
!
!
!
!

!
!
!

Real-time Conflict Awareness for
Distributed Version Control Systems!

!
Master’s Thesis

!
!
!
!
!
!

Fabian Gremper
ETH Zürich

fgremper@student.ethz.ch !
31.10.2014 — 30.04.2015

!
!
!
!

 Supervised by:
 Martin Nordio
 H.-Christian Estler ETH Zürich
 Prof. Bertrand Meyer Chair of Software Engineering

Abstract

In this day and age, most computer programs are written by a
team of more than one person. Because software engineering is
becoming increasingly distributed, we require smart mechanisms
and systems to reduce overhead and stress introduced by a lack of
awareness and the need to resolve complicated conflicts.

This thesis introduces a new tool for users of a distributed ver-
sion control system: CloudStudio is an awareness system for Git,
providing information about ’who is making what changes’ and
possible conflicts through a publicly available API. This allows de-
velopers to integrate this information in new ways, e.g. directly
as a plugin for common IDEs. CloudStudio can work with all Git
repositories and does not require a specific project setup.

CloudStudio divides awareness information into three distinct
views: branch view, file view and content view, with each view
serving a different purpose and separating the information in a way
that is easily understandable for users. Many options and filters can
be used in all views to enhance the view for specific needs.

Acknowledgements

I would like to thank Prof. Dr. Bertrand Meyer for giving me the opportunity
to realise my master’s thesis at the Chair of Software Engineering.

I would like to express my gratitude to my supervisors Dr. Martin Nordio
and H.-Christian Estler for their great support throughout my work on this
master’s thesis.

Contents

1 Introduction 2
1.1 Distributed Software Development 2
1.2 Version Control Systems . 3
1.3 Awareness and Conflict Detection 3
1.4 Motivation . 3
1.5 Goals . 5
1.6 Related Work . 6

2 Design 7
2.1 Introduction . 7

2.1.1 Features . 7
2.1.2 Approach . 8

2.2 Separation of Awareness Views 9
2.3 Branch Level Awareness . 10
2.4 File Level Awareness . 13

2.4.1 View as Origin . 13
2.4.2 View as Yourself . 13
2.4.3 Show Conflicts . 14
2.4.4 Compare to Other Branches 14
2.4.5 Filters . 15
2.4.6 Grouping . 15
2.4.7 Uncommitted vs. Committed Files 15

2.5 Content Level Awareness . 15

3 Implementation 17
3.1 Introduction . 17
3.2 Architecture . 17

3.2.1 Architectural Overview 17
3.2.2 Logic . 19
3.2.3 Access Control . 20

CONTENTS 1

3.2.4 Folder Structure . 20
3.3 Client . 20
3.4 Server . 22
3.5 Web Interface . 23
3.6 API . 24
3.7 Database . 24
3.8 Configuration Management . 24

3.8.1 Client Configuration 24
3.8.2 Server Configuration 26

3.9 Testing and Correctness . 26
3.10 Build and Run . 27

4 User Guide 29
4.1 Setup and Run Client . 29
4.2 Using the Web Interface . 30
4.3 Login . 30
4.4 Repository Overview . 30
4.5 Branch Level Awareness . 31
4.6 File Level Awareness . 32
4.7 Content Awareness . 33
4.8 User Management . 33
4.9 Create Repository . 34
4.10 Edit Repository . 34

5 Future Work 35

6 Conclusions 37

Chapter 1

Introduction

1.1 Distributed Software Development

Today’s software projects are increasingly distributed across multiple loca-
tions over all of the world [1, 2]. This distribution poses new challenges to
software development, especially those related to collaboration, as globally
distributed development is necessarily collaborative [3].

Many researchers have evaluated the effect of distributed software devel-
opment [5, 6, 7] and suggested that providing awareness information about
who is making what changes may greatly reduce overhead generated by con-
flict resolution and overall improve the effectiveness of collaboration [3, 4].

Studying the difficulties in communication and collaboration are of ut-
most importance [9, 2]. The aspects of software development distribution
have been researched from many angles [12, 13, 9]. Nordio et al. have re-
searched the impact of contracts in distributed software development to mit-
igate the risk of misunderstanding software specifications [8], as well as the
impact of distribution and time zones on communication and performance in
distributed projects [16].

Over the course of several years of teaching ”Distributed and Outsourced
Software Engineering” (DOSE), Nordio et al. have studied key characteristics
in improving collaborative development and have found that the emphasis on
API design and development of communication skills are among the leading
factors, since at least 30% of the time spent by students in the project has
been found to correspond to communication [16, 17].

1.2 Version Control Systems 3

1.2 Version Control Systems

Version Control Systems (VCS) are widely used in almost all projects with
multiple team members.

”In traditional version control systems, there is a central repository that
maintains all history. Clients must interact with this repository to examine
file history, look at other branches, or commit changes. Typically, clients have
a local copy of the versions of files they are working on, but no local storage
of previous versions or alternate branches.

Distributed Version Control Systems (DVCS) such as Git and Mercurial
have becoming increasingly more popular during the last few years. With
DVCS, every user has an entire copy of the repository locally; switching to
an alternate branch, examining file history, and even committing changes are
all local operations. Individual repositories can then exchange information via
push and pull operations. A push transfers some local information to a remote
repository, and a pull copies remote information to the local repository.” [14]

1.3 Awareness and Conflict Detection

Conventional version control provides a means to collaborate on writing pro-
grams, even different subtasks, and merge the changes later. Merging changes
can however produce conflicts. To avoid big conflicts, we want to provide the
programmer with an awareness system to inform them at the time of writing
if another programmer is currently editing parts of the code that may be
conflicting with their current work.

Researches have found that interruptions due to insufficient awareness
occur frequently for teams of non-trivial size. A large and diverse set of
information items has been found to be very important if they are related
to the project a distributed software engineer is currently working on [18],
while developers often have different preferences regarding the frequency and
detail that awareness information should have [3].

1.4 Motivation

With the increasing importance on distributed software development, it has
become necessary to construct techniques and tools that can assist program-
mers to make them more productive in such an environment [11]. Cloud-

1.4 Motivation 4

Studio is a collaborative development framework proposed by Nordio et al.
[10, 25] where the software configuration management, conflict detection, and
awareness systems are unitarily conceived and tightly integrated.

This thesis is a proposal at a new software solution, built from ground up,
to provide programmers with extensive and relevant awareness information
and a mechanism to detect possible conflicts early. I was asked to keep the
name CloudStudio for this project. In this section, I will describe some of
the differences and aspects that I am trying to improve with my thesis. For
this purpose I will refer to my new version as CloudStudio 2.0, and to the
previously existing implementation as CloudStudio 1.0.

CloudStudio 1.0 is a web-based IDE that allows users to work, collaborate
and run code directly in the browser. Behind the curtains, CloudStudio 1.0
sets up a new Git repository for every project that is used for its intrinsic
version control.

The web interface and the functionality of the CloudStudio 1.0 server are
deeply intertwined. The system is designed for users to solely work through
the web interface and does not provide an API to directly request awareness
information from the server, for example to allow inclusion of CloudStudio’s
awareness features in widely used IDEs, such as EiffelStudio [26] or Eclipse.
CloudStudio 2.0 offers an extensive API for this purpose and its web interface
communicates directly through this API.

More importantly, CloudStudio 1.0 is dependent on a specific Git reposi-
tory setup that it creates initially when a new CloudStudio project is created.
It is not possible to use any of its functionality with pre-existing Git projects
that were not specifically set up in CloudStudio in the first place. While it
is possible to retrieve a CloudStudio 1.0 project’s Git repository from the
backend, perform some work directly on the Git repository and push it back
to the server, there are many limitations: e.g. you would be required to follow
its internal branch naming conventions and all awareness queries would still
have to be done through the web interface.

A big focus of CloudStudio 2.0 is also robustness to possible errors, devi-
ation in repository structures and invalid requests.

With this in mind, CloudStudio 2.0 uses a different approach from its
predecessor and has been built from ground up during the course of this
master’s thesis. The next section, as well as section 2.1.1, will cover the details

1.5 Goals 5

and features of the new implementation. From this point on, CloudStudio will
refer to this implementation.

1.5 Goals

This project focuses on creating a useful mechanism for users of a distributed
version control system to detect possible conflicts early on and provide them
with awareness information about who is changing what.

There are several components that are being implemented in order to
achieve this:

• A CloudStudio client that needs to run on each developer’s machine will
gather information about the local Git repository and local working tree
and sends relevant information to the CloudStudio server periodically.

• The CloudStudio server will then use the data from all the users running
the plugin, as well as the data from a central remote repository (origin)
to detect possible merge conflicts that may occur at some point when
two or more parties attempt to push their changes. CloudStudio server
will also provide extensive awareness information about who is changing
what and the current state in which the users are in relation to the
central remote repository.

• The CloudStudio server will then provide a well defined API that allows
other programs or tools to retrieve this awareness information.

• A web interface will be implemented to access and demonstrate Cloud-
Studio’s awareness capabilities.

There are many subgoals to this project:

• The API should be well defined and well documented. In the future,
instead of only the web interface, it is conceivable that CloudStudio’s
awareness information could be also made available directly in the
users’ IDE through a plugin.

