
AutoTeach: Incremental Hints
For Programming Exercises

Master Thesis

Paolo Antonucci
ETH Zurich

apaolo@student.ethz.ch

March 17, 2014 - September 17, 2014

Supervised by:
Dr. Marco Piccioni
Prof. Bertrand Meyer

Abstract

In recent years, e-learning platforms and MOOCs (Massive Open Online
Courses) have gained great popularity, and the Computer Science area is not
excluded from this trend. A challenge for MOOCs is providing effective exercises
to the students, and this is even more important in applied disciplines such as
programming. A major difficulty of this challenge is ensuring that students do
not get stuck in solving the exercises, which eventually leads to giving up. This
is one of the most significant drawbacks of MOOCs over more traditional forms
of teaching, where teachers can provide direct guidance to students who lack
the necessary idea for solving an exercise.

We designed AutoTeach, an incremental hint system for programming ex-
ercises. Given a complete solution of a programming exercise, AutoTeach can
generate several stripped out versions of it, numbered by hint level, which ini-
tially only contain the skeleton of the solution’s code, and then, for higher hint
levels, gradually reveal more parts of the code and/or hints on how to write it.
Students who get stuck on an exercise can ask for a hint (one or multiple times)
and receive versions of the code where more and more parts of the solution
are revealed, until they are able to proceed on their own. This way we ensure
that students who happen to lack the necessary idea for solving an exercise can
receive the help they need, instead of immediately giving up.

Acknowledgments

I would like to thank very much my supervisor, Marco Piccioni, for continu-
ously supporting me throughout all phases of this thesis. Many thanks to Prof.
Bertrand Meyer for his support and the great interest shown in the project.

I thank the whole group of the Chair of Software Engineering for reviewing
my code and providing abundant and extremely useful feedback. I am also
grateful to the Eiffel Software developers, in particular Emmanuel Stapf, for the
support I received when working on Eiffel Inspector and Eweasel.

Many thanks to my friend Alessandra, who was a great listener during the
development of the ideas of this thesis, helping me refining them as I presented
them to her. She even managed not to look too bored. Finally, special thanks to
my father, who was also a great listener, and spent several hours proof-reading
my final report instead of sleeping.

Paolo Antonucci

Contents

1 Introduction 7
1.1 Automated exercise assessment 7
1.2 Guiding students towards the solution 8
1.3 Our contribution . 9
1.4 Outline . 9

2 AutoTeach Overview 11
2.1 Introduction . 11
2.2 Evolution of the concept . 12

2.2.1 Annotated mode . 12
2.2.2 Unannotated mode . 14

2.3 The final solution . 15

3 AutoTeach principles 18
3.1 Trileans . 18

3.1.1 Definition . 18
3.1.2 Subjection operation . 19

3.2 AutoTeach basics . 19
3.2.1 Input and output . 19
3.2.2 Hint levels . 20
3.2.3 Code blocks . 21
3.2.4 Hiding code . 21

3.3 Visibility . 22
3.3.1 Block visibility . 23
3.3.2 Complex blocks and content visibility 24
3.3.3 The whole picture . 27

3.4 Hint tables . 30
3.4.1 Compactness . 30
3.4.2 Modes . 32
3.4.3 Hint table for automatic mode 32
3.4.4 Hint table for manual mode 33
3.4.5 Custom hint tables . 34

3.5 Meta-commands . 34
3.5.1 Syntax . 34
3.5.2 General characteristics of meta-commands 36
3.5.3 Supported meta-commands 36

3.6 Visibility overriding . 38
3.6.1 Basic visibility overriding 38

4

3.6.2 Content visibility overriding 41
3.6.3 Putting it all together . 42

3.7 Treating complex blocks as atomic 44
3.8 Final thoughts . 46

3.8.1 Modularity of the model 46
3.8.2 Content visibility inheritance 47
3.8.3 Arbitrary choices . 47

4 AutoTeach tips & tricks 49
4.1 Optimizing the hint table customization 49

4.1.1 Visibility of atomic blocks 49
4.1.2 Basic visibility of complex blocks 50

4.2 Compacting hint levels . 51
4.3 Other tips and tricks . 52

4.3.1 Hybrid hints . 52
4.3.2 Sequences of instructions 52
4.3.3 Treating complex blocks as atomic 53

5 AutoTeach implementation 55
5.1 EVE . 55
5.2 Classes . 55

5.2.1 AT AST ITERATOR 56
5.2.2 AT PROCESSING ORACLE 57
5.2.3 Complete list of classes 58

5.3 Additional contributions to the Eiffel libraries 59
5.3.1 Trileans . 59
5.3.2 Enumeration types . 60

6 Conclusions 64
6.1 Conclusions . 64
6.2 Future Work . 64
6.3 Related Work . 65

A AutoTeach reference 67
A.1 Command line arguments and syntax 67
A.2 Complete list of blocks . 69
A.3 Meta-command syntax . 71
A.4 Meta-command reference . 74

A.4.1 Syntax . 74
A.4.2 Visibility . 74
A.4.3 Treating complex blocks as atomic 75
A.4.4 Other commands . 75

A.5 Custom hint table file format . 77
A.6 Default hint table for automatic mode 78
A.7 Default hint table for manual mode 82

B Eiffel Inspector: the new rules 85
B.1 Eiffel Inspector . 85
B.2 The new rules . 86

B.2.1 CA030: Unnecessary sign operator 86
B.2.2 CA051: Empty and uncommented routine 87
B.2.3 CA059: Empty ‘rescue’ clause 88
B.2.4 CA060: Inspect instruction has no ‘when’ branch 88
B.2.5 CA063: Class naming convention violated 89
B.2.6 CA064: Feature naming convention violated 90
B.2.7 CA065: Local variable naming convention violated 90
B.2.8 CA066: Argument naming convention violated 91
B.2.9 CA079: Unneeded accessor function 91
B.2.10 CA088: Mergeable feature clauses 93
B.2.11 CA089: Explicit redundant inheritance 94

C Eiffel inspector: support for testability of rules 95
C.1 Eweasel . 95

C.1.1 Tests . 95
C.2 Eiffel Inspector support for Eweasel 96
C.3 Changes and improvements to Eiffel Inspector 97

C.3.1 Eiffel Inspector as an automated feedback generator for
programming exercises . 98

C.3.2 Additional contributions 98

Chapter 1

Introduction

Recent years have seen a constantly increasing interest in modern teaching and
learning methods. Devices such as tablets and e-book readers have become
more and more popular with students and teachers. E-learning platforms, with
particular regard to MOOCs (Massive Open Online Courses), are gaining a
strong momentum, both in mass e-learning websites and in academic environ-
ments, where they are often used as a complement to more traditional forms of
didactics, taking the form of SPOCs (Small Private Online Courses, [3]).

While these new platforms offer several benefits compared to traditional
teaching methods, and work very well in replacing one-way lectures, they face a
major challenge when it comes to providing students with exercises and assessing
their solutions. Many MOOCs try to avoid the problem as much as possible
by resorting to closed-answer (e.g. multiple choice) tasks. These are of course
very easy to correct (often automatically), but are generally not sufficient for
training and testing students on all the skills they are expected to acquire when
studying a discipline. This is also and especially the case with Computer Science
and programming-related courses, where learning without real practice is not
reasonable. This is the scenario this thesis tackles.

1.1 Automated exercise assessment

Arguably the first challenge to be faced when offering open-answer programming
tasks is their assessment. There is a number of properties that can be assessed
in such tasks, such as

• syntactical and semantic validity: does the code actually compile?

• correctness: does the code do what it is supposed to do in all possible
cases?

• efficiency: is the code efficient and does it scale up well?

• code quality: does the code respect general good practices and conven-
tions?

7

Introduction - Guiding students towards the solution 8

• respect of additional constraints: does the code satisfy the additional
constraints given by the exercise, if any? For example, in an exercise about
recursion, did the student really implement a recursive solution?

• originality: did the student solve the exercise by herself or did she copy
the code from somewhere?

Currently, in most MOOCs and programming exams, some of these points
are addressed by automated assessment systems. Most of the times, the program
submitted by the student is compiled (validity test) and run against a set of
predefined inputs in order to check its correctness in several cases. The execution
time is usually limited, so that inefficient solutions get rejected. There are also a
number of tools that can check students’ code for similarities in order to prevent
plagiarism, some of them having existed for as long as 20 years so far [2].

What is not yet always receiving proper consideration is the evaluation of
code quality. This aspect is very important not only for grading the students’
code, but also for providing the students with feedback on how to improve an
exercise that is not going to be graded.

1.2 Guiding students towards the solution

Besides evaluation and automatic generation of feedback, another major chal-
lenge provided by open-answer exercises is helping students make their way to
the solution when they are stuck and cannot proceed. In traditional forms of
teaching, one could always ask the professor or a teaching assistant for a hint
on how to proceed or what approach to take, but in fully automated forms of
teaching this is not possible.

A feasible alternative to the direct interaction between teachers and students
would be to prepare in advance a list of hints to be provided to students upon
request. Even though these hints might still not be sufficient to answer specific
questions by the students, they still prove helpful in many cases where students
don’t know where to start at all or what approach they should take. Ideally,
hints should be incremental: if a student asks for help, she is initially only given
a hazy clue of the solution, which will still not “spoil” it. If she keeps asking
for more help, she will receive increasingly detailed hints.

Unfortunately this problem tends to be very often ignored in MOOCs (in
those that provide open-answer exercises at all), and automatic, progressive hint
systems are still uncommon.

Unfortunately, even MOOCs that offer open-answer exercises tend to ig-
nore the problem of students getting stuck and being unable to proceed, and
automatic, progressive hint systems are still not common.

Introduction - Our contribution 9

1.3 Our contribution

In this thesis we present AutoTeach, an incremental hint system for program-
ming exercises in Eiffel. AutoTeach is a processing tool that takes complete
solutions to programming exercises as input, and generates stripped-out ver-
sions of the solutions, where initially only the skeleton of the code is visible.
For each input file, several versions can be generated, with increasingly large
parts of the code shown. AutoTeach is capable of running in a fully automated
mode, where a default smart processing policy is applied to the exercise, or in
a manual mode, where the teacher can control and customize to her like the
visibility of any part of the code and add textual hints to the code. There is
no sharp separation between the two approaches: nothing prevents the teacher
from running AutoTeach in automatic mode on an exercise and make slight
adjustments to its behavior or complement the automatic output with textual
hints.

In the following chapters we will thoroughly explain the concepts on which
AutoTeach is based, and make some practical considerations about its use in
teaching.

In addition to AutoTeach, this thesis also contributes a set of code analysis
rules for Eiffel Inspector [17]. Eiffel Inspector is a code analysis tool for Eiffel,
which has the potential of being used for providing students with automated
feedback on the quality of their code. While it is a general purpose code analysis
tool, many of the rules it supports, including those that we present here, can
be useful to students, in that they can catch mistakes that most experienced
programmers would never make.

Finally, our contribution includes the implementation of support for testing
Eiffel Inspector rules in Eweasel [10], a unit testing tool for the Eiffel compiler.
This included some changes to Eiffel Inspector itself, mainly consisting of im-
proving its support for the command line, with the goal of making it easier to
support unit-testing of rules and taking it closer to being fit for being used for
the analysis of students’ code.

1.4 Outline

In the following chapters, we will present and discuss AutoTeach. After an
initial quick tour in chapter 2, chapter 3 will thoroughly discuss all the concepts
on which AutoTeach is built. In chapter 4 we will then focus on the usage of
AutoTeach by teachers and on practical tips. Chapter 5 will then discuss the
most important aspects of the implementation of AutoTeach.

We will complete our tour with some final conclusions in chapter 6.

At the end of the thesis, appendix A contains reference information that
would not have fit well into the regular chapters.

In appendix B, the new rules for Eiffel Inspector, developed as a part of this
thesis, are presented and documented.

Introduction - Outline 10

Finally, appendix C consists of a short report on the extension of the Eweasel
tool and the changes made to Eiffel Inspector itself in order to support unit-
testing of code analysis rules.

Chapter 2

AutoTeach Overview

In this chapter we provide a first general introduction to AutoTeach. We go
through the evolution of the concept, from the initial idea to the final imple-
mentation. In doing this, we show some first examples, which will be helpful
for starting the next chapter with an initial idea of what should be expected.

2.1 Introduction

AutoTeach is a tool for generating incremental hints for programming exercises
written in Eiffel. The main purpose for which it was developed is to use it in the
2014 edition of the first year Introduction to Programming course of the Com-
puter Science department at ETH Zurich. Since the 2013 edition, the course
offers a MOOC platform complementing traditional didactics. The MOOC plat-
form includes programming exercises that can be solved directly from within the
web browser. The solutions submitted by the students are compiled and unit-
tested over a set of inputs, and the students receive an automatic feedback
on how their code performed in the tests. AutoTeach will be integrated with
this module, so that students who get stuck and cannot proceed in solving an
exercise can click a button and request one or more hints.

AutoTeach works by taking a complete solution to a programming exercise
and generating several stripped out versions of it, where parts of the code are
hidden (optionally replaced by placeholders) and textual hints, if defined by
the teacher, are inserted. These versions are numbered from 0 up. Numbers
represent hint levels: the higher the level, the more detailed the code and the
textual hints are.

The idea of providing incremental textual hints, spread over several hint
levels in order to reduce spoilers, is not new, and is quite common in other
contexts, such as hintbooks for adventure videogames [12]. Here however we
take it one step further, by accompanying or even replacing textual hints with
the automatic revealing of some parts of the code.

In the following paragraphs we will try to give a first idea of how this works

11

AutoTeach Overview - Evolution of the concept 12

in practice. We will use the following code fragment as our hello-world example.

Listing 2.1: Eiffel : Our hello-world example

sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

Result := 0

across a_numbers as ic loop

Result := Result + ic.item

end

end

2.1 actually shows the solution of our exercise: in our example, students
will be required to implement feature sum.

2.2 Evolution of the concept

The initial idea was to focus on textual hints and have two separate modes for
AutoTeach: the “annotated mode”, where the source code would be annotated
with textual hints by the teacher, and the “unannotated mode”, to be used
where the teacher did not provide textual hints.

2.2.1 Annotated mode

The annotated mode was meant for those exercises which had been annotated
by the teacher with textual hints, organized in increasing levels, and meant to
be shown to the students. Only the skeleton of the features to be implemented
should have been visible to the students, where skeleton usually means the
declaration, with arguments and return types, and the local declarations. In
our example, the solution’s code could have been annotated the following way:

Listing 2.2: Eiffel : Hello world example with textual hints annotations

sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .
Result := 0

−−# [2] HINT: Maybe you need a loop .
−−#− Perhaps you should i t e r a t e on ‘ a numbers ’ .
across a_numbers as ic loop

−−# [3] HINT: In every i t e r a t i o n you should add the cur rent
item to the cur rent r e s u l t .

Result := Result + ic.item

end

end

Comments starting with “--\# [l] HINT” are special annotations indicating
a textual hint which should be visible at hint level l or greater.

