
Supporting multiple proof

engines by translating between

intermediate verification

languages

Master Thesis

Michael Salar Ameri
ETH Zurich

mameri@student.ethz.ch

March 1, 2015 - September 1, 2015

Supervised by:
Dr. Carlo Alberto Furia
Prof. Bertrand Meyer

Abstract

Automatic veri�cation of code against functional properties is an important part
of software engineering. A widely used approach are intermediate veri�cation
languages, or IVLs. Programs from high-level languages such as Ei�el, Java or C
are encoded using IVLs. Veri�ers exist that generate veri�cation conditions from
IVLs; the veri�cation condtitions can in turn be checked by back-end provers -
either SMT solvers such as Z3 or interactive solvers such as Isabelle. The two
most widely used IVLs are Boogie and Why. While Boogie relies mainly on SMT
solvers (Z3 in particular), Why is geared towards a variety of di�erent back-end
solvers, including SMT and interactive ones. This thesis presents the design
and implementation of a translator which takes Boogie programs and produces
semantically equivalent Why programs. This allows programmers to use Why
and its powerful veri�cation system as a back-end alternative to Boogie. Even
if the translation does not currently fully support a small number of features
of the Boogie language, it is usable in practice on a variety of examples. To
demonstrate, we evaluated the translator on 19 benchmark programs, including
bubble sort, linear search and binary search trees. The translator produces se-
mantically equivalent Why programs for 18 of the benchmarks programs, which
can be veri�ed automatically using the Why prover.

Acknowledgments

First I would like to thank Dr. Carlo A. Furia for supervising my master's
thesis and providing helpful discussions and advice throughout. My gratitude
also goes to Prof. Dr. Bertrand Meyer for providing me the opportunity to
work on this thesis.

Contents

1 Introduction 6

2 Background 8
2.1 Boogie . 8
2.2 Why . 10

3 Translator Design 12
3.1 Translator Overview . 12

3.1.1 Step 1 - Parser and AST generation 12
3.1.2 Step 2 - Boogie AST . 12
3.1.3 Step 3 - WhyML AST . 13
3.1.4 Step 4 - WhyML code . 13

3.2 Implementation Details . 13
3.2.1 Visitor Pattern . 14
3.2.2 Formula, Term, Expression 14
3.2.3 BoogieAmp . 14

4 Translation Scheme 15
4.1 Identi�er renaming . 15
4.2 Type checking . 17
4.3 Constants . 17
4.4 Functions . 19
4.5 Procedure and Implementation Declarations 20

4.5.1 Separation of signature and bodies 20
4.5.2 Procedure Calls . 21
4.5.3 Procedure Contracts . 23
4.5.4 Multiple outputs . 23

4.6 Procedure and Implementation Bodies 23
4.6.1 Local Variables . 24
4.6.2 Where-clause Statements 24
4.6.3 Return Emulation . 25

4.7 Loops . 25
4.8 If-then-else . 27
4.9 Break and return statements . 27
4.10 Havoc . 27
4.11 Call�forall . 27
4.12 Where-clauses . 28
4.13 Goto statements . 29

4

4.14 Polymorphic Maps . 31
4.15 Frame clause . 33
4.16 Triggers . 33
4.17 Axiom, Assume, Assert . 33
4.18 Declaration order . 33
4.19 Preamble . 34

5 Translator API & CLI 36
5.1 CLI . 36

5.1.1 Requirements . 36
5.1.2 Documentation . 36
5.1.3 Examples . 37

5.2 API . 37
5.2.1 Requirements . 37
5.2.2 Documentation - Main translation 38
5.2.3 API Extensions . 40

6 Evaluation 41
6.1 Benchmark Programs . 41

6.1.1 Linear Search . 42
6.1.2 Rotation By Copy . 42
6.1.3 Welfare Crook . 45
6.1.4 Binary Search . 45
6.1.5 Integer & Real Ops . 45
6.1.6 Bubble Sort . 46
6.1.7 Binary Search Tree . 46
6.1.8 Miscellaneous . 49
6.1.9 Rotation By Reversal . 49
6.1.10 AutoProof . 49

6.2 Veri�ability . 51
6.3 Bene�ts and limits of our translator 52

6.3.1 Use Cases . 52
6.3.2 Limitations of the implementation 54

7 Conclusions 56
7.1 Conclusions . 56
7.2 Future Work . 56

Chapter 1

Introduction

Static veri�cation of software systems is a complex task within software engi-
neering. To make veri�cation of programs written in high level languages such
as Java, C, and Ei�el feasible, several approaches have been proposed and im-
plemented [20][39][7][8]. To separate such programming languages from logic
used by theorem provers, intermediate veri�cation languages (henceforth IVL)
are often used to encode programs [24][40][23]. Veri�ers can then generate veri-
�cation conditions from IVLs, which can in turn be checked by theorem provers.
Two classes of theorem provers are interactive provers [3] and satis�ability mod-
ulo theories (SMT) solvers. As the name suggests, interactive provers rely on
human input and aid in checking veri�cation conditions. Prominent examples
of such provers are Isabelle-HOL [37], PVS [30] and Coq [3]. SMT solvers on
the other hand work automatically by trying to solve decision problems in �rst
order logic. Widely used examples are Z3 [9], CVC4 [2] and Alt-Ergo [4].
Two prevalent IVLs are Boogie2 [33] and Why3 [14]. Boogie relies mainly on
SMT solvers, and is particularly geared towards Z3. The only available interac-
tive prover is HOL-Boogie [7], which is supported only when Boogie is used with
a speci�c C front-end. On the other hand many systems have been developed
to translate di�erent programming languages into Boogie, such as Dafny [22]
or AutoProof [40] for Ei�el. Why currently supports at least 16 SMT solvers
and 3 interactive provers as back-ends [18]. While systems such as Krakatoa for
Java [13] translate high-level programming languages into Why, their number
is not as high as for Boogie.
The aim of this thesis is to design and implement an automatic translation
mechanism from Boogie programs to Why programs. Our translation mecha-
nism will make it possible to use the Why system as a back-end for veri�ers that
output Boogie code. Therefore systems which currently translate into Boogie
could make use of Why's extensive list of back-end provers, including interactive
ones, without the need of any alterations. Furthermore, each veri�cation system
may generate di�erent veri�cation conditions, which can again make a program
more amenable to veri�cation.
The two main challenges of the translation are:

1. Semantic equivalence. Boogie is imperative, while WhyML is a func-

6

Introduction 7

tional language with some imperative features. We must be certain that
our translation mechanism produces semantically equivalent code, even if
a construct from Boogie is not available in WhyML. In other words, our
translation must be sound: Proven correctness of the translated program
must imply correctness of the original Boogie program.

2. Veri�ability. Given a Boogie program which is correct and su�ciently
annotated with speci�cations, our translator should produce WhyML pro-
grams which are amenable to veri�cation.

The �rst point is very important, as an unsound translation would be of no
real use. Some features �such as axioms� can be translated one to one, while
others �such as recursive functions, frame clauses or procedure declarations�
must be axiomatized or encoded with di�erent structures. To ensure the sec-
ond point, our translator must be able to include all important speci�cations at
the right points. These include pre- and postconditions, invariants, and triggers.

The translator in its current state supports most Boogie features, such as
procedures with contracts, functions, and constant declarations with parent rela-
tions. Currently not implemented in our translator is support for the following
constructs: attributes, bitvectors, gotos, and polymorphic maps. Because of
these limitations, the tool cannot handle Boogie programs generated from ver-
i�cation systems such as AutoProof [28], as they rely on polymorphic maps to
encode heaps. Nevertheless, we show how these constructs can be translated,
so support can be added in the future.

To demonstrate the usability of our translator, we translate 19 di�erent
benchmark programs. The benchmarks consist of annotated implementations of
well known algorithms such as bubble sort, an automatically generated program
from Autoproof, and some programs which contain di�erent Boogie features.
Of all the programs we tested 18 are translated into semantically equivalent
WhyML programs and 17 are automatically veri�ed using the Why3 system.

Outline. Chapter 2 gives a short introduction into Boogie2 and Why3.
The next chapter 3 demonstrates the translator design and most important
implementation details. Subsequently, chapter 4 explains the important steps
of the translation in detail. It serves as a reference of how the translation
operates, and argues that the resulting WhyML code is semantically equivalent
to the input code and therefore the translation is correct. Chapter 5 serves
as a manual for the translators API and CLI interfaces with usage examples,
while also explaining how the API may be extended in the future. Chapter 6 �rst
evaluates the translator based on benchmarks to show the translated code is also
amenable to veri�cation, and then demonstrates potential use cases in practice.
Finally, chapter 7 draws conclusions on the design and implementation, before
stating possible future work.

Chapter 2

Background

This chapter serves as a quick introduction into Boogie and Why. Some more
re�ned details of both are presented in chapter 4 as we present the translation
and reason about its correctness.

2.1 Boogie

Boogie, currently in its second version, is an intermediate veri�cation language.
Boogie is also the name of the veri�cation tool which takes Boogie language
programs as input and generates veri�cation conditions, which are passed to a
backend prover, the SMT solver Z3 by default [25].
In this section we introduce the main features of the Boogie language, which is
a combination of imperative constructs, and speci�cations in �rst-order logic.
A detailed description of the language is available at [33], while shorter intro-
ductions can be found at [40] and [41].
Boogie has 4 inbuilt types (int, real, bool, and bit�vectors), a map type, and
the ability for a user to de�ne types. Bit�vectors are written as xbvy, where x
is the decimal value of the bit�vector and y is its length.
Figure 2.1 demonstrates a newly de�ned type building, and the usage of inbuilt
and map types for the declared variable inhabited.
The imperative part of the language consists of procedures, implementations,
local and global mutable variables, assignments, if-then-else structures, while
loops, and gotos. Procedure declarations can be annotated with speci�cations
such as preconditions (requires), postconditions (ensures), and a list of global
variables which the procedure might modify (modifies). Pre- and postconditions
have the option to be marked as free , in which case they may be assumed when
appropriate, but do not have to be checked when otherwise necessary. Loops
may be annotated with invariants, which also have the possibility to be free.
havoc is a construct which introduces non-determinism into programs, by as-
signing arbitrary, blindly chosen values to variables. These values may be bound
or checked using assume and assert statements, respectively. Figure 2.2 demon-
strates their usage.

8

Background - Boogie 9

1 type building;

2 const white_house : building;

3 function size(b : building) : real;

4 axiom (∀ b :building • size(b)≥ 0.0);

5 axiom (size(white_house) = 5100.0)

6 var inhabited : [building]bool;

7 procedure move_in(b :building)
8 requires ¬(inhabited[b]);
9 ensures inhabited[b];

10 modifies inhabited;

11 {

12 inhabited[b] := true;

13 }

Figure 2.1: A simple Boogie program.

14 ...

15 var i,j : int;

16 //assign values

17 i :=−1;
18 j :=−2;
19 //randomize values

20 havoc i,j;

21 //bound values

22 assume i≥ 0;

23 assume j> i;

24 //check values

25 assert j> 0;

26 ...

Figure 2.2: Usage of non-determinism within Boogie programs.

Background - Why 10

2.2 Why

Why3 [17] is another platform for program veri�cation. Its language is called
WhyML. The veri�cation tool o�ers a rich API, so it can support many di�erent
back-end provers. A detailed description of Why3 and WhyML is given at [5].
Here we present the most important features of the platform and language which
are needed for the translation.
WhyML does not contain any inbuilt types. Instead, the Why3 platform has a
standard library which contains theories. These theories introduce and axioma-
tize the most widely used types, such as map, int, real, bool, list. A WhyML
program is called a module. An example module is presented in �gure 2.3. Just
as in Boogie, WhyML contains speci�cation structures. In contrast to Boogie,
WhyML is mainly a functional programming language with some imperative
structures.
The speci�cation structures precondition (requires), postcondition (ensures or
returns), loop invariant, and assert and assume statements behave just as
their Boogie counterparts. Frame clauses are speci�ed di�erently, namely us-
ing writes and reads clauses. Addiotionally, loops and recursive functions may
contain a variant to prove their termination.
let expressions, while technically being functions, behave similarly to Boogie
procedures. They contain input and output arguments (which may be an empty
tuple ()) and can be annotated with speci�cations. Their body may also con-
tain imperative structures such as loops and if-then-else statements.
Figure 2.4 shows the di�erence between a global variable (counter) and an ab-
stract function. Abstract functions return a new non-deterministic value each
time they are invoked. The non-determinism may be bounded with pre- and
postconditions. In essence, they behave like procedure declarations without a
body in Boogie. For global variables, we use the imported ref library, which
is simply a wrapper for mutable types. The contents of such a type may be
accessed with an exclamation mark (!), and assigned to with the usual syntax
(:=), as seen in �gure 2.3.

