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Abstract

We report on an implementation of the SCOOP (Simple Concurrent Object Oriented
Programming) structural operational semantics in Maude. SCOOP is a programming
model that simplifies the writing of concurrent programs. It ensures freedom of race
conditions and hides low level abstractions like threads, locks, and memory barriers
from the developer. Recently, the team around SCOOP at ETH published a compre-
hensive structural operational semantics. e next step was to make the structural
operational semantics executable to speed up the analysis of programs and the pro-
gramming model. We chose Maude as the programming language used for imple-
menting the executable operational semantics because it is well-suited for this task
and has an active community. e result is a working executable operational seman-
tics which lead to several improvements to the initial semantics.
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Chapter 1

Introduction

Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer defined a comprehensive
structural operational semantics of the SCOOP programming model [5]. e next
step is to create an interpreter which strictly follows the semantics. is interpreter
is useful to develop and test the semantics. e interpreter can be used as a refer-
ence implementation for current and future developments and as a research basis
new functionality.

e Maude System [3] is a programming language supporting equational and
rewriting logic. is makes it very suitable for the task of implementing structural
operational semantics. In fact, there are several published examples [7] of structural
operational semantics implemented in Maude. Maude also provides a model checker
which can check properties formulated in Linear Temporal Logic.

is report presents an implementation of the semantics in Maude. e report is
structured as follows. Chapter 2 presents the technique used to translate the semantics
into Maude and some details about the translation. Chapter 3 is an example analysis
of a program. In chapter 4, the report states the most important contributions to
the semantics. Chapters 5 and 6 are the User’s and Developer’s Guides, the former
contains the intermediate representation used in the executable structural operational
semantics. Chapter 7 lists the related work and Chapter 8 concludes the report with
what can be done in the future.

1.1 Results

A complete interpreter for the SCOOP programming model according to the defined
structural operational semantics [5] with an emphasis on correctness, readability and
extendability. Having executable operational semantics, it should be possible, using
the model checking facility of Maude, to answer questions about the operational se-
mantics of SCOOP. For example, one question arose from the work on the implemen-
tation of SCOOP in Eiffel: If we defer the locking of the processors from the beginning
of the feature application to the first separate call, do we loose any of the properties es-
tablished with SCOOP? is could be generalized to questions concerning the impact
of any change to the operational semantics of SCOOP.

7



Introduction - Short introduction to Maude 8

is work can possibly lead to a publication with the title: “Using an executable
operational semantics to finalize the design of a concurrent programming model”.

1.2 Short introduction to Maude

1.2.1 Sorts

Maude is based around operators and the sorts theses operators belong to. A sort may
have several subsorts, and be the subsort of several sorts. However, a sort may not be
its own direct or indirect subsort. Operators belonging to a subsort always belong to
all the parent sorts. Equations are used to rewrite terms into other terms and rewrite
laws rewrite the state of the program into another state.

sort Nat NatSet .
subsort Nat < NatSet .

ese two lines of Maude code specify the sorts Nat for natural numbers and NatSet
for a set of natural numbers. e second line then declares that natural numbers are
also sets of natural numbers (singleton sets).

1.2.2 Operators

Constructors

Constructors are special operators with the ctor property. ese operators are the
basic building blocks because they can not be expanded further. e zero and the
successor in the definition of natural numbers are an example of constructors, as is
the empty set and the set concatenation.

op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op empty : -> NatSet [ctor] .
op _,_ : NatSet NatSet -> NatSet [ctor assoc comm id: empty] .

e concatenation operator _,_ is special. e properties assoc and comm specify that
the operator is associative and commutative. e id: empty property lists empty
as the identity for this operator. It also isn’t specified in the default prefix notation
used by also all other programming language, but in a mixfix notation. e underline
symbols the name of the operator specify at which points the first and the second
argument are placed.

Regular operators

Other operators are used for abstraction. ey usually expand, through several steps
of rewriting by equations, into operators that are constructors.
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op 1 : -> Nat .
op _+_ : Nat Nat -> Nat .

Ordinary operators, like constructors, do not need to take any arguments. In this case,
they are constants.

1.2.3 Variables

Variables are used in equations and rewrite laws. ey are usually declared before-
hand:

var i j : Nat .
var ns : NatSet .

It is possible to use an undeclared Variable. In this case, every time it occurs, it has to
be suffixed by a colon and the sort:

... a:Nat + b:Nat ...

1.2.4 Equations

Equations are used to add the relations between the operators. ey are wrien in a
functional style.

eq 1 = s(0) .
eq 0 + i = i .
eq s(i) + j = s(i + j) .
eq ns, ns = ns .

e first equation gives the constant 1 meaning. e second and third equations re-
cursively calculate the sum of two natural numbers. e last equation make sets of
natural numbers idempotent. Paern matching is very important in Maude. As we
can see in the definition of the sum operator, whole terms and not only single opera-
tors can stand on the le hand side of the equation. Equation can also have properties,
the most important one being owise, which lets Maude only use the equation as a last
resort if no other equation can be applied.

1.2.5 Rewrite laws

Maude also has the notion of rewrite laws. Rewrite laws are like equations with a
few differences: ey do not support the owise property, because they are inherently
non-deterministic. e number of rewrite steps using rewrite laws is controllable by
the user, which makes them ideal to represent inference laws. ey may also carry a
name to identify them.

var ns1 ns2 : NatSet .
crl [sum] : ns1, ns2 => (ns1 + ns2)

if ns1 :: Nat /\ ns2 :: Nat .
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In this example, we say that two natural numbers in a set can be replaced with the
sum of these two. Consider the following expression:

1, 2, 3

What would the output be? It depends on what Maude chooses to do. If it first adds 1
and 2, the result will be 3. Because before the next step (application of the rewrite rule)
is taken, the set is reduced to a singleton containing 3. A singleton can’t be rewrien,
so the execution stops. However, if it adds 3 and either 1 or 2, the remaining set will
be 6.

1.2.6 Conditions and the pattern mating operator

Rewrite laws (rl) and equations (eq) may have a condition. In this case, they are de-
clared using crl and ceq. Aer the right hand side, before the properties, an if clause
is inserted (see 1.2.5 for an example). It may contain several expressions, separated
by /\, and all of them need to be true before Maude applies the rewrite law or equa-
tion. It is possible to use the paern matching operator (:=) in these conditions. For
example:

op nil : -> List [ctor] .
op _ _ : List List -> List [ctor assoc id: empty] .
op _ has _ : List List -> Boolean .
var aList anotherList head tail : List .
ceq aList has anotherList = true
if head anotherList tail := aList .
eq aList has anotherList = false [owise] .

is implementation of the _ has _ operator uses paern matching in the if clause to
check for the occurrence of one list inside of another. e owise property is used to
only return false if Maude can not apply the conditional equation.

1.2.7 Modules

It is possible to structure a Maude program using modules. Functional modules (fmod)
may not contain any rewrite rules and may not import any system modules. System
modules (mod) do not have this restriction. eories and Views are used for generic
programming.

fmod NAT is
sort Nat .
...

endfm
fmod NAT-SET is

including NAT .
sort NatSet .
subsort Nat < NatSet .
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...
endfm
mod SETCALC is

including NAT-SET .
crl [sum] : ...

endm

1.2.8 Views

Maude modules may take parameters. Parameters may affect sorts and operators
inside such genericmodules. ese parameters are called views and need to be defined
before they are used. We could, for example, userMaude’s built-in SETmodule instead
of writing our own set. To be able to use our Nat sort in a set, we need to create a
view. e view is of the theory TRIV. is theory is trivial, as the name suggests. It
only provides replacement of a single sort, and nothing else. When Maude loads a
module that takes a parameter of this theory, it replaces the occurrences of the sort
PARAMETERNAME$Elt with the sort defined in the view. e instantiated module
also includes the module specified in the view. It is therefore not possible to include
a module that is based on the including module. e generic module may also create
generic sorts, they are suffixed with the view name, for example Set{Nat}, where Set
is the name of the sort and Nat is the parameter name.

Including a generic module is similar to ordinary module, the parameters are
placed in braces aer the name of the module. e name of views are usually wrien
in CamelCase and reflect the modules involved. For our natural numbers, the view
would be the following:

view Nat from TRIV to NAT is
sort Elt to Nat .

endv

We can now write including SET{Nat} . is causes Maude to include the Module
and replace every occurrence of the sort X$Elt by Nat. We can use this to make the
NAT-SET module shorter:

fmod NAT-SET is
including SET{Nat} .
sort NatSet .
subsort Set{Nat} < NatSet .

endfm

How theories and generic modules are created is beyond the scope of this short
introduction.



Chapter 2

Implementation

is chapter describes the implementation of the semantics in Maude. Maude details
not described in the short Maude introduction are introduced along with the imple-
mentation. Further details on Maude are available in the Maude manual [2].