• Awareness information generated by CloudStudio is correct and useful.

• CloudStudio acts as a separate layer on top of Git. Its functionality can
be added to existing projects without the need to make any changes to
the structure of the Git repository.

1.6 Related Work 6

• The implementation of all parts should be robust and stable; errors
should be dealt with appropriately.

• CloudStudio should be user-friendly and easy to use.

Under section 2.1.1 the features of CloudStudio are listed in detail.

1.6 Related Work

Extensive research in the area of awareness has spawned other tools seeking
to raise developers’ awareness about the changes introduced by others. The
granularity of awareness information varies from tool to tool.

Crystal is a publicly-available tool that uses speculative analysis to make
concrete advice unobtrusively available to developers, helping them identify,
manage, and prevent conflicts [22].

Syde is a a tool to reestablish team awareness by sharing change and
conflict information across developers’ workspaces [20]. It uses the abstract
syntax tree (AST) to detect conflicts and apply change awareness on the
syntax level and was used to investigate conflict detection in a user study
[21].

Palantir is an Eclipse plug-in to address direct and indirect conflicts,
which arise due to ongoing changes in one artifact affecting concurrent changes
in another artifact [19].

FASTDash is an interactive visualisation tool that seeks to improve team
activity awareness using a spatial representation of the shared code base that
highlights team members’ current activities. It provides file-level awareness
of the activities in Visual Studio projects [23].

Jazz is an Eclipse plugins that shows simple change awareness by high-
lighting changed lines, designed to support small, informal teams; anyone can
create a team and add or remove members [24].

And of course, the already mentioned original CloudStudio, a web-based
framework that shares the changes of developers working on the same project;
its real-time awareness system allows for dynamic views on the project by
selectively including or excluding other developers’ changes [10].

Chapter 2

Design

2.1 Introduction

The following subsections discuss the features that I want CloudStudio to
provide and how these features can greatly improve the collaboration ex-
perience for users, as well as the approach behind the implementation of
CloudStudio.

2.1.1 Features

CloudStudio provides numerous awareness and conflict detection features
that users can benefit from. The following is a list of provided awareness
information:

• an overview of all users and their relative commit position in relation to
the origin. This can show you if users have recently synchronized with
the origin, are behind or have made local commits in the meantime.

• the branch that is currently checked out by each user in a project,
refered to as the ”active branch”. This helps users to coordinate their
work, especially in big teams with many feature branches for subfea-
tures.

• the last time since information has been updated for each user, so you
never run into the risk of relying on outdated information.

• the last time since CloudStudio has updated its data from the central
remote repository (e.g. GitHub).

2.1 Introduction 8

• from your perspective, what files have been modified by other users,
and if so, whether a push by both parties would result in a merge
conflict.

• from the perspective of the origin, what files have been modified by
which users. If multiple users are working on the same file, it may be
appropriate to coordinate further implementations.

• the possibility to stage the same conflicts, but from the perspective
from your user in one branch and all other users in another branch.
This will highlight changes or conflicts that would occur in the future
when these branches are going to be merged together.

• possibility to view either locally committed changes or changes made
in the local working tree that have not yet been locally committed.
For the latest status information you may want to view uncommitted
changes; this may bring up changes that are possibly not meant to be
checked in at any point and are just experimental. The latest locally
committed changes, however, are going to be pushed to the origin at
some point.

• a detailed side-by-side comparison of two versions of a file for two dif-
ferent users, one of which may be the origin.

• a detailed side-by-side merge conflict view for two versions of a file
for two different users. In this view, a common ancestor is used as a
reference for a three-way merge and will show the same conflicts that
would occur when Git tries to merge the files.

• numerous filters that can enhance or narrow down your view to infor-
mation that is interesting to you: filtering by users allows you to only
look at a subset of users; filtering by conflict severity will only show
conflicts above a certain threshold.

• grouping awareness information by folders lets you monitor subprojects
as a whole.

2.1.2 Approach

CloudStudio can be thought of as an extra layer on top of an existing Git
repository setup. There are no requirements for a specific setup in the Git
repository and it can work with existing, as well as new projects and provide
extensive awareness information and detect possible conflicts. CloudStudio

2.2 Separation of Awareness Views 9

is divided into two primary parts: a server and a client.

The client is a standalone tool that has to be run in the background by
all users in a project that want to benefit of the added awareness information
provided by CloudStudio. It will send data to the server periodically and can
work with multiple local repositories that are working with the same Cloud-
Studio server. The client provides a graphical user interface that shows its
current state and its actions to the user.

The server is hosted at a publicly available hostname and port and can
deal with many users and repositories and provides a central, single-login
based structure to send and retrieve awareness information to and from.
Through a public and well-documented API, this awareness information can
be easily integrated with existing IDEs, such as EiffelStudio [26] or Eclipse,
or be used in any desired form. For this thesis, a web interface is being im-
plemented and provides access to all the awareness features directly in the
browser.

Figure 2.1 shows a typical setup for a single repository: many clients are
working on a project using local Git repositories that are synchronised with
each other through a central remote repository. Additionally, all users run
a CloudStudio client, that will provide the CloudStudio server with the in-
formation necessary for it to prepare its awareness information. This way,
the two parts function independently from each other and the underlying
repository structure is not affected by using CloudStudio. It also means that
the central repository can be hosted anywhere (e.g. GitHub) and can still be
used with CloudStudio.

Both parts, client and server, are highly customisable through an XML-
based configuration file. The configuration is explained in detail in section
3.8.

2.2 Separation of Awareness Views

Awareness information is separated into three different views: branch view,
file view and content view. Each view provides distinct information and serves
its own purpose; however, some information can be accessed in an overlap-
ping manner, if desired. The views are also built in a way that there is a
natural flow for users to navigate from more broad to more detailed infor-
mation in a repository.

2.3 Branch Level Awareness 10

Fig. 2.1: Typical CloudStudio setup for a single repository

The following sections discuss the functionality and purpose of each view
in detail.

2.3 Branch Level Awareness

The branch level awareness view is the first view in the navigation sequence
for a given repository.

One of the most important awareness features of this view is the visu-
alisation of the local commit state of all users in relation to the origin. In
Git, every commit has a unique identifier and all commits are arranged in a
graph with each commit having a pointer to a parent commit, making up a
directed graph of all commits. While a local repository may not know about
all possible commits of all users, we can reconstruct this information using
the data sent by the CloudStudio client.

Using this information, the CloudStudio server uses one of the follow-
ing values to describe each users relationship with the origin: equal , ahead ,
behind , fork , local branch, remote branch. In case of ahead , behind or fork
we are also given a distance. I will demonstrate the meaning behind these
values using an example.

Let Figure 2.2 represent the commit history graph for a repository and
four users; every commit is shown as a green box with a commit ID. For
every user and branch, a reference points to a specific commit, indicating the

2.3 Branch Level Awareness 11

commit that we are working on when we are working on a specific branch. The
origin also has pointers to a single commit for every branch. The combined
commit graph created from all of these individual local commit graphs is
seen in Figure 2.3.

Fig. 2.2: Commit history graph for users in a system

Fig. 2.3: Combined commit history graph

From this graph we can deduct the following relationships:

• Isabelle is equal to the origin. Her local repository is up to date and
she has not made any further local commits.

• David has made a new local commit after his last repository pull and
has not pushed it to the origin yet. He is ahead of the origin, with
a distance of 1 because he needs to traverse one edge in the graph
to reach the commit that the origin is pointing to. David could at
this point push his changes to the origin and the origin would simply
fast-forward merge, meaning it will add the new commit and point its
master branch reference to 29c.

2.3 Branch Level Awareness 12

• Mark is behind the origin; he has pulled from the origin when e21 was
the active commit and has not pulled or made a local commit since.

• John is in a fork , with a distance of 2, as he has also last pulled from
the origin at e21 but has made a local commit (f11). In the meantime
someone (either Isabelle or David, given the commit graph) has made
a commit (8eb) and pushed it to the server. If John wanted to push his
changes to the server, a merge between 8eb and f11 would be made
and stored in a new commit.

The same reference pointers that the example shows for the master branch
are also given for all other branches in the system and the calculations be-
have analogous. If a user has a branch pointer for a branch that isn’t on the
origin, the relationship is given as local branch; for a branch that only exists
on the origin but not in a user’s local repository, the relationship is remote
branch.

This awareness feature only deals with locally committed changes and is
a useful measure of how up to date local repositories are in relation to the
origin. If a user is a behind , they should perform a pull. If they are ahead ,
they should push their changes. If they are in a fork , it means they started
working on a feature while in the meantime someone else pushed their local
changes; this case will necessarily result in a merge. Forks will occur often,
as the only way to avoid them is if only one user is making a change at the
time. A low distance can indicate that fewer changes have been made, while
a high distance can indicate a big amount of changes.

For each branch in this view, a list of active users is given. If a user has
currently checked out a specific branch into their local working tree, it is their
”active repository” and it indicates they are working on it. This is very useful
to get an overview of what all users are working on, especially if branches
have meaningful names (e.g. ticket identifier for feature tickets) and there
are many users in a project.