Background - Why 11

27 module Building_example

28 use import map.Map

29 use import real.Real

30 use import bool.Bool

31 use import ref.Ref

32 type building

33 constant white_house: building

34 function size(b: building): real

35 axiom A1: forall b:building . (size b) ≥ 0.0

36 axiom A2: (size white_house) = 5100.00

37 val inhabited: ref (map building bool)

38 let move_in (b:building) : ()

39 requires {not !inhabited[b]}

40 ensures {!inhabited[b]}

41 writes {inhabited} (*optional in WhyML*)

42 =(

43 inhabited := (set !inhabited b true)

44)

45 end

Figure 2.3: A manual translation of the Boogie program in �gure 2.1.

46 ...

47 val counter: ref int

48 val havocBool(): bool

49 ...

Figure 2.4: Di�erence between global variable declaration and an abstract func-
tion.

Chapter 3

Translator Design

This chapter �rst presents an overview of how the translator from Boogie to
WhyML is designed. Then the most important technical choices of the imple-
mentation are demostrated.

3.1 Translator Overview

The Boogie to WhyML translator operates in four main steps.

1. Parse Boogie code and generate an abstract syntax tree (AST).

2. Manipulate and rewrite parts of the AST based on prede�ned rules.

3. Translate the AST into a semantically equivalent WhyML AST.

4. Output WhyML code based on the translated AST.

3.1.1 Step 1 - Parser and AST generation

In the �rst step an abstract syntax tree must be created of the Boogie program.
As a grammar reference, the paper �This is Boogie 2� [33] is used. Some syntax
has changed with respect to the paper, and we adjusted the parser to take
these changes into account. Several (open source) tools already exist which
produce such an AST in di�erent programming languages [31][32][36]. For the
Boogie parsing part of this project, most of the code from [36] is reused. Some
adjustments were necessary to support some newer Boogie syntax. BoogieAmp
and these changes are presented and detailed in section 3.2.3.

3.1.2 Step 2 - Boogie AST

Boogie has several constructs without a direct equivalent in WhyML. In this
step, these constructs are rewritten based on prede�ned rules, using only con-

12

Translator Design - Implementation Details 13

Boogie
code

Boogie
AST

WhyML
AST

WhyML
preamble

WhyML
code

Verify

parse

manipulate

translate generate

Why3

Boogie2Why3

Figure 3.1: Overview of the translation mechanism.

structs which are available in WhyML. This Boogie to Boogie transformation
step facilitates the subsequent steps by producing Boogie statements with a
more direct correspondence to WhyML statements. It is important that the
semantics of the Boogie program remain the same after this step.

3.1.3 Step 3 - WhyML AST

This step generates a new WhyML AST from the Boogie AST. Chapter 4 de-
scribes in detail how each construct is translated. The goal is not only for the
translation to be semantically equivalent, but also veri�able using the Why3
platform.

3.1.4 Step 4 - WhyML code

In this last step the generated WhyML AST is traversed and corresponding
WhyML code is produced. The outputted code can be stored in a �le and
subsequently veri�ed using the Why3 system and its back-end provers.

3.2 Implementation Details

The translation tool is implemented in Java using the Visitor Pattern [27] for
most interesting parts.

Translator Design - Implementation Details 14

3.2.1 Visitor Pattern

Both the Boogie and WhyML abstract syntax tree can be accessed using visi-
tors. The implementation makes heavy use of this. The Boogie AST is traversed
n consecutive times (where currently n = 8), each time completing a further
step of the translation. A similar approach is used by Trudel et al. [38] to auto-
matically translate C into Ei�el. This has the bene�t of keeping the translation
very modular, as a step can easily be added (or replaced) by creating a new
visitor or (adjusting an existing one) - see section 5.2.3 for more details and
examples. A concern might be added run time, however in practice the time of
the translation seems to remain within a couple seconds - tested with programs
with up to 1000 lines of code.

3.2.2 Formula, Term, Expression

Boogie expressions are split into three groups in the WhyML syntax: formula,
term, and expression [17]. When the translator reaches a Boogie expression in
the AST, it must know which of the three possibilities it should generate for
the WhyML AST. This information relies on the context and is stored in the
private �eld formulaTermExpression of the class BoogieTranslator.

3.2.3 BoogieAmp

To parse Boogie �les and generate abstract syntax trees the open source project
BoogieAmp [36] is used. Next to an AST generator, it also o�ers a TypeChecker

class which adds information about the type to each node.We made several
modi�cations to the source code of BoogieAmp to meet our requirements. The
new code can be found at [1]. Boogie2Why3 uses BoogieAmp as a precompiled
library.
Visitor Pattern. The generated AST is extended to accept visitors, such that
accessing it matches the style of the rest of the implementation.
New Syntax. Boogie has introduced several changes to its syntax since com-
pared to the initial description in [33], such as the handling of integer vs real
division [26]. Since BoogieAmp uses the original syntax, we made several ad-
justements to be compatible with the new syntax.
AST mutability. Several setter methods were added to the AST nodes. This
allows the nodes to be modi�ed after creation, such as renaming variables or
replacing nodes altogether.

Chapter 4

Translation Scheme

This chapter explains the important steps of the translation in detail. It serves as
a reference of how the translation operates, and demonstrates why the resulting
code is semantically equivalent to the input code and therefore the translation
is correct1.
Once a Boogie �le is parsed and a corresponding AST is generated using Boo-
gieAmp's API, the AST is modi�ed in several steps in preparation of the trans-
lation to WhyML. Then the actual translation into a WhyML AST is performed
in several steps, before the resulting code is �nally printed to a �le. All these
steps are described in detail in this chapter.

4.1 Identi�er renaming

The �rst step is to rename identi�ers based on two criteria:

• Using characters which are allowed in WhyML. The allowed characters
represent a subset of the ones which are allowed by Boogie. [17][33]

• Explicitly di�erentiating shadowed Identi�ers. Boogie lets procedures
shadow (among other things) global variables with input arguments, which
is not allowed in WhyML [33]. Therefore such identi�ers are given a new
and unique name.

This part of the translation is handled by the class BoogieIdentRenaming which
implements Boogie's ASTVisitor. An example can be found in �gures 4.1 and
4.2.
Correctness. Identi�ers are renamed consistently, and variable shadowing is
made explicit. Therefore the semantics of the code is not altered in any way.

1Modulo bugs in the implementation

15

Translation Scheme - Identi�er renaming 16

50 //shadowed x, unsupported char ’.’

51 var x : bool;

52 procedure p (x : int) returns (y. :int)
53 ensures x = y.;

54 {

55 y. := x;

56 }

Figure 4.1: Shadowed variable x and unsupported character ('.').

57 ...

58 val __x : (ref bool)

59

60 let __p_IMPL0 (____x: int) : int

61 returns{|____y_DOT_ → ((____x) = (____y_DOT_)) }

62 =(

63 let ____y_DOT_ = (ref ((havoc ((
_GLOBAL_LOCAL___p_____y_DOT_ (()))))))in

64 assume { true };

65 try(

66
____y_DOT_ .contents ← ____x ;

67 assume { true }

68)with

69 |Return → assume { true }

70 end ;

71
____y_DOT_.contents

72)

73 ...

Figure 4.2: Shadowed variable x is renamed and unsupported character ('.') is
replaced.

Translation Scheme - Type checking 17

74 type T;

75 const unique a,b,c :T;
76 const d :T;

Figure 4.3: Four declared constants of the same type T, whereof 3 are unique.

4.2 Type checking

The next step is to use BoogieAmp's TypeChecker class to �ll out information
about the concrete types in the nodes. It is important to perform this step after
all identi�er names are �nal. Any application that modi�es the Boogie AST
should re-run the type checker before feeding the AST to the translator.
In the current implementation, this is the last step before a WhyML abstract
syntax tree is created. The following sections describe how each Boogie con-
struct is translated into a corresponding node in the WhyML AST. Unless oth-
erwise noted, the implementation can be found in the BoogieTranslator class.

4.3 Constants

Constant declarations in Boogie have two properties which must be considered
during translation:

1. Uniqueness

2. Order speci�cation

A constant declaration which contains the keyword unique potentially leads to
new axioms in the translation, as seen in �gures 4.3 and 4.4. For each pair of
unique constants of the same type, an inequality clause is axiomatized.
Correctness. �Declaring a constant with unique makes manifest that the con-
stant has a value that is di�erent from the values of other unique constants of
the same type.� [33] Therefore a new axiom must be introduced which contains
an inequality clause for each pair of declared unique constants of the same type.

When translating the order speci�cation, four cases must be handled:
Empty parent�edge. A constant c of type T declared with an empty parent�
edge2 introduces one new axiom into the translation, depicted in �gure 4.5.

2Note that a non-existent parent�edge is not the same as an empty one. A non�existent

parent�edge means nothing further is known about the parents, which is the default case also

for Why3.

Translation Scheme - Constants 18

77 ...

78 type __T

79 constant __a: __T

80 constant __b: __T

81 constant __c: __T

82 constant __d: __T

83 axiom C0: ((__a) 6= (__b))

84 axiom C1: ((__a) 6= (__c))

85 axiom C2: ((__b) 6= (__c))

86 ...

Figure 4.4: Translation of code in �gure 4.3. For n unique constants of the
same type, the translation introduces

(
n
2

)
axioms, each containing one inequality

clause. Note that constant d was not declared as unique, and is therefore not
compared to the other constant, even though it is of the same type.

87 constant c

88 axiom C1: forall a:T. (a6=c) → not c <: a

Figure 4.5: Axiom to describe an empty parent edge for constant c.

Non�empty parent�edge. A constant c of type T declared with n par-
ents p1, ..., pn introduces one new axiom, depicted in �gure 4.6.

Complete parent relation. The complete keyword is analogous to the
parent relation, but for children. Axiomatization is presented in �gures 4.7 and
4.8.

Unique parent. The unique parent relation states that the subtrees of
two di�erent children of a node are distinct. Given n di�erent constants which
have the same parent constant declared as unique, the translation introduces(
n
2

)
new axioms to produce equivalent semantics. The translation mechanism is

illustrated in �gures 4.9 and 4.4.

Correctness. The correctness of the axiomatization follows by de�nition
of the keywords.

89 constant c, p1, ..., pn: T

90 axiom A1 : forall t : T. c <: t → c=t || p1 <: t || ... || pn <: t

Figure 4.6: Axiom to describe a non-empty parent edge for constant c.

Translation Scheme - Functions 19

91 const c : T< : complete;

92 const p1 : T< :c;
93 ...

94 const pn : T< :c;

Figure 4.7: Example usage of the complete keyword within a parent relation.

95 constant c, p1, ... , pn: T

96 axiom A1: forall t : T. t <: c → c=t || t <: p1 || ... || t <: pn

Figure 4.8: Axiomatization of the constant declaration in �gure 4.7.

4.4 Functions

Boogie allows recursive functions to be non-terminating, whereas in WhyML
each de�ned function must provably terminate [6]. Therefore functions cannot
be translated one to one, but are instead axiomatized as demonstrated in �gures
4.11 and 4.12. If-then-else structures are turned into implications while other
expressions are turned into equalities within the axioms.
Correctness. The axiomatization ensures that each use of a function complies
with the same constraints as in the original code. Whatever is provable within
the translation must therefore also hold true in the original.

