Implementation 30

feature {NONE} −− I n i t i a l i z a t i o n

make (a_program: LINEAR_PROGRAM; multiplier: DOUBLE;

first_attribute: EV_LAYOUT_ATTRIBUTE; a_constant:

DOUBLE; a_sign: INTEGER; second_attribute:

EV_LAYOUT_ATTRIBUTE)

local

l_terms: LINKED_LIST [TERM]

l_term: TERM

do

create constraint.make_with_program (a_program)

create l_terms.make

across first_attribute.terms as term loop

create l_term.make (term.item.variable , multiplier *

term.item.coefficient)

l_terms.extend (l_term)

end

across second_attribute.terms as term loop

create l_term.make (term.item.variable , -term.item.

coefficient)

l_terms.extend (l_term)

end

constraint.left_hand_side := l_terms

constraint.sign := a_sign

constraint.right_hand_side := -a_constant

end

feature {NONE} −− Implementat ion

constraint: CONSTRAINT

end

Given two widgets w1, w2 and the autolayout container autolayout one can
thus express a constraint like

Listing 3.5: Eiffel : Creation of a layout constraint using the standard equation
form.

autolayout.create_constraint (1, w1.layout.right_attribute ,

20, {EV_LAYOUT_CONSTRAINT }.equal_sign , w2.layout.

left_attribute)

to represent the layout specification

w1.right attribute+ 20 = w2.left attribute. (3.10)

We aim at simplifying the syntax of the constraint creation in 3.5; specifi-
cally, the procedure has too many parameters where one has to remember the
exact form of the equation. It is possible to exploit Eiffel’s alias mechanism

Constraint-based Layout Manager - Implementation 31

in order to introduce arithmetic symbols and facilitate the layout specification
process. There is an exception for the equal symbol, which is reserved for the
comparison of two objects and cannot be overridden, preventing us from using
the = alias. We introduce the EV_LAYOUT_EXPRESSION class that is responsible for
chaining layout attributes.

Layout attributes can be multiplied by a coefficient or can be added a con-
stant in order to relate to another attribute. The application of one operation
of +, - or * on a layout attribute gives back a layout expression, which is basi-
cally the same as a layout constraint but is not tied to an actual constraint in
the linear program. Layout attributes can be directly compared to a constant
with the ≤ and ≥ operators, while the feature equal to allows to compare it
to a layout expression. Although attributes and expressions are not conform-
ing types, introducing a convert rule in EV_LAYOUT_ATTRIBUTE allows to use the
former interchangeably with the latter.

In a similar fashion, layout expressions’ operators + and - can be applied to
other layout expressions; the same applies to sign operators as well. Table 3.3.2
summarises the allowed operations on layout attributes and expressions. For the
sake of brevity, EV_LAYOUT_ATTRIBUTE and EV_LAYOUT_EXPRESSION are replaced by
ATTRIBUTE and EXPRESSION, respectively.

Type Feature Alias Argument Result type
plus + REAL 64

minus - REAL 64

multiply * REAL 64

ATTRIBUTE greater equal ≥ REAL 64 EXPRESSION

less equal ≤ REAL 64

equal to EXPRESSION

plus +

minus -

EXPRESSION greater equal ≥ EXPRESSION EXPRESSION

less equal ≤
equal to

Table 3.1: The list of operators for layout attributes and expressions.

Taking advantage of the new operations defined above, expression 3.5 can
thus be rewritten as

Listing 3.6: Eiffel : Creation of a layout constraint using layout expressions.

autolayout.create_constraint ((w1.right_attribute + 20).

equal_to (w2.left_attribute))

The addition of layout expressions and syntax sugar aliases helps tidying up
the code for defining layout constraints, with the goal of reducing the learning
curve of the autolayout container API.

Defining a series of similar constraints in a row, e.g. aligning widgets on
one axis, is not an uncommon occurrence and it would be useful to be able

Constraint-based Layout Manager - Implementation 32

to express such layouts in a concise way. The current solution for describing
constraints requires the developer to write one constraint at a time, sensibly
extending the number of lines of code necessary to set up the user interface.
For this reason we introduce a second API that allows to establish multiple
constraints simultaneously in a visually straightforward style.

The alternative method for describing layout constraints, instead of using
expressions, consists of representing them with strings. Defining a small gram-
mar, the user interface can be simplified to an ASCII representation that gives
a strong visual cue of how the layout will result at runtime. A string, however,
can only represent the layout of one axis — i.e. either horizontal or vertical —
because there is no intuitive way to describe a two-dimensional interface using
a string of one single line.

