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Zusammenfassung

Die Verwendung eines Rollators durch gehbehinderte Personen ist mittlerweile stark ver-
breitet. Diese Arbeit befasst sich mit einer Hightech-Erweiterung für Rollatoren, welche den
Alltag für solche Menschen erleichtern soll.

Die Erweiterung besteht aus verschiedenen Sensoren wie Laser Scanner, Neigungsmesser und
Geschwindigkeitsmesser, und zwei Motoren für den Antrieb. Der Laser Scanner liefert die
Daten, um die Beinbewegung der Person und den Abstand zum Rollator zu messen. Mit
diesen Informationen und den Daten von den anderen Sensoren berechnet der Kontroller
die optimale Leistung für die Motoren, damit das Vorwärtskommen trotz Rollator möglichst
ohne zusätzlichen Kraftaufwand möglich ist. Dabei werden auch Steigungen und Gefälle
berücksichtigt.

Der erste Prototyp wird in drei Altersheimen zusammen mit den Bewohner getestet. Die
Erkenntnisse werden anschliessend ausgewertet und die nötigen Schlussfolgerungen gezogen.
Mit den Erfahrungswerten aus diesen Tests werden mögliche Verbesserungen und Korrektu-
ren präsentiert.



Abstract

The use of a walker by people with reduced mobility is common nowadays. This thesis deals
with a high-tech extension for walkers, which should make life easier for those people.

The extension consists of various sensors such as a laser scanner, inclinometer and speedome-
ter and two engines for the electric propulsion. The laser scanner provides the data to measure
the leg movement of the person and the distance to the walker. With this information and
the data from the other sensors, the controller calculates the optimum performance for the
motors, so walking is possible without additional effort despite of the rollator. Also climbs
and descents are taken into account.

The first prototype is tested in three nursing homes along with the residents. The findings are
then evaluated. With the experience gained from these tests improvements and corrections
are presented.



Acknowledgements

I would like to express my special thanks of gratitude to my supervisor Dr. Jiwon Shin for the
helpful support and the interesting discussions as well as our Professor Prof. Dr. Bertrand
Meyer who provided me the possibility to work on this robotic project of his group.

iHomeLab and especially Marcel Mathis I would like to thank for the efficient and helpful
cooperation.

This project was partially funded by the Hasler Foundation under the SmartWorld program
and received a donation of inclinometer sensor from the Pewatron Company.



Contents

List of Figures 7

List of Tables 8

List of Listings 8

1 Introduction 10

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 SmartWalker 12

2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Controller Motherboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Engines & Motor Controller & Hall Effect Sensors . . . . . . . . . . . . . 14

2.1.3 Brakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.5 Tilt Sensor/Inclinometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.6 3D Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.7 Tablet Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.5 Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.6 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Leg Detection 32

3.1 LiDAR Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Distance Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Environment Tracking 38

4.1 CSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5



4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 SmartWalker Controller 42

5.1 Wheel Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 STP Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Evaluation 50

6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3.2 SmartWalker as Walking Aid . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.3 Assist Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.4 Mode Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3.5 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.7 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusion 58

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 What I have learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendices 60

A Implemented EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B Original Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References 63
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1 Introduction

Roboscoop is a research project of the Chair of Software Engineering at ETH Zurich and
iHomeLab at Hochschule Luzern; the Autonomous Systems Lab at ETH Zurich serves as a
project advisor, bringing its own experience in autonomous robots. The aim of Roboscoop is
to improve the tools and techniques for developing robotics software. The main demonstrator
application is the SmartWalker robot for Ambient Assisted Living [38].

1.1 Motivation

The society is ageing and at the same time there is a growing lack of caregivers for older
persons. Handicapped people are in a difficult position, because mobility is an important asset
to maintain a certain degree of independence and to keep contacts with the social environment.
For these people, the walker is an important everyday tool. Since their introduction, these
devices have made hardly any technical progress, especially when you consider today’s electronic
and information technology.

SmartWalker is a high-tech extension of a walker that aids people of reduced mobility moving
around, so that they can cope with everyday life better. The walker is equipped with sensors and
actuators and is designed to function both, autonomously and non-autonomously. Itten [18] pro-
posed a solution for the autonomous mode. The non-autonomous assist mode, that is developed
in this project, promises to help people moving outdoors and indoors.

This project addresses the challenges in the non-autonomous assist mode, in particular, control-
ling the walker’s velocity according to its user’s movement. The assist mode is transparent to
the user and requires no active user control. It reduces the resistance when pushing the walker,
especially when moving uphill or downhill. For example, it is possible to carry purchases with
less effort.

The controller of the assist mode is using data from leg tracking, speed, brake lever and in-
clinometer sensors. The latter two sensors are evaluated and implemented into the existing
hardware interfaces in terms of this thesis.

1.2 Tasks

This work involves processing laser data to detect and track the user’s leg movement, the as-
sembly of an additional tilt sensor (inclinometer) and brakes, and writing a control loop for the
walker to move accordingly. It is required to develop and implement various algorithms in the
fields of leg detection and tracking and controlling.

The prototype is evaluated evaluated in elderly homes together with real people.

1.3 Related Work

In this thesis we introduce a inclinometer sensor and use this data in our controller to adjust
the support power. Tausel et al. [40] presents a model for smart walker interaction on slopes.
The parameters for this interaction model are obtained from a laser range finder for tracking the
legs and an inertial measurement unit, which can measure the pitch and the roll angles. They
integrate the model into a closed control loop that operates the engines. Overall this work can
be compared with our solution, but they use more expensive sensors to reach the same.

Arlindo et al. [12] propose a robotic walker for clinical applications in controlled rehabilitation,
but also for domiciliary use. Their walker has a three-dimensional force sensor at the handlebars
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and a laser scanner between the wheels to provide user-walker interaction data used for generat-
ing navigation commands. The authors record this data for clinical analysis and for fine-tuning
of different walking training and rehabilitation programs. This rollator is only suitable for flat
surfaces.

The smart walker of Postolache et al. [32] is designed to assist in physiotherapy sessions for gait
analysis and recovery. They use handlebars with piezo-resistive force sensors for measuring the
force applied by the user to the walker. It is an option to evaluate similar sensor for our walker.

Geunho et al. [21] developed a walker that is controlled exclusively by leg movement. The
authors realized a tracking scheme to estimate and predict the locations of the user’s legs and
body. With this informations they control the motions of the robot in real time. The big
difference to our walker is not only the control, but also the structure of the frame. The user
walks in the centre of the walker and the three engines are located in a triangle around the user.

Kim, Chung, and Yoo [20] propose a method for a mobile robot to detect and follow human
legs. This method is explained in short in Section 3, as we use ideas from their leg detection
method for our own implementation. Besides that, a service robot function would be an ideal
extension for our walker.

1.4 Structure of Thesis

The thesis is structured into seven parts. In Section 1.3 related work concerning leg detection
and tracking is presented. This is followed by an introduction (Section 2) to the hardware
and software, developed and used for the SmartWalker project. In Section 3), we take a
closer look at the LiDAR and the used leg detection algorithms. Next, there is a short attempt
to use the LiDAR also for environment tracking (Section 4). Section 5 is devoted to the two
different control modes, the PID and the speed to power (STP) mode. Finally, in Section 6.3,
the experiments and the analysis are presented of what we have done in retirement homes. This
is followed by a final conclusion (Section 7).
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2 SmartWalker

This section explains the setup of the SmartWalker and its components. Some of the sensors
were already present when this project was started, like engines, motor controller and LiDAR.
Brake sensors and inclinometer were introduced as consequence during this work.

In the first part we present the used hardware components, and in the second part the different
software modules.

2.1 Hardware

(a) Unmodified walker (b) Walker after the modifications

Figure 1: Trionic Veloped Walker

SmartWalker is a modification and extension of an existing walker. The underlying walker
(Figure 1) is produced by the swedish company Trionic1. The original usage area is located in
the outdoor field. The big wheels with rough tires allows one to use the walker also in rough
terrain. In the context of this thesis, the main advantage of this massive frame for us was the
possibility to mount industrial motors and sensors without miniaturisation and specialisation.

Roboscoop is a collaborative research project between iHomeLab, the Think Tank Research
Centre for Building Intelligence of the Lucerne University of Applied Sciences and Arts and the
Chair of Software Engineering of ETH Zurich. In terms of this research project, the Trionic
walker was extended with some basic set of sensors and actuators as two hub engines, a LiDAR
sensor and a rotatable camera. These components allow developers to build different applications
to make the walker behave smart.

Figure 2 shows a complete overview of the used hardware components. The core is the moth-
erboard (Section 2.1.1). It is connected to two motor controller (Section 2.1.2), two brakes
(Section 2.1.3), a laser scanner (Section 2.1.4), an inclinometer sensor (Section 2.1.5), a 3D
camera mounted on a servo motor (Section 2.1.6) and a tablet computer (Section 2.1.7).