2.1 Basic support

Maude is powerful, but it also has several limitations that got in theway of implement-
ing the semantics. is section lists the major ones along with solutions to overcome
them. ese solution provide the basic support for the implementation.

2.1.1 antifiers

e semantics oen uses quantifiers, which would have been be easy to implement
if Maude would support higher order operators. However, Maude does not support
passing an operator as an argument. It has a meta-level, which allows manipulation
of the program during run-time. is would allow for a work-around, but at great
cost of performance. In the future, we want to use Maude to search the state-space of
a program, so we can’t afford to lose performance.

Solution Many of the quantifiers are expressible through set operations. For exam-
ple, the lock_rqs function of the abstract data typeREGIONS contains this expression
in its require clause:

∀x ∈ l̄ : k.procs.has(x)

is can also be expressed using set operators :

l̄ ⊂ k.procs

However, not all quantifier can be transformed into first order operations. Some-
times, additional operators are needed, either to implement preconditions directly or
to provide (filtered) sets.

12
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2.1.2 Identifiers

Maude provides nomechanism for identifiers in the semantics. ey are needed to dis-
cern between processors, between references, between channels, and between other
constructs.

Solution Two mechanisms provide identifiers. A counter inside the state (intro-
duced later in this chapter) provides identifiers for processors and objects. A reference
always has the same identifier as the referenced object when the object is added.

2.1.3 Collections

Maude provides collection data types like maps, set, lists and so on. Unfortunately,
using one type of collection for more than one sort is problematic. e following
example shows this:

fmod SORTS is
*** define some sorts
sorts A B C D .
*** make a hierarchy
subsorts D < B C < A .

endfm
view A from TRIV to SORTS is

sort Elt to A .
endv
view B from TRIV to SORTS is

sort Elt to B .
endv
view C from TRIV to SORTS is

sort Elt to C .
endv
view D from TRIV to SORTS is

sort Elt to D .
endv
fmod COLLECTION-EXAMPLE is

protecting LIST{A} + LIST{B}
+ LIST{C} + LIST{D} .

*** apply the hierarchy also
*** to the lists
subsorts List{D} < List{B} List{C}

< List{A} .
*** some items for the collections
op a : -> A [ctor] .
op b : -> B [ctor] .
op c : -> C [ctor] .
*** a list
op list : -> List{A} .
eq list = a b c .
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endfm
rew (list) .

is example defines a few sorts and lists of all these sorts, not just a list of sort A,
but also a list that holds only B’s and one that only holds C’s. A D can of course fit
into all of these lists. e example then makes sure that the list sorts reflect the same
hierarchy as the sorts they contain: a list of B’s also qualifies as a list of A’s. At last,
it tests the list sorts by providing some simple constructors for three items and a list
with those. e constructed list should qualify as a list of A’s.

No common ancestor When trying out this code, the programmer is greeted with
a page full of advisories, which are Maudes version of a warning. Most of them are of
the following form:

operator nil has been imported from both
"prelude.maude", line 996 (fmod LIST) and
"prelude.maude", line 996 (fmod LIST)
with no common ancestor.

is happens because nil is defined in the LIST module, which is imported four times,
once for each sort. is can be solved by defining all list operators in a generic way
in another module and then let all the specific list modules import it.

Preregularity e programmer also gets some preregularity warnings. Preregular-
ity is achieved when every term in a module has an unique least sort it can be assigned
to. If in the example, there wouldn’t be a list of D’s, then the term d d is not preregular.
e term qualifies as a list of A’s, a list of B’s, and as a list of C’s. Of all this list sorts,
there is not a unique least sort. Because the example has a list of D’s, everything is
preregular. e problem is, that Maude generates the warnings when loading the list
modules and therefore are printed out even though the programmer made sure the
list sorts are preregular.

All list elements share a common sort Because the default LISTmodule defines the
element sort as a subsort of the list, suddenly many more problems arise. Because
Int and Bool both define some operators, but with different properties, new error
messages arise. is means either no lists of integers or no lists of boolean values.
is can be avoided if a single element is not automatically interpreted as a list or a
set.

Solution To solve the issues above, the implementation uses new collectionmodules
that avoid these issues.

2.1.4 Target language syntax

Maude provides amixfix notation for operators. When implementing the SCOOP syn-
tax using this mixfix operators, several problems occured. For one, many constructs
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(like the assignment operator :=) clash with Maude constructs. is results in parsing
errors.

Furthermore, it is hard to implement optional parts because Maude doesn’t di-
rectly support it. It would be possible to simply have one operator for each combina-
tion of optional elements, but this leads to an exponential explosion of operators.

Finally, the SCOOP syntax uses commas, semicolons and white spaces in lists.
Supporting all of these in Maude is complicated.

Solution e executable operational semantics uses an intermediate representation
that is more friendly to Maude and minimizes the amount of code. e syntax of this
intermediate representation is documented in the user’s guide.

2.2 Program syntax

Maude has a powerful mixfix notation. As explained in section 2.1, Maude is not pow-
erful enough to interpret SCOOP syntax directly. For this reason, the implementation
uses an intermediate representation based on Maude’s mixfix notation.

e executable semantics can not parse SCOOP code directly. e input has to be
in an intermediate representation which is also used internally. e parser expects
white space aer every token except for parentheses and curly braces.

In this section, blocks in parentheses that are followed by a question mark, a star
or a plus symbol are not part of the syntax but instead used as in regular expressions.
A pipe symbol (|) inside a bracketed block indicates a choice in the syntax, these
parentheses are also not part of the syntax.

2.2.1 Identifiers

Class, feature, and variable names are always preceded with an apostrophe ('). e
same is true for the special variables Result and Current.

2.2.2 Maude configuration

Every program should start with the following instructions. ey instruct Maude to
conceal classes and features.

set print conceal on .
print conceal ( _ _ create _ _ invariant _ end ) .
print conceal ( procedure { _ } _ ( _ ) require _ local _ _ _ ensures _ end ) .
print conceal ( function { _ } _ ( _ ) :

_ require _ local _ _ _ ensures _ end ) .
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2.2.3 Rewrite

Maude rewrites the input step by step. erefore, the entire program has to be an
argument to the rewrite command:

rew [1] (
<PROGRAM>
) .

is instructs Maude to rewrite the program and start with one step. is step will
transform the input program into the initial configuration.

2.2.4 Program

A program consists of a list of classes and the root procedure. e term import
default inserts the default classes (BOOLEAN and INTEGER) into the program. Aer
every class (but not aer import default), a semicolon needs to be appended:

<PROGRAM> ::=
(
import default
(<CLASS> ;)+
) {<CLASSNAME>} . <FEATURENAME>

2.2.5 Class

A class consists of its name, the set of constructor names, the list of features and the
invariant:

<CLASS> ::=
class <CLASSNAME>

create
{<FEATURENAME>} (U {<FEATURENAME})*

(
(<FEATURE> ;)+
)
invariant
<EXPRESSION>

end ;

If there is no invariant for the class, the expression should simply be True. e set of
constructor names may also be empty, but this is only useful for classes that have a
literal representation like INTEGER and BOOLEAN.

2.2.6 Features

ere is no fixed ordering for features. Different from the SCOOP syntax, features
can not be organized in blocks and are preceded by the kind of feature instead of
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the feature keyword. For this version of the interpreter, the class name in the curly
braces is currently only relevant for indicating whether the feature is exported or not.
If not needed, the expressions for the require and ensures clauses should be True.

<FEATURE> ::= (<ATTRIBUTE> | <PROCEDURE> | <FUNCTION>)

Attributes

<ATTRIBUTE> ::=
attribute {<CLASSNAME>} <FEATURENAME> : <TYPE>

Procedures

<PROCEDURE> ::=
procedure {<CLASSNAME>} <FEATURENAME>

( (nil | (<ENTITYDECLARATION> ;)+) )
require
<EXPRESSION>

local
(nil | ( (<ENTITYDECLARATION> ;)+ ))

(do | once)
(nil | ( (<INSTRUCTION> ;)+ ))

ensures
<EXPRESSION>

end

Functions

<FUNCTION> ::=
function {<CLASSNAME>} <FEATURENAME>

( (nil | (<ENTITYDECLARATION> ;)+) ) : <TYPE>
require
<EXPRESSION>

local
(nil | ( (<ENTITYDECLARATION> ;)+ ))

(do | once)
(nil | ( (<INSTRUCTION> ;)+ ))

ensures
<EXPRESSION>

end

2.2.7 Types

<TYPE> ::= [<DETACHABLETAG>, <PROCESSORTAG>, <CLASSNAME>]

A type consists of a triple containing:
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1. e detachable tag: ! (aached) or ? (detachable)

2. e processor tag: T (separate) or * (non-separate)

3. e name of the class.

An aached INTEGER type would look like this:

[!,*,'INTEGER]

A detachable, separate CHANNEL would be:

[?,T,'CHANNEL]

2.2.8 Entity declarations

<ENTITYDECLARATION> ::= <VARIABLENAME> : <TYPE>

Entity declaration are used for the declaration of arguments and local variables.