97 const p : T< : complete;

98 const c1 : T< :unique p;

99 ...

100 const cn : T< :unique p;

Figure 4.9: Example usage of the unique keyword within a parent relation.

Translation Scheme - Procedure and Implementation Declarations20

101 constant p, c1, ..., cn: T

102 axiom A1 : forall x,y: T. x <: c1 && y <: c2 && c1 != c2 → x != y

103 ...

104 axiom An2 : forall x,y: T. x < : cn−1 && y <: cn && cn−1 != cn →
x != y

Figure 4.10: Axiomatization of the constant declaration in �gure 4.9.

105 function f(args :argsType) : returnType

106 {if cond then exp0 else exp1}

Figure 4.11: Possibly non-terminating function in Boogie.

4.5 Procedure and Implementation Declarations

When translating procedures and implementations, several points are of impor-
tance:

4.5.1 Separation of signature and bodies

In Boogie, each procedure consists of an optional body, a signature and m con-
tracts (m ≥ 0). Additionally, n ≥ 0 implementations can reference a procedure
declaration. Each implementation acts as a separate and independent body of
the procedure. Implementation declarations are allowed to make some syntactic
changes to the signature, but must keep the semantics unchanged [33]:

• Allowed syntactic changes

� Reorder type arguments.

� Consistently rename type arguments.

� Rename in- and out-parameters.

• Semantics inherited from procedure declaration

� Speci�cations (i.e. pre- and post-conditions and modi�es clauses).

� Where-clauses.

The translation explicitly separates a procedure and all its implementations as
seen in �gures 4.13 and 4.14. Any renamed type arguments or in- and out-
parameters are given their original name from the procedure declaration in

107 axiom A0: forall args:argsType.

108 (cond → (f(args) = exp0)) &&

109 ((not cond) → (f(args) = exp1))

Figure 4.12: Axiomatized translation method of possibly non-terminating func-
tion.

Translation Scheme - Procedure and Implementation Declarations21

110 procedure p (xin : int) returns (result : int)

111 ensures xin≤ result;//verified by each implementation

112 {

113 assume xin≤ result;

114 }

115

116 implementation p(xin2 :int) returns (r :int)
117 {

118 assume xin2≤ 4;

119 r := 5;

120 }

121

122 implementation p(xin3 :int) returns (res :int)
123 {

124 res := xin3;

125 }

Figure 4.13: Procedure and implementation declarations in Boogie. Each im-
plementation must ful�ll the same contracts, but may rename parameters.

order to be consistent with the contracts3. For each procedure declaration, a
new abstract function is generated with the corresponding signature and con-
tracts (contract translation is described in more detail in section 4.5.3). These
declarations do not need to verify their contracts, but instead are used when
a procedure must be called. On the other hand, a new let declaration is in-
troduced for each procedure body and implementation. These are never called,
but are instead used to verify that the implementation ful�lls the contracts.
Correctness. Renaming type arguments does not change the semantics, and
is therefore allowed. In Boogie all calls, including recursive calls, use the mod-
ular semantics where contracts are substituted for the body of the callee. This
separation of body and signature emulates that behavior.

4.5.2 Procedure Calls

A procedure call is replaced by a call to the generated corresponding abstract
function in WhyML. This separates the caller and callee traces just like in
Boogie, as discussed in [33]. In Boogie all calls, including recursive calls, use the
modular semantics where contracts are substituted for the body of the callee.
In WhyML, in contrast, recursive calls with the non-modular semantics where
the actual body of the callee is used can be implemented using the keyword rec.
The translation, however, does not use this feature of the WhyML language
since it would alter the Boogie semantics.

3An alternative approach would have been to rename parameters within the contracts to

match each new implementation. Both approaches are valid, as long as they are consistent.

Translation Scheme - Procedure and Implementation Declarations22

126 ...

127 val __p (____xin: int): int

128 returns{|____result → ((____xin) ≤ (____result)) }

129

130 val _GLOBAL_LOCAL___p_____result (): int

131

132 let __p_IMPL0 (____xin: int) : int

133 returns{|____result → ((____xin) ≤ (____result)) }

134 =(

135 ...

136 assume {((____xin) ≤ (____result.contents)) };

137 ...

138
____result.contents

139)

140

141 let __p_IMPL1 (____xin: int) : int

142 returns{|____result → ((____xin) ≤ (____result)) }

143 =(

144 ...

145 assume {((____xin) ≤ (4)) };

146
____result .contents ← 5 ;

147 ...

148
____result.contents

149)

150

151 let __p_IMPL2 (____xin: int) : int

152 returns{|____result → ((____xin) ≤ (____result)) }

153 =(

154 ...

155
____result .contents ← ____xin ;

156 ...

157
____result.contents

158)

159 ...

Figure 4.14: Automatic translation of procedure and implementation declara-
tions. The val declaration can be used by calls, the let declarations need to be
veri�ed by Why3.

Translation Scheme - Procedure and Implementation Bodies 23

160 procedure p()

161 free requires e1;
162 free ensures e2;
163 {

164 //do something

165 }

(a) Boogie version.

166 val p (): ()

167 ensures { e2 }

168

169 let p_IMPL0 () : ()

170 requires { e1 }

171 =(

172 (*do something*)

173)

(b) Translated WhyML version.

Figure 4.15: Translation of free pre- and postconditions.

4.5.3 Procedure Contracts

When translating procedure contracts, one must pay attention to free pre- and
postconditions. In contrast to standard contracts, these do not have to be
checked, but may be assumed where appropriate. The method of translation is
illustrated in �gure 4.15.
Free preconditions are only attached to the let declarations, while free post-
conditions are only attached to the abstract functions. Non-free conditions are
attached to both.
Correctness. As noted before, a procedure call in Boogie is replaced by a call
to the translated abstract function in WhyML. In both cases, the caller must
guarantee that the preconditions hold, and can in return assume the postcon-
ditions to be true. Free precondtions do not have to be veri�ed by the caller,
therefore they are not in the abstract function. However, free precondtions can
be assumed by the callee, therefore they appear in the let declarations. On the
other hand, free postconditions can be assumed to hold by the caller, therefore
they can be found in the abstract function. Free postconditions do not have
to be proven by the implementation (callee), therefore they must not appear in
the let declarations.

4.5.4 Multiple outputs

Boogie has the option for procedures to return multiple values of potentially
di�erent types. To emulate this, the translation uses WhyML's tuple type.
Correctness. Tuples are used to pass values after a function call, after which
the single values can be separated again. Contracts may also reference each
value of a tuple individually. Therefore the behavior is equivalent to Boogie's.

4.6 Procedure and Implementation Bodies

Bodies of procedure and implementation declarations are translated using a
�xed structure. It is presented in �gure 4.16 and described in this section.

Translation Scheme - Procedure and Implementation Bodies 24

174 let implementation_body (inputArgs) : outputType

175 (*...contracts...*)

176 =(

177 (*...local bindings...*)

178 (*...where clauses...*)

179 try(

180 (*...translated body...*)

181)with

182 |Return → assume { true }

183 end ;

184 (*return result*)

185)

Figure 4.16: General structure of a procedure or implementation body transla-
tion.

4.6.1 Local Variables

WhyML does not have local variables as they are known from Boogie. Instead it
has a construct called local binding. The translation of a local variable declara-
tion var i : T; is of the form let i = ref (global_i()) in..., where global_i
must be de�ned as a global abstract function val global_i():T. The return pa-
rameter(s) are handled as if they were local variables.
Correctness. First we assume no where-clause is present (see next section
for the other case). When a local variable is declared in Boogie, it can have any
value which matches its type. This same e�ect is achieved by our translation,
because abstract functions (without postconditions) can return any value of the
given type, regardless how many times the function has been called. Finally,
using ref as a wrapper makes the contents of the binding mutable, just like a
local variable in Boogie.

4.6.2 Where-clause Statements

The second part of the body consists of several assume statements, namely one
for each of the following where-clauses:

• input parameters of the current procedure signature

• output parameters of the current procedure signature

• local variables of the current body

• global variables

Notably, where-clauses from output parameters of other procedures are not in-
cluded, as they become part of the corresponding val declaration's contracts.
Correctness. Where-clauses come into e�ect at two occasions: When a
variable or parameter is initialized, and when havoc is called on them. Each
where-clause can restrict (or bound) the possible values a variable or param-
eter can attain. Since all of the above mentioned values are initialized at the

Translation Scheme - Loops 25

beginning of a procedure, the bounds of the where-clause can be enforced with
assume statements. Assignments to variables overwrite where-clauses, which is
also the case for assume statements4.

4.6.3 Return Emulation

The next part of the structure is the translation of all the statements within the
body (excluding variable declarations), encapsulated by an exception handling.
This is illustrated in lines 179 through 182 of 4.16. Finally, the last line returns
the value of the output parameter, which was earlier de�ned as a local binding.
Correctness. If the original body contains no return statement, the trans-
lated body executes all other statements, and �nally returns the correct output
parameter. Assuming all the intermediate statements are translated correctly,
then the returned values are equivalent in the original Boogie program and
translated WhyML program.
If the original body contains one (or more) return statement(s), the translated
program will throw an exception at the equivalent positions (see section 4.9).
Such an exception is caught by the surrounding exception handling clause, and
immediately afterward, the current value of the output parameter is returned.
Since WhyML does not roll back any changes when an exception is thrown, the
returned value is equivalent to the value returned in the Boogie program (again
assuming the other statements are translated correctly).

4.7 Loops

Boogie supports the usual while loops with invariants, which can be translated
one to one into WhyML's while loop. Special care must only be taken when
translating loops with the following properties:

• Wildcard ∗. If the exit condition is a wildcard expression, the translation
replaces it by a call to havoc_bool(), which is introduced in the preamble,
see section 4.19.

• Free invariant. A free invariant is translated into an equivalent invariant,
and two assume statements containing the same formula. One of these
statements is placed directly before the loop, the other is placed as the
last statement of the loop body. Additionally, for each non-free invariant,
we must generate two assert statements at the same locations. If there
are multiple invariants, the generated assume and assert statements retain
the same order as the declared invariants.

Figures 4.17 and 4.18 demonstrate how free invariants may be translated.
Since WhyML supports loop variants, invariant attributes could potentially be
used to declare variants which are included in the translated programs. Sec-
tion 6.3.1 discusses this further.

4I.e. assume i = 0;i := 1; does not lead to a contradiction, whereas assume i = 0;assume

i = 1; is tantamount to false

Translation Scheme - Loops 26

186 while (∗)
187 invariant inv0;

188 free invariant inv_free;

189 {

190 s;

191 }

Figure 4.17: Boogie loop with a free invariant.

192 assert {inv0};

193 assume {inv_free};

194 while havoc_bool() do

195 invariant {inv0}

196 invariant {inv_free}

197 s;

198 assert {inv0};

199 assume {inv_free};

200 done;

201

Figure 4.18: Translation of free invariants.

Correctness. The wildcard expression states that the loop may execute any
number of times, non-deterministically. The usage of the abstract function
havoc_bool has the same e�ect since it non-deterministically returns either true
or false each time it is called.
A free invariant may be assumed to hold true when appropriate, but does not
have to be checked. Adding our two assume statements lets the invariant easily
be checked in the translated program. The assert statements of non-free in-
variants must be added because the order of invariants matter when they are
checked: An invariant inv0 declared before a free invariant inv1must be checked
without assuming inv1. Note that assume statements are needed for the gener-
ated WhyML programs to be amenable to veri�cation. The assert statements
on the other hand are needed for soundness - without them, the translation of
the program in 4.19 would be veri�able, but the original is not.

202 while (∗)
203 invariant false;

204 free invariant false;

205 {

206 //do something

207 }

Figure 4.19: Unsound translation example without assert statements..