1Trionic Veloped - the walker for active people. Trionic. url: http://www.trionic.se/. Veloped is the
modern alternative to a rollator - offering greater access and better comfort.
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Figure 2: Hardware component overview

2.1.1 Controller Motherboard

The controller is the core component of the SmartWalker. It is a BeagleBone Black2 (Fig-
ure 3a) computer mounted on a motherboard (Figure 3b). This motherboard provides a 12V
power connector, multiple UART and GPIO interfaces to connect the actuators and sensors,
and a 5V USB power outlet. It is an in-house development from iHomeLab.

(a) BeagleBone Black (b) Motherboard with BeagleBone developed by iHome-
Lab

Figure 3: Motherboard for BeagleBone Black

2BeagleBone Black. BeagleBoard.org. url: http://beagleboard.org/BLACK.

13

http://beagleboard.org/BLACK


2.1.2 Engines & Motor Controller & Hall Effect Sensors

The most important actuators are the two hub engines located in the two back side wheels
(Figure 4a). Besides the motor, there is also a hall effect sensor3 contained inside the hub.
This sensor produces one tic per degree when the wheel is rotating. With this information it is
possible to compute the rotation speed of the wheel and therefore the speed of the robot (see
Section 2.2.4).

Both engines are controlled by a Stellaris LM3S8971 BLDC Motor Control Board4 from Texas
Instruments (Figure 4b and 4c). The Motor Control Board is connected with the battery directly
and with the BeagleBone over UART. It supports two modes of operation, PowerMetric and
SpeedMetric.

• PowerMetric: The controller keeps the power to the motors constant. Therefore, the
speed of the walker is slower if there is higher resistance, or faster if there is less resistance.
The speed mode is used by the speed to power (STP) controller module (Section 5.3).

• SpeedMetric: The controller holds the speed of the motors constant. More power is con-
sumed at higher resistance, less otherwise. The power mode is used by the PID controller
module (Section 5.2).

(a) Hub Engines (b) Motor controller board (c) Motor controller board (installed)

Figure 4: Engine controller board and hub engine

3Hall effect sensor. Wikipedia. url: http://en.wikipedia.org/wiki/Hall_effect_sensor. A Hall
effect sensor is a transducer that varies its output voltage in response to a magnetic field. Hall effect sensors are
used for proximity switching, positioning, speed detection, and current sensing applications.

4Brushless DC (BLDC) Motor RDK. Texas Instruments. url: http://www.ti.com/tool/RDK-BLDC.
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2.1.3 Brakes

In the pilot study, which was done as part of the thesis written by Itten [18], people complained
about missing brakes. Therefore, we mounted two Tektro EL550-RS5 brake levers known from
electrical bicycles (Figure 5a) and the engineers from iHomeLab have designed mounts for the
calliper brake (Figure 5b) to the Trionic frame.

The two brake levers are mechanically connected to two side pull dual pivot brakes6, one for
each motorized wheel. In addition, both levers have a reed7 sensor included. These two sensors
are connected to the motherboard over GPIO. It allows developers to read out the state of the
brake. But since reed sensors are binary only, the possible states are limited to pulled and
released.

(a) Tektro EL550-RS brake lever

(b) Dual pivot calliper brake

Figure 5: Calliper brake and levers

5Tektro EL550-RS Brake Lever. Tektro. url: http://www.tektro.com/_english/01_products/01_
prodetail.php?pid=199&sortname=Lever&sort=1&fid=3.

6Rim brake. Wikipedia. url: http://en.wikipedia.org/wiki/Bicycle_brake#Rim_brakes. Rim
brakes apply the force by friction pads to the rim of the rotating wheel.

7Reed switch. Wikipedia. url: http://en.wikipedia.org/wiki/Reed_switch. The reed switch is an
electrical switch operated by an applied magnetic field.
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2.1.4 LiDAR

The Light detection and ranging8 (LiDAR) measures the distances to objects in discrete intervals
within a view range of 360°. It is one of the important sensors for this project because it is used
for leg detection in Section 3 and for environment tracking in Section 4.

In general, these sensors are expensive. The walker uses the scanner from the affordable Neato
Robotics9 XV-11 robotic vacuum cleaner. There are various internet websites (so called hacker
spaces), which explain how to use the LiDAR from the XV-11 robot in own robotic projects10.

The XV-11 LiDAR is connected as UART device to the motherboard. The mounting position
is in the middle of the SmartWalker, respectively in the center of the triangle shaped by the
three wheels, around 20cm above the floor (Figure 6). The XV-11 have got a resolution of 1° and
a full 360° scan takes 0.25 seconds, therefore the scan frequency is 4Hz. The range is between
2cm and 4m.

Figure 6: LiDAR of the SmartWalker

8Lidar. Wikipedia. url: http://en.wikipedia.org/wiki/Lidar. Lidar (also written LIDAR, LiDAR
or LADAR) is a remote sensing technology that measures distance by illuminating a target with a laser and
analyzing the reflected light.

9Neato Robotics. Neato Robotics. url: http://www.neatorobotics.com.
10Hacking the Neato XV-11. Wikispaces. url: https://xv11hacking.wikispaces.com/.
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2.1.5 Tilt Sensor/Inclinometer

The ground is rarely flat. For persons with reduced mobility gradients are exhausting, especially
if one have to push a walker uphill. For that reason, the motors must be controlled depending
on the slope. Therefore, as part of this thesis, we introduced an inclinometer to measure the
pitch of the ground. The criteria for a sensor are:

• Low power requirements

• Voltage of 5V or 12V (supported power outlets of the motherboard)

• Resolution below 0.2° (smooth changes of the ground)

• Serial protocol support (UART or RS-232)

• Low price

We have selected the Pewatron PEI-Z100-AL-232-1 360° inclinometer11 (Figure 7a), because it
meets the defined requirements. The resolution of this sensor is 0.1° and it is powered with 5V .
It is connected to an UART port of the motherboard over an UART-to-RS-232 level shifter.
The level shifter is required, because BeagleBone Black has only UART ports, but no RS-232
connectors. While for both standards, the transmission protocol is the same, UART works with
a voltage level between −3.3V and 0V and RS-232 between −12V and 0V .

Other options include the PEI-Z245-AL-232-1-17, 2 axis ± 45°12 sensor, because it would allow
us to measure the roll of the ground. If the ground has a longitudinal gradient, the walker drifts
either to the left or the right side. With the knowledge about the roll angle it would be possible
to compensate the drift. Figure 7b shows a schematic view of the rollator with the names of the
different rotation axis.

The inclinometer is mounted on the top of the LiDAR (Figure 6) and it is used by the controller
explained in Section 5.

(a) Pewatron PEI-Z100-AL-232-1
360° inclinometer

(b) Pitch and roll

Figure 7: Inclinometer

11PEI-Z100-AL-232-1 360° inclinometer. PEWATRON Online Shop. url: http://shop.pewatron.com/
search/pei-z100-al-232-1-360%C2%B0-inclinometer.htm.

12PEI-Z245-AL-232-1-17, 2 axis ± 45°. PEWATRON Online Shop. url: http://shop.pewatron.com/
search/pei-z245-al-232-1-17--2-axis.htm.
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2.1.6 3D Camera

For 3D sensing, there is a PrimeSense Carmine13 (Figure 8a) sensor. Figure 8b shows the sensor
mounted on a small servo motor at the height of the handlebar . The PrimeSense 3D sensing
technology gives developers the ability to observe a scene in three dimensions. The field of view
is 57.5°x45°, the VGA depth map has a resolution of 640x480 pixels and there is audio and color
support. The sensing range is between 0.8m and 3.5m. With the servo motor it is possible to
rotate the camera by 360°.

The PrimeSense Sensor is connected via USB to the Tablet or to the BeagleBone Black. The
servo motor itself is connected via GPIO to the motherboard.

(a) PrimeSense Carmine sensor (b) PrimeSense mounted on a servo motor

Figure 8: PrimeSense sensor

2.1.7 Tablet Computer

For processing computationally intensive algorithms such as 3D image analysis or as display
for some user interface, there is a tablet computer available. It is mounted on the top of
the handlebars. The tablet computer is connected via LAN to the BeagleBone and has a
direct connection to the main battery. The connection to the battery allows the tablet to be
permanently switched on. With the built in Wifi device, the tablet can also act as wireless
Access Point and bridge14 to the internal network. Figure 9 shows the mounted tablet.

Figure 9: Tablet computer mounted on the SmartWalker

13PrimeSense. Wikipedia. url: http://en.wikipedia.org/wiki/PrimeSense.
14Bridging (networking). Wikipedia. url: http : / / en . wikipedia . org / wiki / Bridging _

(networking). Network bridging is the action taken by network equipment to create an aggregate network
from either two or more communication networks.
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2.2 Software

The controller software is structured into multiple thematic packages. These packages are
Configuration (Section 2.2.1), Terminal (Section 2.2.2), ROS (Section 2.2.3), Position
(Section 2.2.4), Threading (Section 2.2.5), Drivers (Section 2.2.6), LegDetection (Sec-
tion 3) and Controller (Section 5).