2.2.9 Instructions

<INSTRUCTION> ::= (<ASSIGNMENT> | <COMMAND> | <IF> | <LOOP>)

Assignments

<ASSIGNMENT> ::=
assign(<VARIABLENAME>, <EXPRESSION>)

Commands (procedure calls)

<COMMAND> ::=
command(<EXPRESSION>)

Ifs

<IF> ::=
if <EXPRESSION> then

(nil | ( (<INSTRUCTION> ;)+ ))
else

(nil | ( (<INSTRUCTION> ;)+ ))
end
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Loops

<LOOP> ::=
until <EXPRESSION> loop

(nil | ( (<INSTRUCTION> ;)+ ))
end

2.2.10 Expressions

<EXPRESSION> ::=
(<LITERAL> | <QUERY> | <VARIABLENAME> | <FEATURENAME>)

Literal

<LITERAL> ::=
(<INTEGER> | <BOOLEAN>)

<INTEGER> ::=
(-)?(<DIGIT>)+

<DIGIT> ::= (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)
<BOOLEAN> ::= (True | False)

ery

<QUERY> ::=
<EXPRESSION> . <FEATURENAME> ( (nil | (<EXPRESSION> ;)+) )

2.3 Translating the state

e semantics uses abstract data types (ADT) to model the state. ese abstract data
types can be translated in a few steps, explained in this section. e ADT OBJ for
objects is used as an example to show the process. ese are all the ADT’s in the
semantics:

ID Identifiers, replaced by natural numbers (NAT) in the implementation

REF References

OBJ Objects, mapping of aributes to references

PROC Processors

VALUE References and objects (REF ∪ PROC)

REGIONS e regions, locking information and the relation between objects and pro-
cessors

HEAP e heap, mapping of references to objects
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ENV Environments, mapping of local variable names to references

STORE e store, mapping of processors to stacks of environments

STATE e state of the program

2.3.1 Names of sorts, modules and operators

Maude uses modules to structure a program. To avoid confusion between module and
sort in case a module encapsulates a sort and associated operators, module names are
wrien in CAPITALS, and sort names arewrien in CamelCase. InMaude, the underline
(_) symbol has special meaning. Because of this, all operators are named in camelCase
instead.

2.3.2 Sorts

Each ADT has its own sort. Sometimes, additional sorts are needed due to of shared
functionality. e sorts is placed in a separate module. is is needed when an ADT
contains an operator that takes a list of elements of the same sort as the ADT. Because
the list it includes also includes the module where the sort is declared, this results in
a circular dependency. It makes sense to put the subsort declaration next to the sort
declaration in the same module.

e following defines the sort Obj and makes it a subsort of Identifiable. is
sort is shared by all sorts that have the .id query to retrieve the identifier. In order
to have access to the Identifiable sort, the module IDENTIFIABLE is included. is
module also provides the necessary operator declaration for .id.

fmod OBJ-SORTS is
including IDENTIFIABLE .
sort Obj .
subsort Obj < Identifiable .

endfm

2.3.3 Views

Before Obj can be used as a parameter to a module, a view is needed to tell Maude
what to do when it encounters Obj as a parameter to a module that allows a parameter
of the theory TRIV. e implementation only uses module parameters for collections,
and all these parameters are from this theory. e declaration of a view that replaces
the generic elements of a module by objects is:

view Obj from TRIV to OBJ-SORTS is
sort Elt to Obj .

endv

When a module includes the module SETObj, e set sort provided by this would
then be SetObj to differentiate between sorts imported from the same module with
different parameters.
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2.3.4 Includes

Each ADT has a second module for the definition of the operators and equations. It
starts by including all the modules it relies upon.

fmod OBJ is
including OBJ-SORTS .
including SET{Attribute} .
including VALUE .
including REF .
including MAP{Name, Value} .
including PROGRAM .
including SET{Ref} .
including SET{Value} .
including SET{Obj} .

2.3.5 Constructors

e next step is to define at least one constructor for each ADT.

op obj : Nat Class Map{Name, Value} -> Obj [ctor] .
op null : -> Obj [ctor] .

e first constructor is an operator in prefix notation. It takes three arguments and
is of sort Obj. e three arguments are the id, the type and the aribute values of the
object. e second constructor is a constant. It takes no arguments and is used to
denote a non-existing object.

2.3.6 Operators

emodule goes on with the regular operators to define the queries and commands of
the ADT. e operator precedence of 10 is important to support chains of operators.

op _.id : Obj -> Nat [prec 10] .
op _.classType : Obj -> Class [prec 10] .
op _.attVal (_) : Obj Name -> Value [prec 10] .
op _.setAttVal (_ , _) : Obj Name Value -> Obj [prec 10] .
op _.refs : Obj -> Set{Ref} [prec 10] .
op new OBJ.make (_, _) : Class Nat -> Obj [prec 10] .
op _.copy(_) : Obj Nat -> Obj [prec 10] .
op _.obj(_) : Literal Nat -> Obj [prec 10] .
op $initAttributes : Set{Attribute} -> Map{Name, Value} .
op _.filterRefs : Set{Value} -> Set{Ref} [prec 10] .

e definition of the operators is similar to the definitions in the semantics. Some
operators have an additional natural number (Nat) as an argument; this is the iden-
tifier. ere are more operators than specified because some of them are needed for



Implementation - Translating the state 22

the implementation of others. For instance, Maude neither has quantifiers nor higher
order functions. e dollar sign before initAttributes is a hint that the operator is
only used within the module.

2.3.7 Equations

Maude uses equations to simplify terms, the implementation uses them to implement
the axioms of the semantics. An equation may be conditional, which is used by the
implementation for the preconditions. Maude has powerful paern matching, which
respects commutative, associative, and idempotent operators. is can make recur-
sion unnecessary. For example, looking through an associative list for a single ele-
ment can be phrased as a matching a head list, the element and the tail list on the
original list. e element may also have some arbitrary condition placed on it. e
variables used in equations need to be declared beforehand:

var id id2 : Nat .
var classType : Class .
var attVals : Map{Name, Value} .
var f : Attribute .
var n : Name .
var as : Set{Attribute} .
var i : Int .
var v : Value .
var vs : Set{Value} .

Maude tries to always simplify equations until it reaches a dead end. Some of the
equations for objects are:

eq obj(id, classType, attVals) .id = id .
...
eq obj(id, classType, attVals) .refs = attVals .values .flat .filterRefs .
eq obj(id, classType, attVals) .copy(id2) = obj(id2, classType, attVals) .
eq new OBJ.make (classType, id)
= obj(id, classType, $initAttributes(classType .attributes)) .

eq True .obj(id) = obj(id, BOOLEAN, (empty .insert('item --> B(true)))) .
eq False .obj(id) =
obj(id, BOOLEAN, (empty .insert('item --> B(false)))) .

eq (i) .obj(id) = obj(id, INTEGER, (empty .insert('item --> I(i)))) .
eq $initAttributes(({f} U as)) =
$initAttributes(as) .insert(f .name --> void) .

eq $initAttributes(empty) = empty .
...
endfm

With the equations defined, the translation of an ADT into Maude code is finished.
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2.4 State details

As seen in the previous section, it is impossible to convert the semantics without
modification into Maude code. For every ADT, a constructor needs to be derived and
all quantifiers in preconditions have to be converted into first order expressions. ere
are also cases where the semantics uses an ellipsis to indicate a simple recursion. To
achieve this in Maude, it is sometimes necessary to introduce additional operators.
is section explains all the derived constructors, the additional operators, and the
differences to the semantics.

2.4.1 Value

e Value sort is the common ancestor for references and processors. It is used wher-
ever REF ∪ PROC is specified in the semantics.

2.4.2 Reference

Constructor

op ref : Nat -> Ref [ctor] .
op void : -> Void [ctor] .

emain reference constructor has one argument, which is the identifier. e second
constructor is used when dealing with void references.

Differences

e creation operator takes a natural number for the identifier as an additional argu-
ment.

2.4.3 Object

Constructor

op obj : Nat Class Map{Name, Value} -> Obj [ctor] .
op null : -> Obj [ctor] .

e main object constructor has three arguments:

1. e identifier of the object

2. e class this object belongs to

3. A map from aribute names to values

ere is also a null constructor that is used when no specific object should be refer-
enced.
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Differences

e creation operator make takes a natural number as argument to set the identifier.
For readability, the map from aributes to values is implemented as a map from names
to values. Otherwise, either the long aribute definition would make reading hard or
the collapsed aributeswouldmake it impossible to distinguish between the aributes
in the output

2.4.4 Heap

Constructor

op heap : Map{Ref, Obj} Map{ProcNamePair, Ref} Obj
-> Heap [ctor format(ni d)] .

e heap constructor has three arguments:

1. A map from references to objects

2. A map from processors and names to references to save the once results

3. e object added last

Differences

e .addObj operator takes an identifier as an additional argument to set the identifier
of the reference created by the operator. It uses the new operator .objIdUnique to
make sure the new object does not have an identifier that is already in use.