Translation Scheme - If-then-else 27

4.8 If-then-else

If-then-else structures can be translated one to one to the equivalent structure
in WhyML. Wildcard expressions in the condition can be translated by calling
the havoc_bool abstract function.
Correctness. The structures in both languages behave the same. havoc_bool
introduces the same non-determinism as the wildcard expression.

4.9 Break and return statements

Boogie's break and return statements can be simulated in WhyML using excep-
tions. To that extent, the two exceptions which are de�ned in the preamble are
used.
While statements which contain a break in Boogie are translated by surround-
ing the resulting while statement with a try, followed by a clause which catches
Break exceptions. As soon as a break would occur, we can instead throw such
an exception.
Return statements are translated similarly: The entire body of a procedure is
surrounded by an exception handler, which catches and handles Return excep-
tions. Correctness. If the original program contains one (or more) return

or break statement(s), the translated program will throw an exception at the
equivalent position(s). Such an exception is caught by the surrounding exception
handling clause, and all variables retain their values. The exception handlers
around while loops also don't catch Return exceptions, so throwing a Return

exception inside a loop body is translated correctly. Since WhyML does not roll
back any changes when an exception is thrown, the returned value is equivalent
to the value returned in the Boogie program.

4.10 Havoc

The havoc statement in Boogie sets a variable v to an arbitrarily chosen value.
To emulate this behavior, the preamble of the translation contains an abstract
function havoc(x: α):α, which takes an argument of any type, and sets the
result to the same type.
Correctness. By de�nition, the returned value of an abstract function with
no post-condition is non-deterministic, which is equivalent to Boogie's havoc
feature. Section 4.12 discusses the case when variables contain where-clauses.

4.11 Call�forall

Call�forall statements are described in detail in [33]. Basically, they can be used
as locally visible lemmas, without the burden of proof. I.e. the proof is carried
out by the callee at some other point, and the caller may assume that the lemma
is true. Figures 4.20 and 4.21 illustrate an example of how call�forall statements
are translated. Assume we have procedure Lemma(x1 : T1, ..., xn : Tn) with n

Translation Scheme - Where-clauses 28

208 procedure Lemma(x :X, y :Y);
209 requires P(x,y);

210 ensures Q(x,y);

211

212 [...]

213 var y0 :Y
214 call ∀ Lemma(∗,y0);
215 [...]

Figure 4.20: Example call�forall statement.

216 val Lemma(x:X) (y:Y)

217 requires {P(x,y)}

218 ensures {Q(x,y)}

219

220 [...]

221 var y0:Y
222 assume {forall x:X. P(x,y0) → Q(x,y0)}
223 [...]

Figure 4.21: Translation of call�forall statement in �gure 4.20.

arguments, where argument i is named xi and is of type Ti, for 1 ≤ i ≤ n.
Additionally, let the procedure contain m preconditions Pj , 1 ≤ j ≤ m and l
postconditions Qk, 1 ≤ k ≤ l. Each input argument may of course appear in
any pre- and postcondition. A call-forall statement may either use concrete
variables, or the wild-card expression for each input argument of Lemma. The
translation produces a statement of the form:
assume{forall xh0

:Th0
, ..., xhg

:Thg
.(P1∧...∧Pm)→(Q1∧...∧Ql) }

Each occurrence of a wildcard expression in the pre- and postconditions is substi-
tuted by the corresponding quanti�ed variable of the correct type. Occurrences
of concrete variables are not substituted.
Correctness. The translation directly applies the de�nition of call-forall
statements, and is therefore correct.

4.12 Where-clauses

A variable which contains a where-clause introduces statements of the form
assume e, where e is the expression taken form the where-clause, at the following
positions in the translation:

• After the variable is initialized. This includes the beginning of each let

declaration.

Translation Scheme - Goto statements 29

• After havoc is called on the variable.

Additionally, for in- and out-parameters of procedure declarations, e is added
as a post-condition of the corresponding abstract function and in the beginning
of the procedure's body in the let declaration, if such a body exists.
Correctness. Follows from the de�nition of where-clauses given in [33]. Where-
clauses bound the possible ranges of variables and parameters. These bounds
can also be enforced using assume statements. Therefore the assume statements
must be added at the aforementioned positions.

4.13 Goto statements

Several approaches exist to translate goto structures into semantically equivalent
while- and if-statements [38][10]. Although all these approaches are sound, the
resulting code is not particularly amenable to veri�cation. However, in practice
gotos are mainly used for one of the following cases:

• Introduce non-determinism

• Encode loops with variants and invariants

Using an example of programs generated by AutoProof [28], we show how such
structured gotos can be translated to retain veri�ability:
Figure 4.22 shows a code snippet taken from a Boogie program generated by Au-
toProof. It shows how gotos can be used to introduce non-determinism. Since
all jumps are performed forwards, the structure can easily be rewritten using
only if-then-else statements with wildcard expressions as conditions(�gure 4.23),
and therefore retain veri�ability.

Figure 4.24 schematically shows how AutoProof uses gotos to encode loops
from Ei�el. Using the general translation mechanism for gotos from [38], we get
the structure presented in �gure 4.25. Note that the invariants at lines 276 and
277 must be added to enable veri�cation. Using this translation mechanism al-
lows us to translate any goto structure into semantically equivalent while-loops,
and add invariants needed for veri�cation automatically for known cases.

Translation Scheme - Goto statements 30

224 implementation SUM_AND_MAX.invariant_admissibility_check(Current :
ref)

225 {

226 entry :
227 goto pre, a2, a3;

228 pre :
229 return;

230 a2 :
231 assume user_inv(Heap, Current);

232 assert admissibility2(Heap, Current); // type :A2
233 return;

234 a3 :
235 assume user_inv(Heap, Current);

236 assert admissibility3(Heap, Current); // type :A3
237 return;

238 }

Figure 4.22: Non-determinism by goto.

239 let SUM_AND_MAX.invariant_admissibility_check(Current: ref)

240 =(

241 [...]

242 if(havoc_bool()) then(

243 raise Return

244)else(

245 if(havoc_bool()) then(

246 assume {user_inv heap current};
247 assert {admissibility2 heap current};
248 raise Return

249)else(

250 assume {user_inv Heap Current};
251 assert {admissibility3 Heap, Current};
252 raise Return

253)

254)

255 [...]

256)

Figure 4.23: Translation of �gure 4.22 which retains veri�ability.

Translation Scheme - Polymorphic Maps 31

257 implementation SUM_AND_MAX.sum_and_max(Current : ref, a : ref)

returns (Result : ref)

258 {

259 [...]

260 //stmtList1;

261 goto loop_head_1;

262 loop_head_1 :
263 assert invList;

264 goto loop_body_2, loop_end_3;

265 Loop_body_2 :
266 assume ¬ u_cond;

267 //stmtList2;

268 assert variant_decrease ∧ variant_positive;

269 goto Loop_head_1;

270 loop_end_3 :
271 assume u_cond;

272 [...]

273 }

Figure 4.24: Loop encoding using gotos.

4.14 Polymorphic Maps

Although WhyML also has polymorphic maps, a one to one translation does not
work, as they are not as powerful as their Boogie counterparts. As an example,
a global variable in Boogie of the form var heap : <α>[ref,Field α]α; is not
directly translatable into WhyML. Instead, the translation of such a variable
(or constant of such a type) can be performed in several steps:

1. Find all instantiations I0, I1, ..., In of the type parameter α of the variable.

2. For each instantiation Ii, 0 ≤ i ≤ n create a new variable as follows in the
translated program: val heap_i: ref (map (ref, field Ii) Ii). Addi-
tionally create a variable with a newly introduced dummy type ID.

3. Whenever heap is used in the original program, replace it with the corre-
sponding new variable heap_i in the translated program.

4. Axioms and functions which use a type parameter for α are translated into
n + 1 new equivalent structures, one for each instantiated type of heap,
and for the dummy type.

Correctness. We may view polymorphic maps as a set of maps. This set
contains n maps, one for each instantiation. With this translation method we
explicitly separate the maps of the set, while still axiomatizing them correctly.
Finally, the dummy type covers the corner case where a variable is never instan-
tiated.

Translation Scheme - Polymorphic Maps 32

274 let pc = ref 1 in

275 while not (¬pc =−1) do

276 invariant {invList} @@

277 invariant {pc =−1−> u_cond} @@

278 if (¬pc = 1) then (

279 assert {invList};

280 let gotoChooser = someInt() in

281 assume {0≤ gotoChooser ∧ gotoChooser≤ 1};

282 if gotoChooser = 0 then(

283 pc := 2;

284) else (

285 if gotoChooser = 1 then(

286 pc := 3;

287) else (

288 absurd;

289);

290);

291) ;

292 if ¬pc = 2 then (

293 assume {not u_cond};

294 stmtList2;

295 assert { variant_decrease ∧ variant_positive};

296 pc := 1;

297);

298 if ¬pc = 3 then (

299 assume {u_cond};

300 pc :=−1;
301);

302 done;

Figure 4.25: Translation of �gure 4.24.

Translation Scheme - Frame clause 33

4.15 Frame clause

A procedure's modifies clause contains a list of global variables which the cur-
rent procedure may modify. The translator must add each variable from this
list to a writes clause of the corresponding abstract function, but not to the
let declaration.
Correctness. In Boogie, a global variable vi which is assigned to in the body
of a procedure p1 must be added to the modifies clause, while other global vari-
ables may be added. When a procedure p2 calls p1, p2 must assume that the
value of vi may have changed, with respect to p1's postconditions. By adding
the same variable to the writes clause of the corresponding abstract function
p1_val, we make sure that callers in the translated program also know that vi
might be modi�ed. Note: We do not add it to the corresponding let declara-
tion, because once the clause is added, Why3 enforces that any global variable
which is read must be added to a reads clause. Since in our translation scheme
let declarations are never called, this method is valid.

4.16 Triggers

Triggers can be translated one to one into WhyML triggers.
Correctness. Triggers do not in�uence correctness, only veri�ability. Why3
passes triggers on to back-end provers which support them [12].

4.17 Axiom, Assume, Assert

These may all be translated directly into the corresponding WhyML structures.

4.18 Declaration order

Programs in both veri�cation languages consist of several top level declarations
such as axioms, procedures, functions etc. However a main di�erence of the
two is that in Boogie, any declaration may be called or accessed at any point,
whereas in WhyML only elements which were de�ned previously are visible.
Therefore the automatic translation is required to reorder declarations and ex-
plicitly split up procedure contracts and bodies. The translated declarations
are always reordered as follows:

1. Type Declarations. Type declarations which reference other type decla-
rations must be inserted later. Circular type declarations are not allowed
in Boogie.

2. Global Variable Declarations.

3. Functions / Predicates.

Translation Scheme - Preamble 34

4. Axioms.

5. Abstract Functions. These are declared using the keyword val. They
roughly correspond to procedure declarations without a body in Boogie.

6. let declarations. Each procedure body ist translated into one of these.

7. Rest.

The class DeclarationReordering is used to perform this second-to-last step of
the translation on the WhyML AST, before the code is written to a �le.
Correctness. Declarations which we add �rst cannot reference declarations
which are added later. Therefore we ensure that anything which is referenced
within the translated program is declared �rst. Note that it is important for
the translation to axiomatize functions, as described in section 4.4. Otherwise
two functions which reference each-other could not be declared, as each would
have to be de�ned before the other.

4.19 Preamble

The preamble is prede�ned code which is introduced at the beginning of every
translation, presented in �gure 4.26. Lines 304 through 314 import useful theo-
ries from Why3's standard library [19]. bool, int and real are self-explanatory
counterparts of Boogie's primitive types. map is used to emulate Boogie's (possi-
bly polymorphic) map type denoted by []. ref is used as a wrapper for mutable
variables. Lines 316 and 317 introduce functions which o�er the ability to emu-
late Boogie's havoc statement, described further in section 4.10. Boogies partial
order operator< : is introduced and axiomatized as such in lines 320 through
326. Next, lines 328 and 329 introduce two exceptions which are used in place
of Boogies break and return statements. Further details on how exactly can be
found in section 4.9. Finally the last two lines provide syntactic sugar to rename
conversion functions from int to real and vice versa, to match the equivalent
functions from Boogie [26].