A timestamp shows the last time that the user has updated their state via
the CloudStudio client and indicates how recent and accurate the provided
information is for each user. This way, users do not falsely rely on outdated
information.

2.4 File Level Awareness 13

2.4 File Level Awareness

As the second step in a usual navigation path through the awareness system,
the file level view shows awareness information and possible conflicts for all
files in a repository and branch. This is achieved by doing a pair-wise com-
parison of your version of a file with all the versions of all users in this branch.
Alternatively you can also choose to view differences from the origin’s point
of view.

In its basic form, the file level awareness view compares file checksums
to find out whether a file has been modified. If the two file versions that are
being compared are not identical, this is presented as a file conflict. It should
be noted that non-existing files are treated as empty files for the purpose of
this comparison.

2.4.1 View as Origin

If you are viewing from the origin’s point of view, a file conflict indicates
that the latest version in the remote repository and a user’s local file differ;
speaking in terms of awareness: all users that are shown up as conflicting
have changed their file locally and are probably working on it. If you choose
to show uncommitted changes, it will compare the most up to date version
of a file from each user’s working tree; otherwise it will use the latest locally
committed version.

This viewpoint provides useful awareness information to see what users
are working on what file. If multiple users show up as a file conflict for
the same file, they should coordinate their changes early in order to avoid
complicated merge conflicts later on.

2.4.2 View as Yourself

Without the ”view as origin” option, your local files are compared directly
to all other users’. However, a file conflict is less meaningful here: if you
have changed a file, all other users will show up as a file conflict because
the file checksums differ. More interesting in this case is to enable the ”show
conflicts” option.

2.4 File Level Awareness 14

2.4.3 Show Conflicts

With the ”show conflicts” option enabled, the comparison does not directly
compare the two file versions, but instead does a three-way comparison by
taking the nearest common ancestor of both files from the commit history
as the baseline. This emulates the same behaviour that Git would do when
performing a merge: Git will select a merge base and try to merge files auto-
matically if different portions of the file have been changed. In this three-way
comparison, a merge conflict would by definition occur exactly, if in some part
either all three files differ, or if only the base file differs.

For all the files and users that would show up as file conflicts (without
this option enabled), this three-way comparison will additionally look for
merge conflicts and mark files that would not pass an automatic merge as
content conflict. This is very useful, because when two users are working
on a file simultaneously but they are working on different parts, no content
conflicts are shown. As soon as they are changing the same portions of a
file and Git would have trouble merging the files at a later point, a content
conflict is displayed. This helps catching merge conflicts very early on and
users can arrange their work and take countermeasures before the merge
overhead becomes bigger.

2.4.4 Compare to Other Branches

The same functionality can not only be used to show branch internal aware-
ness and conflict information—by specifying a different comparison branch,
your (or the origin’s) files from your selected branch are compared with all
other users’ in the comparison branch.

Let’s say you are working on the master branch and someone else is work-
ing on a feature branch iss53 that will have to be merged into the master
branch at a later point in time.

By selecting branch comparison with iss53 from the viewpoint of the
master branch, you can see file and content conflicts that will occur when
merging your local master branch state with each other user’s iss53 branch
state. Likewise, by comparing with the master branch from iss53’s point of
view, the comparison will be made between your files from the master branch
with all other users’ files in the iss53 branch.

In the same manner, the comparison functions with the ”view as origin”

2.5 Content Level Awareness 15

option enabled: instead of your files from the selected branch, the files from
the origin will be compared.

2.4.5 Filters

You can choose to filter your view by only selecting a subset of the users in
a project. If the number of users is really big, this helps narrow down your
search and display only information relevant to you.

It is also possible to filter files by the severity of conflicts. Selecting ”con-
tent conflicts” only shows files and users with a conflict type of ”content
conflicts”; ”file conflicts” shows both file and content conflicts, and no filter
also shows users where the files are identical.

2.4.6 Grouping

Folders have a grouping mechanism that add up the containing conflicts. If
a folder contains at least one content conflict, it will be marked as content
conflicting and the users responsible for it will be listed. Likewise file conflicts
propagate their conflict type up to the containing folders.

2.4.7 Uncommitted vs. Committed Files

As already mentioned previously, you can always select to work either with
locally committed files or uncommitted files directly from the active working
tree from all users. Working with uncommitted files has the advantage of
always have the latest version of all files, while you are running into the risk
that these changes may not be final or only experimental and will never make
it into an actual commit. Viewing committed files is more safe in this regard,
but may not show very recent changes.

2.5 Content Level Awareness

The content level awareness view allows you to compare two versions of a file
side-by-side.

In non-conflict mode, files are compared side-by-side directly and inser-
tions, deletions and modifications are highlighted.

2.5 Content Level Awareness 16

In the conflict mode, the closest common ancestor in the commit history
is taken as a base file for a three-way comparison. The comparison is done
using the diff3 algorithm that is also used by Git to internally merge files
automatically. Sections of the file are matched into blocks; if a block has been
changed in all three files or only in the base file, a conflict occurs, because a
three-way merge could not automatically decide how to merge these blocks
together. These conflicts are highlighted in red, while normal modifications
that would be merged automatically by Git are shown in light blue.

The content awareness view allows you to toggle the options to ”show
uncommitted files”, ”show conflicts” and ”view as origin” directly in place.

Chapter 3

Implementation

3.1 Introduction

CloudStudio consists of three distinct implementation parts at this point:
the server, the client and the web interface. The server and client are both
written in Java, while the web interface runs in JavaScript.

The client periodically sends data to the server to keep the awareness
information of CloudStudio up to date. The server provides a public API to
request awareness information directly, as well as a user-friendly web inter-
face that uses and showcases the full capabilities of the API.

The server provides a central login system for its users and allows them
to work with Git repositories hosted independently from CloudStudio.

A MySQL database stores all of the data; its details are explained in
section 3.7.

3.2 Architecture

3.2.1 Architectural Overview

While in 2.1.2 the entire system was presented from a global point of view,
this section deals with the internal architecture of CloudStudio system. Fig-
ure 3.1 shows an architectural overview of all entities in CloudStudio.

The CloudStudio server primarily knows about users, repositories and

3.2 Architecture 18

Fig. 3.1: CloudStudio architecture

sessions.

In order to do any sort of data manipulation or awareness requests, a
user needs to request a session ID from the server via the login API routine.
This session ID will then be sent in every subsequent request to the server
to verify a user’s authentication. A new user can also be created using the
createUser API command.

A user has a username, a password (that is hashed before storing it), an
admin flag (determines whether a user has administrator privileges) and a
creator flag (indicating the ability of a user to create new repositories).

Repositories refer to the internal CloudStudio entity of a shared Git repos-
itory. A repository has an alias (its internal and unique name in CloudStudio),
a description, a URL to a remote repository (e.g. on GitHub), a list of users
that have access to it and an owner (who can modify repository specific data,
add or remove users, or delete the repository entirely).

For every user and branch in the repository, the information sent by the
CloudStudio client is stored individually. On the level of a single repository,
this means that every user has one or several branches that contain files, a
(partial) commit graph, an active flag (indicating whether a user has cur-

3.2 Architecture 19

rently checked out this branch into his working tree) and a timestamp when
the user has last sent information about this branch to the CloudStudio
server.

Files are represented as an object with a filename, a content SHA check-
sum and a committed value. The committed value can be one of three values:
committed (this exact file is currently part of a local commit), uncommitted
(this is the latest version of a file directly from the working directory) or
both (the uncommitted and committed files and contents are identical in this
branch).

All of the above information is stored in the MySQL database, while the
content of the files are stored in the filesystem, named by their SHA. The file
object points to its content via the SHA.

A special user named ”origin” is automatically added to the server and
every repository and represents the central remote repository. It stores the
Git information the same way a normal CloudStudio user would.

3.2.2 Logic

One of the key parts to note here is that CloudStudio stores branch and file
information for each user and repository separately. Aggregated awareness
information is prepared by the server at the time it is requested by the re-
spective API call.

The server does not directly store a combined commit history but only a
partial history for every user. More specifically, for every branch in a repos-
itory, the transitive set of parent commits of the current branch commit is
stored in a list, internally named downstream commits . To find the nearest
common ancestor commit to calculate a merge conflict, we can simply go
through the list of downstream commits of two users and choose the one
with the smallest combined distance from the respective branch commit.

Every CloudStudio repository can have a central remote Git repository
URL attached. CloudStudio needs to fetch its information regularily for two
main reasons:

1. Retrieving the commit graph in order to find the relative position for
the branch awareness view.

3.3 Client 20

2. The CloudStudio client only sends commit data (such as files and their
content) for commits that have a local branch reference point to them.
For conflict detection, files in the merge-base commit are directly looked
up from the origin through JGit. Since we assume that users synchro-
nise their repositories through the specified remote repository, this al-
ways works, because the merge-base commit necessarily needs to have
been pushed to the origin at some point.

As much of the logic as possible has been implemented directly as SQL
queries, which positively affects the performance. This works especially well
for branch and file awareness. For content awareness, a lot of calculations are
performed directly in Java: file contents need to be looked up through JGit
and comparison is implemented using the respective diff and diff3 algorithms.