Figure 10 shows an overview of all packages and the owned classes. This UML diagram focuses on
the packages and the contained classes, therefore the definition of methods, fields and relations
is omitted. Besides these that, there are also firmware modules running on the engine controllers
or the tilt sensor, but these are also omitted in the following introduction.

The operating system used on BeagleBone is Linux Ubuntu Trusty 14.04 for ARMhf15. The
controller software is written in C++ and structured and compiled as ROS node.

Figure 10: UML diagram of all packages and important classes

15Prepackaged ARM HF Linux Images. ARMhf. url: http://www.armhf.com. Easy to deploy ARM HF
Linux images for BeagleBone, ODROID-XU, and Wandboard devices.
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2.2.1 Configuration

The configuration module provides an interface to manage global settings such as the calibration
data of different sensors. There are methods to read settings from a configuration file, and it is
possible to register properties such as procedures and fields, globally. These global properties can
be read, written or called at runtime by the user, either programmatically or with simple script
commands. Figure 11 shows the member classes PropertyContainer, Section, Property
and all subclasses of it, and Configurable.

Figure 11: UML diagram of the Configuration package

PropertyContainer The core class in the configuration module is PropertyContainer.
A property container owns a set of sections, which in turn contains one or more properties. The
class PropertyContainer provides methods to register and query such properties of abstract
type Property. Sections, implemented in class Section, can not be created directly, so there
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are only methods to query them. A section is automatically created when a new property is
going to be registered in.

Property There are two main types of properties. First, there is PropertyField. It is the
superclass for fields. There exists multiple PropertyField implementations for several types
like boolean, string, double and enumerated types. Field properties can be read only or
readable and writeable. More types can be supported by sub-classing PropertyField.

The second property main type is PropertyCommand. It is a superclass for all procedures. A
procedure accepts zero or more arguments, but is not returning any value. Currently, there exists
only one implementation for the abstract class PropertyCommand. It is PropertyCommand0.
This implementation covers procedures with no arguments. Procedures with multiple parameters
can be supported by subclassing PropertyCommand.

Listing 1 shows an example how a property can be registered and accessed.

/*
* Register a property of type double and name "Resolution" in section "HallSensor".

* The possible values are between 10 and 200, and the stepsize is 0.01.

* Lambda expressions are used to query and set field "resolution" that

* actually stores the current resolution.

*/
container−>registerProperty (new PropertyDouble ("HallSensor" , "Resolution" ,

"Impulses per Meter" , 10 , 200 , 0 . 01 ,
[ this ] ( ) { return resolution ; } ,
[ this ] ( double d ) { resolution = d ; }) ) ;

/* Query the property. NULL is returned if the property does not exist */
const Property∗ p = container−>getProperty ("HallSensor" , "Resolution" ) ;

/* Cast the anonymous property to PropertyField and then query the value as string */
const PropertyField∗ field = dynamic_cast<const PropertyField∗>(p ) ;
if (field ) {

string s ;
if (field−>query (s ) )

print ("Current Resolution: " + s ) ;
else

print ("Failed" ) ;
}

Listing 1: Register and access a Property

Configurable The abstract class Configurable acts as interface for all classes that publish
properties and read from the configuration file. As configuration file we decided to use the
well known INI file format16: The INI file format is an informal standard for configuration files
for some platforms or software. INI files are simple text files with a basic structure composed
of sections, properties and values. The structure is the same as it is being used already in
PropertyContainer.

As an example, Figure 11 shows class SpeedToPower, which inherits from Configurable.
Thus, SpeedToPower can access the configuration file and export properties over the property
container. In fact, almost all classes from the Driver and Controller packages inherit from
Configurable, and all of them are exporting multiple properties.

16INI File. Wikipedia. url: http://en.wikipedia.org/wiki/INI_file. The INI file format is an
informal standard for configuration files for some platforms or software. INI files are simple text files with a basic
structure composed of sections, properties, and values.
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2.2.2 Terminals

The previous section introduced class PropertyContainer. In this section we explain how it
is used by the package Terminal. The terminal package provides simple access to the properties
contained in PropertyContainer over Telnet17 or a tiny web server18. Figure 12 shows the
package Terminal with the three member classes VirtualTerminal, Telnet and Web.

Figure 12: UML diagram of the Terminal package

VirtualTerminal The class VirtualTerminal uses the property container, to access its
properties over string commands. As shown in Figure 12, VirtualTerminal has a public
method exec. It takes a string command cmd as first parameter and a callback function
answer as second one. After parsing the string command, the right Property is searched in
PropertyContainer and then, depending on property main type, either apply or query

17Telnet. Wikipedia. url: http://en.wikipedia.org/wiki/Telnet. Telnet is a network protocol used
on the Internet or local area networks to provide a bidirectional interactive text-oriented communication facility
using a virtual terminal connection.

18Web server. Wikipedia. url: http://en.wikipedia.org/wiki/Web_server. A web server is a
computer system that processes requests via HTTP, the basic network protocol used to distribute information on
the World Wide Web.
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in case of PropertyField or exec in case of PropertyCommand is called. If there are any
results, then the callback function answer is invoked once per result line.

The first argument of the callback function answer is the command identifier, the second
one the message itself. The command identifier is an optional prefix of type integer for each
command. With that identifier it is possible to create a relation between the sent command and
the asynchronous replies. The command and reply syntax is explained in Figures 13 and 14.

Telnet The Telnet class implements a basic Telnet server. The implementation is straight
forward: A TCP server socket listens for incoming connections. After a client connection is
established, string commands are accepted and directly forwarded without modification to the
VirtualTerminal instance. Also the answers from the virtual terminal are sent back over
the TCP socket to the client without any modifications.

command

�
�#

���id

�


list
�� �selector

answer (ext)�
� get

�� ��
�g

���
�


selector
answer

� set
�� ��
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���

�


section property value

� exec
�� ��

�e
���
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section property �
� value�

�
�
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�help
�� �� quit

�� ��
�q

���
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selector

section �
�property

�


�
� section�

� ,
���

�


�


Figure 13: Command syntax of VirtualTerminal interpreter
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answer

�
�#

���id
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section property �
�ext

type

�


value �
�

��
�int/double

min max step

�enum
count id =

���name�
�

�


�



Figure 14: Reply syntax of VirtualTerminal interpreter

Web As a simple but expandable solution to bring a graphical user interface onto different
devices, we opted for a HTML5 web application. It can run on a normal browser without any
special client software. Therefore we implemented a very simple web server into our controller
software. For the web server, we decided to use POCO19, a collection of open source C++
class libraries and frameworks for building network- and internet-based applications that run on
desktop, server, mobile and embedded systems.

The web server serves only a very small HTML5 page with a basic skeleton of HTML20 [28]
tags. It also defines an embedded JavaScript variable that stores a list of possible applications
available on the server. From this variable the client can read what other applications can be
served by the web server. Current applications are a Joystick App to remote control the walker,
a Properties App to read and set all properties and a Monitor App to monitor speed and power
data from assist mode. The applications are provided as JavaScript file together with a CSS file
for the style. Developers can provide their own JavaScript and CSS files to extend the list of
applications. Figure 15 shows a screenshot of the Properties App application.

The JavaScript client application can open a WebSocket21 connection for a full-duplex commu-
nication with the BeagleBone controller. The same protocol must be used, as described in the
previous paragraphs VirtualTerminal and Telnet. For simplicity, the web server provides a
JavaScript file that offers a set of helper functions to easily communicate via WebSocket with
the controller.

19POCO C++ Libraries. POCO. url: http://pocoproject.org/. Modern, powerful open source C++
class libraries and frameworks for building network- and internet-based applications that run on desktop, server,
mobile and embedded systems.

20HTML5. Wikipedia. url: http://en.wikipedia.org/wiki/HTML5. HTML5 is a core technology
markup language of the Internet used for structuring and presenting content for the World Wide Web.

21WebSocket. Wikipedia. url: http://en.wikipedia.org/wiki/WebSocket. WebSocket is a protocol
providing full-duplex communications channels over a single TCP connection. The WebSocket protocol was
standardized by the IETF as RFC 6455 in 2011.
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Figure 15: Web user interface (Properties App)
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2.2.3 ROS

The controller software supports also the Robot Operating System (ROS) [35] in the version of
Indigo Igloo22. In short, ROS is a collection of software modules for robot development. The
SmartWalker controller acts as ROS node, which can be integrated into a ROS cluster.