AutoTeach Overview - Evolution of the concept 13

Listing 2.3 shows within a single listing the produced output at hint level 1,
2, and 3.

Listing 2.3: Eiffel : Output resulting from listing 2.2

−− Hint l e v e l 1 .
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .

−− Your code here !

end

−− Hint l e v e l 2 .
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .

−− Your code here !

−−# [2] HINT: Maybe you need a loop .
−−#− Perhaps you should i t e r a t e on ‘ a numbers ’ .

−− Your code here !

end

−− Hint l e v e l 3
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .

−− Your code here !

−−# [2] HINT: Maybe you need a loop .
−−#− Perhaps you should i t e r a t e on ‘ a numbers ’ .

−− Your code here !

−−# [3] HINT: In every i t e r a t i o n you should add the cur rent
item to the cur rent r e s u l t .

−− Your code here !

end

As we see, the teacher writes the hints directly within the code, in the form
of special comments. Even though the code is hidden, the teacher can (and
should) still write each hint at the appropriate location within the code. This
makes it very easy for her to write hints and also ensures that code placeholders
(-- Your code here!) are properly interwoven with textual hints. The student
can trust code placeholders and be sure, for instance, that no code is to be

AutoTeach Overview - Evolution of the concept 14

inserted before the first hint.

2.2.2 Unannotated mode

The so-called unannotated mode was intended to work in those cases where the
teacher did not provide any annotation in the source code. It would work by
revealing the structure of the code gradually. In our example, the input would
be the original, unmodified listing 2.1, and the output would look like this:

Listing 2.4: Eiffel : Output resulting from listing 2.1

−− Hint l e v e l 1 .
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−− Your code here !

end

−− Hint l e v e l 2 .
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−− Your code here !

across a_numbers as ic loop

−− Your code here !

end

end

−− Hint l e v e l 3 .
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

Result := 0

across a_numbers as ic loop

−− Your code here !

end

end

−− Hint l e v e l 4 . (s o l u t i o n)
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

Result := 0

across a_numbers as ic loop

Result := Result + ic.item

end

end

AutoTeach Overview - The final solution 15

As we see, students only start by seeing the empty skeleton of the routine.
Then, if they ask for help, they first get to see the existence of a loop, without
showing its body, then instructions outside any compound statement (in this
case, the initial assignment to Result), and only finally they see the complete
code. In the full from form of Eiffel loops, the loop initialization instructions,
termination condition, invariant and variant are also shown at a later time than
the existence of the loop itself.

The behavior described above is defined by a policy, which specifies which
parts of the code should be visible at different hint levels (e.g. contracts become
visible at level 3). A default policy exists, so that there is no need to specify
the policy for every single exercise. Actually, the behavior described above is
the one implied by the default policy.

In the initial idea, this mode should have been used as a fallback in the
case of unannotated exercises, however, after the final visibility model for the
parts of the code had been developed, it turned out to be more effective than
expected.

2.3 The final solution

Smart defaults are good, but flexibility is even better. A design goal of Au-
toTeach was to make its behavior as customizable as possible, so that the teacher
could change anything she didn’t like. This was achieved in two ways:

• Full custom policies: the teacher can specify a custom policy and com-
pletely redefine what parts of the code must be shown at what level.

• Processing directives within the code: the teacher can write some
special annotations, under the form of special comments, that override
the default behavior of AutoTeach in that file, or even in a single specific
occurrence of a code block.

In planning this, it became soon evident that there was no real reason why
textual hints and automatic or semi-automatic processing should stay separate,
and that joining them would have enabled teachers to write more effective hints,
without prejudice to the possibility of relying on AutoTeach’s defaults and let
it do its job without intervention when that flexibility is not needed.

The mixture of the two modes makes hints like the following possible:

Listing 2.5: Eiffel : Output obtained by combining textual hints and the gradual
revealing of the code structures

−− Hint l e v e l 1 .
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .
Result := 0

AutoTeach Overview - The final solution 16

−− Your code here !

end

−− Hint l e v e l 2 .
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .
Result := 0

−−# [2] HINT: Maybe you need a loop .

−− Your code here !

end

−− Hint l e v e l 3 .
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .
Result := 0

−−# [2] HINT: Maybe you need a loop .
−−# [3] HINT: Perhaps you should i t e r a t e on ‘ a numbers ’ , l i k e

t h i s :
across a_numbers as ic loop

−−# [3] HINT: Now, in every i t e r a t i o n you should
−−#− add the cur rent item to the cur rent r e s u l t . . .

−− Your code here !

end

end

−− Hint l e v e l 4 . (s o l u t i o n)
sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .
Result := 0

−−# [2] HINT: Maybe you need a loop .
−−# [3] HINT: Perhaps you should i t e r a t e on ‘ a numbers ’ , l i k e

t h i s :
across a_numbers as ic loop

−−# [3] HINT: Now, in every i t e r a t i o n you should
−−#− add the cur rent item to the cur rent r e s u l t . . .
−−# [4] HINT: . . . l i k e t h i s :
Result := Result + ic.item

end

end

These “hybrid hints” come to the price of adding some additional processing
directives to the code, but the result is more effective. Listing 2.6 shows how
the input code was annotated for obtaining this result. Notice the use of the

AutoTeach Overview - The final solution 17

‘SHOW NEXT’ and ‘SHOW NEXT CONTENT’ directives.

Listing 2.6: Eiffel : Annotated hybrid version of the sample exercise

sum (a_numbers: ARRAY [INTEGER]): INTEGER

−− Sum of a l l e lements in ‘ a numbers ’ .
do

−−# [1] HINT: F i r s t , s t a r t by i n i t i a l i z i n g Result to zero .
−−#− This i s not necessary , but makes the idea c l e a r e r .
−−# [1] SHOW NEXT i n s t r u c t i o n
Result := 0

−−# [2] HINT: Maybe you need a loop .
−−# [3] HINT: Perhaps you should i t e r a t e on ‘ a numbers ’ , l i k e

t h i s :
−−# [3] SHOW NEXT loop
−−# [4] SHOW NEXT CONTENT loop
across a_numbers as ic loop

−−# [3] HINT: Now, in every i t e r a t i o n you should
−−#− add the cur rent item to the cur rent r e s u l t . . .
−−# [4] HINT: . . . l i k e t h i s :
Result := Result + ic.item

end

end

Our quick tour is complete. In the next chapter we will define more precisely
the concepts on which AutoTeach is built and we will dig in deeper detail into
its usage.

Chapter 3

AutoTeach principles

In this chapter we discuss what model and what concepts have been developed
and how they are used in AutoTeach. While, strictly speaking, this chapter
contains all the notions necessary for making full use of AutoTeach, it is mostly
focused on the theoretical aspect. Some practical tips and good practices for
using AutoTeach will be presented in chapter 4. Finally, implementation details
are presented in chapter 5.

3.1 Trileans

A key concept for Autoteach, one that needs to be specified, is that of “trileans”.
This is defined and described in this section.

3.1.1 Definition

The three-valued boolean, or “trilean” as we call it here, is a type. Instances of
this type can assume three values: true, false and undefined. From now on we
will use the word “trilean” to indicate any instance of the trilean type, which
in the context of programming generally means a variable or a value.

We say that a trilean is defined when its value is either true or false. Trilean
can be regarded as a supertype of boolean: any boolean variable can be seen as
a trilean which is always defined.

In three-valued logic, the undefined value often means that the truth value is
unknown, thus it is often also called unknown or undetermined. In the context
of AutoTeach, the most appropriate term to express what undefined means is
“not set”. We will be using trileans for options and flags that can be explicitly
set to true or false, or can be left undefined if not set.

There is flourishing literature about three-valued logic (also known as ternary
logic), see [16] for an accessible starting point. Here, we will only define one
operation on trileans, which will be useful later on.

18

AutoTeach principles - AutoTeach basics 19

3.1.2 Subjection operation

The “subjection” operation represents a trilean being overridden by another
one. The result of the operation will always be the value of the overriding
trilean (right operand) unless it is undefined, in which case the result is the
value of the first trilean (left operand).

More formally, we define the subjection operation as follows.

A subjected to B =

{
B if B is defined
A otherwise

This yields the following truth table:

HH
HHHA

B
True Undefined False

True True True False

Undefined True Undefined False

False True False False

Table 3.1: Truth table for the trilean subjection operation.

It is important to notice that the subjection operation is not commutative. In
fact, we can define the inverse operation, which we call imposition, as follows:

A imposed on B =

{
A if A is defined
B otherwise

This operation yields the following truth table:

H
HHHHA

B
True Undefined False

True True True True

Undefined True Undefined False

False False False False

Table 3.2: Truth table for the trilean imposition operation.

3.2 AutoTeach basics

3.2.1 Input and output

AutoTeach is a command line tool integrated with the Eiffel compiler. A graph-
ical user interface is currently under development, however it is not a part of
this thesis.

AutoTeach principles - AutoTeach basics 20

The main parameters required by AutoTeach are:

• An Eiffel project. The project must be complete and valid, i.e. it must
compile without errors.

• The name of one or more classes in the project which should be processed.

• A natural number, or a range of natural numbers, specifying the range of
hint levels to run AutoTeach with.

AutoTeach will first compile the code. If the compilation is successful, the
specified classes are processed. The source text of each class is scanned sequen-
tially, with a single pass, and the output is generated on the fly. The output is
a stripped out copy of the input source code, where certain sections and parts
of the code are hidden (and possibly replaced by placeholders).

AutoTeach requires the input classes to be compiled. By default, the Eiffel
compiler will ignore classes that are not referenced (directly or indirectly) by
the root class of the application. If this situation arises, AutoTeach prints a
warning and skips the classes that have not been compiled.

It is also important for the input code to be well-formed, including formatting
and indentation. In the output, AutoTeach will keep the original formatting and
indentation whenever possible, meaning that incorrectly indented input code
will result in incorrectly indented output code (GIGO principle [14]). The code
must be indented with tabs, not spaces, as this is the convention in Eiffel.

The output for every class is saved to a file, the location of which must be
specified by the arguments. The process is repeated for all the selected hint
levels.

It is worth mentioning explicitly that AutoTeach doesn’t need to be invoked
on the spot every time a student asks for a hint. In fact, all exercises can be
processed in advance, for all relevant hint levels, and students requesting a hint
can simply be served the right file.

3.2.2 Hint levels

Hint levels are execution modes identified by natural numbers. The higher the
hint level, the more detailed hints are generated for the students. Convention-
ally, hint level 0 is used for generating the skeleton of the code provided to
students as a starting point for solving an exercise. What is generated is the
input of the exercise, it is provided to all students and it is not regarded as a
hint. A hint level of 1 or higher will contain hints and clues which will be only
given to students who ask for help by pressing a button in the GUI.

The maximum hint level is not fixed: depending on the AutoTeach config-
uration, the behavior will be defined up to a certain level n. It is technically
possible to run AutoTeach at higher levels than n, however the generated output
will be the same as for level n.

AutoTeach principles - AutoTeach basics 21

3.2.3 Code blocks

An important choice in designing AutoTeach was the granularity, that is, the
elementary units which it should be able to handle. With respect to this, we
defined a list of supported code “blocks”. Every block type has a name, which
we will also use when referring to block types in this thesis. Blocks are classi-
fied as atomic blocks and complex blocks. The difference between the two
categories is that complex blocks may contain other blocks (whether atomic or
complex) nested in them, whereas atomic blocks cannot contain any other kind
of block. The exhaustive list of block types, including a short description for
each of them, is found in the appendix (A.2).

Examples of atomic blocks are:

• instruction : instructions of all kinds, with the exclusion of compound
statements (such as ‘if’s and loops).

• assertion : assertions in contracts, including class invariants, and in loop
invariants.

• if condition : the condition of an ‘if’ statement.

This list, albeit incomplete, gives a first idea of the minimum processing gran-
ularity: instructions and assertions are generally the smallest processing unit
handled by AutoTeach. It is not possible to reason about smaller program
building blocks, such as single operators or keywords and, in general, single
expressions. Boolean or integer expressions can however constitute a block in
some specific cases (such as blocks of type if condition).

Examples of complex blocks are:

• precondition : the precondition of a routine, including the ‘require’ key-
word.

• if : an “if” statement.

• if branch : any of the two branches of an “if” statement, including the
“then” or “else” keyword.

Figure 3.1 (on the next page) shows a code sample and the composition of
blocks within it.

3.2.4 Hiding code

Generally, whenever a part of the code is hidden, a blank line is inserted. By
default, a placeholder (a comment prompting the students to fill in some code)
is also inserted.

AutoTeach principles - Visibility 22

Figure 3.1: Code example showing the composition of code blocks. Complex
blocks are indicated by braces, atomic blocks by colored rectangles.

Regardless of how extended the hidden code region is, only one placeholder
(or blank line) is inserted, so that students cannot infer the number of miss-
ing instructions from the number of blank lines. This is also true if several
consecutive independent blocks are hidden.

Even when hiding some parts of the code, AutoTeach does its best to pro-
duce a syntactically valid program and alter the input abstract syntax tree as
little as possible. A challenge posed in this by the Eiffel language is that it
exclusively supports line comments: comments can only be terminated by a
newline character. TThis makes it difficult to replace with an inline placeholder
a hidden inline block such as routine arguments or the condition of an if state-
ment, which we would like to replace with an inline placeholder. In the majority
of cases this is solved by inserting a new line before and after the section to be
hidden, so that the placeholder can be alone on a line. However, in the case of
condition of if s, the solution is to insert a fake (but syntactically valid) condi-
tion as an inline placeholder, as inserting additional lines in these cases would
have resulted in particularly bad-looking code.

3.3 Visibility

In the first two paragraphs of this section we will introduce two alternative,
orthogonal approaches for determining which code blocks should be visible in
the output. In the third paragraph we will show how these two approaches
can be combined, and how the resulting model is more powerful than the two
approaches taken singularly. These three paragraphs are perhaps the most
crucial of the whole thesis.

AutoTeach principles - Visibility 23

3.3.1 Block visibility

As previously said (3.2.1), AutoTeach works by processing classes sequentially.
In the previous section, we learned that the source code of classes, in the abstrac-
tion used by AutoTeach, is composed of blocks. Clearly, the ultimate question
we are interested in answering for every occurrence of a code block, is “should
we print this block or should we hide it?”.

The question is answered by a lookup in the visibility table. The visibility
table is a table associating block types and hint levels. Every row of the visibility
table represents a block type, every column represents a hint level, and every cell
contains a trilean value indicating whether or not the corresponding block type
should be visible, and thus be printed to the output, at that level. Although
cells contain trilean values, let’s assume for now that all values are defined, so
that they are in fact boolean values. The following example shows a simplified
visibility table:

hhhhhhhhhhhhhhhBlock type
Hint level

0 1 2

feature True True True

if False True True

instruction False False True

Table 3.3: Simplified example of a visibility table.