Table 3.2 defines the grammar to express layouts using an ASCII represen-
tation, referred to as visual format from now on.

visual format ::= direction (start-container spacing)?
widget (spacing widget)* (spacing
end-container)?

direction ::= H ‖ V
start-container ::= {

spacing ::= ε ‖ - (number -)?
widget ::= [widget name(size)?]

end-container ::= }
size ::= (number)

widget name ::= a name identifier that only contains alphanu-
meric characters

number ::= a non-negative integer

Table 3.2: The visual format grammar

As an example, the horizontal layout of the application in figure 3.1 can be
represented with the following layout format:

Listing 3.7: Eiffel : Visual format for a user interface that displays three widgets
horizontally aligned.

H{-[button1]-20-[button2]-20-[checkbox]-}

It is easy to see the close resemblance of the actual user interface to the string
representing it. Moreover, the visual format string defines four constraints in
one single line, thus satisfying the initial goal of offering a clear and concise
API alternative. Obtaining the same appearance with layout expressions would
require four different instructions.

In the example, the padding between widgets and the parent container is
implicitly set to be the default distance defined by the layout manager. It

Constraint-based Layout Manager - Implementation 33

is also important to note that widget names can be arbitrarily chosen since
they only act as placeholders for the actual widget, which must be specified as a
separate argument. The API requires in fact that along the visual layout string,
the developer also gives the list of widgets involved in the constraints creation.

The visual format only covers a subset of the layout constraints that can
be achieved through layout expressions, and in particular it does not allow to
define:

1. size relationships between widgets, e.g. declare that two widgets have the
same width;

2. the alignment of widgets to the center of their parent container.

The use of visual format is generally useful and preferred when positioning
multiple objects next to each other, yet it has its own disadvantages with respect
to layout expression. The first and most relevant problem is the lack of type
checking at compile time: the visual format string can only be verified by the
layout parser during the execution of the program. Note that there is a difference
between an invalid specification and an infeasible layout: the former describes
an incorrect formulation of one or more layout constraints, while the latter refers
to a semantically correct set of constraints that does not have any solutions —
the linear program is infeasible.

EV_AUTOLAYOUT_PARSER is the class responsible for parsing visual format strings
and creating the constraints specified. In case a visual format is not valid, the
parser collects and reports a list of the errors encountered. In the future the
parser may be extended to support size relationships between widgets and the
alignment to the parent container, although aside from the implementation, one
must also in finding a meaningful and simple way to express these concepts only
using ASCII characters.

Chapter 4

Usage

This section briefly describes the steps necessary to install and run the constraint-
based layout manager in the Eiffel Verification Environment (EVE). The second
part gives an overview of the available API to manage layout constraints through
a sample application. The complete source code is available in Appendix A.

4.1 Installation

The constraint-based layout manager relies on the linear programming library
for Eiffel described in chapter 2, which in turn relies on the C lpsolve library.
The first component is platform independent; the Eiffel linear programming li-
brary, on the other hand, requires different files for Windows and Unix operating
systems in order to interact with lpsolve. The license of the library allows us
to integrate the original headers and the compiled libraries in the project. The
Eiffel linear programming library can thus be treated as a standalone component
to be integrated in EVE.

The constraint-based layout manager extends the EiffelVision framework
and the whole implementation is therefore contained in the vision2 library
folder. The project is available in the main EVE repository1.

4.2 Using EV AUTOLAYOUT

Using the constraint-based layout manager in EiffelVision is relatively simple.
The class EV_AUTOLAYOUT inherits from EV_FIXED, which already provides the nec-
essary features for inserting, removing and accessing widgets in the container.
Additionally, EV_AUTOLAYOUT defines the following routines to manage layout con-
straints (contracts and implementation are omitted):

1https://svn.eiffel.com/eiffelstudio/branches/eth/eve

34

https://svn.eiffel.com/eiffelstudio/branches/eth/eve

Usage - Using EV AUTOLAYOUT 35

Listing 4.1: Eiffel : The set of API to manage constraints in the autolayout
container.

class EV_AUTOLAYOUT

...

create_constraint (a_expression: EV_LAYOUT_EXPRESSION)

do

...

end

create_constraints_with_format (a_layout_format: STRING;

a_widgets: ARRAY [EV_WIDGET])

do

...

end

update_constraints

do

...

end

last_constraint: detachable EV_LAYOUT_CONSTRAINT

constraints: LINKED_LIST [EV_LAYOUT_CONSTRAINT]

remove_constraint (a_constraint: EV_LAYOUT_CONSTRAINT)

do

...

end

...

end

The update constraints routine allows the developer to immediately re-
flect UI changes whenever a constraint has been modified, e.g. the padding
between two widgets was updated. In order to illustrate the usage of the API,
we have developed an application that demonstrates a layout that can be easily
achieved using layout constraints, but would be rather complicated to imple-
ment using box containers.