Traing of separate once function results

In SCOOP, separate once function results are tracked globally. To achieve this, all
these results are tracked on the root processor. is affects the operators .isFresh
and .onceResult. ere, the processor that tracks the result is determined as follows
(e processor p and feature f are the arguments to these operators):

q := if f .resultType .processorTag =/= • then
new PROC.make(0) else p fi

2.4.5 Processor

Constructor

op proc : Nat -> Proc [ctor] .
op noProc : -> Proc [ctor] .

e proc constructor takes the processor id as its only argument. e noProc con-
structor is used to denote no specific processor.
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Differences

e creation operator takes a natural number for the identifier as an additional argu-
ment.

2.4.6 Regions

Constructor

op regions : Map{Proc, ObjSet} Proc Map{Proc, Bool} Map{Proc, Bool}
Map{Proc, ProcSetList} Map{Proc, Proc} Map{Proc, ProcSetList}
Map{Proc, ProcSetList} Map{Proc, Bool}
-> Regions [ctor format(ni d)] .

e regions constructor has multiple arguments:

1. A map from each processor to all the objects it handles

2. e processor added last

3. A map indicating which request queues are locked

4. e same for the call stack (always true)

5. A map from each processor to the stack of lock sets with the obtained request
queue locks

6. e same for the obtained call stack lock

7. e same for the retrieved request queue locks

8. e same for the retrieved call stack locks

9. A map indicating the passed lock state of each processor

Differences

Because delegated postcondition evaluation has been determined to be useless, there
is no operator .delegateObtainedRqLocks.

Additional operators

e .addObj operator, like the operator with the same name in the heap, uses the new
operator .objIdUnique to make sure that the new object does not have an id that is
already in use by any processor.

To replace several quantifiers, the new operators .areRqsOpen, .areRqsLocked,
and .allRqLocks are introduced. e first checks that a set of processors has their
request queues unlocked, the second checks that their request queues are locked, and
the last returns all locks in the system.
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A new operator named .flatValues returns a set of all the processors that are
somewhere in the stack of processor sets. e .removeObjs operator removes a set of
objects from the regions.

2.4.7 Environment

Constructor

op env : Map{Name, Value} Feature -> Env [ctor] .

e constructor for an environment takes a map from aribute names to values and
a single feature as arguments. e feature argument is the feature to which this envi-
ronment belongs. is enables the state to determine entity declarations from entity
names.

Differences

e creation operator of an environment takes an additional argument with the fea-
ture associated to this environment. is feature can then be queried using the new
.feature operator.

Additional operators

e .refs operator returns all the non-void references in a environment. e new
.feature operator is used to get the feature running on this environment.

2.4.8 Store

Constructor

op store : Map{Proc, EnvList} -> Store [ctor format(ni d)] .

e constructor takes a map from each processor to a stack of environments.

Additional operators

e .refs operator returns all non-void references stored in all environments.

2.4.9 State

Constructor

op state : Regions Heap Store Ref Nat
-> State [ctor format(ni d)] .
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e state constructor takes the regions, the heap, and the store. In addition, it has
arguments for the last imported reference and the identifier counter.

Identifier management

e three operators .idc, .incId, and .addId query and control the identifier counter.
e .idc operator returns the next identifier to assign. Aerwards, the .incId is used
to increment the counter. e .addId command is used to add more than one to the
identifier counter and can be used if several consecutive identifiers are assigned at the
same time.

Because the identifier counter inside the state needs to increase aer an object or
processor is created, the state now has operators called .addNewProc and .addNewObj
which combine the .newProc and .addProc resp. .newObj and .addObj operators.
Some of the inference rules needed to be modified slightly to support this.

Processors and objects New processors and objects need an identifier upon cre-
ation. erefore the .newProc and .newObj operators take an additional argument
with the identifier. To automate the assignment of identifiers to processors, the new
operator .addNewProc is used instead of first calling .newProc and then .addProc.
is operator is a combination of these two operators. It assigns the next identifier to
the processor and adds it to the state. e operator .addNewObj works the same for
objects by combining .newObj and .addObj.

Additional operators

e .handlers operator works like the .handler operator but takes a list of references
and returns a set of processors instead of a single reference and a single processor.
With .currentFeature, it is possible to get the feature that is currently executing on
a processor. To filter a list of processors to only those that have their locks passed,
the .filterPassedLocks operator can be used. e .filterNonExpanded operators
filters a list of references so that only references to non expanded objects remain.

e deep import operator uses several helper operators. .setLastImportedRef
is used by the deep import operation to set the last imported reference. e new
$filterNonVoidAttributes operator filters a list of feature names so that only those
aributes remain whose value is a non-void reference. e new $replaceAtts oper-
ator is used to replace aribute values according to a supplied map.

enew .pushEnv operator also uses additional internal operators. e new $pushEnvHelper
operator processes the argument list and the $recusiveEnvUpdate sets up the envi-
ronment.

e .setVal operator needs the $copyObj helper operator to copy an object if it
is expanded and return it without modification otherwise.
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Garbage collection

Garbage collection is implemented using three operators: .gc, the main operator,
.mark, an operator that creates a set of reachable objects from a root set, and .sweep,
which removes a set of objects from the heap and the regions. e .gc operator takes a
set of objects. is set must contain all the references that are arguments to operations
in any action queue.

2.5 Translating configurations

In the semantics, the program is hidden and the typing environment Γ is not part of
the configuration. In Maude, we can not have a static, hidden part. To access the
program or the typing environment, this information has to be part of the term that
is rewrien. e solution is the following operator definition for the configuration:

op _ |- _ , _ , _ : Program ActionQueueList Nat State
-> Configuration [ctor prec 121] .

efirst argument is the program to execute. e leerΓ is used for this. e program
is static and also contains the typing environment. By adding it into the configura-
tion, every rewrite law has access to it. e second argument is a list of all the action
queues. e third argument, a natural number, counts the number of steps the pro-
gram has taken. It is used as the first argument for fresh channels. is way it is easy
to determine in which step a channel has been created.

2.5.1 Actioneue List

op nil : -> ActionQueueList [ctor] .
op _ | _ : ActionQueueList ActionQueueList

-> ActionQueueList [ctor assoc comm id: nil prec 122] .

e action queue list is commutative and separated by pipes (|). nil is used as the
constructor for an empty action queue list.

2.5.2 Actioneue

op {_} _ :: _ : Nat Proc List{Statement}
-> ActionQueue [ctor prec 121] .

e action queue takes a natural number, the processor and a list of statements as its
parameters. Statements can be both instructions (supplied by the user) and opera-
tions (used only internally). e natural number is the priority of a processor. When
executing a program, Maude always takes the first match when having to make a
non-deterministic choice. It orders all the commutative operators and then searches
for possible matches from le to right. So by adding an additional argument, we can
influence the ordering and the choices Maude makes. is enables us to create and
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test scheduling algorithms. When searching the state space, Maude ignores these
numbers.

2.5.3 From the input to the initial configuration

A rewrite law may not rewrite one sort into another. So the program an the name of
the initial feature has to be a valid configuration too.

op ( _ { _ } . _ ) : Program Name Name
-> Configuration [ctor format (d n s s s s n)] .

An additional rewrite law takes care to create the initial configuration from there. It
uses the new commands .addNewProc and .addNewObj for automatic identifier assign-
ment.

crl [init] : Γ { cn } . fn =>
Γ |- {0} p ::
call(r, fn, nil, nil);
issue(q, unlock ;);
popObtainedRqLocks ;
| {0} q :: nil, 1, σ

if
c := Γ .classByName (cn) /\
σx := new STATE.make /\
σy := σx .addNewProc /\
p := σy .lastAddedProc /\
σz := σy .addNewProc /\
q := σz .lastAddedProc /\
σw := σz .addNewObj(c, q) /\
r := σw .ref (σw .lastAddedObj) /\
σ := σw .lockRqs(p, {q}) .

2.6 Translating operations

Operations are always constructors. All operations except for provides are imple-
mented as prefix operators.

2.6.1 Creation of multiple operations

e semantics sometimes uses eval, wait and issue operations multiple times in a
row. To accomplish this, the operators neval, nwait and nissue have been introduced.
ey immediately unfold to a list of statements. eir arguments are similar to their
single operation counterpart, but they take lists or sets of arguments instead.
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2.6.2 Reference retrieval

e garbage collector needs a set of all references in all the action queues. e scan
operator scans every statement and produces a set of references. To support this,
equations are needed for every operation that contains a reference or a list of state-
ments.

2.7 Channels

e [_/_] operator is used to replace the channel().data placeholders with the actual
reference. For this to work, every operation and instruction has equations that handle
the substitution. ere is a fallback equation that simply ignores the statement; this
way, only the cases where the substitutions affects a statement need to be covered
with equations.