Whenever a block is encountered, a simple lookup in this table tells whether
that block should be printed to the output at the current hint level or not. At
any time, AutoTeach always has an active visibility table. More details on the
default visibility tables and how they can be customized will be provided in a
later section (3.4).

In the following sections we will sometimes refer to this concept as “basic
visibility” when this is necessary for disambiguation.

Let’s see an example. Consider the same code fragment of figure 3.1, which
we report here again as a listing:

Listing 3.1: Eiffel : Example

1 foo (a_bool: BOOLEAN)

2 do

3 print ("Hello world!")

4 if a_bool then

5 print ("a_bool is true!")

6 print ("I am really happy it is!")

7 end

8 print ("Goodbye world!")

9 end

As a visibility table, we will use table 3.3. Of course this table is incomplete,
as the entries for several blocks highlighted in figure 3.1 are missing, but it will
suffice for this simplified example. Processing listing 3.1 with table 3.3 at hint
levels from 0 to 2, would generate the following output:

AutoTeach principles - Visibility 24

Listing 3.2: Eiffel : Complete output produced by processing listing 3.1 with
visibility table table 3.3.

−− Hint l e v e l 0 .
foo (a_bool: BOOLEAN)

do

−− Your code here !

end

−− Hint l e v e l 1 .
foo (a_bool: BOOLEAN)

do

−− Your code here !

if a_bool then

−− Your code here !

end

−− Your code here !

end

−− Hint l e v e l 2 .
foo (a_bool: BOOLEAN)

do

print ("Hello world!")

if a_bool then

print ("a_bool is true!")

print ("I am really happy it is!")

end

print ("Goodbye world!")

end

Note that the output consists of a separate file for each hint level, we have
merged here the output for different levels into one listing for the sake of con-
ciseness.

3.3.2 Complex blocks and content visibility

The approach shown in the previous section is very simple and quite flexible,
yet not flexible enough. For example, consider again listing 3.1. Assume that,
on a certain hint level, the teacher wants to show all the instructions appearing
directly within the body of a routine, but wants to hide all those inside the body
of an if statement, thus she would like to have the following output:

Listing 3.3: Eiffel : Desired output

foo (a_bool: BOOLEAN)

do

print ("Hello world!")

if a_bool then

−− Your code here !

AutoTeach principles - Visibility 25

end

print ("Goodbye world!")

end

For what has been explained so far, now there is no way to achieve this. If
we set the instruction visibility to true, then all the instructions will be shown,
including those within if blocks. Similarly, if we set it to false, then none of
them will be shown. We need a new paradigm to make it possible. This new
paradigm, which we call content visibility, is presented hereafter.

This new paradigm is orthogonal to, and independent of, the mechanism that
we have presented in section 3.3.1 (basic visibility), so the reader is encouraged
to forget the mechanism of basic visibility for a while and restart from scratch.
Only at a later stage (section 3.3.3) we will put together the two paradigms and
show how they combine.

Every point in the code, where “point” means any place in the text on which
we could click and set the cursor for editing, has a content visibility policy
in force in that place. The content visibility policy is a trilean value which,
as an approximative definition, indicates whether or not the code appearing in
that region should be visibile (i.e. printed to the output). Note that we said a
trilean, which means it can also be undefined.

In our case, to achieve the desired goal, we need to ensure that the content
visibility policy be false within the body of the if instruction and true outside
of it.

In section 3.2.3 we discussed the distinction between atomic blocks and com-
plex blocks. This distinction becomes relevant here, as complex blocks can spec-
ify a content visibility policy, which is valid within their body. We establish
that if the policy for a block is undefined, then it is inherited from the parent
block. In case of a root-level block, which has no parent, if its content visibility
policy is undefined, then it remains undefined.

The content visibility policy for the complex block types is defined in the
content visibility table. This table is totally analogous to the basic visibility
table, in that every row represents a complex block type and every column a
hint level, and the value in every cell, which is a trilean, indicates the content
visibility policy for that block type on that hint level. A simple example is the
following:

hhhhhhhhhhhhhhhBlock type
Hint level

0 1 2

routine body False True True

if False False True

Table 3.4: Simplified example of a content visibility table.

As in the previous section (3.3.1), this table is simplified and many entries
are missing, for the sake of simplicity, but it is sufficient for our example.

AutoTeach principles - Visibility 26

Going back to our example (3.1), our problem is solved by table 3.4 at hint
level 1. At level 1, blocks of type “routine body” (the do ... end block spanning
from line 2 to 9) have a content visibility of true. This means that at lines 3 and
8 the applicable content visibility is true, therefore the instructions on those two
lines get printed. On the contrary, blocks of type “if ” have a content visibility
of false, therefore at lines 5 and 6 the applicable content visibility is false and
the two instructions on those lines will not be printed.

The complete output produced by listing 3.1 processed with content visibility
table 3.4 is shown in the following listing:

Listing 3.4: Eiffel : Complete output produced by processing listing 3.1 with
content visibility table 3.4.

−− Hint l e v e l 0 .
foo (a_bool: BOOLEAN)

do

−− Your code here !

if a_bool then

−− Your code here !

end

−− Your code here !

end

−− Hint l e v e l 1 .
foo (a_bool: BOOLEAN)

do

print ("Hello world!")

if a_bool then

−− Your code here !

end

print ("Goodbye world!")

end

−− Hint l e v e l 2 .
foo (a_bool: BOOLEAN)

do

print ("Hello world!")

if a_bool then

print ("a_bool is true!")

print ("I am really happy it is!")

end

print ("Goodbye world!")

end

We can now define more precisely the rules governing content visibility:

• Every point in the code has an applicable content visibility. In particular:

– The content visibility policy at any point which is not contained in
any complex block is undefined.

AutoTeach principles - Visibility 27

– The content visibility policy at any point which is directly or indi-
rectly contained in a complex block is equal to the content visibility
of the innermost complex block in which that point is contained.

• The effective visibility of a code block is affected by the content visibility
policy applicable at its position1 the following way:

– Atomic blocks: their visibility is defined by the content visibility
policy in force at their location. If the content visibility policy at
their location is true, they will be printed to the output, if it is false
they will be hidden.

– Complex blocks: no effect. Complex blocks are immune to the
content visibility policy in force at their location. This design choice,
which might be perplexing, is motivated discussed in section 3.8.3.

As we see, the mechanism of content visibility and the associated content
visibility table make it possible to hide or show atomic blocks depending on
their location in the code and not on their type. This is exactly the contrary of
the basic visibility, where the visibility of a block is determined by the type of
the block and not by its position in the source code. Here, blocks of the same
type (in our example, instruction) are handled differently depending on where
they are located. Also, this mechanism always preserves the visibility of the
complex blocks, which are the “boning” of the code, only allowing to hide the
atomic blocks that they contain, which are the “flesh”. This is often desirable,
as it gives the students clues about how the code should be structured without
revealing the exact implementation.

The concept of content visibility alone is simple and powerful, but it is not
flexible enough. While revealing the structure of the code can be desirable at
some times, we definitely need the ability to completely hide at least some types
of complex blocks, such as if instructions. In the next section we will see how
we can solve this and other problems by putting the notion of content visibility
together with the one of basic visibility which we encountered in section 3.3.1.

3.3.3 The whole picture

In sections 3.3.1 and 3.3.2 we have introduced the concept of blocks basic
visibility and 3.3.2 respectively. We have seen how these two notions are
orthogonal, they can be explained and make sense independently of each other.

Also, a careful reader will recall that, both in the basic and in the content
visibility table, we said that the table cells contain trilean values. This means
that both the basic visibility of a block and the content visibility of a complex
block will not always assume a defined value. We were a bit vague on the reasons
for this and on what happens if the visibility of a block is undefined.

1Note that it is not important to specify whether we mean the content visibility at the
beginning of the code block or at its end. As the content visibility policy solely depends on the
parent complex block, it is guaranteed to be the same both immediately before the beginning
and right after the end of our block.

AutoTeach principles - Visibility 28

It is now time to combine the two visibility paradigms, describe how we can
take advantage of these trilean values and understand the full picture of how
visibility works with AutoTeach.

Briefly, blocks in AutoTeach are subject both to basic visibility and content
visibility. The effective visibility of a block is the result of a combination of both
notions. More precisely:

• The visibility of complex blocks is simply equal to their basic visibil-
ity, as the content visibility policy is never applicable to complex blocks.
However, while immune to it, complex blocks have the ability to define a
content visibility policy valid within their body.

• The visibility of atomic blocks is equal to their basic visibility, if it is
defined. If it is undefined, then their effective visibility is equal to the
content visibility in force at their location. In other words, the effective
visibility of an atomic block is its basic visibility imposed on (3.1.2) the
applicable content visibility at that location.

As both notions are used simultaneously, we need both the basic visibility
table and the content visibility table. These tables can be used harmoniously
together only if they are thought from the beginning as the two sides of the same
coin. From now on, we will use the term hint table to refer to the combination
of both tables.

This is the complete picture. This solution provides the answer to several
open questions:

• Why do we use trileans instead of booleans for both basic and content visi-
bility? Because we want to make it possible to leave one of them undefined
and let the other do the job. For example, in cases like example 3.1 we
might want to leave the basic visibility of blocks of type instruction unde-
fined, so that their effective visibility is decided by the content visibility
in force at the locations where they appear. In addition, trileans for the
content visibility allow a nested block to inherit the visibility policy from
its parent block.

• How do we hide complex blocks of a certain type? By setting the basic
visibility of that block type to false. This is the only way, as this cannot
be achieved by working with the content visibility.

• Why does basic visibility have priority over complex visibility in defining
the visibility of an atomic block? Because we consider it to be more spe-
cific. In fact, basic visibility always refers to a specific block type, while
content visibility is valid within a region of the code which may contain
heterogeneous blocks. In general, it is a design principle of AutoTeach
that more specific policies are stronger than general policies (this concept
will be stressed later on, in section 3.6.3).

• What happens if a complex block has an undefined basic visibility? Will
it be shown or not? Also, what happens if an atomic block has an unde-
fined basic visibility and the applicable content visibility is also undefined?

AutoTeach principles - Visibility 29

In these cases AutoTeach would not know whether that block should be
printed or not.

The answer to this question is: this should never happen! A well-
designed hint table should always ensure that this situation can never
happen. For example, if a hint table sets the basic visibility of instruction
blocks to undefined, then it must ensure that the content visibility of every
possible region where instruction blocks can occur is always either true or
false.

If this undesirable situation eventually happens, AutoTeach will not abort
the processing, and will print the offending block out of courtesy, as if its
visibility were true, but it will issue a warning to the user, informing her
that she is using a malformed hint table.

The “orphan rule”

There is one additional rule complementing what we have seen until now and
governing the visibility of blocks. AutoTeach is a didactic tool, and, as such,
aims at being helpful to students and never confuse them. We believe that
altering the structure of the syntax tree of the code would be inelegant and
misleading for students. For this reason, we established the following principle:

Regardless of its theoretical visibility, no block can ever be printed
to the output unless its direct parent is printed as well.

In fact, if we were to allow that, we could end up printing orphan nodes, that
are “detached” in the output syntax tree. This would often break the syntax
of the language, and, what is worse, would be extremely confusing, as it would
make it possible to, for example, hide an if statement, but print the instructions
in the ‘then’ block as if they were not inside a compound statement. This is
something we decided to disallow. We refer to this principle as the “orphan
rule”. We will see that the sole exception to this rule are textual hints (3.5.3),
which are however not a part of the syntax tree of the original code. Apart from
this, there are no other exceptions or ways to bypass this rule.

Visibility of comments

Comments, in most if not all programming languages, are considered a break
in the abstract syntax tree of the input source code. Eiffel is no exception to
this: comments appear inside breaks. Not all breaks include comments, break
can also consist of whitespace and return characters.

As comments can appear at any location, it would have been very difficult to
come up with an accurate policy for processing them and deciding which ones
should make into the output and which not.

AutoTeach’s policy for processing comments is the following:

• Generally, after a block has been processed, the break immediately follow-
ing it is processed as if it were a part of that block. For example, if an

AutoTeach principles - Hint tables 30

assignment instruction is followed by ten blank lines, in turn followed by
an if instruction, the ten blank lines will be processed as if they were a
part of the assignment instruction, not the if.

• When a comment is processed, it is printed to the output if

– The block of which it is considered part is visible (basic visibility)
AND

– The applicable content visibility for that region is not False. If the
visibility in the region is undefined, the comment will be shown.

Note that these rules do not have solid foundations, they should be regarded
as a “best effort” policy, which may not be optimal for all situations. However,
in cases where it is important that a comment is shown or hidden at a specific
hint level, an easy solution is to convert that comment to a textual hint.

3.4 Hint tables

As we said in section 3.3.3, we use the term “hint table” to indicate the combi-
nation of a basic visibility table and a content visibility table designed to work
together. AutoTeach comes with two different built-in hint tables, used with
different purposes (more on this in 3.4.2), and with the ability of loading a
custom hint table.

3.4.1 Compactness

AutoTeach supports 24 different block types, 17 of which are complex blocks.
This means that a complete hint table would have to contain 41 total rows (24
in the visibility table and 17 in the content visibility table). Every row would
need to have as many cells as the number of supported hint levels. In the case
of the default table for automatic mode, which has eight levels, the hint table
would end up having 328 cells, which is a quite high number. This would make it
very complicated to maintain the default tables and, more importantly, to write
custom hint tables. For these reason, we have designed two simplifications that
can make hint tables more compact and manageable.

The first possible simplification is that any row can be omitted. If a row
is omitted, then every attempt to access that row at any hint level will always
return undefined. This makes it optional to include the rows for which one never
(i.e. at no hint level) wants to specify a visibility (or content visibility) other
than undefined.

The second simplification is that the rows that are specified do not have to
be complete. In fact, there is no concept such as “complete rows”, as hint tables
do not explicitly specify a maximum hint levels. We could be more precise by
simply saying that rows are not required to have all the same length. The hint
level grows from the left to the right: any attempt to access a row for a hint
level that exceeds the row length returns the value of the row at the highest
defined hint level.

AutoTeach principles - Hint tables 31

Figure 3.2: Screenshot from a text editor showing a portion of the default auto
hint table in complete form.

Figure 3.3: Screenshot from a text editor showing the same table as figure 3.2,
this time in compact form. Notice how easier it is to understand what the table
does at a glance.

The effect of these simplifications can be appreciated by comparing figures
3.2 and 3.3. These show screenshots taken from a text editor showing a portion
of the default hint table for automatic mode. The second one is in compact
form (in theory, the second row is superfluous and could have been removed
altogether). The two tables are perfectly equivalent, however notice how the
second form is much easier to read and understand.

AutoTeach principles - Hint tables 32

3.4.2 Modes

AutoTeach uses the term “mode” for referring to the hint table being used. We
say that AutoTeach is running in “automatic mode” (or just “auto”) when the
default hint table for automatic mode is being used, in “manual mode” when
the default table for manual mode is active, and in “custom mode” when a
user-defined hint table is in use. We use the word ‘mode’ for convenience, but
modes do not carry any more meaning than this.