The goal of the demo application is to show the main features of the constraint-
based layout manager, including:

• specification of padding using the layout visual format;

• use of advanced layout attributes like horizontal and vertical alignment;

• set up size relationships between widgets inside the same container;

• dynamically changing existing layout constraints.

The application will display one button anchored to the top-left corner of the
container and a checkbox anchored to the bottom-right corner of the container.
A text field is placed at the horizontal and vertical center of the container,
maintaining its position even when the window is resized. Moreover, all three

Usage - Using EV AUTOLAYOUT 36

widgets should maintain the same width. Clicking the button at the top should
increase its width of 10 pixels, and therefore cause the other two widgets to
resize as well.

Figure 4.1 shows the application implementing the requirements above. The
project can be replicated by creating a new graphic application (using EiffelVi-
sion 2) and replicating the source code in Appendix A.

Figure 4.1: A screenshot of the sample application demonstrating the use of the
autolayout container APIs.

Chapter 5

Use Cases

This chapter analyses the different performance aspects of the constraint-based
layout manager. Section 5.1 solely focuses on the performances of the solver,
while section 5.2 measures execution times of the autolayout container in an
application that makes heavy use of layout constraints.

5.1 Linear Programming Tests

Since the optimal layout is computed solving a linear programming problem, it
is of interest to measure the performance of the solver in order to predict possible
limitations that may arise when formulating a complex layout specification.

The time necessary for solving a linear programming problem only depends
on the external C library lpsolve, however one must also take into account the
time needed to build the model. Despite this is a one time operation — assuming
all constraints are all defined at the same time, it may have a non-negligent cost.

5.1.1 Benchmarks

The performance tests performed are based on a subset of linear programming
problems freely available at NETLIB1. The problems differ in size — defined
by number of constraints and variables — and table 5.1 shows the execution
times for each of them (loading and solving time are computed separately). All
tests have been performed on a 2.4 GHz Intel Core i7 processor with 8 GB of
memory.

We want to understand what are the limits in terms number of widgets and
layout constraints in an autolayout container. First, it is necessary to convert
the number of variables in number of widgets: since each widget has 4 variables,
it suffices to divide the number of variables by that number. This means that
even for a layout containing about 1350 widgets and 1150 constraints, the total

1http://www.netlib.org

37

http://www.netlib.org

Use Cases - Grid Application 38

Problem name Variables Constraints Load time (ms) Solve time (ms)
AFIRO.SIF 32 27 0.153 0.174
SC105.SIF 103 105 0.391 1.299
VTP-BASE.SIF 203 198 0.901 2.847
AGG2.SIF 302 516 3.031 9.016
FORPLAN.SIF 421 161 2.604 16.389
SCAGR25.SIF 500 471 1.635 28.486
PILOT4.SIF 1000 410 3.511 67.748
MAROS.SIF 1443 846 5.616 279.110
STOCFOR2.SIF 2031 2157 7.220 291.441
SCTAP3.SIF 2480 1480 7.362 117.763
CZPROB.SIF 3523 929 8.920 363.623
SHIP08L.SIF 4283 778 10.149 138.440
SHIP12L.SIF 5427 1151 12.952 286.829

Table 5.1: Execution times for linear programming problems of different sizes,
sorted by the number of variables.

time necessary to compute the optimal solution is less than a third of a second.
It is usually the case, however, that for each widget there is more than one just
constraint for each widget.

The number of variables is not the only determining factor for solving a linear
programming problem. The STOCFOR2 problem, for example, clearly shows that
a great number of constraints also impact the time needed for finding the optimal
solution.

If we want to obtain real-time performances when resizing a window, and
assuming that the application frame rate is 30 Hz, then the autolayout container
must find an optimal layout and apply it to the widgets in less than 33 millisec-
onds. According to table 5.1, the autolayout container can therefore render in
real time a layout that has at most 125 widgets and about 4 constraints for each
widget.