3.2.3 Access Control

CloudStudio provides a central login structure, which can be used by many
users collaborating on different shared projects. Each repository has a des-
ignated owner who has the rights to add or remove people to the project,
change its metadata, elect a new owner, or remove the repository altogether.

Administrators can manage users and their privileges, as well as perform
any actions that a repository owner or normal user could. A ”creator” flag
for each user indicates whether or not they have the privilege to create new
repositories on CloudStudio. In the server configuration, you can enable or
disable to set this flag by default for new users. In some closed environments,
e.g. teachers set up projects for students and add them to the project, it may
be preferred that not all users can create new repositories on CloudStudio.

3.2.4 Folder Structure

The source files are divided into 4 folders at the root level: CSClient contains
the client classes, CSServer contains the server classes and the web interface,
CSCommon contains classes shared by client and server, and CSTesting con-
tains the JUnit tests used to verify CloudStudio’s correctness.

3.3 Client

The client is responsible for periodically sending information for all the lo-
cal Git repositories that are being monitored by CloudStudio. All users in

3.3 Client 21

Class Description
ClientMain This is the main class. It initiates reading the configuration file, launching the

GUI, and periodically reading the local Git repositories and sending the gained
information to the server.

ClientGUI Renders the GUI elements using Swing.
HttpClient Communicates with the CloudStudio server API using an HttpUrlConnection.
RepositoryReader Reads a local repository using JGit and retrieves information relevant to Cloud-

Studio’s awareness capabilities.
ClientConfig Container for configuration data.
RepositoryInfo Container for repository data.

Tab. 3.1: Client classes

a repository should use the CloudStudio client; however if only a subset of
the users use it, awareness information is still prepared by the CloudStudio
server.

The client is written in Java and uses JGit [15], a Java library to read
and manipulate local Git repository information. It periodically retrieves the
local commit graph structure, branch references, and files and their contents,
for both uncommitted and committed files, and then sends relevant informa-
tion to the CloudStudio server. This is done using a single API call localState
and the exact details can be found in the API Reference. Table 3.1 shows
the client’s Java classes and quickly describes their function. The code for all
individual classes is commented throughout. For detailed information, have
a look at the source code.

Configuration of the client is done using an XML file. By default it looks
for a file named config.xml in the same folder; alternatively, you can spec-
ify a config file location as the first command line parameter when running
the client. In order to successfully use the client, you need to first create
a CloudStudio login and specify it in your configuration file. Configuration
management of client and server is explained in detail in section 3.8.

To facilitate the users’ experience, a graphical user interface (seen in Fig.
3.2), using Swing, keeps you informed using a virtual traffic light, indicating
the state of the client, a progress bar to indicate the next time that informa-
tion is pushed to the server, a force update button and a log view for more
detailed information. A green light means everything is functioning correctly,
yellow indicates that some sort of error has occurred at some point but the
system is still functioning (see the log view in the GUI for details), and a
red light means that a hard error has occurred that the system could not
recover from. At this point, the graphical user interface cannot be used to
manipulate the configuration of the client.

3.4 Server 22

Fig. 3.2: Screenshot of the CloudStudio client

3.4 Server

The CloudStudio server is written in Java and is the core of the system. It
reads, stores and processes information necessary for awareness requests and
conflict detection. There are two main services running on the CloudStudio
server: an HTTP server and a service to periodically update information from
the central remote Git repositories used by CloudStudio projects.

The HTTP server implements the multi-threaded com.sun.httpserver

and two separate request handlers deal with API requests and web inter-
face requests on the same port. The class ApiHttpHandler is responsible for
calls to URLs prefixed with /api/ and provides a public interface for the
main CloudStudio server functionality. Any other URLs will be directed to
the WebInterfaceHttpHandler, which is mostly just a static web server; the
actual web interface runs in JavaScript and uses the API directly. Details
about the implementations of the web interface follow in the next section.

PeriodicalAllOriginUpdater is the service to periodically update the re-
mote repository information for all CloudStudio projects. Behind the cur-

3.5 Web Interface 23

Class Description
ApiHttpHandler Handles HTTP exchanges for API requests.
ContentConflictGitReader Finds the common ancestor needed to find conflicts and do three-way

comparisons.
DatabaseConnection Performs operations on the database.
DatabaseConnctionPool Accesses and returns a data source from C3P0 database connection

pool.
OriginUpdater Updates remote Git repository information for a single repository and

writes information into the database.
PeriodicalAllOriginUpdater Periodically calls OriginUpdater with all the remote repositories used

by CloudStudio projects.
ServerConfig Reads the configuration file and returns individual parameters.
ServerMain Main class that reads the config, sets up the origin updater and starts

the HTTP server.
SideBySideDiff Prepares a side-by-side comparison JSON object for two files.
SideBySideThreeWayDiff Prepares a side-by-side compairson JSON object for a three-way com-

parison.
SqlQueryReader Reads and caches SQL queries stored in external files.
WebInterfaceHttpHandler Handles HTTP requests to the web interface.
ProcessWithTimeout Helper class to allow a timeout for Process executions.
ParameterFilter Helper class to parse HTTP GET and POST parameters.

Tab. 3.2: Server classes

tains, it clones the given Git repositories and reads and stores them in the
same manner as a regular client would. It uses the special user account ”ori-
gin”, which is added to all projects by default. Table 3.2 shows an overview
of the server’s Java classes. The code for all individual classes is commented
throughout. For detailed information, have a look at the source code.

All CloudStudio data is stored in a MySQL database, accessed either di-
rectly through the JDBC driver or using the C3P0 database connection pool,
depending on the server settings.

The server is greatly customizable through a configuration XML file, de-
scribed in section 3.8.

3.5 Web Interface

CloudStudio has a web interface that allows you to view awareness informa-
tion from the browser. The web interface runs on the same server and port as
the API. The logic of the web interface runs in JavaScript and on the client
side; an approach that is popular with many web services nowadays. The
server serves as a static webserver, and awareness data is fetched directly via
the CloudStudio API.

The CloudStudio web interface uses EJB, a light-weight templating en-

3.6 API 24

gine, and jQuery, a fast, small, and feature-rich JavaScript library that makes
thinks like HTML document manipulation, event handling, and Ajax much
simpler.

The web interface was designed in a modern way that is user intuitive
and easy to understand. The functionality of the web interface is explained
in detail in section 4.2.

3.6 API

The CloudStudio API exposes an interface to access and manipulate Cloud-
Studio resources. All CloudStudio resources are accessed and manipulated in
a similar way. Requests to the CloudStudio API have to use either the GET
or POST method. GET requests are used for functions that do not change
the state of the database. POST requests are used for functions that make
changes to the database.

The content type of requests to the CloudStudio API must be set to
application/x-www-form-urlencoded. The response has the content type
application/json. This asynchronism allows to provide parameters for both
GET and POST requests similarly and still retrieve comprehensive JSON
objects, and is used by many widely used APIs (e.g. SoundCloud). The entire
API documentation can be found in the Appendix of this thesis or directly
on the project’s GitHub page.

3.7 Database

The back-end for all data stored in the system is a MySQL database. The
database is accessed using the JDBC driver directly, or using the C3P0 con-
nection pool framework, depending on the configuration settings. Figure 3.3
shows the database tables and their primary (indicated as PK) and foreign
keys (indicated as arrows). Table 3.3 explains the functionality of each table.

3.8 Configuration Management

3.8.1 Client Configuration

In order to run the client JAR, you need to have a configuration file called
config.xml in the same directory. Alternatively, you can also specify the

3.8 Configuration Management 25

Fig. 3.3: CloudStudio’s database setup

Table Functionality
USERS Every entry represents a CloudStudio user
REPOSITORIES Every entry represents a CloudStudio repository
USERSESSION Every entry represents a session
USERACCESS Which user has access to a repository (n:n)
BRANCHES Branches for a user and repository
FILES Files for a user, repository and branch
COMMITHISTORY Commit history for a user and repository

Tab. 3.3: Database tables

path to a config file as the first parameter. A sample configuration file can
be seen in Fig. 3.4.

Specify your username and password that you previously created for
CloudStudio using its API or the web interface. Your user must have been
added to the repository on CloudStudio.

Under repositories you can list multiple repositories that you want to
monitor with CloudStudio. The repositoryAlias is the name that a given
repository has on CloudStudio and the localPath is the folder where you
locally cloned your Git repository into. Specify a time interval in seconds
as the resubmitInterval , indicating how often the client sends data to the
CloudStudio server.

3.9 Testing and Correctness 26

<?xml version ="1.0" encoding ="UTF -8"?>

<config >

<username >John</username >

<password >burgers </password >

<serverUrl >http :// cloudstudio.ethz.ch :7330</serverUrl >

<repositories >

<repository >

<alias>RepositoryAliasOnCloudStudio </alias>

<localPath >/path/to/your/local/repository </localPath >

</repository >

</repositories >

<resubmitInterval >300</resubmitInterval >

</config >

Fig. 3.4: Sample client configuration

3.8.2 Server Configuration

Figure 3.5 shows a sample configuration. Table 3.4 explains what the indi-
vidual parameters do. After setting up the configuration file, you need to run
SQLInit.sql to initialize the database (MySQL), before starting the server.