The running mode can be specified with a command line switch. The switch
is optional, if it is omitted then the default mode is “auto”. It is also possible to
switch mode on the fly at any time while processing an exercise using a special
annotation in the source code of the exercise (this is later explained in section
3.5.3).

3.4.3 Hint table for automatic mode

One of the two pre-loaded tables is the table for the so-called “automatic mode”.
This table is the “smart” table which teachers should use when they do not
plan to customize the way exercises are processed and they trust the default
AutoTeach behaviour to do the job. It aims at providing a general-purpose
sensible policy, which in most cases will be just fine. This is also the default
table.

The policy implemented by this table is summarized here. Please bear in
mind that in future versions of AutoTeach it might change.

The following list is incremental. It is implicit that whatever is shown at
level ‘x’, remans visibile at levels greater than ‘x’.

• Level 0: only show the skeleton of features. In AutoTeach, this means
showing:

– name of the feature

– return type (for queries)

– feature comment

Show the existence, but hide all the content, of the following blocks:

– routine arguments

– precondition

– locals

– body (do/once ...)

– postcondition

– class invariant

• Level 1: show all routine arguments.

• Level 2: show all contracts: preconditions, postconditions, class invari-
ants.

AutoTeach principles - Hint tables 33

• Level 3: show all local declarations.

• Level 4: show the existence of compound statements.

– Show the existence of if statements, but hide their conditions and
their bodies.

– Show the existence of inspect statements, including the value being
inspected and all branches. Keep hiding the body of branches.

– Show the existence of all clauses that are actually present in the input
loop (with clauses we mean from, invariant, until, loop and variant).
Hide the content of all these clauses.

• Level 5: show the secondary clauses of compound statements, keep hiding
their bodies.

– Show the conditions of if statements, keep hiding the body of their
‘then’ and ‘else’ branches.

– Treat inspect blocks the same as in level 4.

– Show the content of loop initialization (from), loop invariant (invari-
ant), loop termination condition (until), and loop variant (variant).
Keep hiding the content of loop bodies (loop clause).

• Level 6: show all instructions in routines which are not inside any com-
pound statements (if, inspect, loops). Keep hiding the content of the
bodies of compound statements.

• Level 7: show everything.

The full source of the default hint table for automatic mode is found in
appendix A (A.6).

3.4.4 Hint table for manual mode

AutoTeach includes a second built-in table which is associated to manual mode.
This table is extremely simple, only consisting of one level.

• Level 0: show the existence of all features. Of every feature, show the
name, arguments, type (for queries) and feature comments. Show the
existence of all feature clauses (require, local do/once, ensure), hide the
content of all feature clauses.

This table is clearly of little use as it is. In fact, it is provided as a template
for those cases where the teacher wants to completely customize the way an
exercise is processed. Selecting manual mode is a way for the teacher of saying
“Give me a blank canvas on which I can paint my own picture”. How a teacher
can customize the processing of a single exercise will be made clear in a few
pages.

The full source of the default hint table for manual mode is found in appendix
A (A.7).

AutoTeach principles - Meta-commands 34

3.4.5 Custom hint tables

AutoTeach supports loading a custom hint table from a text file. This is done by
providing the path of the text file as a command line argument when executing
AutoTeach. The syntax of this text file is presented in the Appendix.

This feature is optimal for those cases where a batch of exercises should be
processed automatically (or almost automatically), however the teacher would
like to use a different policy than the default one for the whole batch.

Loading a custom hint table when launching AutoTeach makes it available
for use during AutoTeach’s execution, however the table will only be activated
if custom mode is selected. This is done either by selecting custom mode from
the command line or with a special annotation in the source code requesting to
switch to custom mode. It is possible to switch between ‘auto’, ‘manual’ and
‘custom’ mode at any time of the processing and as many times as desired.

Loading multiple custom hint tables and switching between them within the
same exercise is not supported.

3.5 Meta-commands

So far, we have vaguely mentioned “special annotations” in AutoTeach’s input
source code, without properly defining them. AutoTeach supports indeed spe-
cial annotations which alter the way the code is processed. These processing
directives are called meta-commands 2. In this section we will define the syn-
tax and characteristics of meta-commands and introduce the most common of
them.

3.5.1 Syntax

Meta-commands are written under the form of comments, so that they do not
affect the semantics of the input programs. A meta-command can only start at
the beginning of a comment and terminates at the end of that comment, which,
in Eiffel, means at the end of the line. Meta-commands are not allowed to span
multiple lines.

Comments containing a meta-command must start with a hash (#) symbol
following the double dash which opens the comments. Whitespace is allowed
before and after the hash symbol. The hash is followed by the keyword of the
command. All commands require some kind of payload following the command
keyword, the structure of which depends on the specific command.

It is possible (but not required) to specify a range of hint levels before the
command keyword. If this is done, then the command will be evaluated or
executed only if AutoTeach is running at a level within the specified range,
otherwise, the command will be ignored. All this translates to the following
general syntax:

2The prefix ‘meta’ is used to prevent confusion with the normal Eiffel instructions.

AutoTeach principles - Meta-commands 35

--# [x-y] COMMAND_KEYWORD <payload >

‘x’ and ‘y’ are natural numbers. ‘x’ is the minimum hint level for the com-
mand to be valid, ‘y’ is the maximum level. Both of them are optional, meaning
that “[x-]” is a valid level specification, which can be translated as “from level
x on”. Similarly, “[-y]” is also a valid level specification, meaning “up to level
y”. It is also possible to omit both parameters at the same time and write “[-]”.
This is translated to “on any level”, and is equivalent to entirely omitting the
level specification.

It is also allowed to provide one number only, i.e. “[x]”. However, this does
not mean “exactly on level x”, but “from level x on”, that is, it is equivalent
to writing “[x-]”. The reason for this apparently arbitrary choice is that most
meta-commands for which a level is specified are in fact commands causing some
clue (textual hints or parts of the code) to be shown to the student. Generally,
once a clue is shown, it will not be hidden again at higher hint levels, so it is
useful to have a compact way for indicating that a certain clue should be shown
from level ‘x’ on. In the rare cases where a command should be executed on a
single specific hint level, this is obtained by specifying the same number both
as minimum and maximum hint level, i.e. by writing “[x-x]”.

For improved readability, especially in the case of textual hints (3.5.3), an
optional colon is allowed immediately after the command keyword:

--# COMMAND_KEYWORD: <payload >

Commands working on blocks

Many commands require the name of a block type to be provided as a payload,
for example

--# SHOW_NEXT instruction

For these commands it is always possible to provide multiple block types on
a single line, separated by commas and/or whitespace, like this:

--# SHOW_NEXT instruction , if, if_condition

This is perfectly equivalent to writing the following:

--# SHOW_NEXT instruction

--# SHOW_NEXT if

--# SHOW_NEXT if_condition

The original command will be expanded to these three sub-commands, which
will be executed separately. If one of them turns out to be invalid (for example
because of an incorrect block type name), the others are nevertheless accepted.

The full BNF-form grammar specifying meta-commands is found in the ap-
pendix. (A.3)

AutoTeach principles - Meta-commands 36

3.5.2 General characteristics of meta-commands

The first thing to say about meta-commands is that they never get printed to
the output. The entire line containing a meta-command is suppressed. This is
true even for incorrect commands. AutoTeach treats every comment starting
with a hash as a meta-command, and even if one such line cannot be parsed
AutoTeach will issue a warning, but still not print the line to output.

The only exception to this is for command ‘HINT’, the purpose of which is
exactly to print a hint to the output.

Meta-commands are always processed regardless of the visibility of the code
surrounding them.

As we already said, as a single Eiffel comment may not span across multiple
lines, commands may not either. In addition to this, it is highly recommended
to place all meta-commands on their own lines, i.e. not on the same line of
some part of the code. Failure to do so may result in incorrect indenting or
whitespace (including newlines) in the output.

Last but not least, meta-commands only affect the class they appear in. At
the end of the processing of any class, the effects of any active meta-command
cease.

3.5.3 Supported meta-commands

In this section we list all the supported meta-commands that do not work
with blocks. Meta-commands working with blocks require an ampler treat-
ment and will be presented in sections 3.6 and 3.7. An exhaustive list of all
meta-commands is found in the appendix (A.4).

For sake of simplicity, we do not specify hint level bounds for meta-commands
in this section, however we remind the reader that these can always be specified.

MODE

--# MODE newmode

This command switches to the specified mode. Valid values for ‘newmode’
are ‘auto’, ‘manual’ and ‘custom’. As a reminder, as soon as the end of the class
is reached, AutoTeach will revert to the default mode for that run.

PLACEHOLDER

--# PLACEHOLDER (on | off | True | False)

This command enables (‘on’, ‘True’) or disables (‘off’, ‘False’) the insertion of
a code placeholder when a region of code is skipped. Even when placeholders
are disabled, a blank line is always inserted (with the exception of some inline
blocks).

AutoTeach principles - Meta-commands 37

HINT and hint continuation

--# [4] HINT: In the loop body , you should check

--#- if the current item is present in the hash table.

--#- If not , you should add it and increase the counter.

The ‘HINT’ meta-command is used for defining a textual hint. If the hint level
is within the specified range, the entire line will be printed to the output. This
is the only case where a meta-command is printed directly to the output.

It is particularly important to specify a range of hint levels. If no levels are
specified, the hint will always be visible. Remember that when a single hint
level is specified, that level is interpreted as a lower bound, e.g. the command
in the above example will be printed when the exercise is processed on a hint
level greater than or equal to 4.

This is also the only exception to the “orphan rule” (3.3.3). Hints can be
printed even if they are located in a region which is being hidden. In this case,
AutoTeach will attempt to re-adjust their indentation so that it matches the
indentation of the output, preventing students from inferring how deep a hint
was nested by checking its indentation.

We said that meta-commands are not allowed to span across multiple lines.
However, this constraint is particularly troublesome in the case of hints, as it is
often necessary to write hint text which is too long to fit on a line. A workaround
could be spanning the text of a single hint across multiple ‘HINT’ commands,
one per line, however this is not very convenient. This is the reason why the
hint continuation command was introduced.

A hint continuation is indicated by a single dash after the meta-command
hash, as in the example above. The dash must be followed by at least one space
or tab character. If this is done, the line is treated as a continuation of the
previous hint, and will be shown on the same hint levels which were specified
for the previous hint. If AutoTeach finds a hint continuation command and
the last encountered meta-command was not a hint, the line is ignored and a
warning is issued.

Meta-comments

--## We will never show the next instruction to students ,

--## otherwise it’s too easy.

It is possible to insert meta-comments. Meta-comments are comments referring
to the processing of the exercise by AutoTeach or to other meta-commands, not
to the code itself. The practical difference between normal comments and meta-
comments is that meta-comments are always filtered away and never appear in
the output.

Technically, any line identified as a meta-command will be filtered from the
output, however AutoTeach will issue a warning for every invalid meta-command
which it encounters. Meta-comments of course do not trigger any warning.

AutoTeach principles - Visibility overriding 38

Meta-comments are inserted by starting a comment with a double hash
instead of a single one. Note that internally meta-comments are implemented
as a normal command, where the command keyword is ‘#’. This means that a
space (or a tab) is mandatory following the second hash, otherwise AutoTeach
will not recognize it as the command keyword.

3.6 Visibility overriding

In section 3.3 we explained the notions of basic visibility and content visibility.
For both of them, we said that they are controlled by policies which are defined
in two tables, which, considered jointly, we call ‘hint table’. We then saw how
these notions are put together by AutoTeach.

We have mentioned several times, and in particular when we presented the
manual mode, that teachers have the possibility to fully customize the way an
exercise is processed, beyond what the use of a custom hint table would allow.
Now that we have introduced meta-commands, in this and in the following
section we can finally show how this can be done.

We will take the same approach we used when we presented the concepts
of basic and content visibility and consider the two notions separately in the
following two sections. Then in section 3.6.3 we will put all together and show
the full flexibility achieved by AutoTeach.

3.6.1 Basic visibility overriding

Let’s start from the basic visibility. Please temporarily forget the notion of
content visibility: assume that all blocks, atomic or complex, are born equal
and that their visibility is determined by a single lookup in the basic visibility
table.

Now, imagine that the behavior implied by the basic visibility default table
be satisfactory, except for some very small detail. For example, you would like
all instructions to shown at level 5 already. What you could do is to use a custom
hint table, but it would not be very convenient do have to fill a custom table
just for changing one value. The same effect can be achieved more conveniently
by using a global visibility override.

Doing a global visibility override means instructing AutoTeach so that,
within a certain class, all blocks of a certain type have a certain visibility defined
by the user with a meta-command instead of the default one expressed by the
table. This is achieved through the use of the following meta-commands:

--# SHOW_ALL <block_type >

--# HIDE_ALL <block_type >

--# RESET_ALL <block_type >

Needless to say, as for all meta-commands, a hint level range can be specified
between the hash symbol and the keyword using syntax ‘[x-y]’. If this is done,
the meta-command will only be processed when AutoTeach is running at a hint
level within the specified range.

AutoTeach principles - Visibility overriding 39

The ‘SHOW ALL’ meta-command signifies that the visibility of all blocks
of type ‘block type’ should be overridden to true. The ‘HIDE ALL’ command
overrides it to false. The ‘RESET ALL’ command restores the visibility to its
default value (the one defined in the table).

Each of these commands is valid starting from the location where it appears,
and remains valid until another command of the same type specifies something
different or until the end of the class is reached. The reason why these commands
are called global override commands is that they apply to all blocks of a certain
type, and not just one specific instance.

In our example, where we want routine arguments to be always shown, this
could be achieved by writing ‘--# [5] SHOW_ALL instruction’ at the beginning
of our class.

We can achieve a finer granularity control than this by using local visibility
overrides. This is done with the following meta-commands:

--# SHOW_NEXT <block_type >

--# HIDE_NEXT <block_type >

Unsurprisingly, these commands cause the next occurrence of a block of type
‘block type’ to be shown or hidden, taking priority over anything else, that is,
default visibility and any applicable global visibility override.

An insight on how this is implemented and handled by AutoTeach will prove
helpful when, in the next sections, we put together basic and content visibility
overriding.

For every block type, AutoTeach keeps a block visibility descriptor. An
example of a descriptor is shown in figure 3.4. This descriptor contains three
trilean attributes:

• The default visibility for that block type3.

• The current global visibility override for that block type (undefined if no
global override is in force).

• The current local visibility override to be applied to the next encountered
instance of that block type (also undefined if no local override is in force).

The ‘SHOW ALL’, ‘HIDE ALL’ and ‘RESET ALL’ commands set the
global visibility override flag of the specified block type respectively to true,
false and undefined. The flag is automatically reset to undefined at the end of
the processing of every class.

Similarly, the ‘SHOW NEXT’ and ‘HIDE NEXT’ commands set the local
visibility override flag of the specified block type to true and false respectively.