Figure 16 shows the ROS package with the classes MsgHandler and its two subclasses RosMsgHandler
and NullMsgHandler. The ROS code is implemented in the class RosMsgHandler which
inherits from the abstract class MsgHandler. The class NullMsgHandler is a dummy or null
implementation of MsgHandler and can be instantiated in place of RosMsgHandler to keep
ROS disabled.

Figure 16: UML diagram of the ROS package

ROS allows developers to access all actuators and sensors over the advertised or published ROS
topics. With the custom ROS message SetProperty, one can also set or execute properties
managed by the property container. Table 1 shows all subscribed topics, their message types
and a short description. Table 2 shows the same for all advertised topics.

22ROS Indigo Igloo. ROS. url: http://wiki.ros.org/indigo. ROS Indigo Igloo is the eighth ROS
distribution release and was released July 22nd, 2014.
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Topic Type Description

/desired speed geometry msgs::Twist set the speed of the walker

/desired lspeed std msgs::Float32 set the speed of the left wheel in
ms−1 (SpeedMetric)

/desired rspeed std msgs::Float32 set the speed of the right wheel
in ms−1 (SpeedMetric)

/desired lpower std msgs::Float32 set the power of the left wheel
(PowerMetric)

/desired rpower std msgs::Float32 set the power of the right wheel
(PowerMetric)

/primesense angle std msgs::Float32 set the angle of the PrimeSense
servo °

/set property roboscoop ros::SetProperty set or execute a property

Table 1: Subscribed ROS topics

Topic Type Description

/current speed geometry msgs::Twist speed of the walker (twist)

/current position geometry msgs::PoseStamped pose

/nav odometry nav msgs::Odometry odometry data (pose and twist)

/step lwheel std msgs::Int16 hall effect sensor tics of the left
wheel

/step rwheel std msgs::Int64 hall effect sensor tics of the right
wheel

/counter lwheel std msgs::Int64 hall effect sensor tic counter of the
left wheel

/counter rwheel std msgs::Int64 hall effect sensor tic counter of the
right wheel

/laserScan sensor msgs::LaserScan LiDAR data

/battery state std msgs::Float32 state of the battery between 0 and
1

/lbrake std msgs::Bool state of the left brake

/rbrake std msgs::Bool state of the right brake

Table 2: Advertised ROS topics
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2.2.4 Position

Figure 17: UML diagram of the Position package

The Position package consists of just two classes, the Speed and Position class (See
Figure 17). The functionality of these classes is easily explained. For both hall effect sensors,
one per motorized wheel, there is a driver instance HallEncoder, which sends timestamped
tic messages to the Speed class. The frequency of these tics is linearly dependant to rotation
speed of the wheel. Thus the speed class can compute the rotation speed out of the received
tic events. In turn, the class Position uses both speed instances in order to calculate the
movement and therefore the position of the walker.
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2.2.5 Threading

This section explains the used concurrency model. SCOOP [27] is Simple Concurrent Object-
Oriented Programming. It is a model for concurrent computation, whose objectives are to
abstract the notion of concurrency to a level above the tools and techniques that are currently
available in the target concurrency environment, such as threads, mutex and semaphores.

In SCOOP it is possible to declare certain object types as separate. A separate instance of an
object may be handled by another processor, it is an abstract notion of an autonomous thread.
Principles of Design by Contract [25] are used to synchronize the access to shared resources.

SCOOP is part of Eiffel Studio23, which is not available for ARMhf so far. Therefore it is not
possible to use SCOOP on embedded devices as BeagleBone. But our design of running classes
on their own thread is similar to separated instances in SCOOP.

Figure 18: UML diagram of the Threading package

Almost all classes of the Controller, ROS, Position, and Driver packages inherit from
one of the classes contained in the Threading package. Figure 18 shows the member classes
ThreadControl, Thread and Timer.

The class ThreadControl is a super class for all those classes which own one or more threads
or which run itself separately. This does not mean that the class itself is separated. With the
method exit, the caller signals the callee that it must stop at the earliest opportunity, including

23Eiffel Software. Eiffel Software. url: https://www.eiffel.com/.
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the owned threads. With waitFor, a caller can join the callee and return only when the joined
thread is terminated.

A class inheriting from Thread creates its own thread. After instantiation, the method execute
is called. The class instance is valid as long as the process does not return from this execute
method.

The third threading class is Timer. It inherits from Thread and implements the abstract
method execute. Additionally, it defines the abstract method void event(). This method
is called within a fixed frequency. The frequency is provided as parameter to the constructor of
the class Timer.

In Figure 18, the class Position is used as an example that inherits from ThreadControl.
Therefore Position is not located on its own thread, but it owns two instances of HallEncoder
which themselves inherits from Thread. The Brake driver polls the state of the brake regularly,
so this class inherits from Timer.

2.2.6 Drivers

Figure 19: UML diagram of the Drivers package

The Drivers package has classes that manage and provide access to all hardware devices. The
classes are listed in Table 3 and shown Figure 19.

Class Device Sections

Laser XV-11 Laser Scanner 2.1.4, 3

HallEncoder XV-11 Laser Scanner 2.1.2, 2.2.4

MotorDriverTI Stellaris LM3S8971 BLDC Motor Control Board 2.1.2, 5

TiltSensor Pewatron PEI-Z100-AL-232-1 360° 2.1.5, 5

Brake Tektro EL550-RS and GPIO of motherboard 2.1.3, 2.1.1, 5

Switches GPIO of motherboard 2.1.1, 5

Servo Servo Motor for PrimeSense 2.1.6

Table 3: Driver classes and devices
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3 Leg Detection

One of the main objectives of this project is to track the user’s leg movement. Using this
information in assist mode, the velocity can be adjusted according to the distance between the
walker and the person. If the distance increases between the person and the rollator, the walker
is probably too fast, or too slow, when the distance decreases. If there are no detected legs, the
controller can assume that there is no one behind the walker.

3.1 LiDAR Capabilities

The LiDAR sensor is used to scan the area around the walker. The XV-11 scanner (Section 2.1.4)
has a resolution of one ray per degree. The rotation speed is at 4Hz, therefore the latency
between two consecutive scans is 694µs, and a full 360° scan takes around 250ms.

The distance between two consecutive scanned points is around 0.262cm, when the measured
object is 15cm away from the laser scanner. If this distance between laser and object grows up to
4m, then the measured distance between two consecutive points grows to 6.981cm. Figure 20a
shows to width of the view range between two consecutive laser rays in distances of 15cm, 98cm
and 400cm.

From the evaluation of walking distances (See Figure 38) we know that people are walking in a
distance between 40cm and 60cm to the rollator. Figure 20b outlines the case, where a person
is at a distance of 43cm behind the walker. The blue circles are the legs, the green circle the
body centre.

The number of rays that may hit a leg of 16cm in radius, is between 14 and 35 in this case
because the spanned angle between the two consecutive rays is 14° for the left, and 35° for the
right leg. But this is the optimal case. Depending on the quality of reflection, it is possible that
some measurements fail and therefore less data points are available for processing.

(a) LIDAR resolution (b) Rays per leg

Figure 20: XV-11 LiDAR capabilities
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3.2 Detection

Kim, Chung, and Yoo [20] proposed to distinguish legs from other objects by characteristics
that a leg cannot have with high probability. They defined an area in front of the robot, where
the tracked person have to go in, and they expect the target person to wear long trousers. In
the first step, the authors use an incremental method to exclude objects with linear features
exceeding a certain length. After clustering they filter against the defined characteristics of a
leg.

Following a human by tracking its legs, as proposed by Kim, Chung, and Yoo [20], requires a
much more advanced technique in detection and tracking of legs than what is needed for this
project. Figure 21 shows the individual steps for detecting the legs. In the first step we read the
data points from the laser scanner and transform the coordinates from the polar to the Cartesian
coordinate system. Then, data points outside of the walking area are filtered and EM clustering
is applied to the remaining cloud. Finally we do a simple validation of the found clusters.

Figure 21: Leg detection algorithm

Filtering In the second step we filter all data points that belong to the scene around the
walker. Figure 22a shows the walker within the scene and Figure 22b the walker with the
defined walking are. We expect the person to stay or walk inside this pre-defined walking area.
Objects outside of this area are ignored. We expect a person to wear trousers and no other
objects inside the detection area, besides exactly two legs.
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(a) Snapshot of laser scan data with walker (b) Walking area behind the walker
with initial leg positions

Figure 22: Filter data points outside of the walking area

Clustering We assume exactly two legs or none inside the leg area, therefore there are also
two clouds of data points, one for each leg. With clustering24 [44] we assign each data point
either to the left or to the right leg. The two clouds are always distinct from each other and it
may never happen that one cloud is contained inside the other one. Therefore we can use the
Expectation–maximization algorithm (EM) for the cluster analysis [10]. The EM algorithm is
an iterative method for finding maximum likelihood estimates of parameters.