Translation Scheme - Preamble 35

303 (* Preamble Start *)

304 use import bool.Bool

305 use import map.Map

306 use import ref.Ref

307 use import int.Int

308 use import int.EuclideanDivision

309 use import real.RealInfix

310 (* int → real *)

311 use import real.FromInt

312 (* real → int *)

313 use import real.Truncate

314 use import real.PowerReal

315

316 val havoc (_x: α): α
317 val havoc_bool (): bool

318

319 (* define and axiomatize Boogie’s partial order operator. *)

320 predicate (<:) (_x: α) (_y: α)

321 (* reflexive *)

322 axiom ReflexivePartialOrder: forall _a: α . ((_a) <: (_a))

323 (* transitive *)

324 axiom TransitivePartialOrder: forall _a _b _c: α . ((((((_a

) <: (_b)))&&(((_b) <: (_c)))))→(((_a) <: (_c))

))

325 (* antisymmetric *)

326 axiom AntiymmetricPartialorder: forall _a _b: α . ((((((_a)

<: (_b)))&&(((_b) <: (_a)))))→(((_a) = (_b))))

327

328 exception Return

329 exception Break

330

331 function real (_x: int) : real =

332 (from_int (_x))

333 function int (_x: real) : int =

334 (floor (_x))

335

336 (* Preamble End *)

Figure 4.26: Prede�ned code at the beginning of each translation.

Chapter 5

Translator API & CLI

5.1 CLI

5.1.1 Requirements

In order to execute the translation program, a Java runtime with version 8 or
higher is required. Boogie2Why3 � the program to perform the translation �
can be downloaded as a jar �le from [1].

5.1.2 Documentation

Boogie2Why3 takes one mandatory input argument:

1. Input �le name. Can be given as a path to a �le, or a �le name in the
working directory. This �le must contain legal Boogie code.

Afterwards, it takes the following optional arguments:

1. Output �le name. Can be given as a path to a �le, or a �le name in the
working directory. If no such �le exists, it is created. If the speci�ed �le
exists, the output is appended to it.

2. The parameter �-debug�. In this case the program goes into debug mode
and outputs information and warnings on the console. This parameter
does not a�ect the generated WhyML translation.

3. The parameter �-h� to display the cli documentation on the console.

If no output �le is speci�ed, the translation is printed to the console. If there
are no arguments at all, the cli documentation is displayed.

36

Translator API & CLI - API 37

5.1.3 Examples

Quiet translation

To execute a translation, the command from �gure 5.1 can be executed in a
shell which has access to the executable jar �le.

337 > java -jar Boogie2Why3.jar input.bpl output.mlw

Figure 5.1: CLI example in standard mode.

Since this is not executed in debug mode (�-debug�), no information is dis-
played on the console during the translation.

Debug translation

To execute a translation with information, the command must be adjusted as
as seen in �gure 5.2:

338 > java -jar Boogie2Why3.jar input.bpl output.mlw -debug

Figure 5.2: CLI example in debug mode.

Help

In order for the program to display a documentation the �-h� command can be
used as seen in �gure 5.3

339 > java -jar Boogie2Why3.jar -h

Figure 5.3: CLI example to display documentation.

5.2 API

5.2.1 Requirements

The source code of the project can be obtained from [1]. It requires Java SDK
version 8 or higher. The only additionally needed library is our modi�ed version
of BoogieAmp, which is included in the project. The project can easily be

Translator API & CLI - API 38

compiled and executed using the Java IDE Intellij [21]. The source code of our
modi�ed BoogieAmp library is also available at [1].

5.2.2 Documentation - Main translation

As seen in chapter 3, the translation operates in several consecutive steps. Each
step can be accessed with speci�c API calls which are documented in this section.

Step 1 - Parser and AST generation

To parse a Boogie �le and produce an AST we use BoogieAmp's API, namely
the ProgramFactory class, as seen in �gure 5.4. This gives access to an array of
all the declarations de�ned in the Boogie �le through the following command:
pf.getASTRoot().getDeclarations();

Steps 2 & 3 - Translate Boogie AST into WhyML AST

The code in 5.5 demonstrates how to execute the translation of the generated
Boogie AST. The result is a WhyML module. Lines 352 and 353 create a
new translator and execute all the necessary steps. This includes attaching the
preamble, renaming variables where necessary and reordering the declarations.
Line 355 creates a new WhyML module with the given name and comment,
while the last line �lls this module with the translated declarations.

Step 4 - Outputting WhyML code

The last step - writing code to a �le based on the AST - is performed by the class
ModulePrinterVisitor, as seen in listing 5.6. Using the visitor pattern, each node
of the abstract syntax tree is accessed and corresponding code is generated. The
code is stored as a list of strings, where each new element of the list represents
a new line. Finally this list is traversed and written to a speci�ed �le (359).

Translator API & CLI - API 39

340 //parse input

341 String boogieFileName = "input.bpl"

342 ProgramFactory pf;

343 try {

344 pf = new ProgramFactory(boogieFileName);

345 } catch (Exception e) {

346 Log.error(e);

347 return;

348 }

349 //access AST

350 pf.getASTRoot();

Figure 5.4: Parsing a Boogie �le and creating the corresponding AST.

351 //execute translation

352 BoogieTranslator bt = new BoogieTranslator();

353 List<Declaration> translatedDeclarations = bt.translate(pf);

354 //fill new WhyML module with translation

355 Module translationModule = new Module("Translation", "This translation was

automatically generated.");

356 translationModule.addDeclerations(translatedDeclarations);

Figure 5.5: Translating a Boogie AST into a semantically equivalent WhyML
AST.

357 ModulePrinterVisitor mpv = new ModulePrinterVisitor(translationModule);

358 List<String> printableModule = mpv.printModuleToString();

359 ModulePrinterVisitor.printToFile(printableModule,"output.mlw");

Figure 5.6: Writing WhyML code to a �le.

Translator API & CLI - API 40

5.2.3 API Extensions

In this section we explain how a programmer can write extensions for our tool.
The �rst step in writing an extension for the translator is to �nd out on what
part the extension should operate:

1. Boogie AST

2. WhyML AST

3. Both

For the �rst two cases one can simply provide a new implementation for one
of the interfaces boogie.ast.ASTVisitor and whyMl.ASTVisitor, respectively. Ex-
amples include the classes ProcedureBodyFactory and ModulePrinterVisitor. Once
such a visitor exists, it can be added to the work�ow where appropriate. For
the third case, either a combination of the two visitors can be used, or the class
BoogieTranslator can be modi�ed. BoogieTranslator visits all nodes of the Boogie
AST and generates a corresponding WhyML AST. A programmer therefore has
access to the Boogie AST, and can in�uence the creation of the WhyML AST.

Chapter 6

Evaluation

This chapter evaluates the current state of our translator Boogie2Why3. The
�rst section presents the di�erent benchmark programs with which we tested the
translator. Section 6.2 discusses which benchmarks produced a valid translation
which we could verify. The last section 6.3 presents which bene�ts a programmer
gains from the translator, and what limits the translator has in its current state.

6.1 Benchmark Programs

Table 6.1 lists all programs which we used as benchmarks for the translator.
Column LOC contains the lines of code. The next three columns display the
amount of procedures, functions and axioms in each Boogie program. The last
column shows the amount of pre- and postconditions, invariants, and assert
statements in the Boogie programs, i.e. all constructs which must be checked,
added up in that order. The entries of the table are sorted by increasing LOC
of the input programs.
Table 6.2 describes the translated benchmarks into WhyML. Columns �auto
LOC� and �manual LOC� contain lines of code of the automatically and man-
ually translated programs. For the automatically translated programs, the
preamble always accounts for 35 lines. The last two columns describe how
many functions and axioms are in the automatically translated programs. The
preamble contains 2 functions and 3 axioms.
We collected the source codes of all benchmarks at [1]. Each program was either
written by us for this thesis, or obtained from one of the following opensource
repositories: [16][11]. We now brie�y present each program and the most chal-
lenging aspects regarding their translations.

41

Evaluation - Benchmark Programs 42

Program LOC #procedures #functions #axioms #speci�cation
items

Linear
Search

17 1 0 0 1+3+2+0
=6

Rotation
By Copy

52 1 3 4 1+1+4+0
=6

Welfare
Crook

60 1 3 7 0+2+2+0 =
4

Binary
Search

66 3 1 5 3+7+2+0
=12

Integer &
Real Ops

66 10 0 0 0+15+0+0
=15

Bubble
Sort

87 2 3 4 1+4+10+0
=15

Binary
Search
Tree

212 4 9 25 11+8+18+0
=37

Misc 227 16 2 7 8+15+0+12
=35

Rotation
By Re-
versal

228 10 5 7 21+18+12+9
=60

AutoProof 1843 18 272 442 45+42+0+23
=110

Table 6.1: Boogie Benchmark programs.

6.1.1 Linear Search

Iterates through an array represented as a map and searches for a value. Figure
6.1 shows the program.
Demonstrated features.

• return statement

• local variable

6.1.2 Rotation By Copy

Left rotates an array represented as a map by r positions. The elements of the
array are copied to their new positions. The source code is presented in �gure
6.2.
Demonstrated features.

• return statement

• axiomatized functions within postconditions which need to be veri�ed

Evaluation - Benchmark Programs 43

Program auto LOC manual LOC #functions #axioms

Linear
Search

73 33 2 3

Rotation
By Copy

95 82 5 7

Welfare
Crook

152 NA 5 9

Binary
Search

150 97 3 8

Integer &
Real Ops

201 102 2 3

Bubble
Sort

135 108 5 9

Binary
Search
Tree

313 NA 11 30

Misc 569 NA 4 11
Rotation
By Re-
versal

353 270 7 10

Table 6.2: Translations of benchmark programs in table 6.1.

360 // ’arr’ is an "array" of size ’size’. If it contains the element

’val’, its index is returned. Otherwise−1 is returned.

361 procedure LinearSearch(arr : [int]int, size : int, val :int) returns

(index : int)

362 requires size≥ 0;

363 ensures (index =−1 ∨ (arr[index] = val ∧ index≥ 0 ∧ index<
size));

364 ensures (∃ i :int • 0≤ i ∧ i< size ∧ arr[i] = val) =⇒
(index≥ 0 ∧ index< size ∧ arr[index] = val); //if the

array contians val, then the correct index is returned.

365 ensures (¬(∃ i :int • 0≤ i ∧ i< size ∧ arr[i] = val) =⇒
index =−1); //if the array does not contian val, then−1
is returned.

366 {

367 index := 0;

368 while(index< size)

369 invariant index≤ size;

370 invariant (∀ i :int • 0≤ i ∧ i< index =⇒ arr[i] 6= val);

371 {

372 if (arr[index] = val){ return; }

373 index := index+ 1;

374 }

375 index :=−1;
376 }

Figure 6.1: Linear Search benchmark.