3Technically, the default visibility is not an attribute, but a query which will fetch the
value from the active visibility table, but thinking of it as an attribute is simpler and makes
no practical difference for the sake of comprehension.

AutoTeach principles - Visibility overriding 40

Figure 3.4: Example of a block visibility descriptor.

The flag is reset to undefined as soon as an instance of that block type is
encountered and processed (or at the end of the processing of the current class,
if it comes first).

The block type descriptor also provides two queries. The first of them (ef-
fective visibility) calculates the effective visibility of an instance of that block
type under the current status. This, remembering the order of priorities and
that the three attributes are all trileans, can be written as:

default visibility subjected to global visibility override subjected to
local visibility override

In the example of figure 3.4, the result is true, as “false subjected to true
subjected to undefined” yields true.

The second query, effective visibility specificity, tells us where the effective
visibility value came actually from. The answer can be one of default visibility,
global override and local override. This information basically means how specific
(and hence how “strong”) the visibility value of that block is. If a block has
been made visibile (or hidden) thanks to a local visibility override command
(‘SHOW NEXT’), there should be nothing able to reverse that, and we will see
that, for ensuring this, it is very useful to have a query answering the question
“how specifically, therefore strongly, has the visibility of this block type been
defined?”. From now on, we will use the term ‘specificity’ to refer to this
concept.

AutoTeach principles - Visibility overriding 41

In the example of figure 3.4, the result of the second query is “global over-
ride”, as the effective visibility value comes from the global override flag.

3.6.2 Content visibility overriding

Let’s now forget about basic visibility and switch to content visibility. As we
remember, it is possible to specify a content visibility for complex blocks, which
is valid inside their body and which will affect the visibility of atomic blocks
(and atomic blocks only) contained in them. This can be used to specify, for
example, that all instructions within a routine body should be visibile, but all
instructions nested in an if statement should be hidden.

As in the case of basic visibility, being limited to modifying the content
visibility table is a bit restraining. Very often it is desirable to ask AutoTeach
to fully show or hide the content of a specific complex block (such as an if
statement). This can be easily achieved by overriding the content visibility.

The idea of content visibility override is exactly the same as basic visibility
overriding. The only differences derive directly from the differences between
the concepts of basic visibility and content visibility. Most notably, content
visibility can only be defined for complex blocks.

The commands for overriding the content visibility of a certain (complex)
block type are analogous to those for basic visibility overriding. The following
commands are to be used when a global content visibility override is desired:

--# SHOW_ALL_CONTENT <complex_block_type >

--# HIDE_ALL_CONTENT <complex_block_type >

--# RESET_ALL_CONTENT <complex_block_type >

As for basic visibility, the override is reset when the end of the current class
is reached.

For a local visibility override, the following commands are used:

--# SHOW_NEXT_CONTENT <complex_block_type >

--# HIDE_NEXT_CONTENT <complex_block_type >

As for basic visibility, as soon as the next block of type ‘¡complex block type¿’
is encountered and processed, the local override is reset.

In addition to their basic visibility descriptor, every complex block type also
has a content visibility descriptor, as shown in figure 3.5.

This descriptor is totally analogous to the basic visibility descriptor, the
functioning of which has been thoroughly explained in the previous section
(3.6.1). We would only like to stress two things here:

AutoTeach principles - Visibility overriding 42

Figure 3.5: Example of a block content visibility descriptor.

• Complex blocks types have both a basic visibility descriptor and a complex
visibility descriptor.4

• The visibility of a complex block is not affected by its content visibility
descriptor. That will only define what content visibility policy will be
applicable inside the block, which will affect the visibility of atomic blocks
contained in it.

The content visibility descriptor also has a query returning the specificity of
the content visibility policy. As in the case of basic visibility, this query tells
us if the content visibility valid within a complex block simply comes from the
content visibility table (default, unoverridden value), from a global override,
which is stronger, or from a local override, which is even stronger.

3.6.3 Putting it all together

In section 3.3.3, we have seen how its basic visibility and the content visibility
in force at its location affect the effective visibility of an atomic block. To
summarize it, we said that the basic visibility had priority, but in case it was

4Actually, the implementation of basic visibility descriptor and content visibility descriptor
is not symmetric. Instead, there is a class representing content visibility descriptors which
inherits from the basic visibility descriptor, thus aggregating the features of both in a single
extended descriptor. However, this implementation detail does not alter in any way the
semantics with respect to what we are explaining here.

AutoTeach principles - Visibility overriding 43

undefined, the effective visibility would be determined by the current content
visibility. The case where both of them are undefined should not happen unless
the hint table is improperly designed.

The existence of visibility overriding meta-commands does of course change
the game. Consider example 3.5:

Listing 3.5: Eiffel : Example of content visibility overriding

−−# HIDE NEXT CONTENT i f
if x > y then

print ("Let me print something.")

print ("Let me print something more.")

end

Clearly, what the teacher who wrote the annotation on the first line expects
and wants, is the hiding the two ‘print’ instructions, as well as of the ‘x > y’
condition, which are atomic blocks. If it were true that the basic visibility of an
atomic block, if defined, always takes priority over the applicable content visibil-
ity, this example would not produce the desired output. Thanks to AutoTeach’s
design, this is not the case.

As we know, when scanning the code, AutoTeach is always aware of what
the current content visibility policy in the current location is. Every time an
atomic block is encountered, AutoTeach does not need to check its parent block,
it already knows everything it needs to know. Moreover, not only the current
content visibility policy is stored in AutoTeach’s status, but also its specificity,
that is, whether the current policy comes from the content visibility table (de-
fault, unoverridden value), from a global override or from a local override.

As we saw, when an atomic block is encountered, we can easily look up
its effective basic visibility and the specificity of it in the descriptor of the
corresponding block type. And the final rule for determining its final effective
visibility is:

For an atomic block, if its basic visibility and the content visibility
policy at its location are both defined, the one with the highest
specificity determines its final visibility. If both have the same

specificity, then the basic visibility of the atomic block wins.

This rule is final. We finally know everything about the AutoTeach visibility
model.

Figure 3.6 summarizes AutoTeach’s visibility model, which we now finally
see in its entirety. There are as many as six values that have a say on the final
visibility of an atomic block, three of them related to its basic visibility and
three related to the applicable content visibility policy at the location where
the block starts5.

5Once again, the content visibility in force at the starting location of the block is the same
as the content visibility at the ending location, as both locations are contained in the same
parent complex block.

AutoTeach principles - Treating complex blocks as atomic 44

Figure 3.6: Determining the effective visibility of a block b located at point p.

Six factors playing a role might sound overwhelming, however the principle
defining their priority is extremely intuitive (and, in our opinion, elegant): what
is more specific is stronger. Clearly, a local override is more specific than a
global override, which is in turn more specific than a default value. Also, basic
visibility is in general a more specific concept than content visibility, as it defines
the visibility of a single block, whereas content visibility defines the visibility of
a whole region of code. For this reason, when values with the same specificity
are compared, basic visibility is considered to be more specific.

3.7 Treating complex blocks as atomic

There is one last possibility offered by AutoTeach’s processing which we have
not seen yet and that will prove very useful in practice.

Imagine the following situation: you have an if block with a very trivial
condition and body, something like this:

Listing 3.6: Eiffel : Example of a very simple if statement, which would be
desirable to reveal all at once

if a > b then

temp := a; a := b; b := temp

end

This can be expressed as “if ‘a’ is greater than ‘b’, swap them”. Although
this is technically a complex block, it is so simple that one might want to treat
it as if it were a single instruction and make it appear all at once at some point

AutoTeach principles - Treating complex blocks as atomic 45

instead of having the keywords, the condition and the instructions revealed at
different times. For what we know until now, this is only possible by adding
several manual annotations.

Now imagine this second situation: we have an exercise where the students
are provided with a class file and they are only asked to complete one (or some)
feature of it, while all other features are provided to them as a part of the input.
In such a case, we would like AutoTeach to print all the given features without
any kind of processing and only process the feature(s) that the student should
write herself. Issuing a “SHOW ALL CONTENT feature” command applied
to the given features will not work, because we have seen that complex blocks
for which the content visibility is explicitly defined will not inherit it from the
parent blocks. In our example, even if we write “SHOW NEXT CONTENT
feature” right before a routine, its body will still not be shown at lower hint lev-
els, as the default table specifies a content visibility of False for blocks of type
routine body. We would need to issue a ‘SHOW NEXT CONTENT’ com-
mand for each complex block within the routine, which can be very annoying.

To address cases like these, we have included in AutoTeach the possibility
of specifying that a particular a complex block (either a single occurrence or all
complex blocks of a certain type) should be exceptionally treated as an atomic
block. This is done with the following meta-commands:

--# TREAT_NEXT_AS_ATOMIC <complex_block_type >

--# TREAT_ALL_AS_ATOMIC <complex_block_type >

The reverse commands are:

--# TREAT_NEXT_AS_COMPLEX <complex_block_type >

--# TREAT_ALL_AS_COMPLEX <complex_block_type >

These are also only applicable to complex blocks.

Doing this will effectively transform the affected blocks into atomic blocks.
The consequences of this transformation are exactly those that one would expect
in conformity with what we have said until now. In particular:

• Atomic blocks can only be completely hidden or completely shown, there
is no case in which an atomic block is partially shown. This also applies to
complex blocks which are being treated as an atomic block, and is exactly
what we wanted in the last two examples.

• Complex blocks are not subject to the content visibility in force at their
location, but atomic blocks are. This means that, unlike regular complex
blocks, an “atomicized” complex block can be made visible or hidden
depending on the valid content visibility policy.

Let’s get back to our examples and see how this extension helps. In the
first case, a “TREAT NEXT AS COMPLEX if” annotation will ensure two
things:

• The if block will be shown all at once at some point, instead of being
revealed incrementally.

AutoTeach principles - Final thoughts 46

• The if block will only be shown when the content visibility of the outer
block allows it. Assuming that the if block is not nested within other
complex instructions and that there are no overriding annotations, the if
will appear when the content visibility of routine body becomes True,
which is when all the other non-nested instructions in the class become
visible too.

Eventually, we achieved what we wanted: the whole if instruction will behave
as if it were a single instruction

In the second case, we can simply add a global “TREAT ALL AS ATOMIC
feature” annotation at the beginning of the class, and then a single “TREAT

NEXT AS COMPLEX feature” annotation right before the feature(s) that
students should complete. Since any visibility table will normally always show
the existence of features, even on level zero, this will cause all features to be
completely shown regardless of anything else - all but the one(s) that the student
should implement.

The default behavior, unsurprisingly, is to treat all complex blocks as com-
plex. This is intentionally not modifiable.

This was the last point to see. Our long tour through the AutoTeach features
is now complete!

3.8 Final thoughts

Before moving to the next chapter, it is time to sum things up and make some
considerations

3.8.1 Modularity of the model

The AutoTeach visibility model is clearly very powerful, but its complexity may
sound overwhelming. In particular, the fact that as many as six flags play a
role in determining the visibility of an atomic block can sound really scary!
In practice however, in the great majority of cases, most of them will be left
undefined and can safely be ignored. Even more importantly, the model can be
simplified in several different ways, each of which leads to a perfectly consistent
and simpler model. In particular:

• If you don’t write any meta-commands, no override flag will ever be set,
and only the visibility table will be taken into account. You can forget
about the existence of override flags and stick to what has been presented
in section 3.3. This will actually often be the case: if the table is smart
enough, many exercises can be processed nicely without the need of touch-
ing anything. In our intentions, the default automatic hint table should
be suitable for the majority of exercises.

• At the price of giving up some flexibility, the concept of content visibility
can be completely ignored. It suffices to use a custom hint table where all

AutoTeach principles - Final thoughts 47

block content visibilities are undefined. If you do this, then you can forget
about this concept, and only reason about basic visibility.

3.8.2 Content visibility inheritance

The power of content visibility inheritance is limited. Content visibility from
an outer block will only be inherited if it is undefined in the inner block. If an
inner block has a defined content visibility in the table, then there is nothing
that can be done in order to have that block inheriting the content visibility
from its parent. In fact, there is no command that will “undefine” it and/or
force inheritance from the outer block in any other way. However, there are
other ways to achieve the desired result, such as treating complex blocks as
atomic.

3.8.3 Arbitrary choices

Several choices in the design of AutoTeach are discretionary. A notable exam-
ple of this is the choice of blocks. Which blocks should be considered atomic
and which ones complex? What are the exact boundaries of blocks? Should
the parentheses surrounding argument declarations be considered a part of the
feature or the of arguments block? For all those things, we just tried to choose
a reasonable level of granularity and make the most sensible choices, bearing
in mind what the ultimate goal of AutoTeach is: helping students. The future
usage experience of AutoTeach can confirm the validity of some choices and lead
to reconsider other choices: we have done our best not to hardcode these design
choices too deep in the code and make it easy to change them in the future, if
so wished.

Immunity of complex blocks to content visibility

A choice that could sound criticizable is making complex block immune to the
content visibility of their parent block. The reason for this is that in our vision
complex blocks make up the skeleton of the code, while atomic blocks make up
the “flesh”. When one wants to hide the content of something, she wants to hide
its flesh, and in the case of inheritance this is propagated to inner blocks, but
generally she does not want to hide the skeleton, not even small bones (nested
complex block, in this metaphor). In those cases where one really wants to hide
the skeleton, basic visibility is to be used.

There are some cases where it is immediately clear that this makes more
sense: imagine how useless a “HIDE NEXT CONTENT feature” command
would be if it caused the whole content of the feature besides its declaration to
completely disappear! You probably prefer to hide all the leaves, but still leave
the require, local, do, end, etc. keywords in place.

In other cases this might be less obvious, but we still believed that it made
sense considering what the goal of AutoTeach is. If we have two nested loops, a
“HIDE NEXT CONTENT loop” on the outer loop will not hide the existence

AutoTeach principles - Final thoughts 48

of the inner loop, the student will see the skeleton of the two nested loops, albeit
with no contents. This is generally better than only showing the existence of the
external loop, because if an exercise is to be solved with multiple nested loops,
the student should see the real depth of the loops as soon as their structure is
revealed. Showing only the outer loop might be misleading for the solution of
the exercise.

More power than needed

Although you have full control on the visibility and content visibility of all
types of blocks, in practice, there are several things that should never need to
be touched. For example, there is probably no situation where one would want
to hide (basic visibility) a precondition complex block, as this means that the
‘require’ keyword is also hidden. Even when a precondition is hidden, students
should see the ‘require’ keyword, so that they know that a precondition is there,
and the way to achieve this is to hide the content of the precondition. However,
for consistency and completeness, AutoTeach allows the user to hide blocks of
any type she wishes, including those that in practice should never be hidden.

In the next chapter we will explore some good practices of using AutoTeach
that will help not to feel overwhelmed by its complexity.

Chapter 4

AutoTeach tips & tricks

In the previous chapter, we have extensively discussed all the principles on
which AutoTeach is based. As a complement, this chapter will focus on prac-
tical use cases and good practices with AutoTeach, also making some didactic
considerations.