Channels have three natural numbers as identifiers. e first one is the step where
the channel was created, which is the natural number located between the list of
action queues and the state. e second one identifies the fresh function in a rewrite
law and the last one is used by nfresh to create multiple channels at once.

2.8 Translating inference rules

Inference rules are translated into rewrite laws.

2.8.1 Translating the fresh routine application rule

e most complex inference rule is the one for non-once or fresh once routines. It
takes a result channel, the target, a feature, a list of arguments, the calling processor
and the passed locks and applies it on the current processor. is makes it a good
example on how to translate complex inference rules.

e first step is to create a skeleton for the inference rule:

crl [applicationOpNonOnceOrFresh] :
Γ |- {i} p :: apply(a, r0, f, rs, q, l) ; sp, ic, σ =>
Γ |- {i} p ::
...
sp, ic + 1, σ''

if
...
.

e next step is to add the right hand side of the transition:

checkPreAndLockRqs(q, gmissingRQLocks:Set{Proc}, f) ;
provided f :: Function and f .isOnce then
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replaceOnceResult(f, f .body)
else
f .body

end ;
checkPostAndUnlockRqs(gmissingRQLocks:Set{Proc}, f) ;
provided σ .refObj(r0).classType .invExists

and f .isExported then
eval (ainv, σ .refObj(r0).classType .inv) ;
wait(ainv) ;

else
nop ;

end ;
provided f :: Function then
read('Result, a') ;
return(a, a' .data, q) ;

else
return(a, q) ;

end ;

e main difference to the semantics is the use of the replaceOnceResult operator to
manipulate the feature body of a once routine to update the once result in the state.
Another difference is how the class type of the feature is determined. It is not possible
to add the class to the constructor of a feature. A class contains its features and if the
feature would contain the class it belongs to, this would be a circular relationship.
Maude does not have pointers so this is impossible. e class type is determined by
looking up the object on which the feature is executed and then get the class type
from the object.

e premise of the inference rule is added as a condition on the rewrite law:

(f :: Routine and f .isOnce) implies σ .isFresh(p, f) /\
σ .handler(r0) == p /\
σ' :=
if (f :: Function and f .isOnce) then

σ .setOnceFuncNotFresh(p, f, void)
else

if f :: Procedure and f .isOnce then
σ .setOnceProcNotFresh(p, f)

else
σ

fi
fi /\

σ'' := σ' .passLocks(q, p, l).pushEnvWithFeature(p, f, r0, rs) /\
not σ'' .areLocksPassed(p) /\
grequiredLocks:Set{Proc} :=
{p} U handlersOfAttachedFormals(Γ, σ'', f .formals, rs) /\

grequiredCSLocks:Set{Proc} :=
{p} U σ'' .filterPassedLocks(grequiredLocks:Set{Proc}) /\

grequiredRQLocks:Set{Proc} :=
grequiredLocks:Set{Proc} \ grequiredCSLocks:Set{Proc} /\
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gmissingRQLocks:Set{Proc} :=
grequiredRQLocks:Set{Proc} \ σ'' .rqLocks(p) /\

grequiredCSLocks:Set{Proc} ⊂ σ'' .csLocks(p) /\
ainv := fresh(ic, 1) /\
a' := fresh(ic, 2)

All the quantifiers had to be replaced by equivalent set operations. Apart from this,
the condition is the same as the premise of the inference rule.

2.8.2 Parallelism

e parallelism inference rule can be translated into Maude like this:

crl [parallelism] : Γ |- aqs1 | aqs' , ic, σx
=> Γ |- aqs2 | aqs', ic', σy .gc(filterRefs(scan((aqs2 | aqs'))))
if
not aqs' == nil /\
Γ |- aqs1, ic, σx => Γ |- aqs2 , ic', σy /\
not (aqs1 == aqs2 and σx == σy) .

ere are a few differences. e first and the last condition are needed to ensure that
the parallelism rule is not applied indefinitely in one step. Because the first rule makes
sure the number of action queues in the focus is geing smaller and smaller, at some
point it can not be applied anymore. e last condition makes sure that something
changes in the system. e garbage collector is also hooked into this rule.

2.8.3 Inference rules without using typing environment

e typing environment is not yet complete. ismeans that the is_controlled func-
tion is not available. e implementation instead checks that the current processor
has a lock on the processor on which the object resides. Without explicit processor
tags and assuming correctly typed input programs, this is equivalent to the call to
is_controlled.

2.8.4 Yielding

When executing a program, Maude tries to go forward with the uppermost processor
in its list, even though the list is commutative. Without involving the meta-level,
which would incur a heavy performance penalty, there is no way to tell Maude which
rule should be applied next. By adding a priority to every action queue, Maude sorts
the list accordingly and tries to apply rules to the processors with the lowest priority
number first.

e initial processor starts with priority 0. Every time a processor spawns another,
the new processor gets the same priority. e yield operation increases the priority
by one. Every time a precondition fails, the processor yields so that others can go
forward.
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rl [yield] :
Γ |- {i} p :: yield ; sp, ic, σ => Γ |- {i + 1} p :: sp, ic + 1, σ .

2.8.5 Internal calls

Some support is needed to implement the INTEGER and BOOLEAN classes and to provide
a means to determine equality between values of these types. ese are always pre-
fixed with a dollar-sign to distinguish them from regular calls. ey are implemented
using rewrite laws. Because they are all very similar, there is no need to document
all of them here. e ”greater than” operator serves as an example:

crl [integerGreater] :
Γ |- {i} p :: call(a, r0, '$gt, rs, es) ; sp, ic, σ
=> Γ |- {i} p :: result(a, r); wait(a); sp, ic + 1, σ'
if
I(a:Int) := σ .refObj(r0) .attVal ( 'item ) /\
I(b:Int) := σ .refObj(rs .top) .attVal ( 'item ) /\
σ' := σ .addObj(p,
obj((σ .idc), BOOLEAN, ('item --> B(a:Int > b:Int)))
).incId /\

r := σ' .ref(σ' .lastAddedObj) .

It hooks directly into the call operation. If the name of the called feature is $gt and
both arguments are integers (ensured by the first two conditions), a new BOOLEAN
object is created with the value equal to the ”greater than” comparison of the two
arguments.
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Example

is chapter presents an example run. Because listing the whole source code and all
the output would be far too much, only some interesting parts are presented. e
state is described in a small text instead of providing the whole listing. e source to
both examples is part of the distribution of the executable operational semantics.

A reader and a writer use the same channel. e channel has a size of one integer.
e writer writes two integers into the channel and the reader reads both. Because
of the limited size of the channel, the writer has to wait until the reader read the
first integer before writing the second. is is a simple example to show how two
processors access a third with a synchronization condition.

3.1 Initialization

Aer the initialization, the action queues of the two processors look like this:

{0}proc(0) ::
call(ref(2), 'make, nil, nil) ;
issue(proc(1),

unlock ;
) ;
popObtainedRqLocks ; |
{0}proc(1) :: nil

e bootstrap processor will call the make feature on the object referenced by ref(2).
For this, it needs the lock processor 1. Aer the call, it lets processor 1 unlock itself
and releases the locks.

Looking at the state, we can see the following:

• ref(2) points to obj(2) which is an instance of CHANNEL_SIMULATOR.

• obj(2) belongs to processor 1.

34
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• e request queue of processor 1 is locked.

• processor 0 obtained processor 1’s request queue lock.

3.2 e first step

Aer taking one step using cont 1 ., the following happened:

{0}proc(0) ::
issue(proc(1),

apply(channel(1, 1, 0), ref(2), procedure 'make (...), nil,
proc(0), [empty,empty]) ;

) ;
provided false then

wait(channel(1, 1, 0)) ;
else

nop ;
end ;
(...)

e call operation succeeded andwas replacedwith an issue operation. is operation
lets the processor 1 apply the procedure make. Because processor 1 does not need any
locks to apply this procedure, the following wait operation is skipped. As we can see,
the expression in the provided clause is already reduced to false.

3.3 Issuing the first feature application

Until now, only processor 0 had something to do. is changes now. e issue oper-
ation also involves processor 1.

{0}proc(0) ::
provided false then
(...) |
{0}proc(1) ::
apply(channel(1, 1, 0), ref(2), procedure 'make(...), nil,

proc(0), [empty,empty]) ;

e apply operator has beenmoved to processor 1. NowMaude has to decide whether
it wants to execute the provided operation on processor 0 or the application operation
on processor 1.

3.4 e first non-deterministic oice

{0}proc(0) ::
nop ;
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issue(proc(1),
(...)

It chose to go ahead with processor 0. When used as an interpreter, Maude usually
prefers the processors higher up in the action queue list. at is why there is the
priority flag. It does not limit the possibilities but nudges Maude in the right direction
when it simply executes code.

e next step will be a nop operation, which is not interesting. e same is true
for the issuing of the unlock operation aerwards. Using cont 3 . we take three
steps at once.