Evaluation - Benchmark Programs 44

377 function seq(a : [int]int, low : int, high : int) returns([int]int);

378 axiom (∀ a : [int]int, low : int, high : int, i : int •
379 0≤ i ∧ i< high− low

380 =⇒
381 seq(a, low, high)[i] = a[low+ i]);

382

383 // i mod N

384 function wrap(i : int, N : int) returns(int);

385 axiom (∀ i, N : int • 0≤ i ∧ i< N =⇒ wrap(i, N) = i);

386 axiom (∀ i, N : int • 0< N ∧ N≤ i =⇒ wrap(i, N) = wrap(i− N,

N));

387

388 // Left−rotated sequence of a[low..high) at r (directly defined

using wrap)

389 function rot(a : [int]int, low : int, high : int, r : int)

returns([int]int);

390 axiom (∀ a : [int]int, low : int, high : int, i, r : int •
391 0≤ r ∧ r< high− low ∧ 0≤ i ∧ i< high− low

392 =⇒
393 rot(a, low, high, r)[i] = seq(a, low, high)[wrap(i+ r, high

− low)]);

394

395 // Left−rotate a by r by copying

396 procedure rotate_copy(a : [int]int, N : int, r : int) returns(b :
[int]int)

397 requires 0≤ r ∧ r< N;

398 ensures (∀ i : int • 0≤ i ∧ i< N =⇒ seq(b, 0, N)[i] = rot(a,

0, N, r)[i]);

399 {

400 var s, d : int;

401 if (r = 0) { // In this case, rotation coincide with identity

402 b := a;

403 return;

404 }

405 s := 0;

406 d := N− r;

407 while (s< N)

408 invariant (0≤ s ∧ s≤ N);

409 invariant (d = wrap(s+ N− r, N));

410 invariant (0≤ d ∧ d< N);

411 invariant (∀ i : int •
412 0≤ i ∧ i< s

413 =⇒
414 seq(a, 0, N)[i] = seq(b, 0, N)[wrap(i+ N− r, N)]);

415 {

416 b[d] := a[s];

417 s := s+ 1;

418 d := d+ 1;

419 if (d = N) {

420 d := 0;

421 }

422 }

423 }

Figure 6.2: Rotation By Copy Benchmark.

Evaluation - Benchmark Programs 45

424 procedure realPower() returns (res : real)

425 ensures res = 8.0; //NOT verifiable in boogie.

426 {

427 res := 2.0**3.0;

428 }

Figure 6.3: Power operator which is not veri�able by Boogie.

6.1.3 Welfare Crook

Annotated algorithm to �nd the smallest equal entry of three arrays.
Demonstrated features.

• Unique constants

• Multiple return parameters

• Type declaration

6.1.4 Binary Search

Veri�ed implementation of the well known searching algorithm binary search.
Demonstrated features.

• User de�ned types

• Procedure calls

6.1.5 Integer & Real Ops

Contains operations on integers and reals. Boogie has a power operator on
reals: real ** real → real, but cannot verify calculations on such operators.
The automatically translated program can be veri�ed by some back-end provers
automatically, see section 6.2. Figure 6.3 shows the procedure which contains
the mentioned operator.
Demonstrated features.

• Operators on integers, such as mod and div

• Power operator on reals(**)

• Conversion functions and operators from int to real and vice-versa.

Evaluation - Benchmark Programs 46

6.1.6 Bubble Sort

Veri�ed implementation of the well known sorting algorithm bubble sort [42].
The most important parts are presented in �gure 6.4.
Demonstrated features.

• User de�ned types

• Array assignment

• Procedure call

• Multiple loop invariants

• Free postcondition

• Functions with a body

6.1.7 Binary Search Tree

Representation of a binary search tree with the following operations imple-
mented as procedures and proven correct: Searching for a node, Finding the
node with minimum value in a subtree, and adding nodes to the tree. The most
important code snippets are in �gure 6.5.
Demonstrated features.

• User de�ned types

• Constants

• Global Variables

• Frame clause

Evaluation - Benchmark Programs 47

429 ...

430 procedure swap (a : array T, i, j : int) returns(b : array T)

431 // elements in positions i,j are swapped

432 ensures (b[i] = a[j] ∧ b[j] = a[i]);

433 // all other elements are unchanged

434 ensures (∀ k : int • k 6= i ∧ k 6= j =⇒ b[k] = a[k]);

435 // the output is a permutation of the input (not proved)

436 free ensures (perm (a, b));

437 {

438 var tmp : T;

439 b := a;

440 tmp := b[i];

441 b[i] := b[j];

442 b[j] := tmp;

443 }

444 procedure bubble_sort_improved (old_a : array T, n : int)

445 returns(a : array T)

446 requires n≥ 1;

447 ensures perm (a, old_a);

448 ensures sorted (a, 1, n);

449 {

450 var i, j : int;

451 a := old_a;

452 i := n;

453 while (i 6= 1)

454 invariant (1≤ i ∧ i≤ n);

455 invariant (perm (a, old_a));

456 invariant (sorted (a, i, n));

457 invariant (i< n =⇒ less_equal_pivot (a[i+ 1], a, 1, i));

458 {

459 j := 1;

460 while (j 6= i)

461 invariant (1≤ i ∧ i≤ n);

462 invariant (1≤ j ∧ j≤ i);

463 invariant (perm (a, old_a));

464 invariant (sorted (a, i, n));

465 invariant (i< n =⇒ less_equal_pivot (a[i+ 1], a, 1, i)

);

466 invariant (less_equal_pivot (a[j], a, 1, j));

467 {

468 if (¬(a[j]< : a[j+ 1])) {

469 call a := swap (a, j, j+ 1);

470 }

471 j := j+ 1;

472 }

473 }

474 }

Figure 6.4: Most important parts of Bubble Sort benchmark.

Evaluation - Benchmark Programs 48

475 // Node type, Value (key) type, Node−−> Node, Node−−> Value,

children, parent, values, root

476 type ref; type G = int; type LINK = [ref] ref; type VAL = [ref] G;

477 const Void : ref;

478 var left,right,parent : LINK; var value : VAL; var root : ref;

479 [...]

480 // binary tree invariant

481 function is_tree(l : LINK, r : LINK, p : LINK, v : VAL) returns(bool);

482 axiom (∀ l, r, p : LINK, v : VAL, n : ref • is_tree(l, r, p, v) ∧ n 6=
Void ∧ p[n] 6= Void =⇒ n = r[p[n]] ∨ n = l[p[n]]);

483 [...]

484 // Add ‘node’ to the tree

485 procedure put_bst (node : ref) returns (Result : ref)

486 requires is_bst(left, right, parent, value);

487 [...]

488 modifies left, right, parent, root;

489 ensures parent[root] = Void;

490 ensures in(left, right, parent, value, root, node);

491 ensures is_bst(left, right, parent, value);

492 {

493 var x, y : ref;

494 y := Void;

495 x := root;

496 while (x 6= Void)

497 invariant is_bst(left, right, parent, value);

498 invariant in(left, right, parent, value, root, x);

499 invariant y 6= Void =⇒ left[y] = x ∨ right[y] = x;

500 invariant y 6= Void =⇒ in(left, right, parent, value, root,

y);

501 invariant root 6= Void ∧ x = Void =⇒ y 6= Void;

502 invariant x = Void =⇒ inode(left, right, parent, value,

root, value[node]) = y;

503 invariant x 6= Void =⇒ inode(left, right, parent, value,

root, value[node]) = inode(left, right, parent, value,

x, value[node]);

504 {

505 y := x;

506 if (value[node]< value[x]) {x := left[x];}

507 else {x := right[x];}

508 }

509 parent[node] := y;

510 if (y = Void) {root := node;}

511 else {

512 if (value[node]< value[y]) {left[y] := node;}

513 else {right[y] := node;}

514 }

515 }

516 [...]

Figure 6.5: Important snippets from the Binary Search Tree Snippet.

Evaluation - Benchmark Programs 49

6.1.8 Miscellaneous

This benchmark is a collection of 10 programs. It tests the correctness of our
implementation for di�erent constructs and corner cases. These programs are
not meant to be particularly di�cult to verify, but to make use of features of
Boogie.
Demonstrated features.

• Arithmetic and boolean operations

• Map operations

• Assignments

• Recursive function de�nitions

• Global variable declarations

• Declaration reordering

• Where-clauses for variables, and input and output parameters

• Procedures with multiple implementations

• Frame clause

• Shadowed variables

• Type declarations

6.1.9 Rotation By Reversal

Rotation of an array by r positions by reversing sequences. [15] discusses the
algorithm in detail. The most important part of the code is presented in �gure
6.6.
Demonstrated features.

• call ∀

6.1.10 AutoProof

This benchmark program was generated by AutoProof [28]. It encodes an Ei�el
program which calculates the sum of all elements of an array, and also �nds the
maximum value of the array. The Ei�el program and generated Boogie program
can be found at [1]. The current version of our tool cannot translate this Boogie
program, because the support for polymorphic maps hasn't been implemented
yet. AutoProof uses polymorphic maps to encode the heap.

Evaluation - Benchmark Programs 50

517 [...]

518 // Left−rotate a by r by performing three reversals.

519 // Key correctness argument : if |X| = r and |Y| = N− r,

520 // then rot(X Y, r) = rev(rev(X) rev(Y))

= Y X

521 procedure rotate_reverse(a : [int]int, N : int, r : int) returns(b :
[int]int)

522 requires 0≤ r ∧ r< N;

523 ensures (∀ i : int • 0≤ i ∧ i< N =⇒ seq(b, 0, N)[i] = rot(a,

0, N, r)[i]);

524 {

525 b := a;

526 call b := reverse(b, 0, r);

527 call b := reverse(b, r, N);

528 assert (∀ i : int • 0≤ i ∧ i< r =⇒ seq(b, 0, r)[i] = rev(a,

0, r)[i]);

529 assert (∀ i : int • 0≤ i ∧ i< N− r =⇒ seq(b, r, N)[i] =
rev(a, r, N)[i]);

530 call ∀ lemma_rev_cat_2(a, 0, r, a, r, N, b, *);

531 assert (∀ i : int • 0≤ i ∧ i< r =⇒ rev(b, 0, r)[i] = seq(a,

0, r)[i]);

532 assert (∀ i : int • 0≤ i ∧ i< N− r =⇒ rev(b, r, N)[i] =
seq(a, r, N)[i]);

533 call b := reverse(b, 0, N);

534 assert (∀ i : int • 0≤ i ∧ i< N− r =⇒ seq(b, 0, N)[i] =
seq(a, r, N)[i]);

535 assert (∀ i : int • 0≤ i ∧ i< r =⇒ seq(b, 0, N)[i+ N− r] =
seq(a, 0, r)[i]);

536 //call ∀ lemma_rot(a, 0, N, r, *);

537 //replaces call−∀ statement

538 assume (

539 ∀ p :int• (

540 (0≤ N) ∧ (0≤ r ∧ r< N− 0) ∧ (0≤ p ∧ p< N− 0)

541 =⇒
542 rot(a, 0, N, r)[p] = seq(a, 0, N)[wrap(r+ p, N− 0)]

543)

544);

545 assert (∀ i : int • 0≤ i ∧ i< N− r =⇒ rot(a, 0, N, r)[i] =
seq(b, 0, N)[i]);

546 }

Figure 6.6: Rotation By Reversal Benchmark.

Evaluation - Veri�ability 51

6.2 Veri�ability

This sections discusses how amenable the automatically translated programs
are to veri�cation. Table 6.3 summarizes the results of our evaluation. The
�rst column states how long Boogie needed to prove a program correct. The
next four columns refer to the veri�cation time of the automatically translated
programs in Why3, using di�erent back-end provers. All times are in seconds,
rounded to two decimal places. To time Boogie, we used a script which queries
the current time before boogie starts and after boogie terminates. Why3 o�ers a
timing service integrated within the IDE. However, since that measures system
time, and our Boogie script measures clock time, we also measure clock time for
Why3 using the unix time command. Cells containing only a number indicate
the running time of a successful back-end prover. Cells with an f followed by two
numbers of the form x/y indicate a failed attempt1, where x out of y generated
goals could not be proven. Finally, the last column states whether Why3 could
successfully prove the program, using either a single or a combination of back-
ends.
For our evaluation we used Boogie version 2.2.30705.1126 with Z3 version 4.3.2,
running on a 64 bit Windows 8.1 notebook with Intel i7-5500U CPU@2.4GHz
and 12GB ram. All of Boogie's settings were set to default. We executed Why3
version 0.86.1 on the same machine, inside a VirtualBox VM [29] emulating
Ubuntu 15.04. Settings were set to 10 second time-limit and 2000MB available
memory per goal.
Some interesting notes on the veri�cation process:

• By default, Boogie infers some invariants [25]. This is the case for our
�Linear Search� program, where Boogie automatically infers the invariant
i≥ 0 and is able to verify the program. For the translated program, we
needed to add the invariant manually for the provers to succeed.