4.1 Optimizing the hint table customization

As we know from section 3.4.1, a complete hint table should theoretically have
as many as 41 rows. This would make it extremely hard to write custom hint
tables. Fortunately, many of these rows never need to be touched in practice.
The rest of this section (4.1) demonstrates this.

4.1.1 Visibility of atomic blocks

In general, a well-built table should always leave the visibility of atomic blocks
undefined and only work with the visibility (basic and content) of complex blocks.
This is a strong claim, which we will now motivate.

The first reason is that it is generally possible (and easy) to control the vis-
ibility of atomic blocks through the content visibility of their potential parents,
and this alone would be a sufficient reason: since we do not lose anything by
giving up the possibility of altering the visibility of atomic blocks, doing it will
reduce the number of factors we have to take care of.

A second reason, as important as the first, is that, in some cases, not fol-
lowing this rule will preclude some possibilities, in particular in the case of
instruction and assertion blocks.

The default automatic hint table has a level on which instructions appear-
ing directly within a routine body are visible, however instructions contained in
complex statements (such as if s and loops) are still hidden. This behavior can
only be obtained by leaving the basic visibility of instruction undefined and ad-

49

AutoTeach tips & tricks - Optimizing the hint table customization50

justing the content visibility of blocks that can contain instructions (in particular
routine body, if branch, inspect branch, loop initialization and loop body). It
is clear that this is the only way, as setting the basic visibility of instruction to
true or false would cause them to be always shown or hidden. Since there are
(or there should be) no situations where working with content visibilities alone
cannot obtain something attainable by explicitly defining the basic visibility of
instruction, this should be considered a general good practice and always be
followed.

The case of assertions is very similar. Explicitly defining the visibility of
assertions would make them visible or hidden regardless of the block in which
they appear (precondition, postcondition, loop invariant, class invariant). For
this reason, their visibility should always be left undefined, relying instead on
the content visibility of blocks that can contain assertions. Of course, in some
cases it might be desirable to make all assertions visible (or hidden) in any
possible location where they can appear, however even in this case there is no
advantage in doing this by acting on the basic visibility of assertions over relying
on the content visibility of parent blocks. So, for consistency, the good practice
of working with content visibility should not be broken.

For arguments and locals the story is slightly different. Blocks of type ‘argu-
ment declaration’ can only occur inside complex blocks of type ‘arguments’.
Similarly, blocks of type ‘local declaration’ can only occur inside a ‘locals’
block. In this case, working with the basic visibility of ‘argument declaration’
or the content visibility of ‘arguments’ makes no practical difference. However,
there is no drawback in working with content visibilities in this case, and doing
this will allow us to stay consistent with the remaining cases, so we still rec-
ommend to work with content visibilities. A similar case is the one of blocks
loop termination expression (which only appears inside loop termination) and
loop variant expression (only appearing inside loop variant).

The only exception to this principle is block if condition. This block can
only appear inside an if complex block, however altering the if ’s content visi-
bility would also affect the other parts of the if. For this reason, it is generally
better to specify the visibility of if condition blocks directly.

Summing it up, we have six rows in the hint table which can be completely
omitted if we want.

Clearly, what we have said in this section only applies to hint tables: al-
tering the basic visibility of atomic blocks with annotations in the code is not
considered a bad practice and is actually extremely useful.

4.1.2 Basic visibility of complex blocks

In the majority of the cases, the basic visibility of most complex blocks will be
set to True for all levels and never be touched. This is another strong claim,
which we will now motivate.

If you check out the complete list of complex blocks in the appendix (A.2),
you will notice that the majority of complex blocks represent a part of another
complex block. In fact, the only ‘autonomous’ complex blocks are feature, if,

AutoTeach tips & tricks - Compacting hint levels 51

loop and inspect. All the others represent a part of these four, for example
precondition and routine body are a part of feature, and loop initialization and
loop variant are a part of loop.

Now, we believe that hiding one of such blocks would be deceiving for the
students about the structure of the code. For example, completely hiding a
precondition, including the ‘require’ keyword, would be unfair to students: if
they are supposed to write a precondition, they should in the first place know
that a precondition was there! Similarly, it is fine to completely hide a loop,
but if the loop is shown and the loop has an invariant, we should not pretend
that there is no invariant, we should always show its existence, possibly hiding
its content.

Since the orphan rule (3.3.3) prevents any block from being shown if its
parent is not visible as well, it is safe to set the basic visibility of all these blocks
to true for all levels and forget about it.

Eventually, this argument applies to all complex blocks except feature, if,
loop and inspect. However, there would almost always be no point in hiding a
feature entirely, not at least by default, so we are left with if, loop and inspect.
For all complex blocks except for these three, we should always set the basic
visibility to true and forget about it. This means fourteen more table rows
which we don’t have to worry about.

Summing up the results of the last two sections, we almost halved the num-
ber of rows which we will really need to touch when defining a custom hint table.
This, combined with the simplifications explained in section 3.4.1, greatly im-
proves the manageability of custom hint tables.

For an example of the application of all these principles, please refer to the
default automatic hint table source file (A.6).

4.2 Compacting hint levels

The default automatic hint table has as many as eight hint levels. In many
cases, this can result in two consecutive levels producing identical outputs (for
example, in an exercise where the code contains no contracts, the output of the
a level that only adds visibility of contracts will be identical to the output of
the previous level). In some other cases, even if this does not happen, it will
still be desirable to reduce the number of hint levels.

Our recommendation for those cases where the default processing policy is
satisfactory and it is only desired to reduce the number of hints is to take care
of this by manually removing the unnecessary hint levels from the output. In
the case of identical levels, this can be automatized very easily, and in fact as a
part of this thesis we provide a simple tool, HintCompacter, which does exactly
this.

HintCompacter is a simple command line tool which requires only two ar-
guments: a directory and a minimum output hint level (an integer). When
launched, it will scan the target directory looking for subfolders named after

AutoTeach tips & tricks - Other tips and tricks 52

natural numbers (which do not necessarily start from zero), containing the out-
put of AutoTeach at different hint levels. These directories will be renamed
with a new numbering starting from the specified minimum output hint level.
If two or more levels have produced an exactly identical output, these levels will
be merged together.

Even in cases where the process cannot be automatized, if the default policy
is deemed satisfactory, it is much easier to manually compact the hint levels
after running AutoTeach than defining a custom hint table just for this reason.

4.3 Other tips and tricks

4.3.1 Hybrid hints

As we saw in the introductory tour (section 2.3), textual hints can and should
be integrated with other processing directives, so that they are well coordinated
with code blocks entering the scene. AutoTeach offers this possibility, and it
should be used whenever possible.

It is very important for students not only to read what they should do, but
also to see with their eyes how they should do it. Saying “maybe you should
use a loop” is not as effective as showing the bare skeleton of a loop, even if
these two hints theoretically carry exactly the same information. However, it
is also important to give the students a chance of translating a qualitative hint
to real code. For this reason, when using textual hints, it is often a good idea
to alternate between levels adding textual hints and levels revealing the part of
the code that was suggested in the previous textual hint.

Do not be afraid of having too many different hints. If a hint is not useful
to a student, she will simply request the next one straight away. On the other
hand if a student receives too much additional information with a single hint,
that will be probably spoil a part of the solution.

4.3.2 Sequences of instructions

By default, AutoTeach gives hints from the outside in. However, in some exer-
cises, it might be necessary to incrementally reveal a sequence of instructions.
There is no simple instruction for doing this. The recommended trick for do-
ing this is to issue a single ‘SHOW ALL INSTRUCTION’ command at the
beginning of the sequence and then several ‘RESET ALL INSTRUCTION’
commands in the sequence, with different validity level.

The following listing, taken from a real exercise, shows an example of appli-
cation of the last two tips:

Listing 4.1: Eiffel : Example of a manually annotated exercise

−−# SHOW NEXT CONTENT arguments
swap_attributes (other_book: BOOK)

AutoTeach tips & tricks - Other tips and tricks 53

−− Swap t i t l e , author , and number o f a v a i l a b l e c o p i e s o f the
cur rent book with the cor re spond ing a t t r i b u t e s o f
other book .

−−# [2] SHOW NEXT CONTENT l o c a l s
local

−−# [1] HINT: When you swap the va lue s o f two v a r i a b l e s ,
−−#− you always need a temporary he lpe r v a r i a b l e .
−−#− Here you have to swap three a t t r i b u t e s ,
−−#− so i t ’ s r ea sonab l e to use one v a r i a b l e f o r each o f them .
l_author , l_title: STRING

l_number_of_available_copies: INTEGER

do

−−# [3] HINT: Save the va lue s o f the a t t r i b u t e o f t h i s book
−−#− to your temporary v a r i a b l e s .
−−# [4] SHOW ALL i n s t r u c t i o n
l_author := author

l_title := title

l_number_of_available_copies := number_of_available_copies

−−# [4 −5] RESET ALL i n s t r u c t i o n
−−# [5] HINT: Now you can copy the va lue s from ‘ other book ’
−−#− to t h i s book .
title := other_book.title

author := other_book.author

number_of_available_copies := other_book.

number_of_available_copies

−−# [6 −7] RESET ALL i n s t r u c t i o n
−−# [7] HINT: Fina l ly , you can s e t the a t t r i b u t e s o f
−−#− ‘ other book ’ with the va lue s you saved in the
−−#− temporary v a r i a b l e s .
other_book.set_title (l_title)

other_book.set_author (l_author)

other_book.set_number_of_available_copies (

l_number_of_available_copies)

−−# [8 −] RESET ALL i n s t r u c t i o n
end

Notice how the suggestion of 4.3.1 is applied here. On levels 1, 3, 5, and
7, a textual hint is made visible. On levels 2, 4, 6 and 8, the part of the
code suggested by the previous hint is revealed. Also notice the usage of the
‘SHOW ALL’ and ‘RESET ALL’ commands.

4.3.3 Treating complex blocks as atomic

We saw in section 3.7 that AutoTeach can be instructed to treat complex blocks
(either a single instance or all blocks of a certain type) as if they were atomic.
This feature is a good candidate for being the least understood and used, while
it can actually be very useful!

In section 3.7 we presented the most obvious use case, however there is at
least another one which is very frequent. AutoTeach cannot be run on anything
smaller than a class. However, many exercises only consist of completing a single
feature within the class, while all the other features are known and given to the
student.

Now, AutoTeach has no such command as ‘SHOW NEXT CONTENT FULL’

AutoTeach tips & tricks - Other tips and tricks 54

to force a block to be fully shown no matter what, because such a command
would break the visibility model. However, there is an easy solution for in-
structing AutoTeach not to touch those features: having them processed as
if they were atomic blocks. Since generally, the basic visibility of features
is always true, adding a “--# TREAT_NEXT_AS_ATOMIC feature” annotation be-
fore every feature which should not be touched will be enough for doing the
job, and doing it very easily! Even better, it is possible to add a single “--#
TREAT_ALL_AS_ATOMIC feature” annotation at the beginning of the class and

then a “--# TREAT_NEXT_AS_COMPLEX feature” annotation before the feature(s)
that should be processed normally. All the other features will be printed to the
output untouched.

Chapter 5

AutoTeach implementation

After having dealt with the use of AutoTeach both from the theoretical and the
practical point of view, it is now time to have an insight at AutoTeach’s internal
implementation.

5.1 EVE

AutoTeach is implemented as a module for EVE (Eiffel Verification Environ-
ment, the research version of EiffelStudio [11]). The main reason for this choice
was the necessity of accessing the great wealth of information generated by the
Eiffel compiler. Making AutoTeach an independent tool would have created
an external dependency on the compiler which would have been impractical to
handle.

The main implication of this is that a full version of EVE is required for
running AutoTeach and that all projects must be fully compiled before they
can be processed by AutoTeach (whereas a solution based on an independent
parser would only have required a successful parsing of the input code).

AutoTeach can be run by passing the proper arguments to the EVE ex-
ecutable. Please refer to the appendix for the command line documentation
(A.1).

5.2 Classes

Figure 5.1 shows a simplified class diagram of AutoTeach, only containing the
most important classes.

We will focus on two of them, ‘AT AST ITERATOR’ and ‘AT PROCES
SING ORACLE’, and briefly explain what all the other do.

55

AutoTeach implementation - Classes 56

Figure 5.1: Simplified AutoTeach class diagram.

5.2.1 AT AST ITERATOR

As we know, AutoTeach processes classes sequentially, visiting their AST (ab-
stract syntax tree). This class is where this processing really takes place.

Class ‘AT AST ITERATOR’ inherits from ‘AST ROUNDTRIP PRIN
TER VISITOR’, a class in the Eiffel parser library. Class ‘AST ROUND
TRIP PRINTER VISITOR’ can take an AST node (which can even be an
entire class), visit every node of it and print the text of all terminal nodes to
an internal text buffer. Class ‘AT AST ITERATOR’ inherits this behavior
and redefines the visiting routines for the relevant nodes, so that the printing of
certain regions can be suppressed and replaced by the insertion of a placeholder.

In the early phases of implementation, this class was also in charge of
defining what parts of the code should be printed and what other should be
hidden and replaced by a placeholder. As the complexity of the class kept
growing, we realized that it was a better idea to give this task to another
class (‘AT PROCESSING ORACLE’, see next) and relieve the present class
from it. Every instance of ‘AT AST ITERATOR’ will create an instance of
‘AT PROCESSING ORACLE’, which will coherently with its name, acts as
an oracle, i.e., it provides answers to questions. This oracle is kept up to date
with all the relevant information about the processing status, and every time
a block of a relevant type is encountered, the iterator informs the oracle that
a block of a certain type is about to begin (or end). When the time comes of
printing anything to the output, the iterator simply asks the oracle whether or
not the text should be printed. In particular, the parent class has a ‘put string ’
feature which is responsible for printing all terminal nodes by putting their text
to the internal text buffer. Class ‘AT AST ITERATOR’ redefines it so that
the oracle is consulted first.

Breaks (interruptions in the AST, generally whitespace or comments) are
decomposed into single lines and searched for meta-commands. Every comment

AutoTeach implementation - Classes 57

starting with a hash (the symbol denoting meta-commands) is passed to the
oracle for processing as a meta-command.

Class ‘AT AST ITERATOR’ also redefines a number of other features
named ‘process * as’, such as process feature as or process once as. The
majority of these features simply notify the oracle that a block of a certain type
is beginning, then make a precursor call and finally notify the oracle that the
processing of that block is complete.

Class ‘AT AST ITERATOR’ also takes care of the correct printing of
whitespace, new lines and the correct indentation of the output. While this
task has proven to be complex and required a considerable effort, this topic is
not particularly interesting for discussion here.

5.2.2 AT PROCESSING ORACLE

While class ‘AT AST ITERATOR’ was responsible with the handwork, class
‘AT PROCESSING ORACLE’ is responsible for most of the conceptual work.
As we said, every instance of ‘AT AST ITERATOR’ needs an oracle to tell it
at any time whether or not the current block should be printed. The oracle is
given all the necessary information for answering this question. The oracle is
also in charge of processing all meta-commands.