<?xml version ="1.0" encoding ="UTF -8"?>

<config >

<serverPort >7330</serverPort >

<dbDriverClass >com.mysql.jdbc.Driver </dbDriverClass >

<dbJdbcUrl >jdbc:mysql :// localhost/cloudstudio </dbJdbcUrl >

<dbUser >dbadmin </dbUser >

<dbPassword >1234</dbPassword >

<useDatabasePool >true</useDatabasePool >

<dbMinPoolSize >5</dbMinPoolSize >

<dbAcquireIncrement >5</dbAcquireIncrement >

<dbMaxPoolSize >20</dbMaxPoolSize >

<dbMaxStatements >180</dbMaxStatements >

<fileStorageDirectory >path/to/filestorage </fileStorageDirectory >

<originStorageDirectory >path/to/origins </originStorageDirectory >

<passwordSalt >GXSBML0EGjOMfqPzsznUCkK8ENP3lmOX </passwordSalt >

<enableOriginUpdate >true</enableOriginUpdate >

<originUpdateInterval >300</originUpdateInterval >

<createAdminUser >true</createAdminUser >

<giveCreatorPrivilegesOnSignUp >true</giveCreatorPrivilegesOnSignUp >

</config >

Fig. 3.5: Sample server configuration

3.9 Testing and Correctness

The Eclipse plugin EclEmma [27] was used to create coverage reports and
view the line coverage directly in the workbench. EclEmma is a free code

3.10 Build and Run 27

Setting Description
serverPort Port for the HTTP server hosting the API and the Web Interface
dbDriverClass JDBC driver
dbJdbcUrl Database URL
dbUser Database username
dbPassword Database password
useDatabasePool Enable C3P0 database pooling (true/false)
dbMinPoolSize C3P0: minimum pool size
dbAcquireIncrement C3P0: acquire increment
dbMaxPoolSize C3P0: maximum pool size
dbMaxStatements C3P0: maximum database statements
fileStorageDirectory The database only stores file hashes. The file contents to the hashes

are stored in this directory.
originStorageDirectory A clone of the remote repository is stored in this directory for all

projects.
passwordSalt Salt for the password hash
enableOriginUpdate Periodically fetch all remote repositories (true/false)
originUpdateInterval How often to update remote repositories (in seconds)
createAdminUser Create an administrator with username ”Admin” and password

”1234” if it doesn’t exist on server start (true/false)
giveCreatorPrivilegesOnSignUp Automatically give repository creation privileges when a new user

is created (true/false)

Tab. 3.4: Server configuration parameters

coverage tool, based on the JaCoCo library. A high code coverage indicates
that the code has been more thoroughly tested and there is a lower chance of
software bugs than in a program with low code coverage [28]. The coverage
report created by EclEmma can be seen in Figure 3.6.

To verify CloudStudio’s correctness, I implemented two different types of
JUnit [30] tests: class tests for client and server verify the correct behaviour
for a given class and are named after the class that is being tested, e.g. Api-
HttpHandlerTest for ApiHttpHandler; combination tests run longer scenarios
of a typical CloudStudio workflow and assert correct behaviour throughout.

The CloudStudio client and server use the Apache Log4j [29] framework
to create log output; it can be customised by editing the log4j.xml file. Log
files can as well be used to view and ensure the correct behaviour of the code.

3.10 Build and Run

Follow the following steps to build the CloudStudio server and client locally:

1. Clone the project.
git clone https://github.com/fgremper/CloudStudio.git

2. Import into Eclipse.

3.10 Build and Run 28

Fig. 3.6: Test coverage using EclEmma

Import the 4 folders CSClient, CSServer, CSCommon and CSTesting
as existing Eclipse projects. (Open Eclipse and go to File → Import
and select Existing Projects into Workspace.)

3. Build JAR
In Eclipse, go to File → Export → Java → Runnable JAR file. Un-
der Launch configuration, select ClientMain to build the client JAR.
To build the server JAR, select ServerMain. Under Library handling ,
select Package required libraries into generated JAR. Select the export
destination and click Finish.

4. Run
Run the client: java -jar CSClient.jar

Run the server: java -jar CSServer.jar

Chapter 4

User Guide

4.1 Setup and Run Client

The fastest way to get started with CloudStudio is to use a precompiled
client JAR directly from GitHub.

• Download the latest CSClient.jar directly from:
http://github.com/fgremper/CloudStudio

• Go to http://cloudstudio.ethz.ch:7330/ and create a new account
by clicking ”Sign up” in the top right corner and providing a new
username and password.

• Create a new config.xml file in the same directory as the client JAR
you downloaded and paste in the setup configuration.

• Replace the username and password with your username and password
you just created.

• If you want to work with an existing CloudStudio project, provide its
repository alias and the path to your local Git repository. Make sure
the repository owner added you to the repository access list.

• If you want set up a new CloudStudio project, click ”Create repository”
in the repository overview and provide an alias, description and pos-
sible an URL to a remote repository. Use the repository alias in your
configuration file.

• You can use the client to monitor multiple repositories with the same
CloudStudio user account.

4.2 Using the Web Interface 30

4.2 Using the Web Interface

This section quickly guides you through the different views in the CloudStu-
dio web interface and shows you how to use them.

4.3 Login

This is the initial view of the CloudStudio web interface. Log in with your
credentials or choose to sign up for a new account in the top-right corner.

Fig. 4.1: Login view

4.4 Repository Overview

The Repository Overview is the main view after you log into the web inter-
face. It provides a list of all repositories you have access to.

If you have administrator privileges or are the repository owner, you can
add or remove users from the project, as well as change the repository URL
(path to a remote, e.g. GitHub) or description, by clicking the Edit button
in the top-right corner of a repository. If you have repository creation priv-
ileges, you can create a new CloudStudio repository by clicking the Create
repository button at the top.

Click on a repository to step into the branch level awareness view.

4.5 Branch Level Awareness 31

Fig. 4.2: Repository overview

4.5 Branch Level Awareness

In this view, we are interested in the branch pointers of all users in relation
to the branch pointers of the origin.

Assume we are looking at the master branch. If a user’s master branch
reference points to the same commit as on the origin, then the user’s relation-
ship is given as ”Up to date”. If the user has made a new commit locally but
has not pushed it to the server yet, the user is displayed under ”Made new
commits”. If someone else has pushed a new commit to the origin after our
user has last pulled from the origin, the user is listed under ”Behind origin”.

Local branches that have not been pushed to the origin are given as ”Local
branch”; if a user has not fetched a given branch, it is displayed as ”Remote
branch”.

Users listed under ”Working On This Branch” have currently checked out
this branch locally. The time since the last time the CloudStudio Client has
been run is given next to the username in brackets. In the top-right corner
you can also see when information from the central repository has last been
retrieved.

Clicking on a branch takes you to the file level awareness view for a given
branch.

4.6 File Level Awareness 32

Fig. 4.3: Branch level awareness

4.6 File Level Awareness

For each file in a branch, file conflicts between you and every other user are
displayed. A file conflict occurs when two files aren’t identical and is high-
lighted in yellow. In red, content conflicts are displayed—a content conflict
occurs if a merge of two files would result in a merge conflict. This feature
uses a three-way comparison approach with a common ancestor of the two
files as a merge-base in order to mimic the functionality of a Git merge.

By selecting the view as origin at the top, instead of comparing your
files to those of all others, the files of the origin are taken as the base for
comparison. Various filters let you selectively show or hide users, enable or
disable the content conflict feature, and view the latest uncommitted versions
of files or deal with contents of files that have already been locally committed.

Folders act as groups and the conflict status of files are propagated up-
wards. If at least one file in a folder is red, the parent folder becomes red and
the users responsible for the content conflict are shown. Likewise, if there are
file conflicts in a folder but no content conflicts, the enclosing folder becomes
yellow. This functionality is especially useful if your project is setup in sub-
folders for different features.

The comparison branch refers to the branch that you compare your files
to. This is useful if you know that the branch you’re working in is going to be
merged into another branch soon and you want to see what conflicts would
occur.

4.7 Content Awareness 33

By clicking on a user you can step into the content awareness view, that
lets you view the differences between the two of you.

Fig. 4.4: File level awareness

4.7 Content Awareness

In this view, two files are compared side-by-side. Without checking the show
conflicts options, files are compared directly to each other and the differences
are highlighted.

When you choose to show conflicts , a common ancestor of the two files
is used as a merge-base to create a three-way comparison. Per definition, a
conflict occurs when three blocks all differ or only the ancestor differs. If there
is at least one conflict, we say that there is a content conflict for this file. As
before, you can still switch between viewing the committed and uncommitted
files directly.

4.8 User Management

Administrators can view users, manage their privileges, or delete their ac-
count altogether.

4.9 Create Repository 34

Fig. 4.5: Content level awareness

Fig. 4.6: User management

4.9 Create Repository

This view lets you set up a new repository. The URL provided as remote
repository will be periodically fetched by the CloudStudio server to make
sure its data will be up to date.