It is important to remember that if a linear program is modified, the succes-
sive solution can be computed using as a basis the previous one, thus speeding up
considerably the solving time. Section 5.2 also measures subsequent executions
of the solve function.

5.2 Grid Application

The grid application is a sample project exclusively developed to evaluate per-
formances of the autolayout container. It creates a grid of n×n widgets, where n
is an integer variable assuming values between 5 and 10. Widgets are randomly
spaced one another — both vertically and horizontally — and the ones on the
left, top and right borders are anchored to the parent container. All widgets
are set to have the same width, while the height stays constant by default and
thus there is no need to specify additional constraints.

Use Cases - Grid Application 39

5.2.1 Benchmarks

We want to understand to what extent the number of widgets — i.e. variables
— and constraints impact the autolayout container and possibly prevent it from
achieving real-time performances. The size of the grid is gradually increased,
starting from 25 widgets up to 100 elements, and, using the EiffelStudio profiler,
the average time needed to execute one complete pass (solving the linear pro-
gram and updating the widgets values) of the autolayout container is measured.
Table 5.2 shows the results for the different number of widgets and constraints.
All tests have been performed on a 2.4 GHz Intel Core i7 processor with 8 GB
of memory and the application was run in finalised mode.

Widgets Constraints Time (ms)
25 79 0.25
36 113 0.34
49 153 0.41
64 199 0.61
81 251 0.64
100 309 0.70

Table 5.2: Average time for one pass of the autolayout container main algorithm.

The average time for solving a linear program is about two orders of mag-
nitude smaller with respect to the time for the first execution of the algorithm.
Reusing the previous solution to find the new optimal solution for the updated
problem is of fundamental importance to allow the autolayout container to up-
date the user interface in real time. Contrary to the expectations in the previous
section, the autolayout container should still be able to manage hundreds of wid-
gets without negatively affecting the user experience.

The profiler also highlighted an unusual timing of the EV_FIXED routines for
setting the position and size of widgets. It appears that the runtime checks
performed in the routines slow down their execution of about 100%; removing
these checks reduces in fact the execution time from 4 ms to 2 ms. While this
change does not strongly impact the efficiency autolayout container, it is still
important to consider the overall performances when executing code on the UI
thread in order to maintain a pleasant user experience.

Chapter 6

Conclusions

6.1 Conclusions

The introduction of linear programming in the context of user interfaces is an
endeavour to improve and simplify the development of layouts. In practice,
complex appearances defined by means of containers offered in the EiffelVision
framework are often more clear and concise to build using layout constraints.

In this master thesis we developed a new widgets container for the EiffelVi-
sion library. It relies on a layered architecture that abstracts from the mathe-
matical model of linear programming to a higher level language, throughout this
work referred to as layout language. The layout language aims at resembling
as close as possible to the natural language for expressing constraints in a user
interface. We have successfully used the constraint-based layout manager in a
series of sample applications and tests to measure performances, showing there-
fore that is possible to choose the autolayout container as a valid alternative to
the existing ones.

The recent adoption of linear programming as a mean to describe interfaces
in different environments, in particular — but not exclusively — in the area of
mobile devices, emphasises the effectiveness of this technique and the need for
a simple way to build user interfaces. We believe that further development of
the constraint-based layout manager for Eiffel could simplify and speed up the
creation of user interfaces even more.

6.2 Future Work

Although the constraint-based layout manager is already capable of representing
relatively complex layouts, it is possible to further extend its flexibility. The
layout constraints defined in an autolayout container are called hard, because
they must be satisfied at all times. If this is not the case, then the layout is
infeasible and the program execution terminates.

40

Conclusions - Future Work 41

There are some occasions, however, in which constraints do not necessarily
need to be satisfied — or can be partially satisfied — and provide therefore
more tolerance to conflicting layout specifications. For instance, one might
want to set the width of a widget to be twice the width of another one, but
only if there is enough space available (i.e. the container is wide enough). On
the other hand, an insufficiently wide container will still expand the widget as
much as possible and mark the violated constraint with a penalty coefficient, a
value in the linear programming problem that expresses the deviation from the
optimal solution. Soft constraints always guarantee that a solution exists and are
therefore useful when dealing with conflicting constraints in linear programming
problems. The SOFT_CONSTRAINT class in the linear programming library defines
an initial implementation of soft constraints, however it is not supported yet in
the constraint-based layout manager.