The oracle keeps track of the visibility and content visibility policy for the
current region of code by using stacks. At the beginning of a new block, the
oracle checks the hint table and the active overrides for that block type, combines
it with the current visibility and the active content visibility policy, calculates
the effective visibility of that block and pushes it to a stack. If the block is a
complex block, the new content visibility valid within the block is also computed
and pushed to another stack.

For keeping track of the active overrides, the oracle keeps a table of block vis-
ibility descriptors. Descriptors have been already explained in detail in sections
3.6.1 and 3.6.2. As anticipated in a footnote in 3.6.2, complex blocks don’t have
two separate descriptors for their basic and content visibility, instead they only
have one descriptor of a more specific type, which has the relevant attributes for
both basic and content visibility. As the active hint table might change during
the processing, every descriptor is initialized with an agent (two in the case of
complex blocks) for retrieving the default basic visibility (and content visibility
in the case of complex blocks) from the current active table.

The oracle is also in charge of parsing meta-commands and act accordingly.
Besides meta-commands acting on block visibility, this means that the ora-
cle also takes care of switching to another hint table when a ‘MODE’ meta-
command is encountered, and update the processing options if the insertion of
the code placeholder is toggled. Textual hints are the only the type of meta-
command which requires passing some information back to the iterator. This
is done with a ‘last command output ’ string attribute in the oracle. This at-
tribute is updated every time a meta-command is processed, and is normally set
to Void, but if a hint is processed and the hint is applicable to the current level,
this attribute is set to the text of the hint line that should be printed to the

AutoTeach implementation - Classes 58

output. After passing the command to the oracle, the AST iterator will print
this line to the output.

5.2.3 Complete list of classes

• General classes:

– EWB AUTOTEACH: AutoTeach command line module, in charge
of parsing the arguments and set options accordingly.

– AT AUTOTEACH: AutoTeach main class. Searchs for the classes
to be processed, adds them to the processing list, creates the output
file structure and feeds an instance of ‘AT AST ITERATOR’ with
the AST of the classes to be processed.

– AT AST ITERATOR: scans the AST (abstract syntax tree) of
input classes, replacing some code blocks with placeholders. See sec-
tion 5.2.1.

– AT PROCESSING ORACLE: contains the processing logic for
determining the visibility of code blocks, parses meta-commands. See
section 5.2.2.

– AT BLOCK VISIBILITY DESCRIPTOR and AT COM
PLEX BLOCK VISIBILITY DESCRIPTOR: descriptors
used by the processing oracle for keeping track of the current visibility
and content visibility overrides. See sections 5.2.2 and 3.6.2.

– AT COMMAND: class representing a meta-command. Only re-
sponsible for parsing the syntax and the validity level range, the
payload and the semantics of commands are processed directly by
the oracle.

– AT OPTIONS: contains the options for the execution of AutoTeach,
such as the list of classes to be processed, the hint level and and the
active hint table.

– AT COMMON: common ancestor to most AutoTeach classes, con-
tains several utility functions and shared instances of objects (e.g.
enumeration types).

– AT STRINGS: contains all string constants, including messages
and localizable strings, used by AutoTeach.

• Hint tables:

– AT HINT TABLE: deferred class representing a hint table.

– AT LOADABLE HINT TABLE: effective class implementing
a hint table that can be loaded from a text file. There used to be two
separate classes for the two default hint tables, but these are now
also loaded from a default file through this class.

– AT HINT TABLES and AT SHARED HINT TABLES:
helper classes providing shared instances of the default hint tables.

• Utility classes:

AutoTeach implementation - Additional contributions to the Eiffel
libraries 59

– AT ENUM and AT ENUM VALUE: deferred classes repre-
senting an enumeration type and an enumeration value. For more
information about enumeration types, please proceed to the next
section.

– AT TRILEAN: expanded class representing a trilean. For the
semantic of trileans, please refer to section 3.1, for notes about the
implementation of trileans please proceed to section 5.3.1.

– AT TRILEAN CONSTANTS: class containing constants for
the three valid trilean values (true, false, undefined).

• Enumerations: the following classes represent enumeration types.

– AT ENUM BLOCK TYPE and AT BLOCK TYPE: enu-
meration and value type for the block type enumeration. This enu-
meration contains all the supported block types, with extra queries
for distinguishing complex blocks and atomic blocks.

– AT ENUM MODE and AT MODE: enumeration and value
type for the mode enumeration. As a reminder, valid modes are
‘auto’, ‘manual’ and ‘custom’.

– AT ENUM PLACEHOLDER and AT PLACEHOLDER:
enumeration and value type for the placeholder enumeration. This
enumeration contains the different placeholders to be inserted de-
pending on what part of the code is omitted (in particular, if condi-
tions and arguments require a special inline placeholder).

– AT ENUM POLICY STRENGTH and AT POLICY S
TRENGTH: enumeration and value type for the visibility policy
strength enumeration. This enumeration contains the three differ-
ent strength values for a visibility policy (‘default’, ‘global override’,
‘local override’), which derive directly frrom the policy specificity.

5.3 Additional contributions to the Eiffel libraries

While working for this thesis we sometimes felt the necessity of extending the
Eiffel framework with some classes that were needed for AutoTeach, but seemed
applicable to a far wider context than AutoTeach alone. In this section we
present an implementation of trileans and enumeration types for Eiffel, which
we deem suitable for being integrated into other existing Eiffel libraries.

5.3.1 Trileans

We discussed the semantics of trileans in depth in section 3.1. Here we only
mention some relevant information about their implementation.

The class representing a trilean value is ‘AT TRILEAN’. This is an ex-
panded class with only two attributes: ‘is defined ’ and ‘internal value’, both
of them boolean. The ‘is defined ’ attribute indicates whether the TRILEAN

AutoTeach implementation - Additional contributions to the Eiffel
libraries 60

is defined or not. The ‘internal value’ attribute contains the boolean value of
the trilean and is only meaningful when ‘is defined ’ is true.

As the name suggests, the ‘internal value’ is not exposed directly. Instead,
it is accessed through the ‘value’ query, which, as a precondition, can only be
called if ‘is defined ’ is true.

Trileans supports direct conversion from boolean (‘convert ’ clause). The
reverse conversion is not supported, as not all trileans can be converted to
booleans. When this is necessary, the ‘value’ query should be called, after
having checked that the trilean is actually defined.

Most operations defined on the boolean type have been defined for trileans
as well. Unlike most ternary logic systems, such as Kleene’s logic [15], the ‘and ’,
‘or ’ and ‘xor ’ operations have all been defined so that if one (and only one) of
the two operands is undefined, the result of the operation is the other operand.
However, none of these operators are used by AutoTeach, and can be modified
if necessary if and when the class is integrated into another Eiffel library.

The subjection and imposition operations are also defined. Please refer to
section 3.1.2.

Implication is not defined.

5.3.2 Enumeration types

Eiffel lacks support for enumeration types. There are several workarounds to this
omission that work reasonably well in several situations, however we felt that in
AutoTeach, particularly for the case of block types, none of these workarounds
was satisfactory. For this reason, we implemented classes ‘AT ENUM’ and
‘AT ENUM VALUE’, which aim to simulate enumeration types until proper
support for them is implemented in the Eiffel language.

Class ‘AT ENUM [G -> AT ENUM VALUE]’ represents an enumeration
type, with values of type G. Class ‘AT ENUM VALUE’ represents a value for
an enumeration.

In an enumeration, every value has a name (string) and a numerical value
(integer). The enumeration type itself also has a name. The ‘AT ENUM’ class
provides features for easily retrieving the name of a value with a given numerical
value or, symmetrically, getting the numerical value of a value of which we know
the name. The list of all possible values can also be easily retrieved.

To declare an enumeration type, a new class inheriting from ‘AT ENUM’
must be declared (e.g. ‘AT ENUM MODE’). This class will have to redefine
feature ‘value list’, and implement a once routine which returns an array of
tuples representing all the valid enumeration values, with their names and nu-
merical values. Features finding a value given its name or numerical value must
be redefined as well, however their implementation is trivial. The class takes
care of the rest.

It is generally useful to declare a constant for every valid enumeration value
in the enumeration class, for quick access from within the code.

AutoTeach implementation - Additional contributions to the Eiffel
libraries 61

It is also necessary to declare a subclass of class ‘AT ENUM VALUE’.
The subclass should be an expanded type, and should be named conformingly
to the entity which it should represent (e.g. ‘AT MODE’). The only feature
that should be redefined is ‘enum type’, which should create an instance of the
corresponding enumeration type (in our example, ‘AT ENUM MODE’). The
two initialization procedures as well as the ‘default create’ procedure should be
listed in the ‘create’ clause.

Contracts declared in class ‘AT ENUM VALUE’ will ensure that enumer-
ation values are consistent with the valid values declared by the enumeration
type.

While this approach requires certainly more work than what real, built-in
enumeration support for Eiffel would require, it has an important advantage:
enumeration classes can be freely customized. This makes it possible, for exam-
ple, to define the distinction between atomic and complex blocks directly within
the enumeration class.

Listing 5.1 shows an example of an enumeration type class.

Listing 5.1: Eiffel : Example of an enumeration type class

class

AT_ENUM_PLACEHOLDER

inherit

AT_ENUM [AT_PLACEHOLDER]

redefine

name

end

feature −− Access

name: STRING = "placeholder"

−− <Precursor>

value (a_value_name: STRING): AT_PLACEHOLDER

−− The value with name ‘ a value name ’ .
do

create Result.make_with_value_name (a_value_name)

end

value_from_number (a_numerical_value: INTEGER): AT_PLACEHOLDER

−− The value with numerica l va lue ‘ a numerical value ’ .
do

create Result.make_with_numerical_value (a_numerical_value)

end

feature {AT_ENUM} −− Value l i s t

value_list: ARRAY [TUPLE [numerical_value: INTEGER; value_name:

STRING]]

−− E f f e c t i v e l i s t o f va lue s .
once ("PROCESS")

Result := << [0, "no_placeholder"],

[1, "standard_placeholder"],

[2, "arguments_placeholder"],

[3, "if_condition_placeholder"] >>

end

AutoTeach implementation - Additional contributions to the Eiffel
libraries 62

feature −− Values

Ph_none: AT_PLACEHOLDER

once ("PROCESS")

create Result.make_with_numerical_value (0)

end

Ph_standard: AT_PLACEHOLDER

once ("PROCESS")

create Result.make_with_numerical_value (1)

end

Ph_arguments: AT_PLACEHOLDER

once ("PROCESS")

create Result.make_with_numerical_value (2)

end

Ph_if_condition: AT_PLACEHOLDER

once ("PROCESS")

create Result.make_with_numerical_value (3)

end

feature −− P r o p e r t i e s

placeholder_text (a_placeholder: AT_PLACEHOLDER): STRING

−− Text o f ‘ a placeholder ’ .
do

−− Implementation omitted .
end

is_inline (a_placeholder: AT_PLACEHOLDER): BOOLEAN

−− I s ‘ a placeholder ’ an i n l i n e p l a c eho lde r ?
do

Result := inline_placeholders.has (a_placeholder)

end

feature {NONE} −− Implementation

inline_placeholders: ARRAY [AT_PLACEHOLDER]

−− L i s t o f p l a c e h o l d e r s that must be i n s e r t e d i n l i n e .
once ("PROCESS")

Result := <<Ph_none , Ph_if_condition >>

end

end

The class shown in this listing is used in AutoTeach for representing the
different supported types of code placeholder.

As we can see, the following features, which are declared as deferred by the
parent class, are be redefined:

• ‘name ’: defines a name for the enumeration.

• ‘value ’ and ‘value from number ’: these two functions return an enu-
meration value (of type ‘AT PLACEHOLDER’) given its string name or
numerical value. Their implementation is trivial, however they cannot not
be easily implemented by the parent class, as the parent class does not
know the effective type of enumeration values that should be instantiated.

AutoTeach implementation - Additional contributions to the Eiffel
libraries 63

• ‘value list ’: defines the list of all the valid enumeration values, in the
form of tuples.

The remaining features of the class are optional. Feature under clause ‘Val-
ues’ are a shortcut for getting each of the valid enumeration values directly,
and make it possible to access them by writing, for example, “enum_placeholder
.Ph_standard”, which is similar to the syntax used in other languages for enu-
merations.

Finally, features ‘placeholder text ’ and ‘is inline’ show how it is possible
to implement custom properties for enumeration values, something that many
programming languages do not allow.

Chapter 6

Conclusions

6.1 Conclusions

In this thesis we have presented an incremental hint system for Eiffel which is
ready for being used in the 2014 edition of the Introduction to Programming
course at the ETH Computer Science department. The exercises processed
during the development of this thesis produced very satisfactory results, and
we believe that a very good balance between effective automatic processing and
flexible manual tuning has been achieved. The effectiveness of these kind of
incremental hints on students will be assessed during the upcoming semester.

Besides the implementation of AutoTeach for Eiffel, another significant con-
tribution of this thesis is the definition of a theoretical model for processing the
source code, decomposing it in blocks and determining which of them should be
visibile in the output. This model is powerful and general, with no particular
obstacles preventing it from being applied to other programming languages in
the future.

6.2 Future Work

AutoTeach is a command line tool and includes no GUI. Clearly, more work
is needed to create an effective user interface for students, to be integrated in
the Introduction to Programming MOOC, enabling students to request hints
for the exercise they are trying to solve.

In doing this, it will be very important to record as much usage and statistical
data as possible, as this is the only way to assess the effectiveness of hints. In
particular, it is relevant to know:

• For every exercise, what fraction of students request at least one hint?

• How many hints do students request on average for a single exercise?
(excluding those who do not request any)

64

Conclusions - Related Work 65

• After receiving a hint, how long do students try to solve the exercise before
requesting another one?

Analyzing these usage data will also help answer more specific questions
about single exercises. For example, if the data show that most students tend
to ask hints up to level 4 for an exercise, and then most of them solve it cor-
rectly, probably something is being revealed at level 4 which is particularly hard
for students to guess. Such situations are not always obvious when designing
exercises, and these data will greatly help detecting them.

Besides the user interface for students, a useful addition for AutoTeach could
be a GUI for teachers. This GUI could show a live preview of the results of
processing an exercise at all hint levels at the same time and would greatly
facilitate the teachers’ work.

Finally, the heritage of the AutoTeach block and visibility model is some-
thing that could be taken up for implementation for other programming lan-
guages. All the concepts are general and would need little or no adaptation for
being applied to other languages commonly used in programming courses, as
Java or C.

There is ample room for additional development of effective static code anal-
ysis tools usable for didactic purposes. A first step in this directions was Stefan
Zurfluh’s Eiffel Inspector [17], which is however a general-purpose code analyzer.
Our contribution was limited to making some changes to it, by simplifying batch
processing of code with single rules (or small subsets of rules). This makes it
easier to implement rules for checking patterns which are only applicable to
specific exercises (e.g. a rule enforcing that some code is recursive). We also
contributed eleven general code analysis rules, several of which are particularly
suitable for programming students or programmers coming to Eiffel from other
languages.