• The translation of the binary search tree could be proven by Alt-Ergo
alone. The stated time of 12.08s does not violate the time-limit, because
Why3 generates three goals for the program. Also, while neither Z3 nor
CVC4 could prove the program to be correct, together they can handle
the task: each is able to prove the missing goal of the other.

• From the misc benchmark, the failed goal of CVC3 and Alt-Ergo is (fib
8)=21, where �b is the axiomatized Fibonacci function.

• CVC3 exited with failure messages in several instances. The other provers
simply ran into a timelimit for the cases where they didn't succeed.

• Rotation by reversal can be proven by Boogie version 4.1 with the included
call-forall statements. Since newer versions of Boogie have dropped sup-
port for call-forall, we manually replaced all occurences by an equivalent
assume statement according to the de�nition of call-forall [33]. However,
after replacing these statements, Boogie is not able to verify the program
anymore. This might explain why the translated program is not veri�able
either.

1either by timeout or exit code

Evaluation - Bene�ts and limits of our translator 52

Boogie Why
Program Z3 Z3 CVC3 CVC4 Alt-Ergo combo

Linear Search 0.85 0.26 0.24 0.37 0.26 ok
Rotation By Copy 0.91 0.90 f:1/1 f:1/1 9.99 ok
Welfare Crook 0.88 0.42 f:1/2 f:1/2 7.48 ok
Binary Search 0.85 0.44 f:1/3 0.56 f:1/3 ok
Integer & Real Op f:1/10 7.68 f:6/10 f:7/10 9.37 ok
Bubble Sort 0.91 0.38 f:1/2 f:1/2 2.58 ok
Binary Search Tree 0.90 f:1/4 f:2/4 f:1/4 12.08 ok
Misc 0.93 1.19 f:1/18 13.23 f:1/18 ok
Rotation By Reversal NA f:2/10 f:9/10 f:5/10 f:6/10 f:1/10

Table 6.3: Veri�cation times of automatically translated benchmark programs.

• Boogie de�nes a power operator on reals, but cannot verify any procedures
which contain such operations. The translated program can be veri�ed by
back-ends such as Z3 and Alt-ergo. While Z3 takes relatively long for the
task (4.68 seconds), Alt-ergo can prove it almost instantaneously (0.34
seconds). In return, Alt-ergo takes longer to verify conversion functions
between int and real.

6.3 Bene�ts and limits of our translator

In this section we present how a programmer might bene�t from our tool, and
in which cases the tool reaches its limits.

6.3.1 Use Cases

Writing tests.

The Why3 system has the ability to execute programs natively. When a pro-
gram cannot be veri�ed, it might indicate a faulty implementation. Being able
to execute programs on some test cases might help �nd the mistake. Figure
6.7 shows an example test case for the Linear Search program. It can be ex-
ecuted with the command why3 execute Linear_search.mlw LinearSearch.testcase

Although not native to Boogie, a tool which can execute Boogie programs is
introduced in [32].

Back-end provers.

As mentioned before, Why3 can generate veri�cation conditions for an exten-
sive list of back-end provers, including interactive ones. As seen in section 6.2,
these provers can be used together to discharge di�erent proof obligations of a

Evaluation - Bene�ts and limits of our translator 53

547 let testcase () =

548 let n = 5 in

549 let _val = 9 in

550 let a = const 0 in

551 let a = set a 0 3 in

552 let a = set a 1 7 in

553 let a = set a 2 1 in

554 let a = set a 3 9 in

555 let a = set a 4 11 in

556 linear_search a n _val

Figure 6.7: Executable test case for the linear search benchmark.

program. When SMT solvers fail, an experienced user may use an interactive
prover for the remaining goals.

Triggers

Related to back-end provers are triggers. Why3 passes triggers on to back-end
SMT solvers when possible [12]. Di�erent solvers might show better performance
with di�erent triggers. Our tool is able to translate triggers automatically.

Prove termination.

Why3 issues a warning when a loop may diverge. In such a case a user can
add a variant to the loop to prove its termination. The importance of this can
be illustrated using the bubble sort benchmark from section 6.1.6: The local
variable i of the last procedure is never decreased within the loop, therefore the
loop never terminates (for n > 1). Nevertheless, Boogie can discharge all proof
obligations and state that all postconditions are valid. Why3 does the same,
but warns us that the loop may diverge. Once we add the line i:=i−1 as the
last statement of the outermost loop to the Boogie program, we are also able to
add a variant to the translation and prove its termination.

Call forall.

In its latest version, Boogie has dropped support for call forall statements.
Our tool is able to replace these statements by semantically equivalent assume

statements. Using our API, a Boogie program with these statements replaced
can also be generated and printed, using the command pf.toFile().

Real operations.

The inbuilt type real has been added recently to the Boogie language [26].
However, veri�cation of certain operators such as the power operator (**) is not

Evaluation - Bene�ts and limits of our translator 54

557 procedure bitVector()

558 {

559 assert 3bv3 = (13bv6++ 4bv3)[5 :2];
560 }

Figure 6.8: Example usage of bit-vectors in Boogie.

possible yet. The automatically translated program can handle the veri�cation,
as seen in section 6.2.

6.3.2 Limitations of the implementation

Bit-vectors

Support for bit-vectors has not been implemented yet. The newest version of
Why3 contains a theory for bit-vectors, although it doesn't support conversion
from integers to bit-vectors yet, and therefore cannot yet handle all of Boo-
gies operations. An example program performing concatenation and extraction
operations on bit-vectors is presented in �gure 6.8.

Attributes

Attributes have no �xed meaning in Boogie. In the current implementation, all
attributes are ignored. Support for speci�c commands can easily be added to
the translator, e.g. using a new visitor. An example usage might be to add
support for loop variants, as we discuss in section 7.2.

Goto

Goto structures are not supported in the current version of the tool. Translating
generally nested goto structures into semantically equivalent structures available
in WhyML while maintaining provability is a di�cult task. Several translation
algorithms exist which preserve the semantics, such as the one presented in [38].
For speci�c applications, of which the goto structures are known beforehand,
the translation can be adapted to maintain provability, see section 4.13. Figure
6.9 presents an example usage of gotos to introduce uncertainty into a program.

Polymorphic maps

Boogie supports polymorphic maps of the form var Heap : <alpha>[Ref , Field

alpha] alpha; [34] [35]. WhyML also has a kind of polymorphic map, however
it is more limited, as e.g. global variables cannot be of such a type. A one-to-one

Evaluation - Bene�ts and limits of our translator 55

translation is therefore not possible. Although support isn't implemented yet,
we show how such maps may be translated in section 4.14.

561 procedure Goto()

562 {

563 //chose a path non−deterministially
564 goto label1, label2;

565 label1 :
566 //do something

567 return;

568 label2 :
569 //do something else

570 return;

571 }

Figure 6.9: Example usage of gotos in Boogie.

Chapter 7

Conclusions

7.1 Conclusions

With this thesis we designed and implemented an automatic translation mech-
anism between two intermediate veri�cation languages, namely from Boogie to
WhyML. Our tool can handle most of Boogie's constructs to produce seman-
tically equivalent WhyML programs. For the constructs which are not imple-
mented yet, we stated how the translation mechanism can be extended. Using
di�erent benchmark programs, we showed that the generated programs retain
their provability. Finally, we demonstrated several scenarios in which our tool
is bene�cial to a programmer.

7.2 Future Work

The most obvious �rst step in extending the tool is implementing support for the
missing constructs, namely goto and polymorphic maps. Once that is added,
the tool can be tested with output from veri�cation systems that use Boogie as
an IVL, such as AutoProof. Such systems may then additionally use Why3 as
an IVL, without having to modify their output.

To further improve provability of programs, we could perhaps make use
of WhyML's functional programming style. The current translation method
keeps the general structure of programs intact: (Boogie) loops are translated
into (WhyML) loops for example. This new method would replace imperative
constructs by functional ones - a loop with invariants would be replaced by a
recursive let declaration with pre- and postconditions. Figure 7.1 demonstrates
how we manually translated the loop from the linear search program using a
functional programming style. It would be interesting to evaluate whether such
a translation produces better results regarding provability.

Furthermore, variants could be added as attributes to Boogie programs, e.g.

56

Conclusions - Future Work 57

as follows: invariant {variant:n-i} true;. This would allow the translator to
automatically add them to the generated WhyML programs, and subsequently
prove termination of Boogie programs.

Conclusions - Future Work 58

572 predicate invariant1 (tuple: (int, (map int int), int, int))

573 =

574 let (_index, _arr, _size, _val) = tuple in

575 (0≤_index)
576 predicate invariant2 (tuple: (int, (map int int), int, int))

577 =

578 let (_index, _arr, _size, _val) = tuple in

579 (_index ≤ _size)

580 predicate invariant3 (tuple: (int, (map int int), int, int))

581 =

582 let (_index, _arr, _size, _val) = tuple in

583 (forall i:int. 0 ≤ i && i < _index → _arr[i] 6= _val)

584

585 let rec whileLoop (_index: int) (_arr: map int int) (_size:

int) (_val: int)

586 : ((int), (map int int), (int), (int))

587 requires {invariant1 (_index, _arr, _size, _val)}

588 requires {invariant2 (_index, _arr, _size, _val)}

589 requires {invariant3 (_index, _arr, _size, _val)}

590 ensures {invariant1 result}

591 ensures {invariant2 result}

592 ensures {invariant3 result}

593 ensures {

594 (exists i:int. 0 ≤ i && i < _size && _arr[i] = _val) →
false}

595 ensures {

596 let (_indexB, _arrB, _sizeB, _valB) = result in

597
_arr = _arrB && _val = _valB && _size = _sizeB

598 }

599 raises {Return i → _arr[i] = _val}

600 raises {Return i → i ≥ 0}

601 raises {Return i → i < _size}

602 variant {_size - _index - 1}

603 =

604 if (_index < _size) then (*loop condition*)

605 (

606 (

607 if (_arr[_index] = _val) then

608 raise (Return _index);

609);

610

611 let _index2 = _index + 1 in

612 let (res_index, res_arr, res_size, res_val) = (whileLoop
_index2 _arr _size _val) in

613 (res_index, res_arr, res_size, res_val)

614

615)

616 else

617 (_index, _arr, _size, _val)

Figure 7.1: Manual translation of the linear search benchmark using a functional
programming style.