The EM algorithm expects the point cloud and an initial guess of the cluster positions and
the search radius as input. The output of the EM algorithm are the computed cluster centres.
Because we are interested in two clusters, we have to guess two positions. Our algorithm takes
either the leg positions of the last cycle as input, or if this information is too old or not available,
then we use the initial leg positions. The initial leg positions are the blue circles in Figure 22b.

If there are errors during clustering, as floating point exceptions, then we assume that there is
no person present.

Figure 23a shows two clouds (dots) with two guessed positions (big cross) and two search areas
(circles). The EM algorithm computes the clusters centres as shown in Figure 23b

24Cluster analysis. Wikipedia. url: http://en.wikipedia.org/wiki/Cluster_analysis. Cluster
analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called
a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters).
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(a) Initial situation (b) Final situation

Figure 23: EM Clustering [13]

Validation After clustering we know the cluster positions and the size. We know from Sec-
tion 3.1 that a leg consist of up to 35 scan points. If a cluster has less than 7 or more than 35
scan points, then it is not a leg. In such cases we drop the clusters and assume that no person
is present.

If the cluster size is in the valid range, we determine which cluster relates to which leg. This is
done by comparing the y component of the coordinate. The cluster with the smaller y component
represents the left leg, the one with the bigger y the right leg.

3.3 Distance Computation

From the leg detection we know the position of the left leg ~gl and right leg ~gr. The distance
d between the walker and the person is one of the inputs for the speed to power controller
(Section 5.3). This distance is calculated as follows: First we compute the body centre c and
then the distance d between it and the laser scanner. The laser scanner is located at the origin
of the coordinate system.

The leg detection algorithm delivers 4 distances d per second because the LiDAR rotates at
4Hz. These distances are stored in round robin cache t of size n. Size n is heuristically set to
360, which means that oldest cache entry is 90 seconds old. The mean distance d̃ is the mean
value over all elements of cache t.

~c =
~gl + ~gr

2

d =

√
~cx

2 + ~cy
2

d̃ =
1

n

n−1∑
i=0

ti
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3.4 Implementation

In this section we explain in short the implementation of the em algorithm. The EM algorithm
repeats the following two-step procedure to refine the result.

• E-step Apply a Kalman filter to obtain updated estimates [19]

• M-step Use the smoothed state estimates within maximum-likelihood calculations to
obtain updated parameter estimates

For our EM algorithm implementation we have taken ideas from Jormungand25. This algorithm
uses elements from the Linear Discriminant Analysis (LDA) for both steps [24]. We extended
the code to support a second termination criterion. The first criterion is the maximum number
of iterations, the new criterion is a threshold. If changes from one step to the next are below
this threshold, the loop terminates. We also specialized the code that it supports exactly two
clusters, this way a lot of unnecessary code could be removed. The code is optimized for spatial
and temporal locality and small loops are unrolled. With these optimizations it is possible to
run leg detection completely on BeagleBone (Listing 3 of Appendix A shows the implemented
code).

25Jormungand Chris. EM Clustering Algorithm. url: http://jormungand.net/projects/misc/em/.
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4 Environment Tracking

Due to uncertainty and error, the position, which is tracked by the class Position with in-
formation from the hall effect sensors, drifts away more and more over time from the actual
position. Outside, that can be corrected with the help of a GPS sensor. But inside, this option
does not exist. There exists a class of algorithms that help tracking objects and environments,
called Iterative Closest Point (ICP) algorithms [2][6]. ICP can be used to localize robots and
achieve optimal path planning.

Feng and Milios [23] present two algorithms for self-localization. The first algorithm is based
on matching tangent lines defined on two scans. The second algorithm algorithm is based
on iterative least-squares solutions using point to point correspondences, similar to the ICP
algorithm in [2][6].

Odometry data alone is not sufficient to solve the localization problem. Therefore it is recom-
mended to use visual sensors to match environmental features. SmartWalker has two visual
sensors, the PrimeSense and the XV-11 LiDAR, but the perspective of the PrimeSense is small.
We can reuse the 360° image data of the LiDAR also for environmental tracking. Feng and
Milios [23] suggest to use a 2D laser range scanner for pose estimation.

4.1 CSM

Naive ICP implementations are computational intensive. BeagleBone has limited computational
capacities, therefore we have to rely on a highly optimized implementation.

Censi [5] describes PLICP, an ICP variant that uses a point-to-line metric, and an exact closed-
form for minimizing such metric. The Canonical Scan Matcher (CSM)26 is an implementation
of PLICP.

The integration of the CSM library into our controller was possible. The algorithm requires the
approximate current position (odometry) and the laser range data as input. The approximate
current position is taken from the Position instance, while the laser range data is delivered
as raw data directly from the XV-11 driver Laser to the CSM code.

4.2 Evaluation

We conducted a short feasibility study in order to examine the use of the XV-11 LiDAR for
environment tracking.

4.2.1 Setup

For the evaluation we defined two tracks: Figure 24 shows a red and a green track passing
through the same rooms. One track is the opposite to the other. The red track starts in a
narrow corridor and leads first 10m straight ahead. Then there is a 90° right corner, which is
followed by a 4m hallway again. Then the hallway opens into the entrance area. Here we make
a 180° turn. The green track on the map goes into the opposite direction, compared to the red
one.

26CSM. Massachusetts Institute of Technology. url: http://censi.mit.edu/software/csm/. The
C(anonical) Scan Matcher (CSM) is a pure C implementation of a very fast variation of ICP using a point-to-line
metric optimized for range-finder scan matching.
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Figure 24: Map for CSM evaluation

4.2.2 Results

The movement around the corners is detected and tracked well. But the straight, forward
moving inside the corridor is not detected at all. Figure 25 shows the traced environment, where
the orange line is the traced moving. Figure 25a should match the red track, Figure 25b the
green one. In these figures one can see that the corners are in direct succession and the straight
corridor is not detected. The hallway has too few rough features or the density of the XV-11 is
too small to measure fine grained features.

Figure 26 visualises two snapshots of recorded laser scan data. One snapshot is taken at point
1 inside the corridor, the other one at point 2 inside the entrance area. The red triangles of
Figure 26a are the dead angles, caused by the wheels. This dead area is huge and therefore, a
big part of the environment cannot be seen from the point of view of the laser scanner.

In Figure 26b, there is almost nothing to see. The dimension of the entrance area is simply too
big for the XV-11. Objects beyond 4m are only partly detected and the distance between two
consecutive scan points is around 7cm. With a distance of 7cm between two scan points it is
not possible to detect small features.

This leads to the conclusion that environment tracking with the XV-11 is possible only in tiny
areas with an extent of less than 2m and a full 360° sight radius.
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(a) Traced red track (b) Traced green track

Figure 25: Traced environment with CSM algorithm

(a) Inside corridor (Point 1) (b) Entrance area (Point 2)

Figure 26: Visualization of laser scan data during CSM evaluation
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5 SmartWalker Controller

The controller code is the heart of the robot. It receives data from the sensors and users,
interprets them, and then controls the motors. The controller package (Figure 27) has two built
in controller modes. The proportional-integral-derivative controller (PID) is implemented by the
class PController and is explained in Section 5.2, and the speed to power controller (STP),
implemented by class SpeedToPower (Introduced in Section 5.3). Both controller modes are
using the class WheelController as safety authority between them and the motor driver.
Section 5.1 explains the functionality of class WheelController.

Figure 27: UML diagram of the Controller package
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The class Controller is the manager of the controller modes. It can either set one of the
them active or disable both. If both modes are disabled, the SmartWalker can be controlled
either over terminal commands (Section 2.2.2) or by ROS (Section 2.2.3).

The controller manager reads also the status of the hardware switch, which is soldered on the
controller board. With this switch it is possible to keep both modes deactivated. It is no longer
possible to enable one of the modes programmatically. This can be useful if developers plan to
use ROS only.

5.1 Wheel Controller

The class WheelController is a safety authority between an active controller mode and the
motor driver. If the wheel controller does not receive speed or power messages or commands
regularly, the engines are stopped automatically. This mechanism is important because it pre-
vents the wheels from continuously turning. One reason for this may be that a parent controller
hangs, or that ROS messages are not received due to an interruption of the network connection.
One can think about moving this code directly into the firmware of the motor controller board.

WheelController compares regularly the timestamp of the last speed or power message with
the current time. If the time difference is higher than a predefined security interval, the engines
are stopped. The UML activity diagram is shown Figure 28.

Figure 28: Wheel controller safety authority
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5.2 PID Controller

The class PController implements a basic PID controller. The input is the target location,
to which the SmartWalker must drive.

Figure 29 is the UML activity diagram for the PID control loop. The loop reads the current
position from the class Position and computes the distance to the target location. If the
walker is not at the target, the left and right speed for the wheels are computed. The speed
values are then applied to the WheelController instance as speed metric.

Listing 2 shows the computation of the speedLeft and speedRight values from the current
position and the target coordinates targetX and targetY.