3.5 Releasing los

Maude just executed the popObtainedRqLocks operation. is changed something in
the regions part of the state. Processor 0 has processor 1 no longer in its stack of
obtained request queue locks. Processor 1 is still marked as locked, because processor
1 is not done with the feature application:

{0}proc(0) :: nil |
{0}proc(1) ::
apply(channel(1, 1, 0), ref(2), procedure 'make(...), nil,

proc(0), [empty,empty]) ;
unlock ;

Processor 0 is done. It will not do anything for the rest of the execution, so we can
silently drop it from the listings from now on. We can also see that the unlock oper-
ation has not been executed yet. It is set at the end of the action queue of processor
1 because the processor needs to first do the work it has been issued to do before
accepting something else.

3.6 First feature application

It is time for processor 1 to wake up and do something.

{0}proc(1) ::
checkPreAndLockRqs(proc(0), empty, procedure 'make(...)) ;
provided false then

(...)
else

create('channel . 'make(nil)) ;
create('writer . 'make('channel ;)) ;
create('reader . 'make('channel ;)) ;
command('Current . 'simulate('writer ; 'reader ;)) ;

end ;
checkPostAndUnlockRqs(empty, procedure 'make(...)) ;
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provided false then
eval(channel(7, 1, 0), True) ;
wait(channel(7, 1, 0)) ;

else
nop ;

end ;
provided false then

read('Result, channel(7, 2, 0)) ;
return(channel(1, 1, 0), channel(7, 2, 0) .data, proc(0)) ;

else
return(channel(1, 1, 0), proc(0)) ;

end ;
unlock ;

e amount of work for processor 1 just exploded. It needs to first check the pre-
conditions of the procedure and, if necessary, lock the request queues. It then has
to decide whether it needs to update once results. It does not, because the executed
feature is a regular procedure. Aer executing the body of the procedure, it has to
check the postcondition and free all the locks again. ere is no class invariant (it
is set to True), so the processor at least does not have to evaluate an invariant. e
feature is a procedure, so there is no result to return.

We can see the four instructions making up the body of this procedure by looking
at the first provided operation.

e state also changed:

• e stacks of retrieved request queue and call stack locks are bumped up with
an empty set.

• e stack of environments for processor 1 in the store now contains an envi-
ronment with the Current variable pointing to ref(2).

3.7 e first instruction

Because there is no precondition and no need for locking, we let Maude run seven
steps.

{0}proc(1) ::
create('channel . 'make(nil)) ;
create('writer . 'make('channel ;)) ;
create('reader . 'make('channel ;)) ;
command('Current . 'simulate('writer ; 'reader ;)) ;
(...)

Processor 1 now has to execute the body of the procedure. e first step is to create a
new channel. e entity channel is a local variable of type CHANNEL. e state did not
changemuch during the last seven steps. Because the procedure applications does not
need any additional locks, the stack of retrieved request queue locks for processor 1
was bumped up with an empty set.
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{0}proc(1) ::
lock({proc(3)}) ;
write('channel, ref(4)) ;
command('channel . 'make(nil)) ;
provided true then

nop ;
else

issue(proc(3),
eval(channel(15, 1, 0), True) ;
wait(channel(15, 1, 0)) ;

) ;
end ;
issue(proc(3),

unlock ;
) ;
popObtainedRqLocks ;
(...) |
{0}proc(3) ::
nop ;

Instead of the creation instruction, we now have several other statements. ere is
also a new processor involved, processor 3. e state also contains a few new things.
ere is the new reference 4 that points to object 4, which is owned by processor 3.
Processor 3 is still free, but this changes with the lock operation that is executed next.
Aer locking, the new reference is wrien into the variable channel.

3.8 Loed and written

e two operations did not produce anything new in the action queues. But they had
an effect on the state: Processor 3’s request queue lock is obtained by processor 1 and
the channel variable in the current environment of processor 1 points to ref(4).

Up next is the constructor of channel. is is not interesting because we have
already seen a call to a constructor. To skip the creation instructions we let Maude
execute until step 174.

3.9 Local command with separate arguments

{0}proc(1) ::
command('Current . 'simulate('writer ; 'reader ;)) ;
(...) |
{0}proc(3) :: nil |
{0}proc(10) :: nil |
{0}proc(12) ::
unlock ;
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A lot has happened. We have two more processors, processor 10 for the writer and
processor 12 for the reader. e situation in the state is the following:

• Reference 11 points to object 11, which is the writer and belongs to processor
10.

• Reference 13 points to object 13, which is the reader and belongs to processor
12.

• Processors 3 and 10 are unlocked.

• Processor 1 no longer has the lock on processor 12 it obtained during the cre-
ation of the reader, but processor 12 is still locked until it executes its unlock
operation.

• e environment for processor 1 now contains the variables writer (reference
11) and reader (reference 13).

• e channel has an INTEGER aribute with a value of -1 indicating that the chan-
nel is empty (the channel only takes natural numbers).

Interesting about this command is that it will need two locks for its arguments and
one of those locks is not available yet.

eval(channel(174, 1, 0), 'Current) ;
eval(channel(174, 2, 2), 'writer) ;
eval(channel(174, 2, 1), 'reader) ;
wait(channel(174, 1, 0)) ;
wait(channel(174, 2, 2)) ;
wait(channel(174, 2, 1)) ;
call(channel(174, 1, 0) .data, 'simulate,

(channel(174, 2, 2) .data ; channel(174, 2, 1) .data ;),
('writer ; 'reader ;)) ;

e first thing that has to happen when executing a command is of course the eval-
uation of the target and the arguments. ere are no queries involved, so this is not
interesting enough to be looked at in detail.

Aer the evaluation, a call is issued. We can see that some of the arguments to that
call are still channels. Aer the evaluations are completed, the channels are replaced,
as we see in step 184.

{0}proc(1) ::
call(ref(2), 'simulate, (ref(11) ; ref(13) ;), ('writer ; 'reader ;)) ;

As we can see, the channel(...) .data placeholders have been replaced by actual
references. Let’s look at the arguments of the call. e first argument of the call is
obviously the target and the second the name the feature to call. e third is a list of
the evaluated references of the arguments to the feature call. e original expressions
are also added.

We already know how a call is expanded. But this time, the locking aspect is
interesting. So let’s see what the checkPreAndLockRqs operation does.
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lock(({proc(10)} U {proc(12)})) ;
command('writer . 'start(nil)) ;
command('reader . 'start(nil)) ;
checkPostAndUnlockRqs(({proc(10)} U {proc(12)}),

procedure 'simulate(...)) ;
return(channel(184, 1, 0), proc(1)) ;

For the rest of the example, all the nop operations are removed and the provided op-
erations are evaluated as soon as possible to save paper. We can see that processor 1
needs to lock the two processors 10 and 12 before executing the start procedures on
both writer and reader. e application operation determined this because of the two
arguments. Processor 1 does not have the locks so it need to obtain them. Unfortu-
nately, processor 12 is still locked so Maude has to execute the unlock operation on
it first.

Two steps later, the two processors are locked and the commands can be executed.
We skip a lot of steps to the point where the writer likes two write something but can
not, because the reader has not emptied the channel yet.

3.10 Waiting on a separate call

Aer some time, we reached step 390. e channel currently contains the first value
the writer has provided.

{0}proc(1) ::
issue(proc(12),

apply(channel(207, 1, 0), ref(13), procedure 'start(...), nil,
proc(1), [empty,empty]) ;

) ;
checkPostAndUnlockRqs(({proc(10)} U {proc(12)}),

procedure 'simulate(...)) ;
return(channel(184, 1, 0), proc(1)) ;
checkPostAndUnlockRqs(empty, procedure 'make(...)) ;
return(channel(1, 1, 0), proc(0)) ;
unlock ; |
{0}proc(3) :: nil |
{0}proc(10) ::
command('Current . 'write('channel ; (42) ;)) ;
checkPostAndUnlockRqs(empty, procedure 'start(...)) ;
return(channel(199, 1, 0), proc(1)) ; |
{0}proc(12) :: nil

e reader did not even get the call and the writer is about to write the second value
into the channel. ”Why did not the issue statement of processor 1 execute?” you may
ask. at is because it also involves processor 12 and processor 12 is at the boom of
the list.
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3.10.1 Evaluation of the precondition

At step 403, processor 10 is evaluating the precondition for its write procedure.

(...)
{0}proc(10) ::
lock({proc(3)}) ;
eval(channel(402, 1, 0), 'a_channel . 'can_write(nil)) ;
wait(channel(402, 1, 0)) ;
provided channel(402, 1, 0) .data then

nop ;
else

issue(proc(3),
unlock ;

) ;
popObtainedRqLocks ;
yield ;
checkPreAndLockRqs(proc(10), {proc(3)}, procedure 'write(...)) ;

end ;
command('a_channel . 'write('a_data ;)) ;
checkPostAndUnlockRqs({proc(3)}, procedure 'write(...)) ;
return(channel(399, 1, 0), proc(10)) ;
(...)