List of Figures

2.1 A simple Boogie program. 9
2.2 Usage of non-determinism within Boogie programs. 9
2.3 A manual translation of the Boogie program in �gure 2.1. 11
2.4 Di�erence between global variable declaration and an abstract

function. 11

3.1 Overview of the translation mechanism. 13

4.1 Shadowed variable x and unsupported character ('.'). 16
4.2 Shadowed variable x is renamed and unsupported character ('.')

is replaced. 16
4.3 Four declared constants of the same type T, whereof 3 are unique. 17
4.4 Translation of code in �gure 4.3. For n unique constants of the

same type, the translation introduces
(
n
2

)
axioms, each containing

one inequality clause. Note that constant d was not declared as
unique, and is therefore not compared to the other constant, even
though it is of the same type. 18

4.5 Axiom to describe an empty parent edge for constant c. 18
4.6 Axiom to describe a non-empty parent edge for constant c. . . . 18
4.7 Example usage of the complete keyword within a parent relation. 19
4.8 Axiomatization of the constant declaration in �gure 4.7. 19
4.9 Example usage of the unique keyword within a parent relation. . 19
4.10 Axiomatization of the constant declaration in �gure 4.9. 20
4.11 Possibly non-terminating function in Boogie. 20
4.12 Axiomatized translation method of possibly non-terminating func-

tion. 20
4.13 Procedure and implementation declarations in Boogie. Each im-

plementation must ful�ll the same contracts, but may rename
parameters. 21

4.14 Automatic translation of procedure and implementation declara-
tions. The val declaration can be used by calls, the let declara-
tions need to be veri�ed by Why3. 22

4.15 Translation of free pre- and postconditions. 23
4.16 General structure of a procedure or implementation body trans-

lation. 24
4.17 Boogie loop with a free invariant. 26
4.18 Translation of free invariants. 26
4.19 Unsound translation example without assert statements.. 26
4.20 Example call�forall statement. 28

60

4.21 Translation of call�forall statement in �gure 4.20. 28
4.22 Non-determinism by goto. 30
4.23 Translation of �gure 4.22 which retains veri�ability. 30
4.24 Loop encoding using gotos. 31
4.25 Translation of �gure 4.24. 32
4.26 Prede�ned code at the beginning of each translation. 35

5.1 CLI example in standard mode. 37
5.2 CLI example in debug mode. 37
5.3 CLI example to display documentation. 37
5.4 Parsing a Boogie �le and creating the corresponding AST. 39
5.5 Translating a Boogie AST into a semantically equivalent WhyML

AST. 39
5.6 Writing WhyML code to a �le. 39

6.1 Linear Search benchmark. 43
6.2 Rotation By Copy Benchmark. 44
6.3 Power operator which is not veri�able by Boogie. 45
6.4 Most important parts of Bubble Sort benchmark. 47
6.5 Important snippets from the Binary Search Tree Snippet. 48
6.6 Rotation By Reversal Benchmark. 50
6.7 Executable test case for the linear search benchmark. 53
6.8 Example usage of bit-vectors in Boogie. 54
6.9 Example usage of gotos in Boogie. 55

7.1 Manual translation of the linear search benchmark using a func-
tional programming style. 58

61

Bibliography

[1] Michael Ameri. Thesis repository, accessed August 1, 2015. https:

//bitbucket.org/michael_ameri/thesis.

[2] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4.
In Computer aided veri�cation, pages 171�177. Springer, 2011.

[3] Yves Bertot and Pierre Castéran. Interactive theorem proving and program
development: Coq'Art: the calculus of inductive constructions. Springer
Science & Business Media, 2013.

[4] François Bobot, Sylvain Conchon, E Contejean, Mohamed Iguernelala,
Stéphane Lescuyer, and Alain Mebsout. The alt-ergo automated theorem
prover, 2008, 2013.

[5] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. The why3 platform. LRI, CNRS & Univ. Paris-Sud & INRIA
Saclay, version 0.64 edition, 2011.

[6] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011: First
International Workshop on Intermediate Veri�cation Languages, pages 53�
64, 2011.

[7] Sascha Böhme, Michaª Moskal, Wolfram Schulte, and Burkhart Wol�. Hol-
boogie - an interactive prover-backend for the verifying c compiler. Journal
of Automated Reasoning, 44(1-2):111�144, 2010.

[8] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-c. In Software Engineering and
Formal Methods, pages 233�247. Springer, 2012.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient smt solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages
337�340. Springer, 2008.

[10] Ana M Erosa and Laurie J Hendren. Taming control �ow: A structured
approach to eliminating goto statements. In Computer Languages, 1994.,
Proceedings of the 1994 International Conference on, pages 229�240. IEEE,
1994.

62

https://bitbucket.org/michael_ameri/thesis
https://bitbucket.org/michael_ameri/thesis

[11] ETH Zurich, Chair of Software Engineering. Veri�ed Boogie Programs,
accessed August 1, 2015. https://bitbucket.org/sechairethz.

[12] Jean-Christophe Filliâtre. Triggers in Why3, accessed August 1, 2015.
http://lists.gforge.inria.fr/pipermail/why3-club/2012-February/

000191.html.

[13] Jean-Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus
platform for deductive program veri�cation. In Computer Aided Veri�ca-
tion, pages 173�177. Springer, 2007.

[14] Jean-Christophe Filliâtre and Andrei Paskevich. Why3-where programs
meet provers. In Programming Languages and Systems, pages 125�128.
Springer, 2013.

[15] Carlo A Furia. Rotation of sequences: Algorithms and proofs. arXiv
preprint arXiv:1406.5453, 2014.

[16] Carlo A. Furia. Veri�ed Boogie Programs, accessed August 1, 2015. https:
//bitbucket.org/caf/verified/.

[17] Inria Saclay-Ile-de-France / LRI Univ Paris-Sud 11 / CNRS. Why3, ac-
cessed August 1, 2015. http://why3.lri.fr/.

[18] Inria Saclay-Ile-de-France / LRI Univ Paris-Sud 11 / CNRS. Why3 Provers,
accessed August 1, 2015. http://why3.lri.fr/#provers.

[19] Inria Saclay-Ile-de-France / LRI Univ Paris-Sud 11 / CNRS. Why3 Stan-
dard Library, accessed August 1, 2015. http://why3.lri.fr/stdlib-0.86.
1/.

[20] F Ivan£i¢, Zijiang Yang, Malay K Ganai, Aarti Gupta, Ilya Shlyakhter, and
Pranav Ashar. F-soft: Software veri�cation platform. In Computer Aided
Veri�cation, pages 301�306. Springer, 2005.

[21] JetBrains. IntelliJ IDEA, accessed August 1, 2015. https://www.

jetbrains.com/idea/.

[22] K Rustan M Leino. Dafny: An automatic program veri�er for functional
correctness. In Logic for Programming, Arti�cial Intelligence, and Reason-
ing, pages 348�370. Springer, 2010.

[23] K Rustan M Leino. Program proving using intermediate veri�cation lan-
guages (ivls) like boogie and why3. ACM SIGAda Ada Letters, 32(3):25�26,
2012.

[24] K Rustan M Leino and Philipp RÃ 1
4mmer. A polymorphic intermediate

veri�cation language: Design and logical encoding. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 312�327. Springer,
2010.

[25] Rustan Leino. Boogie, accessed August 1, 2015. https://github.com/

boogie-org/boogie.

63

https://bitbucket.org/sechairethz
http://lists.gforge.inria.fr/pipermail/why3-club/2012-February/000191.html
http://lists.gforge.inria.fr/pipermail/why3-club/2012-February/000191.html
https://bitbucket.org/caf/verified/
https://bitbucket.org/caf/verified/
http://why3.lri.fr/
http://why3.lri.fr/#provers
http://why3.lri.fr/stdlib-0.86.1/
http://why3.lri.fr/stdlib-0.86.1/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://github.com/boogie-org/boogie
https://github.com/boogie-org/boogie

[26] Rustan Leino. Boogie now has real, and now interprets integer div/mod, ac-
cessed August 1, 2015. http://boogie.codeplex.com/discussions/397357.

[27] Bertrand Meyer and Karine Arnout. Componentization: the visitor exam-
ple. Computer, (7):23�30, 2006.

[28] Martin Nordio, Carlo A. Furia, and Bertrand Meyer. AutoProof, accessed
August 1, 2015. http://se.inf.ethz.ch/research/autoproof/.

[29] Oracle. VirtualBox, accessed August 1, 2015. https://www.virtualbox.

org/.

[30] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype
veri�cation system. In Automated Deduction-CADE-11, pages 748�752.
Springer, 1992.

[31] Nadia Polikarpova. Boogaloo, accessed August 1, 2015. https://bitbucket.
org/nadiapolikarpova/boogaloo/wiki/Home.

[32] Nadia Polikarpova, Carlo A Furia, and Scott West. To run what no one has
run before: Executing an intermediate veri�cation language. In Runtime
Veri�cation, pages 251�268. Springer, 2013.

[33] K. Rustan and M. Leino. This is boogie 2. Technical report, Microsoft
Research, Redmond, WA, USA, 2008.

[34] K. Rustan, M. Leino, and Philipp RÃ 1
4mmer. The boogie 2 type system:

Design and veri�cation condition generation. Technical report, Microsoft
Research, Redmond, WA, USA, 2008.

[35] K. Rustan, M. Leino, and Philipp RÃ 1
4mmer. A polymorphic interme-

diate veri�cation language:design and logical encoding. Technical report,
Microsoft Research, Redmond, WA, USA, 2008.

[36] Martin Schäf. BoogieAmp, accessed August 1, 2015. https://github.com/
martinschaef/boogieamp.

[37] Norbert Schirmer et al. Veri�cation of sequential imperative programs in
Isabelle-HOL. PhD thesis, Technical University Munich, 2006.

[38] Marco Trudel, Carlo A. Furia, Martin Nordio, Bertrand Meyer, and Manuel
Oriol. C to O-O translation: Beyond the easy stu�. In Rocco Oliveto,
Denys Poshyvanyk, James Cordy, and Thomas Dean, editors, Proceedings
of the 19th Working Conference on Reverse Engineering (WCRE'12), pages
19�28. IEEE Computer Society, October 2012.

[39] Julian Tschannen, Carlo A Furia, Martin Nordio, and Bertrand Meyer. Ver-
ifying ei�el programs with boogie. arXiv preprint arXiv:1106.4700, 2011.

[40] Julian Tschannen, Carlo Alberto Furia, Martin Nordio, and Bertrand
Meyer. Automatic veri�cation of advanced object-oriented features: The
autoproof approach. In Tools for Practical Software Veri�cation, pages
133�155. Springer, 2012.

64

http://boogie.codeplex.com/discussions/397357
http://se.inf.ethz.ch/research/autoproof/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/Home
https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/Home
https://github.com/martinschaef/boogieamp
https://github.com/martinschaef/boogieamp

[41] Julian Tschannen and Bertrand Meyer. Automatic veri�cation of Ei�el
programs. PhD thesis, ETH, Eidgenössische Technische Hochschule Zürich,
Department of Computer Science, Chair of Sotware Engineering, 2009.

[42] Wikipedia. Bubble Sort, accessed August 1, 2015. https://en.wikipedia.
org/wiki/Bubble_sort.

65

https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Bubble_sort

	1 Introduction
	2 Background
	2.1 Boogie
	2.2 Why

	3 Translator Design
	3.1 Translator Overview
	3.1.1 Step 1 - Parser and AST generation
	3.1.2 Step 2 - Boogie AST
	3.1.3 Step 3 - WhyML AST
	3.1.4 Step 4 - WhyML code

	3.2 Implementation Details
	3.2.1 Visitor Pattern
	3.2.2 Formula, Term, Expression
	3.2.3 BoogieAmp

	4 Translation Scheme
	4.1 Identifier renaming
	4.2 Type checking
	4.3 Constants
	4.4 Functions
	4.5 Procedure and Implementation Declarations
	4.5.1 Separation of signature and bodies
	4.5.2 Procedure Calls
	4.5.3 Procedure Contracts
	4.5.4 Multiple outputs

	4.6 Procedure and Implementation Bodies
	4.6.1 Local Variables
	4.6.2 Where-clause Statements
	4.6.3 Return Emulation

	4.7 Loops
	4.8 If-then-else
	4.9 Break and return statements
	4.10 Havoc
	4.11 Call–forall
	4.12 Where-clauses
	4.13 Goto statements
	4.14 Polymorphic Maps
	4.15 Frame clause
	4.16 Triggers
	4.17 Axiom, Assume, Assert
	4.18 Declaration order
	4.19 Preamble

	5 Translator API & CLI
	5.1 CLI
	5.1.1 Requirements
	5.1.2 Documentation
	5.1.3 Examples

	5.2 API
	5.2.1 Requirements
	5.2.2 Documentation - Main translation
	5.2.3 API Extensions

	6 Evaluation
	6.1 Benchmark Programs
	6.1.1 Linear Search
	6.1.2 Rotation By Copy
	6.1.3 Welfare Crook
	6.1.4 Binary Search
	6.1.5 Integer & Real Ops
	6.1.6 Bubble Sort
	6.1.7 Binary Search Tree
	6.1.8 Miscellaneous
	6.1.9 Rotation By Reversal
	6.1.10 AutoProof

	6.2 Verifiability
	6.3 Benefits and limits of our translator
	6.3.1 Use Cases
	6.3.2 Limitations of the implementation

	7 Conclusions
	7.1 Conclusions
	7.2 Future Work