Figure 29: PID control loop

const double speedNom = 2 . 0 ; // nominal speed

double speedLeft ; // to compute
double speedRight ; // to compute

double deltaX = targetX − position−>getX ( ) ;
double deltaY = targetY − position−>getY ( ) ;
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double distance = sqrt (deltaX ∗ deltaX + deltaY ∗ deltaY ) ;
double targetPhi = atan2 (deltaY , deltaX ) ;
double deltaPhi = targetPhi − position−>getPhi ( ) ;

if (distance < S_TOLERANCE ) {
speedLeft = 0 ;
speedRight = 0 ;

} else {
if (abs (deltaPhi ) < M_PI/4) {

speedLeft = speedNom ∗ ( 1 . 0 − deltaPhi ∗ kp ) ;
speedRight = speedNom ∗ ( 1 . 0 + deltaPhi ∗ kp ) ;

} else { // Turn around
if (deltaPhi > 0) {

speedLeft = −speedNom /4 ;
speedRight = speedNom /4 ;

} else {
speedLeft = speedNom /4 ;
speedRight = −speedNom /4 ;

}
}

}

if (distance < 1) { // slow down process at the end
distance = sqrt (distance ) ;
speedLeft = speedLeft ∗ distance ;
speedRight = speedRight ∗ distance ;

}

leftWheelController−>setSpeedMetric (speedLeft ) ;
rightWheelController−>setSpeedMetric (speedRight ) ;

Listing 2: PID speed computation

5.3 STP Controller

The speed to power (STP) control loop is the core of the assist mode. STP reduces the rolling
resistance by adjust the engines speed transparently to the speed of the rollator. Depending
on the inclination of the road, the distance of the user, and the brakes, this support has to be
larger or smaller. Ideally, the motors would also help braking on downhill, but exhaust brake is
currently not supported by the motor controller firmware.

Figure 30 shows all steps of the STP control loop. In the first step, STP reads data from the
following four sensors in parallel:

• The speed values are queried from the Speed instances of both wheels.

• The current distance between the walker and the person, including the mean and variance,
are derived from the LegDetection class.

• Both brakes are sending their state.

• The actual slope angle is measured by the inclinometer.

The leg detection delivers the current distance between the walker an the user. If this distance
is zero, there is no one behind the walker. In that case and if one of the sensors did not deliver
any data, the engines have to be stopped. Else, the resulting power for the left and the right
wheel is computed as a linear combination of the values received from the sensors. These two
power values are then set as power metric to the WheelController.
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Figure 30: STP control loop

Computation of output power The following equations explain the composition of the
linear combination that defines the output power per wheel.

1. Compute walker speed v from speed of left vl and right vr wheel. vfwd is the forward speed
and is set to zero when the rollator is reversing.

v = 0.5 · (vl + vr)

vfwd =

{
v if v > 0

0 otherwise

2. Compute the speed power fractions psl and psr from the speed coefficient kv and the speed
of the wheels vl and vr.

psl = kv · vl
psr = kv · vr
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3. Compute the climb power fraction pc, depending on speed v, pitch angle αpitch and the two
factors kascend and kdescend. Factor kdescend is selected if the person walks reward downhill
(s < 0 ∧ c > 0) or forward downhill (s > 0 ∧ c < 0), kascend otherwise.

c = sin(αpitch)

pc = |v| · c ·

{
kdescend if s > 0⊕ c > 0

kascend otherwise

4. The brake power fractions pbl and pbr are computed from the brake coefficient kb, the
brake states bl and bl and the negative speed −vl, respectively −vr. The negative speed is
taken, because the brakes act in the opposite direction.

pbl = kb · bl · −vl
pbr = kb · br · −vr

5. The distance power fraction pd is only applied when the person is walking forward (v > 0).
It depends on speed v and the distance factor kd, the actual distance d, the mean distance
d̃, and also the pitch angle αpitch. γ is the distance pitch threshold and is explained in
paragraph Distance Equation.

∆d = d̃− d

µ =


−1 if αpitch > γ

0 if αpitch < −γ ∧∆d ≥ 0

1 otherwise

pd = kd · vfwd ·∆d · µ

6. Combine the four power fractions to the resulting power coefficient pl for left and pr for
right wheel. Use the balance coefficient kbalance to correct inequalities in engines.

pl = (1− cbalance) · (psl + pc + pbl + pd)

pr = (cbalance + 1) · (psr + pc + pbr + pd)

7. Prevent the engines to turn on below some power level cthreshold, so that the motors do
not start with slow movements.

pl =

{
0 if |pl| < cthreshold

pl otherwise

pr =

{
0 if |pr| < cthreshold

pr otherwise

8. Do not set the new power values to the wheel controller if there is just a minor change
below cdelta. This prevents the motor controller from overloading if there are many small
changes. The values p′l and p′r are the power values computed in the previous step and
represent the actual value that is set to the motor controller.

p′l =

{
pl if (pl = 0 ∧ p′l 6= 0) ∨ sgn(pl) 6= sgn(p′l) ∨ |pl − p′l| > cdelta

p′l otherwise

p′r =

{
pr if (pr = 0 ∧ p′r 6= 0) ∨ sgn(pr) 6= sgn(p′r) ∨ |pr − p′r| > cdelta

p′r otherwise
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Transition and Calibration Coefficients The five transition coefficients kv, kascend, kdescend,
kb and kd, and three calibration coefficients cbalance, cthreshold, and cdelta, are adjustable over the
property system and therefore, over the virtual terminal. The values are determined heuristically
during the development and are set to the following values by default:

• kv = 6.1

• kascend = 114.0

• kdescend = 40.0

• kb = 6.6

• kd = 5.1

• cbalance = −0.1

• cthreshold = 0.05

• cdelta = 0.01

• γ = 3°

Distance Equation ∆d is the difference between the mean distance d̃ and the actual distance
d. Section 3.3 explained that the mean distance d̃ is the mean value of all computed distances
d over 90 seconds. If ∆d is greater than 0, then the person is closer to the walker than usual. If
∆d is less than 0, the person is walking farther away. On flat terrain, with ∆d > 0, the rollator
becomes slightly faster, and with ∆d < 0 slower. This is because the resulting pd is linearly
dependent on ∆d.

In equation 5, there is the distance pitch threshold γ, which is currently set to 3°. We determined
this value heuristically during intermediate tests, but that value has to be proved in future work.
The terrain is almost never perfectly flat, so the threshold γ defines the band that is considered
as flat.

With the threshold γ we compute the value of µ which is either −1, 0 or 1. The definition of µ
explained in short:

• αpitch > γ ⇒ µ = −1
Negate the power if one moves uphill by more than γ degrees.
On uphill, the distance to the walker is higher than on flat terrain (Figure 31a). So ∆d
becomes negative and the resulting pd is negative also, therefore the walker’s support would
be smaller. Negating pd now brings more power to the wheels.

• αpitch < −γ ∧∆d ≥ 0⇒ µ = 0
The slope is less than −γ degrees. On downhill, the distance between the person and the
walker is shorter (Figure 31b). ∆d grows and thus also the power pd. We set pd to zero
on downhill because additional power to the engines would be dangerous.

• otherwise⇒ µ = 1, which means flat terrain.

(a) Walking uphill (b) Walking downhill

Figure 31: Distance variation when walking uphill or downhill
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6 Evaluation

In this section we present the evaluation setup, its implementation, and the results. The goal
of the evaluation was to find out if older people accept these kind of devices, what they think
about the new assist mode, and which suggestions for improvement they have.

6.1 Setup

For the evaluation we created a questionnaire (Appendix B), which is divided into three parts.
In the first step, the participants have to answer the first part of the questionnaire. It collects
background informations as their age, the usage of a walking aid, how often someone goes outside
and how often a computer, a smartphone or a similar device is used.

After answering the first part of questions, the participant walks some distance with our walker.
The test takes place indoors and we do not define a special course because not all people are
in equal shape. From the pilot study we learned, that some liked to walk a longer distance and
others could shoot a short round only [18]. Due to the cold weather outside, it is not possible
to perform some outdoor tests with the old people, why we have to postpone the inclinometer
tests on increasing terrain to summer. The SmartWalker is turned off completely for the first
walk, therefore the participants will feel the full weight and so the resistance of the walking aid.

Following on, the test person answers the second part of the questions about using the walker
without any engine support. The questions addresses the comfort, size and weight of the Smart-
Walker, and the required effort to to push it (Appendix B - Part 2).

In the third part, the experimentee goes on a second round with the SmartWalker, now with
the assist mode turned on. After that we ask the third set of the questions. These questions
address the comfort and effort again. Their opinion on the support speed is polled, and we
collect their personal preference between assistance on and off (Appendix B - Part 3).

At the end of the tests, we host an informal discussion with the participants to hear their opinion,
what improvements they wish, and what they currently miss. The aim is to find out what these
people generally think of such projects and devices.