4.10 Edit Repository

As an administrator or repository owner, this view lets you make modifica-
tions to its metadata, add or remove users, set a new repository owner or
delete the repository altogether.

Chapter 5

Future Work

The functionality integrated by this thesis can be easily extended.

While CloudStudio performed sufficiently in test projects, there are many
steps that can be taken to improve its overall performance. To load the file
level awareness view with conflict detection, a lot of file comparisons have to
be made and files (common ancestors) have to be looked up through JGit.
The results of operations like these could be cached to speed up the service.

CloudStudio offers an API that opens up the possibility to write all sorts
of plugins that benefit from its awareness and conflict detection capabili-
ties. Aside from using it directly through the web interface, future work can
include writing plugins that directly display awareness information in a pro-
grammer’s preferred IDE.

As of this time, the client sends its entire information to the server every
periodical update. It was a conscious decision not to send incremental one-
way updates from the client to preserve the stability of the system. However,
it is conceivable to implement a delta update function where client and server
negotiate what information has to be sent in order to lower the bandwidth
requirements.

Git treats every commit as a snapshot, and as such is unaware of file
renaming. It does however use heuristics to calculate the likelihood of a file
rename given the similarity of two files. CloudStudio has not yet implemented
any heuristics to detect file renames and would greatly benefit from doing so.

The Chair of Software Engineering at ETH Zurich has been teaching a

36

”Distributed and Outsourced Software Engineering” (DOSE) course for sev-
eral years to prepare students for new challenges in a distributed development
environment. [16, 17] CloudStudio can be used as a means of collaboration
and to heighten the sense of awareness in student projects, by both students
and the teaching assistants.

Chapter 6

Conclusions

Software engineering is becoming an increasingly distributed activity. Teams
are spread out over all of the world and new problems arise, such as the lack
of communication and awareness information, which may disrupt progress
and jeopardise efficiency and timeliness [3].

CloudStudio proposes a new mechanism for making awareness informa-
tion available and detect conflicts early on. One of the key features of Cloud-
Studio is the opening of its functionality to developers by providing a pub-
lic and well-documented API. This allows for integration of CloudStudio’s
awareness information into new services and common IDEs. CloudStudio acts
as a separate layer on top existing Git projects and as such can be added at
any time, while no specific structure of the Git repository is required.

For the implementation of CloudStudio, numerous feature requirements
have been set from the start, listed under 2.1.1. This has been done in order
to make sure that the information generated by CloudStudio is useful and
accurate. The criteria for success have been specified in a project plan before
starting the thesis and have been tightly followed. Furthermore, many new
features and a sophisticated web interface have been added.

Among the big challenges of the thesis were the distributed nature of the
project and making sure all the individual parts work together smoothly,
studying the structure of Git and coming up with an awareness system that
is useful, realisable and uses the available information from Git repositories.
Also, the focus on stability and good error handling required a lot of testing
and fixing small bugs.

38

Many extensions to the existing version of CloudStudio are conceivable,
some of which are listed in Chapter 5. CloudStudio offers an ideal platform
for the ”Distributed and Outsourced Software Engineering” (DOSE) course,
allowing students to experiment with new sources of awareness information
and hopefully improving the workflow of all participants.

Bibliography

[1] Martin Nordio, Roman Mitin and Bertrand Meyer. Advanced Hands-
on Training for Distributed and Outsourced Software Engineer-
ing, In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ACM. 2010.

[2] E. Carmel. Global software teams: collaborating across borders
and time zones. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1999.

[3] H.-Christian Estler, Martin Nordio, Carlo A. Furia, Bertrand Meyer.
Awareness and Merge Conflicts in Distributed Software Devel-
opment. In Proceedings of the 9th International Conference on Global
Software Engineering (ICGSE) (Yuanfang Cai, Jude Fernandez, Wenyun
Zhao, eds.), IEEE Computer Society, 2014.

[4] Y. Brun, R. Holmes, M. Ernst, and D. Notkin. Proactive detection of
collaboration conflicts. In ESEC/FSE, pages 168-178. ACM, 2011.

[5] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does
distributed development affect software quality? An empirical
case study of Windows Vista. In Proceedings of the 31st Interna-
tional Conference on Software Engineering, ICSE ?09, pages 518-528,
Washington, DC, USA, 2009. IEEE Computer Society.

[6] J. Herbsleb and a. Mockus. An empirical study of speed and com-
munication in globally distributed software development. IEEE
Transactions on Software Engineering, 29(6):481-494, June 2003.

[7] J. A. Espinosa, N. Nan, and E. Carmel. Do Gradations of Time
Zone Separation Make a Difference in Performance? A First
Laboratory Study. In International Conference on Global Software
Engineering (ICGSE 2007), pages 12-22. IEEE, Aug. 2007.

BIBLIOGRAPHY 40

[8] Martin Nordio, Roman Mitin, Bertrand Meyer, Carlo Ghezzi, Elisabetta
Di Nitto and Giordano Tamburelli. The Role of Contracts in Dis-
tributed Development. In proceedings of Software Engineering Ad-
vances For Offshore and Outsourced Development (SEAFOOD), Lecture
Notes in Business Information Processing 35, Springer-Verlag, 2009.

[9] M. Nordio, H.-C. Estler, B. Meyer, J. Tschannen, C. Ghezzi, and E.
D. Nitto. How do distribution and time zones affect software
development? A case study on communication. In Proceedings
of the IEEE International Conference on Global Software Engineering
(ICGSE 2011). IEEE, 2011.

[10] H.-Christian Estler, Martin Nordio, Carlo A. Furia, Bertrand Meyer.
Unifying Configuration Management with Awareness Systems
and Merge Conflict Detection. In 22nd Australasian Software En-
gineering Conference (ASWEC), IEEE, 2013.

[11] H.-Christian Estler, Martin Nordio, Carlo A. Furia, Bertrand Meyer.
Collaborative Debugging. In 8th International Conference on Global
Software Engineering (ICGSE), IEEE, 2013.

[12] J. A. Espinosa, N. Nan, and E. Carmel. Do gradations of time zone
separation make a difference in performance? A first laboratory
study. In Proceedings of the IEEE International Conference on Global
Software Engineering (ICGSE 2007), pages 12-22. IEEE, Aug. 2007.

[13] H.-C. Estler, M. Nordio, C. A. Furia, B. Meyer, and J. Schneider. Agile
vs. structured distributed software development: A case study.
In Proceedings of the 7th International Conference on Global Software
Engineering. IEEE, 2012.

[14] Analysis of Git and Mercurial.
https://code.google.com/p/support/wiki/DVCSAnalysis

[15] JGit. http://eclipse.org/jgit/

[16] Martin Nordio, Carlo Ghezzi, Bertrand Meyer, Elisabetta Di Nitto,
Giordano Tamburrelli, Julian Tschannen, Nazareno Aguirre, Vidya
Kulkarni. Teaching Software Engineering using Globally Dis-
tributed Projects: the DOSE course, In Collaborative Teaching
of Globally Distributed Software Development - Community Building
Workshop (CTGDSD), ACM, 2011.

BIBLIOGRAPHY 41

[17] Martin Nordio, Roman Mitin and Bertrand Meyer. Advanced Hands-
on Training for Distributed and Outsourced Software Engineer-
ing, In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ACM. 2010.

[18] K. Dullemond and B. van Gameren. What distributed software
teams need to know and when: An empirical study. In ICGSE,
pages 61-70, 2013.

[19] A. Sarma, G. Bortis, and A. van der Hoek. Towards supporting
awareness of indirect conflicts across software configuration
management workspaces. In ASE, pages 94-103. ACM, 2007.

[20] L. Hattori and M. Lanza. Syde. A tool for collaborative software
development. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, pages 235-238. ACM Press, 2010.

[21] L. Hattori, M. Lanza, and M. D’Ambros. A qualitative analysis of
preemptive conflict detection. Technical Report 2011/05, University
of Lugano, Sept. 2011.

[22] Y. Brun, R. Holmes, M. Ernst, and D. Notkin. Proactive detection
of collaboration conflicts. ESEC FSE, Szeged, Hungary, 2011.

[23] J. Biehl, M. Czerwinski, G. Smith, and G. Robertson. Fastdash: a
visual dashboard for fostering awareness in software teams. In
Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ?07, pages 1313-1322, New York, NY, USA, 2007. ACM.

[24] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson. Introducing collab-
oration into an application development environment. In Pro-
ceedings of the 2004 ACM conference on Computer supported coopera-
tive work, CSCW ?04, pages 21-24. ACM, 2004.

[25] Sandra Weber. Automatic Version Control System for Dis-
tributed Software Development. ETH Zurich, 2012.

[26] EiffelStudio. https://www.eiffel.com/eiffelstudio/

[27] EclEmma. http://www.eclemma.org/

[28] Code Coverage. http://en.wikipedia.org/wiki/Code coverage

[29] Apache Log4j. http://logging.apache.org/log4j/2.x/

[30] JUnit. http://junit.org/

The CloudStudio API exposes an interface to access and manipulate CloudStudio
resources. All CloudStudio resources are accessed and manipulated in a similar way.