A graphical tool to create, modify and inspect constraints should be con-
sidered a high priority goal in the future development of the constraint-based
layout manager. Even though defining the layout through the autolayout con-
tainer APIs is relatively straightforward, an application that lets the developer
see the actual interface before even running the program definitely speeds up
and eases the GUI development. The existing EiffelBuild application enables de-
velopers to develop user interfaces using box, table and fixed containers, though
the interaction is limited by the specific behaviour of each container: widgets
cannot be freely dragged around or anchored arbitrarily to the parent container,
limiting thus the possibilities for creating highly customised layout interfaces.

Appendix A

Layout Constraints Demo

Listing A.1: Eiffel : Complete source code of the layout constraints demo appli-
cation’s root class.

class

LAYOUT_CONSTRAINTS_DEMO_APPLICATION

inherit

EV_APPLICATION

create

make_and_launch

feature {NONE} −− I n i t i a l i z a t i o n

make_and_launch

−− I n i t i a l i z e and launch app l i c a t i o n
do

default_create

prepare

build_interface

launch

end

prepare

do

−− c r e a t e and i n i t i a l i z e the f i r s t window .
create first_window

first_window.wipe_out

first_window.show

create container

first_window.extend (container)

end

build_interface

local

button: EV_BUTTON

42

Layout Constraints Demo 43

field: EV_TEXT_FIELD

checkbutton: EV_CHECK_BUTTON

do

create button.make_with_text ("Expand")

create field.make_with_text ("these elements")

create checkbutton.make_with_text ("all together")

container.extend (button)

container.extend (field)

container.extend (checkbutton)

container.create_constraints_with_format ("H{-[button]

", << button >>)

container.create_constraints_with_format ("H[check]-}"

, << checkbutton >>)

container.create_constraint (container.layout.

horizontal_center_attribute.equal_to (field.layout.

horizontal_center_attribute))

container.create_constraint (container.layout.

vertical_center_attribute.equal_to (field.layout.

vertical_center_attribute))

container.create_constraints_with_format ("V{-[button]

", << button >>)

container.create_constraints_with_format ("V[check]-}"

, << checkbutton >>)

container.create_constraint (button.layout.

width_attribute.equal_to (field.layout.

width_attribute))

container.create_constraint (field.layout.

width_attribute.equal_to (checkbutton.layout.

width_attribute))

container.create_constraint (button.layout.

bottom_attribute + 20 <= field.layout.top_attribute

)

container.create_constraint (button.layout.

width_attribute >= 100)

width_constraint := container.last_constraint

button.select_actions.extend (agent do

width_constraint.constant := width_constraint.

constant + 10

container.update_constraints

end)

end

feature {NONE} −− Implementat ion

first_window: MAIN_WINDOW

−− Main window .

container: EV_AUTOLAYOUT

width_constraint: EV_LAYOUT_CONSTRAINT

end −− c l a s s APPLICATION

44

Bibliography

[1] Greg J. Badros, Alan Borning, and Peter J. Stuckey. The cassowary lin-
ear arithmetic constraint solving algorithm. ACM Trans. Comput.-Hum.
Interact., 8(4):267–306, December 2001.

[2] Christof Lutteroth, Robert Strandh, and Gerald Weber. Domain specific
high-level constraints for user interface layout. Constraints, 13(3):307–342,
September 2008.

[3] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1st edition, 1988.

45

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of Thesis

	2 Linear Programming
	2.1 Introduction
	2.1.1 Minimum and Maximum Problems
	2.1.2 Terminology

	2.2 Theory
	2.2.1 Geometric Interpretations
	2.2.2 Duality
	2.2.3 Augmented Form
	2.2.4 Simplex Method
	2.2.5 Irreducible Infeasible Subsets

	2.3 Implementation

	3 Constraint-based Layout Manager
	3.1 Introduction
	3.1.1 Boxes
	3.1.2 Fixed Containers

	3.2 Mapping to Linear Programming
	3.2.1 Minimum Problem Formulation
	3.2.2 Terminology
	3.2.3 Fixed constraints
	3.2.4 Dynamic constraints
	3.2.5 Error Handling

	3.3 Implementation
	3.3.1 Autolayout
	3.3.2 Layout constraints

	4 Usage
	4.1 Installation
	4.2 Using EV_AUTOLAYOUT

	5 Use Cases
	5.1 Linear Programming Tests
	5.1.1 Benchmarks

	5.2 Grid Application
	5.2.1 Benchmarks

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	A Layout Constraints Demo