6.2 Method

We tested the procedure first internally in our department. After that, we visited three nursing
homes at three days, where 13 people participated in total. These number sounds not much,
but one has to consider that the whole procedure is time demanding and people may get tired
quite fast.

During all tests, data from the control loop (Section 5.3) is recorded to a file, which can be
used for evaluation later. There are two recordings per participant, one from the walk without
assistance, and a second one with. The controller recorded around 20 data rows per second, of
which each row contained the following information:

• Timestamp

• Speed power fraction, one for each wheel

• Climb power fraction

• Distance power fraction

• Brake power fraction of both wheels

• Resulting power of each Wheel

• Mean distance
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• Current distance

• Pitch angle

• Speed

6.3 Results & Discussion

The result section is structured into seven parts. Section 6.3.1 presents the collected background
informations about the participants. This is followed by the evaluation of the walker as walking
aid (Section 6.3.2). Section 6.3.3 evaluates the assist mode and Section 6.3.4 compares it with the
off mode. The distance between the walker and the person is evaluated in Section 6.3.5, which
is followed with the evaluation of the STP controller (Section 6.3.6). Finally, in Section 6.3.7
we summarize the feedback of the participants.

6.3.1 Participants
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Figure 32: Informations about the participants of the evaluation

The first graph (Figure 32) shows background information about the participants. The distri-
bution between men and women is about the same. Most people in the nursing home were aged
between 80 and 89. Around 60% are walking outside daily or 15% almost daily, the remainder
of 40% is less than once per week outside for a walk.

There was a clear difference between smartphone and computer users and people that never use
such devices. If someone owns a smart device, it uses it daily or almost daily (40%). On the
other hand, people who do not have a smart device never use one (60%). From visually impaired
participants we have learned, that smart devices as reading devices are very common.
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6.3.2 SmartWalker as Walking Aid

Most users refer to the walker as (too) heavy, (too) big and therefore unwieldy (Figure 33) and
not really suitable for everyday life. If we compare our walker with the personal walkers of the
participants, we have to agree with them. Our walker is wider, up to two times longer, and four
times heavier. Section 2.1 explains why we have chosen this frame. The optimization for weight
and size was not the first priority.

We have also received positive feedback concerning the weight: Some participants stated that
the walker’s heaviness gives some additional security and stability, compared to their current
light aluminium walkers. So the heavy weight have also its advantage.
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Figure 33: Evaluation of size and weight

6.3.3 Assist Mode

The speed of the assist mode is well accepted by over 80% (Figure 34). We tried to find the
balance between a strong and a weak support speed, what apparently succeeded. Some people
complained about the fact that the walker sometimes makes small stuttering. Our internal test
revealed the same, and the likely cause is: The two hub engines (Section 2.1.2) have a minimal
rotation speed. If somebody walks at a speed similar to this minimal rotation speed, the engines
begin to turn off and on, which is perceptible.

Nearly 54% preferred the assist mode. On the other hand, 30% do not like the support by a
robot and 16% were uncertain. Reasons for the acceptance of the assist mode are the higher
walking quality and speed and the lower resistance. Next Section discusses the walking quality,
the speed, and the resistance in detail.
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6.3.4 Mode Comparison

In this section we compare the assist mode with the off mode. In all graphs, the colour of the
assist mode is green, otherwise it is red.

Quality of Walking Figure 35 summarizes the answers to the question about the quality
of walking. The question was asked twice, once with the walker disabled (red) and once with
the assist mode on (green). The possible answers were very uncomfortable, uncomfortable, very
comfortable and no answer.

Almost 70% said that walking in off mode is comfortable. This is quite surprising, since the
majority of the participants complained about the walker’s size and weight (Figure 33). We
expected that walking with a heavy walker is uncomfortable.

For assist mode, more people chose the option very comfortable. On the other hand, also less
people think it is comfortable now. The number of participants voting for uncomfortable is the
same. The trend goes in the direction that the people feel the assist mode as more comfortable.
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Resistance Figure 36 shows the opinions concerning the force required to push the Smart-
Walker for both modes. The possible answers were too large, large, balanced, small and too
small.

One can interpret from the answers that the assist mode requires less effort to move the walker,
as expected. One person said that she felt unstable with assist mode. He supports himself
heavily on the walker and therefore, he experienced less stability.
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Figure 36: Evaluation of resistance
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Speed In graph of Figure 37, one can see the speed fractions of both modes. Because some
participants regularly paused the walking during their test, the standstill time is quite high.
Apart from that, people walk slightly faster when using the assist mode. But this does not
necessarily mean that assistance made them suddenly walk faster. Possibly their walking speed
was slower in the first part because of the heavy weight of SmartWalker. In order to better
understand the cause, one could equip their personal walker with a speedometer and compare
their speed when they walk with the SmartWalker in assist mode.
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Figure 37: Walking speed distribution

6.3.5 Distance

Figure 38 shows the recorded absolute distances between the walker and the persons during
their test walk. Figure 39 shows the same for for the variation. By looking at the variance,
in 50% of the time it is near 0. This means that the subjects position behind the walker have
remained stable for most of the time. The distribution of the absolute distance is almost flat
between 40cm and 60cm: People have their preferred stance and this is kept when walking.
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6.3.6 Control

The pie chart of Figure 40 shows the magnitude of the influence of the four sensors on the final
power with which the motors are operated. Section 5.3 described how the four sensors are used
by the STP controller to compute the final power for the wheels. Each slice of the chart is
related to the influence of one sensor.
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Flat Terrain Taking a look at Figure 40a, 74% of the power is determined by the speed of the
walker. Although the terrain on the elderly homes was flat, the inclinometer affected the result
by 26%. It could be because the pitch sensor is vibrated when you start walking. This vibration
affects the result all the time. This is not noticeable but is cumulated over time and therefore
heavily weighted in the graph. On the flat terrain, almost nobody pulled the brakes, therefore
this value is almost 0%. As we have seen in last Section 6.3.5, people keep their distance to the
walker very stable, therefore the influence of the distance in the final power is also below 1%.

Climb The only recordings on sloping terrain are from the internal test. The climb slice
of chart 40b is therefore larger. People also pulled the brake when moving downhill, so this
influence is higher also.

Speed (73.65%)

Climb (25.65%)

Brake (0.12%)
Distance
(0.59%)

(a) Flat terrain in elderly homes

Speed (57.83%)

Climb (38.56%)

Brake (1.27%)
Distance
(2.33%)

(b) Climb of 3% slope during internal test

Figure 40: Decomposition of sensor influences

6.3.7 Feedback

Most of the participants were very interested in our project, and some even wanted to know
the approximate price of the device and when we go into production. We also received very
useful feedback. Most people complained about its weight, manoeuvrability, and also width. In
particular, they said that its width is not very suitable for small elevators and doors.

Unfortunately, because of the cold weather, it was not possible to test outside. It would be
interesting to evaluate the inclinometer with the elderly people.
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7 Conclusion

This thesis presented a non-autonomous assist mode for smart walkers with speed to power
(STP) as controller. Data from speed, brake and tilt sensors is used to adjust the support power
of the SmartWalker. Leg detection and tracking refines the power according to the distance
between the user and the walker to gain a more natural felling. There is no manual control
required and there is also no additional user control equipment needed.

To accomplish this, we extended the initial version of SmartWalker with two additional
sensors, an inclinometer to measure the gradient of the ground, and two brake levers with
included binary pull sensors. We developed the STP controller, which is configurable by nine
coefficients.

The effectiveness of the proposed control is evaluated in nursing homes. Elderly people using
traditional walkers were invited to participate in a set of tests. With the help of a questionnaire
and two walking tests, we analysed the acceptance, strengths and weaknesses of the Smart-
Walker. From these results we can confirm that our work is going in the right direction.
People accepted the new assist mode, and we have received ideas and tasks for further work
(Section 7.1).

We have examined the suitability of the LiDAR for environment tracking (Section 4). From
these tests we learned, that it can not work, because the CSM algorithm requires a much more
accurate input. The resolution of the XV-11 LiDAR is to small at distances beyond 2m and a
big part of the view range is covered by the wheels of the SmartWalker.

7.1 Future Work

There are many possibilities to improve the SmartWalker. Concerning the assist mode, the
highest priority should be assigned to the motors and the motor controller. It has to be evaluated
whether the motor controller firmware can be adapted to support braking and slower speeds.

The second priority is the implementation of collision avoidance, not only for the autonomous
mode, but also for the non-autonomous assist mode. We noticed, that people often touched
door frames, chairs and other obstacles with our walker. Maybe we can help people to avoid
that with collision detection.

The third priority is the replacement of the inclinometer. With a two-axis inclinometer (Sec-
tion 2.1.5) it would be possible to measure the lateral inclination. With this information we are
able to compensate the drift to the left or right side when walking on a longitudinal slope.