It will call the can_write function on the channel to make sure it can write into it.

3.10.2 Evaluation of a query

When evaluating the query a_channel.can_write, the operational semantics, in step
produces this:

(...)
{0}proc(10) ::
eval(channel(405, 2, 0), 'a_channel) ;
wait(channel(405, 2, 0)) ;
call(channel(405, 1, 0), channel(405, 2, 0) .data, 'can_write, nil, nil) ;
result(channel(402, 1, 0), channel(405, 1, 0) .data) ;
wait(channel(402, 1, 0)) ;
(...)

It first evaluates the target by reading it from the environment. It then calls the func-
tion can_write, passing the target and no arguments. e call operator for functions
differs in the additional channel argument from the call operator for procedures. is
channel is then used in a result operations to bind the result of the function call to
the result of the expression.
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3.10.3 Calling a function

In step 411, processor 10 issued the feature application for the function can_write to
processor 3:

(...)
{0}proc(3) ::
apply(channel(405, 1, 0), ref(4), function 'can_write(...),

nil, proc(10), [{proc(3)},{proc(10)}]) ; |
{0}proc(10) ::
wait(channel(405, 1, 0)) ;
(...)

As we can see, processor 10 passed its locks, even though it does not need to. is
is a change from the original semantics for some cases of separate callbacks. Since
a query always involves a wait-by-necessity, this simplifies the query call inference
rule.

e apply operator is the same for all features.

3.10.4 Returning a query

In step 438, the can_write function is almost done. It only needs to read the Result
variable from the environment and execute a function return operator:

(...)
{0}proc(3) ::
read('Result, channel(411, 2, 0)) ;
return(channel(405, 1, 0), channel(411, 2, 0) .data, proc(10)) ; |
{0}proc(10) ::
wait(channel(405, 1, 0)) ;
result(channel(402, 1, 0), channel(405, 1, 0) .data) ;(...)
(...)

Two steps later, processor 3’s action queue is empty again and processor 10 got the
result:

(...)
{0}proc(3) :: nil |
{0}proc(10) ::
result(channel(402, 1, 0), ref(33)) ;
wait(channel(402, 1, 0)) ;
provided channel(402, 1, 0) .data then

nop ;
else

issue(proc(3),
unlock ;

) ;
popObtainedRqLocks ;
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yield ;
checkPreAndLockRqs(proc(10), {proc(3)}, procedure 'write(...)) ;

end ;
(...)

Another step and the precondition evaluation is (almost) finished:

(...)
{0}proc(10) ::
provided ref(33) then

nop ;
else

issue(proc(3),
unlock ;

) ;
popObtainedRqLocks ;
yield ;
checkPreAndLockRqs(proc(10), {proc(3)}, procedure 'write(...)) ;

end ;
(...)

eprovided clause now contains a reference, which according to the heap is pointing
to a BOOLEAN that has the value false. It will then release its locks and yield.

3.10.5 Yielding

Aer moving forward to step 446, the yield operator is now on top of processor 10’s
action queue.

(...)
{0}proc(10) ::
yield ;
(...)

e yield rewrite law will now increment the priority number of the processor:

(...)
{1}proc(10) ::
(...)

is causes maude to move the processor at the end of the list. is does not affect
non-deterministic choices when searching the state space, but in the case of step-by-
step execution, this nudges Maude to prefer other processors. e reader can now
read the value. It will then yield for the writer, which writes the second number into
the channel. Because it does not have any other instructions, it stays dormant. e
reader can then read the second value and is also finished.
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3.11 Finishing

At the end, all the action queues are empty and the heap only contains the last added
object and the object pointed to by the last imported reference, and everything these
objects require. Maude is then unable to take another step and stands still at step
1362.
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Contributions to the semantics

is work resulted in several contributions to the original formal specification. By
implementing it, problems surfaced that were easily missed before. Most of them are
minor, but there were also some major problems which are listed below.

4.1 Callba detection

In the original semantics, a callback is detected by looking at the supplier locks (taken
from [5]):

Issue Operation – Separate Callba

q ̸= p
¬σ.locks_passed(p)
σ.cs_locks(p).has(q)
σ.rq_locks(q).has(p) ∨ σ.cs_locks(q).has(p)

Γ ⊢ ⟨p :: issue(q, sw); sp | q :: sq, σ⟩ → ⟨p :: sp | q :: sw; sq, σ⟩

is did not work in the case when the lock were passed over several separate
calls. If, for example, the lock is passed from p to q to r, and then r calls back p,
the system would stand still because neither the issue separate nor the issue separate
callback rule can be applied.

e solution, was to replace the callback detection by looking at whether the locks
of the supplier are passed and the client has the supplier’s call stack lock. If this is
the case, the supplier passed its locks along a feature call chain to the client, which is
now calling back.

Issue Operation – Separate Callba

q ̸= p ∧ σ.locks_passed(q) ∧ ¬σ.locks_passed(p) ∧ σ.cs_locks(p).has(q)
¬σ.locks_passed(p)
σ.cs_locks(p).has(q)

Γ ⊢ ⟨p :: issue(q, sw); sp | q :: sq, σ⟩ → ⟨p :: sp | q :: sw; sq, σ⟩
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Of course, the rules for separate issue operations, feature application, call oper-
ation and creation of object on a separate explicit processor had to be changed as
well.

4.2 Lo passing e

e semantics checks that before applying a feature, the locks of the current processor
are not passed. Unfortunately, this happened on the wrong state.

4.3 Once result annels in loops

e application rule for a fresh once function specifies that all assignments and create
statements that set the Result variable are followed by two instructions which update
the once result in the heap.

Application Operation – Non-Once Routine or Fresh Once Routine

...

Γ ⊢⟨p :: apply(a, r0, f, (r1, . . . , rn), q, l); sp, σ⟩ →
⟨p :: ...

provided f ∈ FUNCTION ∧ f.is_once then
f.body

[result := y; set_not_fresh_with_result(f)/result := y]
[create result.y; set_not_fresh_with_result(f)/create result.y]

else
f.body

end;
...
sp, σ

′′⟩

e rule uses a fresh channel and it looks correct. If the statements involving the
result are executed in a loop, then at the first iteration, the channel placeholder is
replaced by the value of the Result variable. On the second iteration, however, no
replacement happens and the heap is updated with the same result value as before.

e solution was to introduce a new operation that updates the once result. is
way, a fresh channel is created for every iteration of a loop:
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Application Operation – Non-Once Routine or Fresh Once Routine

...

Γ ⊢⟨p :: apply(a, r0, f, (r1, . . . , rn), q, l); sp, σ⟩ →
⟨p :: ...

provided f ∈ FUNCTION ∧ f.is_once then
f.body

[result := y; set_not_fresh_with_result(f)/result := y]
[create result.y; set_not_fresh_with_result(f)/create result.y]

else
f.body

end;
...
sp, σ

′′⟩

Set Once Routine Not Fresh Operation – Function With Result

f ∈ FUNCTION ∧ f.is_once
σ.envs(p).top.names.has(Result)
a is fresh

Γ ⊢⟨p :: set_not_fresh_with_result(f); sp, σ⟩ →
⟨p :: read(Result, a); set_not_fresh(f, a.data); sp, σ⟩
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User’s Guide

5.1 Prerequisites

5.1.1 Maude

e interpreter relies on Maude 2.6. Any later version may also work, but has not
been tested because 2.6 is the latest version as of March 2012.

Maude can be downloaded on its homepage: http://maude.cs.uiuc.edu/

5.1.2 SCOOP executable structural operational semantics

e soware can be downloaded from the SCOOP repository at ETH, which is cur-
rently moving due to the shutdown of origo.

e details of how the SCOOP syntax is mapped toMaude constructs are described
in section 2.2.