Requests to the CloudStudio API have to use either the GET or POST method. GET
requests are used for functions that do not change the state of the database. POST
requests are used for functions that make changes to the database.

The content type of requests to the CloudStudio API must be application/x-www-
form-urlencoded. The response has content type application/json. This
asynchronism allows us to provide parameters for both GET and POST requests similarly
and still retrieve comprehensive JSON objects, and is used by many widely used APIs (e.g.
SoundCloud).

Method: POST

Log into CloudStudio with your username and password. Returns a session ID that will be
required for further API calls, as well as the username and user privileges.

Parameter name Description

username Your username

password Your password

curl "http://cloudstudio:7330/api/login" \
 -d "username=John" \
 -d "password=burgers"

{
 "sessionId": "f40309335f82e044fa04c6f267aa62fd",
 "username": "John",
 "isAdmin": false,
 "isCreator": false
}

CloudStudio API Reference
Introduction

/api/login

Parameters

Example

Request

Response

Appendix: CloudStudio API Reference Page 1

Method: GET

Retrieves a list of all repositories you have access to.

Parameter name Description

sessionId Your session ID

curl "http://cloudstudio:7330/api/repositories?\
 sessionId=YOUR_SESSION_ID"

{
 "repositories": [
 {
 "repositoryAlias": "BankAccountDemo",
 "repositoryDescription": "Dealing with banks and accounts.",
 "repositoryUrl": "https://github.com/foo/bankaccountdemo",
 "repositoryOwner": "John",
 "users": [
 "David",
 "Isabelle",
 "John"
],
 },
 {
 (...)
 }
]
}

Method: GET

Retrieves a list of users and branches for a given repository. Also returns the timestamp of
the last origin information update.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

/api/repositories

Parameters

Example

Request

Response

/api/repositoryInformation

Parameters

Appendix: CloudStudio API Reference Page 2

curl "http://localhost:7330/api/repositoryInformation?\
 sessionId=YOUR_SESSION_ID&\
 repositoryAlias=BankAccountDemo"

{
 "repositoryAlias": "BankAccountDemo",
 "repositoryDescription": "Dealing with banks and accounts.",
 "repositoryUrl": "https://github.com/foo/bankaccountdemo",
 "repositoryUsers": [
 "David",
 "Isabelle",
 "John"
],
 "repositoryBranches": [
 "master",
 "test_branch"
],
 "lastOriginUpdate": "2015-03-27 23:09:32",
 "lastOriginUpdateDiff": "1m"
}

Method: POST

Updates repository information. You need to be administrator or repository owner.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

repositoryDescription Description for repository

repositoryUrl URL to remote repository

curl "http://cloudstudio:7330/api/setRepositoryInformation" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "repositoryAlias=HelloWorld" \
 -d "repositoryDescription=This is a Hello World project." \
 -d "repositoryUrl=https://github.com/foo/helloworld"

Example

Request

Response

/api/setRepositoryInformation

Parameters

Example

Request

Appendix: CloudStudio API Reference Page 3

{}

Method: GET

Retrieves branch level awareness information for a repository. For every branch, the active
users represent the users that have this particular branch checked out currently.

For every user in branch, a relation to the origin is given. This value can be EQUAL,
AHEAD, BEHIND, FORK, LOCAL_BRANCH or REMOTE_BRANCH.

Relationship with origin Description

EQUAL The latest branch commit is the same for the user and the
origin.

AHEAD The user has made commits and is directly ahead of the
origin.

BEHIND New commits have been pushed to the origin and the user
is directly behind.

FORK The user has made commits but other new commits have
been pushed to the origin in the meantime.

LOCAL_BRANCH This branch is a local branch for the user.

REMOTE_BRANCH This branch only exists on the remote but not on the user's
local repository.

For the relationships AHEAD, BEHIND and FORK a distance specifies the shortest
distance between the current commit for the client and the origin.

For every user, the "lastUpdate" field refers to the last time that the client has sent an
update to CloudStudio. "lastUpdateDiff" is the elapsed time since the last update, e.g. "2h"
(2 hours) or "5d" (5 days).

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

Response

/api/branchAwareness

Parameters

Appendix: CloudStudio API Reference Page 4

curl "http://localhost:7330/api/branchAwareness?\
 sessionId=YOUR_SESSION_ID&\
 repositoryAlias=BankAccountDemo"

{
 "branches": [
 {
 "branch": "master",
 "activeUsers": [
 {
 "username": "David",
 "lastUpdate": "2015-03-27 20:10:03",
 "lastUpdateDiff": "3h"
 },
 {
 "username": "John",
 "lastUpdate": "2015-03-27 21:33:41",
 "lastUpdateDiff": "2h"
 }
],
 "users":[
 {
 "username": "David",
 "relationWithOrigin": "FORK",
 "distanceFromOrigin": 2
 },
 {
 "username": "Isabelle",
 "relationWithOrigin": "EQUAL"
 },
 {
 "username": "John",
 "relationWithOrigin": "AHEAD",
 "distanceFromOrigin": 1
 }
]
 },
 {
 (...)
 }
]
}

Method: GET

Retrieves file level awareness information for a repository and branch. All your files in a
branch are compared to every other users' files in the same or specified branch.

For every user a conflict type is set to either NO_CONFLICT, FILE_CONFLICT or
CONTENT_CONFLICT.

Example

Request

Response

/api/fileAwareness

Appendix: CloudStudio API Reference Page 5

Conflict type Description

NO_CONFLICT The two files being compared are identical.

FILE_CONFLICT The two files being compared are different.

CONTENT_CONFLICT After further analysing conflicting files, by doing a three-way
diff with a suitable common ancestor of both files, a merge
conflict occurs.

Non-existing files are treated as empty files for this purpose.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

branch Branch from which your files are compared

compareToBranch Branch to which files of other users your files are compared
to

showUncommitted If true, also takes into account changes that have not yet
been locally committed.

showConflicts If true, for all files with a FILE_CONFLICT, additionally run a
content conflict analysis. If false, just compare the files by
their hash.

viewAsOrigin Instead of showing from your perspective, show from the
perspective of the origin ("true" or "false")

curl "http://cloudstudio:7330/api/fileAwareness?\
 sessionId=YOUR_SESSION_ID&\
 repositoryAlias=BankAccountDemo&\
 branch=master&\
 compareToBranch=master&\
 showUncommitted=false&\
 showConflicts=true&\
 viewAsOrigin=false"

{
 "files": [
 {
 "filename": "README",
 "users": [
 {
 "username": "David",
 "type": "FILE_CONFLICT"

Parameters

Example

Request

Response

Appendix: CloudStudio API Reference Page 6

 },
 {
 "username": "Isabelle",
 "type": "NO_CONFLICT"
 },
 {
 "username": "John",
 "type": "NO_CONFLICT"
 }
]
 },
 {
 "filename": "src/java/Main.java",
 "users": [
 {
 "username": "David",
 "type": "NO_CONFLICT"
 },
 {
 "username": "Isabelle",
 "type": "CONTENT_CONFLICT"
 },
 {
 "username": "John",
 "type": "NO_CONFLICT"
 }
]
 }
]
}

Method: GET

Compares two files directly to each other.

The response contains a line-by-line comparison designed to be easily displayable in a
side-by-side view.

For each line, a type is set as follows:

Type Description

UNCHANGED No changes have been made to this line.

INSERT This line has been inserted.

MODIFIED This line has been modified.

PAD Padding for unmodified blocks to line up nicely.

MODIFIED_PAD Padding for modified blocks to line up nicely.

/api/contentAwareness

Appendix: CloudStudio API Reference Page 7

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

filename Filename

branch Your branch

theirUsername User you want to compare to

compareToBranch Branch you want to compare to

showUncommitted If true, also take into account changes that have not yet
been locally committed.

viewAsOrigin Instead of showing from your perspective, show from the
perspective of the origin ("true" or "false")

curl "http://cloudstudio:7330/api/contentAwareness?\
 sessionId=YOUR_SESSION_ID&\
 repositoryAlias=BankAccountDemo&\
 filename=README&\
 branch=master&\
 compareToBranch=master&\
 theirUsername=David\
 showUncommitted=false&\
 viewAsOrigin=false"

Method: GET

{
 "content": [
 {
 "myContent": "Welcome to BankAccountDemo!",
 "myType": "UNCHANGED",
 "theirContent": "Welcome to BankAccountDemo!",
 "theirType": "UNCHANGED"
 },
 {
 "myContent": "",
 "myType": "PAD",
 "theirContent": "This is a project dealing with banks and accounts."
 "theirType": "INSERT"
 }
]
}

Parameters

Example

Request

Response

/api/contentConflict

Appendix: CloudStudio API Reference Page 8

Compares two files and the nearest common ancestor to each other.

The response contains a line-by-line comparison designed to be easily displayable in a
side-by-side view.

For each line, a type is set as follows:

Type Description

UNCHANGED No changes have been made to this line.

MODIFIED This line has been modified.

MODIFIED_PAD Padding for modified blocks to line up nicely.

CONFLICT This line is conflicting.

CONFLICT_PAD Padding for conflict blocks to line up nicely.

PAD Padding for the blocks to line up nicely.