More Ideas for future work are listed below with a few keywords.

• Software features

– User interface Easy to use interface, maybe with integrated alarm button, phone
and map routing.

– Collision detection Use the LiDAR for collision detection and avoidance

– Service mode The SmartWalker follows his owner (See Kim, Chung, and Yoo [20])

• Sensors

– Tilt sensor Two-axis inclinometer (Section 2.1.5).

– Handlebar touch sensor With a handlebar touch sensor we could detect if some-
one releases the walker.

– GPS Dedicated GPS receiver for outdoor positioning.
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– Weight sensor The STP controller is not aware about the weight of the Smart-
Walker. If this weight changes, then the coefficients have to be adjusted. With a
weight sensor this can be done automatically.

• Evaluation

– Outdoor tests Perform outdoor tests for testing the inclinometer

– Personal walker Compare the SmartWalker’s assist mode with the personal
walker. Right now, the assist mode was compared only with the disabled walker.

• Mechanics

– Weight Lighter frame

– Size Smaller wheelbase

– Handling Foldable frame

7.2 What I have learned

I liked to work in an interdisciplinary way, not just in terms of technology, computer science
and mechanical and electrical engineering, but also in terms of social contacts.

This project promised to be exciting from the start, and so it was. The largest part affected
software engineering, which is my main area, but it also required some knowledge in mechanics
and electronics. Although good skills in mechanics and electronics were not directly a prereq-
uisite for the success, in the end it was beneficial to understand the hardware in detail. To be
honest, it was the only way to effectively develop a software solution for a very hardware-level
product and to attach proposals for extensions.

For a software engineer, the SmartWalker has an unusual target group, namely people with
mobility problems and therefore mostly old people, which are dependent on a walker. This
required to listen to these people, explain them our ideas and pick up their mind about. Such
non commonplace social contacts were challenge and opportunity for the same.

The initial idea of controlling the walker’s speed just over leg detection had to be refined quickly.
In practice, when using leg tracking only, latencies are too high because the speed of the LiDAR
is low and there are many uncertainties in detecting and tracking legs. When I started with
the implementation of the control algorithms (Section 5), the speed of the SmartWalker was
mainly determined over the leg detection algorithm (Section 3). I reduced this influence step by
step and finally I ended up with the STP (Speed To Power) algorithm, described in Section 5.3.

This experience showed me, that you can not stick to the first ideas.
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Appendices

A Implemented EM Algorithm

const static double LDA_DIMENSION = 3 ;
const static double LDA_FACTOR = pow (2∗M_PI , 0 . 5∗LDA_DIMENSION ) ;

/**
* EM Alogrithm for 2 regions

*
* @param cloud array of points

* @param max_iterations maximum iterations to use

* @param delta if the change from one iteration step to the next is less than delta ->←↩
stop

* @param dim1 search dimension for center 1

* @param dim2 search dimension for center 2

* @param center1 (in/out) initial position of center 1

* @param center1 (in/out) initial position of center 2

* @return number of iterations

*/
int emlda (const vector<Vector2> &cloud , const int max_iterations , const double delta ,

const Vector2 &dim1 , const Vector2 &dim2 , Vector2 &center1 , Vector2 &center2 ) {

if (cloud . empty ( ) | | max_iterations < 1 | | delta < 0)
return 0 ;

// initialize covariance matrices
Matrix2 cov1 ; cov1 = dim1 ;
Matrix2 cov2 ; cov2 = dim2 ;

// initialize probability matrix
const int num_points = cloud . size ( ) ;
vector<double> probs1 (num_points ) ;
vector<double> probs2 (num_points ) ;

int iteration = 0 ;
while (iteration++ < max_iterations ) {

double det1 , det2 ;
Matrix2 icov1 = cov1 . inverse_and_determinant (det1 ) ;
Matrix2 icov2 = cov2 . inverse_and_determinant (det2 ) ;

const double pa1 = 1 .0/ ( LDA_FACTOR∗sqrt (det1 ) ) ;
const double pa2 = 1 .0/ ( LDA_FACTOR∗sqrt (det2 ) ) ;

for (int pid=0; pid<num_points ; pid++) {
const Vector2 p = cloud [ pid ] ;

const Vector2 d1 = p − center1 ;
const double pb1 = exp(−0.5∗d1∗(icov1∗d1 ) ) ;
probs1 [ pid ] = pa1∗pb1 ;

const Vector2 d2 = p − center2 ;
const double pb2 = exp(−0.5∗d2∗(icov2∗d2 ) ) ;
probs2 [ pid ] = pa2∗pb2 ;

}

// normalize probabilities
for (int pid=0; pid<num_points ; pid++) {

double sum_p = probs1 [ pid ] + probs2 [ pid ] ;
probs1 [ pid ] /= sum_p ;
probs2 [ pid ] /= sum_p ;

}

// compute mean and covariance statistics for each class
double mean_change = 0 ;
double sum_p1 = 0 ;
double sum_p2 = 0 ;
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// compute mean vector
Vector2 mean1 , mean2 ;
for (int pid=0; pid<num_points ; pid++) {

const Vector2 p = cloud [ pid ] ;

const double p1 = probs1 [ pid ] ;
mean1 += p1∗p ;
sum_p1 += p1 ;

const double p2 = probs2 [ pid ] ;
mean2 += p2∗p ;
sum_p2 += p2 ;

}
mean1 /= sum_p1 ;
mean2 /= sum_p2 ;

// compute covariance matrix (pooled covariance estimate)
cov1 = 0 ;
cov2 = 0 ;
for (int pid=0; pid<num_points ; pid++) {

const Vector2 p = cloud [ pid ] ;

const double p1 = probs1 [ pid ] ;
const Vector2 d1 = p − mean1 ;
cov1 += d1ˆ(p1∗d1 ) ;

const double p2 = probs2 [ pid ] ;
const Vector2 d2 = p − mean2 ;
cov2 += d2ˆ(p2∗d2 ) ;

}
cov1 /= sum_p1 ;
cov2 /= sum_p2 ;

mean_change +=
0.25∗ (mean1 − center1 ) . abs ( ) . sum ( ) +
0 .25∗ (mean2 − center2 ) . abs ( ) . sum ( ) ;

center1 = mean1 ;
center2 = mean2 ;

// test if the mean change is below a certian delta
if (mean_change <= delta )

break ;
}

return iteration ;
}

Listing 3: EM algorithm implementation
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1.  Männlich  Weiblich

2. Wie alt sind Sie?

 unter 70  70 – 79  80 – 89  über 90

3. Benutzen Sie eine Gehhilfe?

 Nein  Stock  Rollator  Rollstuhl

4. Wenn ja, wie lange benutzen sie die Gehhilfe bereits?

 <1 Jahr  1 – 2 Jahre  3 – 5 Jahre  mehr als 5 Jahre 

5. Wie oft benutzen Sie die Gehhilfe?

 täglich  4-6x / Woche  wöchentlich  weniger

6. Wie oft gehen Sie nach draussen?

 täglich  4-6x / Woche  wöchentlich  weniger

7. Wie oft benutzen Sie einen Computer oder ähnliche Geräte (Smartphone)?

 täglich  4-6x / Woche  wöchentlich  weniger

8. Wie angenehm ist es mit dem Rollator zu gehen?

 sehr unang.  unangenehm  angenehm  sehr ang.  weiss nicht

9. Wie empfinden Sie die Grösse des Rollators?

 zu gross  gross  angenehm  klein  zu klein

10. Wie empfinden Sie das Gewicht?

 zu schwer  schwer  angenehm  leicht  zu leicht

11. Wie empfinden Sie den Kraftaufwand, um den Rollator zu schieben?

 zu gross  gross  angenehm  klein  zu klein

12. Wie angenehm ist es mit dem Rollator mit Motorunterstützung zu gehen?

 sehr unang.  unangenehm  angenehm  sehr ang.  weiss nicht

13. Wie empfinden sie die Geschwindigkeit des Rollators?

 zu schnell  schnell  angenehm  langsam  zu langsam

14. Wie empfinden Sie jetzt den Kraftaufwand, um den Rollator zu schieben?

 zu gross  gross  angenehm  klein  zu klein

15. Finden sie es angenehmer mit oder ohne Motorunterstützung zu gehen?

 ohne Unterstützung  mit Unterstützung  weiss nicht

16. Wieso empfinden sie es als unangenehm mit Motorunterstützung zu gehen?

 Kein Vertrauen  Reaktionszeit ist zu tief  __________________________

17. Würden Sie unseren Rollator ihrem jetzigen Rollator vorziehen?

 ja  eher ja  eher nein  nein  weiss nicht

Teil 1 – Fragen zur Person

Teil 2 – Benutzung des Rollators ohne Motorunterstützung

Teil 3 – Benutzung des Rollators mit Motorunterstützung

B Original Questionnaire
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