5.2 Running an example

To run an example (in this case channel.maude), open a terminal and navigate to the
directory where the SCOOP interpreter is. en execute the following:

>maude src/SCOOP.maude examples/channel.maude

maude is the maude executable. e example to run has to be the second argument to
maude. You should then be greeted with:

\||||||||||||||||||/
--- Welcome to Maude ---

/||||||||||||||||||\
Maude 2.6 built: Dec 9 2010 18:28:39

48
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Copyright 1997-2010 SRI International
Thu Mar 8 15:58:32 2012

Advisory: redefining module SET.
Advisory: redefining module LIST.
Advisory: redefining module MAP.
Advisory: "COLLECTIONS.maude", line 54 (fmod SET-COMMON):

collapse at top of s:Set U s:Set may cause it to match
more than you expect.
==========================================
rewrite [1] in SYSTEM :
(import default __create__invariant_end(...) ;
__create__invariant_end(...) ; __create__invariant_end(...) ;
__create__invariant_end(...) ;)

{ 'CHANNEL_SIMULATOR } . 'make
.

rewrites: 259 in 0ms cpu (0ms real) (~ rewrites/second)
result Configuration: (__create__invariant_end(...) ;
__create__invariant_end(...) ; __create__invariant_end(...) ;
__create__invariant_end(...) ; __create__invariant_end(...) ;
__create__invariant_end(...) ;)

|-
{0}proc(0) ::
call(ref(2), 'make, nil, nil) ;
issue(proc(1),
unlock ;

) ;
popObtainedRqLocks ; |
{0}proc(1) :: nil

,1,

state(
regions((

proc(0) --> empty # proc(1) -->
{obj(2, __create__invariant_end(...), empty)}), proc(1), (

proc(0) --> false # proc(1) --> true), (
proc(0) --> true # proc(1) --> true), (
proc(0) --> ({proc(1)} ;) # proc(1) --> nil), (
proc(0) --> proc(0) # proc(1) --> proc(1)), (
proc(0) --> nil # proc(1) --> nil), (
proc(0) --> nil # proc(1) --> nil), (
proc(0) --> false # proc(1) --> false)),

heap(ref(2) <-> obj(2, __create__invariant_end(...), empty), empty,
obj(2, __create__invariant_end(...), empty)),
store(empty), void, 3)

e terms looking like __create__invariant_end(...) are concealed classes. Fea-
tures are also concealed to improve readability.
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5.2.1 Action queues

e natural number in braces preceding every processor is the processor’s priority.
e action queues are sorted by ascending priority and then by ascending processor
identifier. e execution prefers action queues that are higher up, in other words
action queues with a lower priority number.

5.2.2 State

Below the action queues is the current state.

Regions e arguments of the regions are the following:

1. A map from each processor to all the objects it handles

2. e processor added last

3. A map indicating which request queues are locked

4. e same for the call stack (always true)

5. A map from each processor to the stack of lock sets with the obtained request
queue locks

6. e same for the obtained call stack lock

7. e same for the retrieved request queue locks

8. e same for the retrieved call stack locks

9. A map indicating the passed lock state of each processor

Heap e arguments of the heap are:

1. A map from references to objects maintaining the connection between refer-
ences and objects

2. A map from pairs of processor and name to references which saves the once
results

3. e object added last

Store e store contains a map from processors to environment lists (stacks). e
environments contain a map from variable names to references and the feature asso-
ciated with the environment.
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5.2.3 Execution

e first step is the initialization, which transforms the input program into the initial
configuration. is is done immediately aer Maude starts and without user interac-
tion.

To take one or more steps, use

Maude>cont n .

with n being the number of steps to take. If n is omied, the program runs to com-
pletion if possible.



Chapter 6

Developer’s Guide

6.1 Project directories

src/ All the source code of the operational semantics

examples/ Examples wrien in Maude

doc/ Documentation (e. g. this document)

6.2 Source files

In SCOOP.maude, all source files necessary to run SCOOP are loaded in the order they
are needed. It is not recommended to load files from any other place to avoid loading
some of them multiple times.

Bigmodules all have their own source files, but smallermodules are sometimes put
together if it makes sense: All the features (PROCEDURE, FUNCTION, ATTRIBUTE, ROUTINE
and FEATURE) are in one file named FEATURE.maude.

e file named CONFIGURATION.maude contains the definition of the configuration
and all the rewrite rules. It is reasonable to later split up the rewrite rules in more
modules and files.

6.3 Code conventions

6.3.1 Module structure

Sorts and subsort declarations should be placed in an extra module called ORIGI-
NALMODULENAME-SORTS if possible (as explained in section 2.3.2). en for every
sort that can reasonably be placed in a set, a view from TRIV toMODULENAME-SORTS
with the same name as the sort should be placed before the module containing the op-
erators, rewrite laws and so on.
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is way, a code module can also use a set of its sorts, because the view only
points to the sorts module and not to the codemodule, whichwould result in a circular
relationship.

e code module should be split in up to seven parts:

1. Inclusions

2. Constructors

3. Operators

4. Variables

5. Memberships

6. Equations

7. Rewrite rules

is way, every equation, rewrite rule etc. can use any operation that is included
or defined in the module.

6.3.2 Naming conventions

Modules and views

e operators should be organized in modules according to the sorts they operate on.
e name of a module should be in UPPERCASE and using an underline symbol (_) to
separate words. Trivial views (TRIV) should always be named aer the sort they refer
to. Other views should be named in a comprehensible way.

Sorts

Sorts should always be named in CamelCase. Not only is this the usual way of defining
them in Maude, it also distinguishes them from the modules.

Constructors

ere are two general ways to define a constructor.

Smaller constructors should simply use the prefix notation and add all the data
fields as arguments. For example:

op proc : Nat -> Proc [ctor] .
op noProc : -> Proc [ctor] .

More complicated constructors are beer off by using a specific mixfix notation
that resembles the structure:
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op
environment
variables _
current _

end : Map{Name, Value} Feature
-> Env [ctor format(ni n++i d ni d n--i d)] .

is makes the analysis much easier because every argument has a description.

Sometimes a custom mixfix notation that does not fit in these two styles is best.

Operators

Operators should be named in lower camelCase to not rely on the underline symbol,
which has a special meaning in operator definitions for the mixfix notation. If an
operator is part of a sort, the operator should be defined in mixfix notation, as in the
following operator:

op _.doSomething(_, _) : CurrentSort ArgumentSort ArgumentSort
-> CurrentSort [prec 10] .

e precedence value is important to support chains of operators. Be aware that
Maude needs a space or parentheses to separate between tokens. e following call
would not work:

cs.doSomething(a, b)

Whereas these would work:

cs .doSomething(a, b)
(cs).doSomething(a, b)

Object creators are the operators that are used to create an object (the constructors
in object oriented languages). ese should be named in the following style:

op new OBJECT.make(_) : ArgumentSort -> Object .

Variables

Variable names should be short. It is recommended to simply use the initials of the sort
name and a number or apostrophes to distinguish. Long variable names do not make
the equations and rewrite rules easier to understand. An AppleSet (or Set{Apple})
would be named as; further variables of that type have the names as', as0, as1, etc.



Chapter 7

Related work

7.1 SCOOP

is work is part of the ongoing SCOOP project at ETH Zürich. Eiffel Soware is cur-
rently implementing SCOOP as an experimental feature in their Eiffel implementation
called EiffelStudio.

e first publication about SCOOP [4] goes back to 1993. e bookObject-Oriented
Soware Construction [1] by Bertrand Meyer contains a chapter about SCOOP. Piotr
Nienaltowski’s PhD thesis [6] describes the whole SCOOP system and is still the main
reference for SCOOP.

iswork is based upon the structural operational semantics of SCOOP [5] defined
by Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer.

7.2 Executable structural operational semantics

Verdajo et al. [7] give examples of several operational semantics implemented in
Maude. ey solved intricate problems using the meta-level.
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Conclusion

8.1 Future work

8.1.1 Missing functionality

Typing environment

Because of time constraints, a complete typing environment was not implemented,
only a subset. Most of the semantics could be implemented, with a slightly different
conditions and the assumption that the supplied code is correct.

Explicit processor tags

Explicit processor tags are the only part where a typing environment is important.
Once it is in place, the processor tags can be easily added.

Asynronous postcondition evaluation

Because of the work on exceptions in SCOOP, Benjamin Morandi and Bertrand Meyer
determined that asynchronous postcondition evaluation is useless and implementing
it in the interpreter would be pointless.

8.1.2 Improving the interpreter

e executable semantics is not complete. ere are a few minor features missing.

Arrays

At the moment, the base library supports INTEGER and BOOLEAN.With the support
of arrays, more examples are possible.
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Seduling

Using Maude meta-strategies are possible. Currently, the interpreter uses the fair
rewrite facilities of Maude.

8.1.3 Front-End

A parser that parses the original syntax and generates the intermediate representation
would make writing new examples much easier.

8.1.4 User interface

Working directly in Maude is cumbersome. It would be very nice to have a graphical
user interface that would sit on top of Maude and provide an easy way to go step by
step through the program.

State explorer

e user interface can parse aer every step the current state and provide a graphical
front-end to enable the user to easily find the parts of the state he needs. As an extra,
the user could manipulate the state and then go on with the execution.

Moving bawards

By saving the state and the action queues at every point in the execution, the user
interface can move backwards in time by simply replacing the current state with a
saved one.

Pretty Printing

Instead of showing the ugly and bloated intermediate representation, the user inter-
face could prey print the output.

8.1.5 Improvements to the code quality

Some of the functions and constructors are not optimally implemented. Especially the
regions constructor could be implemented leaner. e obtained call stack map can be
removed because its content is static. All maps that map to a boolean value can be
replaced by a set containing only the keys that map to true. Finally, the current prefix
notation used for the constructors of the state, regions, store and environment is not
optimal for readability.
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