By definition, a conflict occurs when all three lines have been modified or only the common
ancestor has been modified.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

filename Filename

branch Your branch

theirUsername User you want to compare to

compareToBranch Branch you want to compare to

showUncommitted If true, also take into account changes that have not been
locally committed yet.

viewAsOrigin Instead of showing from your perspective, show from the
perspective of the origin ("true" or "false")

curl "http://cloudstudio:7330/api/contentAwareness?\
 sessionId=YOUR_SESSION_ID&\
 repositoryAlias=BankAccountDemo&\
 filename=src/java/Main.java&\
 branch=master&\
 compareToBranch=master&\
 theirUsername=Isabelle&\
 showUncommitted=false&\
 viewAsOrigin=false"

Parameters

Example

Request

Appendix: CloudStudio API Reference Page 9

{
 "content":[
 {
 "myType": "UNCHANGED",
 "myContent": "First line.",
 "theirType": "UNCHANGED",
 "theirContent": "First line.",
 "baseType": "UNCHANGED",
 "baseContent": "First line."
 },
 {
 "myType": "MODIFIED",
 "myContent": "Only I changed this, no worries.",
 "theirType": "MODIFIED",
 "theirContent": "Second line.",
 "baseType": "MODIFIED",
 "baseContent": "Second line."
 },
 {
 "myType": "CONFLICT",
 "myContent": "I made a change.",
 "theirType": "CONFLICT",
 "theirContent": "Third line.",
 "baseType": "CONFLICT",
 "baseContent": "Me too! Whoops."
 }
]
}

Method: GET

Retrieves a list of all users, their privileges and the date they created the account. Must be
administrator to perform this operation.

Parameter name Description

sessionId Your session ID

curl "http://cloudstudio:7330/api/users?\
 sessionId=YOUR_SESSION_ID"

{
 "users": [
 {
 "username": "Admin",
 "joinDate": "2015-02-01 16:23:12",

Response

/api/users

Parameters

Example

Request

Response

Appendix: CloudStudio API Reference Page 10

 "isAdmin": true,
 "isCreator": true,
 },
 {
 "username": "David",
 "joinDate": "2015-03-02 23:01:57",
 "isAdmin": false,
 "isCreator": true,
 },
 {
 "username": "Isabelle",
 "joinDate": "2015-03-07 11:23:01",
 "isAdmin": false,
 "isCreator": false,
 },
 {
 "username": "John",
 "joinDate": "2015-03-16 10:13:41",
 "isAdmin": false,
 "isCreator": true,
 },
]
}

Method: POST

Creates a new repository and sets its owner to yourself. Repository creation rights are
required for this operation.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

repositoryUrl URL to the remote, e.g. GitHub

repositoryDescription A short description

curl "http://cloudstudio:7330/api/createRepository" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "repositoryAlias=HelloWorld" \
 -d "repositoryDescription=This is a Hello World project." \
 -d "repositoryUrl=https://github.com/foo/helloworld"

{}

/api/createRepository

Parameters

Example

Request

Response

Appendix: CloudStudio API Reference Page 11

Method: POST

Deletes a repository. You need to be administrator or the repository owner for this
operation.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

curl "http://cloudstudio:7330/api/deleteRepository" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "repositoryAlias=HelloWorld"

{}

Method: POST

Adds a user to a repository. Must be repository owner or administrator.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

username Username

curl "http://cloudstudio:7330/api/addUserToRepository" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "repositoryAlias=HelloWorld" \

/api/deleteRepository

Parameters

Example

Request

Response

/api/addUserToRepository

Parameters

Example

Request

Appendix: CloudStudio API Reference Page 12

 -d "username=David"

{}

Method: POST

Removes a user from a repository. Must be repository owner or administrator.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

username Username

curl "http://cloudstudio:7330/api/removeUserFromRepository" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "repositoryAlias=HelloWorld" \
 -d "username=David"

{}

Method: POST

Sets a new repository owner. Must be repository owner or administrator.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

username New repository owner

Response

/api/removeUserFromRepository

Parameters

Example

Request

Response

/api/modifyRepositoryOwner

Parameters

Appendix: CloudStudio API Reference Page 13

curl "http://cloudstudio:7330/api/modifyRepositoryOwner" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "repositoryAlias=HelloWorld" \
 -d "username=David"

{}

Method: POST

Creates a new user.

Parameter name Description

username Username

password New password

curl "http://cloudstudio:7330/api/createUser" \
 -d "username=David" \
 -d "password=penguins"

{}

Method: POST

Removes a user. Requires administrator privileges.

Example

Request

Response

/api/createUser

Parameters

Example

Request

Response

/api/deleteUser

Appendix: CloudStudio API Reference Page 14

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

username Username

curl "http://cloudstudio:7330/api/deleteUser" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "username=David"

{}

Method: POST

Changes a user's password.

Parameter name Description

sessionId Your session ID

newPassword New password

curl "http://cloudstudio:7330/api/changePassword" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "newPassword=polarbears"

{}

Parameters

Example

Request

Response

/api/changePassword

Parameters

Example

Request

Response

Appendix: CloudStudio API Reference Page 15

Method: POST

Give administrator privileges to a user. Requires administrator privileges.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

username Username

curl "http://cloudstudio:7330/api/giveAdminPrivileges" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "username=David"

{}

Method: POST

Revoke a user's administrator privileges. Requires administrator privileges.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

username Username

curl "http://cloudstudio:7330/api/revokeAdminPrivileges" \
 -d "sessionId=YOUR_SESSION_ID" \

/api/giveAdminPrivileges

Parameters

Example

Request

Response

/api/revokeAdminPrivileges

Parameters

Example

Request

Appendix: CloudStudio API Reference Page 16

 -d "username=David"

{}

Method: POST

Give repository creation privileges to a user. Requires administrator privileges.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

username Username

curl "http://cloudstudio:7330/api/giveCreatorPrivileges" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "username=David"

{}

Method: POST

Revoke a user's repository creation privileges. Requires administrator privileges.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

username Username

Response

/api/giveCreatorPrivileges

Parameters

Example

Request

Response

/api/revokeCreatorPrivileges

Parameters

Appendix: CloudStudio API Reference Page 17

curl "http://cloudstudio:7330/api/revokeCreatorPrivileges" \
 -d "sessionId=YOUR_SESSION_ID" \
 -d "username=David"

{}

Method: POST

Update the server with the user's git repository information for a single repository. This
operation is used by the client periodically.

For this operation only, repository data needs to be sent as application/json.

Parameter name Description

sessionId Your session ID

repositoryAlias Repository alias

With the $JSON_STRING being:

{
 "files": [
 {
 "filename": "README",
 "branch": "master",
 "content": "This is the read-me file.",
 "committed": "committed",
 "commit": "65fcfcd7860bf95fd1dce7c01bcd886bcdf4e675"
 },
 {
 "filename": "README",
 "branch": "master",
 "content": "I made some uncommitted changed to the read-me file.",
 "committed": "uncommitted",
 "commit": "65fcfcd7860bf95fd1dce7c01bcd886bcdf4e675"

curl "http://cloudstudio:7330/api/localState?sessionId=YOUR_SESSION_ID&repositoryAlias=HelloWorld
 -H "Content-Type: application/json" \
 -d "$JSON_STRING"

Example

Request

Response

/api/localState

Parameters

Example

Request

Appendix: CloudStudio API Reference Page 18

 }
],
 "branches": [
 {
 "commit": "73e68dd8ae12bdf7dfce4a29cd0a6cb6ce99aca8",
 "active": true,
 "branch": "master"
 }
],
 "commitHistory": [
 {
 "commit": "73e68dd8ae12bdf7dfce4a29cd0a6cb6ce99aca8",
 "downstreamCommits":[
 {
 "distance": 0,
 "commit": "73e68dd8ae12bdf7dfce4a29cd0a6cb6ce99aca8"
 },
 {
 "distance": 1,
 "commit": "fdaa47da4ab7f22fc06373c407c48326e70db199"
 }
]
 }
]
}

{}

An erroneous request results in a status code 400 (Bad Request) response. The response
data is a JSON object as always and contains and error message.

{
 "error": "Insufficient privileges"
}

Response

Error handling

Example

Response

Appendix: CloudStudio API Reference Page 19

	Introduction
	Distributed Software Development
	Version Control Systems
	Awareness and Conflict Detection
	Motivation
	Goals
	Related Work

	Design
	Introduction
	Features
	Approach

	Separation of Awareness Views
	Branch Level Awareness
	File Level Awareness
	View as Origin
	View as Yourself
	Show Conflicts
	Compare to Other Branches
	Filters
	Grouping
	Uncommitted vs. Committed Files

	Content Level Awareness

	Implementation
	Introduction
	Architecture
	Architectural Overview
	Logic
	Access Control
	Folder Structure

	Client
	Server
	Web Interface
	API
	Database
	Configuration Management
	Client Configuration
	Server Configuration

	Testing and Correctness
	Build and Run

	User Guide
	Setup and Run Client
	Using the Web Interface
	Login
	Repository Overview
	Branch Level Awareness
	File Level Awareness
	Content Awareness
	User Management
	Create Repository
	Edit Repository

	Future Work
	Conclusions