In the future, Eiffel Inspector could be forked to a custom code analysis tool,
which should be able to process students’ code by loading on the fly the list of
rules applicable to that exercise and new rules, strictly focused on didactics,
could be added.

6.3 Related Work

The idea of incremental hints for programming exercises seems to be relatively
new, and there doesn’t seem to be any considerable academic literature about
this topic. Even though the concept is not completely novel, nobody has dis-
cussed this topic from a theoretical and academical point of view as we did in
this thesis, at least not so directly. This was one of the motivating factors for
this work.

On the other hand, the topic of automated assessment of student solutions to
programming exercises, has seen much more interest by the research community.
Although focused on more specific situations, papers dating as back as 1969 [4]
can be found.

Conclusions - Related Work 66

A good starting point is the 2010 paper by Ihantola et. al. [5], with a good
review of the situation of the automated assessment tools in the preceding four
years and the literature about them. An interesting finding by this paper is that
the fragmentation of these systems is negatively affecting their development:
considerably better results could be obtained by joining efforts and open existing
systems up for extensibility.

In [6], a system is presented for assessing the correctness of student solutions
to introductory programming exercises. This is done by devising an error model
based on potential corrections to errors that students might make. The score
of the students is tightly related to the minimal set of corrections that must be
applied to the submitted code to reach the correct solution.

A very interesting paper is [13]. In this paper, an automated grading sys-
tem is presented which combines the results of three different approaches: unit
testing, software verification and control flow similarity measurement (against
a reference solution). The results of the study show a high correlation between
automatic grades and grades assigned manually by teachers to the same code.

It is worth noting that both the two preceding papers take a different ap-
proach from the rule-based static analysis which we discussed in this thesis.

One last related topic worth mentioning is automated plagiarism detection in
programming exercises. It is generally useful to detect students copying or shar-
ing solutions with each other in the same course, however for some well-known
problems copy-pasting from the internet can be an issue. In the introduction, we
already mentioned MOSS (Measure Of Software Similarity, [2]), a well-known
tool among teachers which has been around for about 20 years at the time of
writing. Papers [1] have also been published on this topic.

Appendix A

AutoTeach reference

A.1 Command line arguments and syntax

AutoTeach is a part of EVE (Eiffel Verification Environment, practically the
research version of EiffelStudio). AutoTeach can be run by executing the EVE
executable (normally called ‘ec’/‘ec.exe’) and providing the -auto-teach switch.
If this is done, all the subsequent arguments are passed to AutoTeach.

The input of AutoTeach is a complete project. The output is, for every hint
level, a file for every processed class, with the same name of the respective input
class file.

Before AutoTeach can run, the project must be compiled. The appropriate
arguments must be supplied to EVE so that the correct project is loaded and
compiled. We list here the EVE command line arguments and switches which
are most frequently used with AutoTeach. For an exhaustive list, please refer
to the EiffelStudio documentation [9].

• “-config PATH_TO_ECF_FILE”: specifies the path to the input project (ecf)
file.

• “-project_path OUTPUT_PATH”: specifies the output directory for the com-
piled project (which is generally not the output directory for the output
produced by AutoTeach).

• “-clean”: specifies that a clean compile is to be performed.

Following all EVE’s standard arguments, the -auto-teach must be specified,
followed by the switches and arguments listed here:

• “-at-class CLASS_LIST” or “-at-classes CLASS_LIST”: mandatory. Spec-
ifies the list of classes to be processed. If more than one class is provided,
the list must be wrapped in double quotes and class names must be sepa-
rated by a space. If only one class is specified, double quotes are optional.

67

AutoTeach reference - Command line arguments and syntax 68

• “-at-hint-level HINT_LEVEL_RANGE”: optional. Specifies the hint level(s)
on which AutoTeach should be run. ‘HINT LEVEL RANGE’ can either
be a single natural number (zero included) or a range, indicated by two
dash-separated natural numbers. The default hint level is zero.

• “-at-output-path PATH”: optional. Specifies the directory where AutoTeach
will generate the output files. The default is the current directory.

• “-at-level-subfolders PATH”: optional. Requests AutoTeach to create a
folder for each hint level it is run on, and place the output of each level in
the respective folder. The folders are created as subfolders of the output
directory, and are simply called ‘0’, ‘1’, etc.

If this switch is omitted and a range of two or more hint levels has been
specified, AutoTeach will prepend the hint level followed by an underscore
to the name of every generated file, as otherwise all files would have the
same name for different hint levels. A notice is printed to inform the user
about this.

• “-at-mode MODE”: optional. Specifies the execution mode for AutoTeach.
Valid values for ‘MODE’ are ‘auto’, ‘manual’ and ‘custom’. The execution
mode can be temporarily overridden with meta-commands within a single
class. Default is ‘auto’.

• “-at-custom-hint-table PATH_TO_TABLE”: optional. Specifies the path to
a custom hint table file to be loaded. Only if a custom table is loaded will
it be possible to run AutoTeach in custom mode. No custom table will be
loaded if this switch is not provided.

The following example shows the full command line of an execution of Au-
toTeach:

ec.exe -clean -config "E:\ AtInput\converter\converter.ecf" -

auto -teach -at-output -path "E:\ AtOutput\converter" -at-

class DECIMAL_TO_BINARY_CONVERTER -at -hint -level 0-10 -at

-level -subfolders -at -custom -hint -table "E:\ AtInput\

converter\custom_table.txt" -at -mode custom

AutoTeach reference - Complete list of blocks 69

A.2 Complete list of blocks

The following list contains all block types supported by AutoTeach, named by
their AutoTeach name. Atomic blocks are in bold.

• feature: a whole Eiffel feature. Starts with the feature name, includes the
type declaration if any, extends up to the ‘end’ keyword if any.

• arguments: the whole argument declaration region of a routine, spanning
from the open to the closed parenthesis symbol.

• argument declaration : atomic block. A declaration of one or more
arguments of the same type (such as a, b: INTEGER).

• precondition: the whole body of a precondition of a routine, including the
‘require’ keyword.

• locals: the whole locals declaration region of a routine, including the ‘local’
keyword.

• local declaration : atomic block. A declaration of one or more locals of
the same type (such as a, b: INTEGER).

• routine body : the body of a routine, including the ‘do’, ‘once’ or ‘deferred’
keyword. The ‘end’ keyword is not a part of this block.

• postcondition: the whole body of a postcondition of a routine, including
the ‘ensure’ keyword. The ‘end’ keyword is not a part of this block.

• class invariant : a class invariant, including the initial ‘invariant’ keyword.
The final ‘end’ keyword is considered to be a part of the class, not of the
invariant, and therefore not of this block.

• assertion : atomic block. An assertion (including its tag) in a pre/post-
condition or in a loop/class invariant.

• instruction : atomic block. An instruction of any type with the exception
of if and inspect instruction and loops.

• if : an if instruction, starting with the ‘if’ keyword and ending with the
‘end’ keyword.

• if condition : atomic block. The boolean condition of an if instruction.

• if branch: the then or else branch of an if instruction. Includes the ‘then’
or the ‘else’ keyword. Does not include the final ‘end’ keyword.

• inspect : an inspect statement, starting with the ‘inspect’ keyword and
ending with the ‘end’ keyword.

• inspect branch: a branch of an inspect statement, starting with the ‘when’
or ‘else’ keywoard and including the whole body of the branch (but not
the final ‘end’ keyword).

AutoTeach reference - Complete list of blocks 70

• loop: a loop, starting with the ‘from’ or ‘across’ keyword and ending with
the final ‘end’ keyword.

• loop initialization: the initialization part of a loop, starting with the
‘from’ keyword and including the whole body.

• loop invariant : a loop invariant, starting with the ‘invariant’ keyword
and including the whole body.

• loop termination: the ‘until’ part of a loop, including the ‘until’ keyword
and the boolean condition expression.

• loop termination expression : atomic block. The boolean termina-
tion condition of a loop.

• loop body : the body of a loop, starting with the ‘loop’ keyword and in-
cluding the whole body (but not the final ‘end’ keyword.

• loop variant a loop variant, including the ‘variant’ keyword and the inte-
ger variant expression.

• loop variant expression atomic block. The integer loop variant ex-
pression.

AutoTeach reference - Meta-command syntax 71

A.3 Meta-command syntax

We provide here the full BNF syntax specification of meta-commands. For a
friendlier explanation please refer to section 3.5. For a compact and complete
list of all the supported meta-commands, please refer to section 3.5.3 of this
appendix.

〈meta command〉 ::= ‘--’ 〈ow〉 ‘#’ 〈ow〉 [〈level range〉] 〈command body〉
〈EOL〉

〈level range〉 ::= ‘[’ 〈level range body〉 ‘]’

〈level range body〉 ::= 〈single level〉
| 〈level interval〉

〈single level〉 ::= 〈natural〉

〈level interval〉 ::= [〈natural〉] ‘-’ [〈natural〉]

〈command body〉 ::= 〈command with block〉
| 〈command with complex block〉
| 〈hint command〉
| 〈hint continuation command〉
| 〈meta comment command〉
| 〈placeholder command〉
| 〈mode command〉

〈command with block〉 ::= 〈command with block keyword〉 [‘:’] 〈whitespace〉
〈block type list〉 〈ow〉

〈command with block keyword〉 ::= ‘SHOW_ALL’
| ‘HIDE_ALL’
| ‘RESET_ALL’
| ‘SHOW_NEXT’
| ‘HIDE_NEXT’

〈block type list〉 ::= 〈block type keyword〉
(〈whitespace with comma〉 〈block type keyword〉)*
[〈whitespace with comma〉]

〈block type keyword〉 ::= ‘feature’
| ‘arguments’
| ‘argument declaration’
| ‘precondition’
| ‘locals’
| ‘local declaration’

AutoTeach reference - Meta-command syntax 72

| ‘routine body’
| ‘postcondition’
| ‘class invariant’
| ‘assertion’
| ‘instruction’
| ‘if’
| ‘if condition’
| ‘if branch’
| ‘inspect’
| ‘inspect branch’
| ‘loop’
| ‘loop initialization’
| ‘loop invariant’
| ‘loop termination’
| ‘loop termination expression’
| ‘loop body’
| ‘loop variant’
| ‘loop variant expression’

〈command with complex block〉 ::= 〈command with block keyword〉 [‘:’]
〈whitespace〉 〈complex block type list〉 〈ow〉

〈command with complex block keyword〉 ::= ‘SHOW ALL CONTENT’
| ‘HIDE ALL CONTENT’
| ‘RESET ALL CONTENT’
| ‘SHOW NEXT CONTENT’
| ‘HIDE NEXT CONTENT’
| ‘TREAT ALL AS ATOMIC’
| ‘TREAT ALL AS COMPLEX’
| ‘TREAT NEXT AS ATOMIC’
| ‘TREAT NEXT AS COMPLEX’

〈complex block type list〉 ::= 〈complex block type keyword〉
(〈whitespace with comma〉 〈complex block type keyword〉)*
[〈whitespace with comma〉]

〈complex block type keyword〉 ::= ‘feature’
| ‘arguments’
| ‘precondition’
| ‘locals’
| ‘routine body’
| ‘postcondition’
| ‘class invariant’
| ‘if’
| ‘if branch’
| ‘inspect’
| ‘inspect branch’
| ‘loop’

AutoTeach reference - Meta-command syntax 73

| ‘loop initialization’
| ‘loop invariant’
| ‘loop termination’
| ‘loop body’
| ‘loop variant’

〈hint command〉 ::= ‘HINT’ [‘:’] 〈whitespace〉 〈free text〉

〈hint continuation command〉 ::= ‘-’ [‘:’] 〈whitespace〉 〈free text〉

〈meta comment command〉 ::= ‘#’ [‘:’] 〈whitespace〉 〈free text〉

〈placeholder command〉 ::= ‘PLACEHOLDER’ [‘:’] 〈whitespace〉 〈boolean string〉
〈ow〉

〈boolean string〉 ::= ‘true’
| ‘false’
| ‘on’
| ‘off’

〈mode command〉 ::= ‘MODE’ [‘:’] 〈whitespace〉 〈mode string〉 〈ow〉

〈mode string〉 ::= ‘auto’
| ‘manual’
| ‘custom’

〈whitespace〉 ::= 〈white char〉 〈whitespace〉 | 〈white char〉

〈ow〉 ::= ‘’ | 〈whitespace〉

〈white char〉 ::= ‘ ’ | 〈tab〉

〈whitespace with comma〉 ::= 〈white or comma〉 〈whitespace with comma〉 |
〈white or comma〉

〈white or comma〉 ::= 〈white char〉 | ‘,’

〈tab〉 ::= ? tab character ?

〈natural〉 ::= ? string parsable to a natural number ?

〈free text〉 ::= ? any string not containing EOL characters ?

〈EOL〉 ::= ? end of line ?

AutoTeach reference - Meta-command reference 74

A.4 Meta-command reference

A.4.1 Syntax

Basic syntax:

--# [x-y] COMMAND_KEYWORD <payload >

The ‘[x-y]’ part is optional and indicates the minimum and maximum hint
level for the command to be valid. If omitted, the command is valid at any hint
level. Examples:

• [2-5]: from level 2 to level 5.

• [4-]: from level 4 to infinity.

• [-4]: up to level 4 (from level zero to level 4).

• [4]: from level 4 to infinity (equivalent to [4-]).

• [-]: from level 0 to infinity (equivalent to omitting the level range).

A hint level range can be specified for all commands. For simplicity, it will
be always be omitted in the listings in this appendix.

For all commands requiring a block type as payload, <block_type> means
“any valid AutoTeach block type identifier”, as listed in A.2. <complex_block_type

> means that the identifier of a complex block type is expected.

Also, for all these commands, a compact form is supported which will apply
the same command to multiple block types. It is sufficient to provide multiple
block types on a single line, separated by commas and/or whitespace, like this:

--# SHOW_NEXT instruction , if, if_condition

This will be automatically expanded to:

--# SHOW_NEXT instruction

--# SHOW_NEXT if

--# SHOW_NEXT if_condition

A.4.2 Visibility

Global visibility override

--# SHOW_ALL <block_type >

--# HIDE_ALL <block_type >

--# RESET_ALL <block_type >

Set the global visibility override for the specified block type respectively to true,
false and undefined.

AutoTeach reference - Meta-command reference 75

Global content visibility override

--# SHOW_ALL_CONTENT <complex_block_type >

--# HIDE_ALL_CONTENT <complex_block_type >

--# RESET_ALL_CONTENT <complex_block_type >

Set the global content visibility override for the specified complex block type
respectively to true, false and undefined.

Local visibility override

--# SHOW_NEXT <block_type >

--# HIDE_NEXT <block_type >

Set the local visibility override for the next instance of the specified block type
respectively to true and false.

Local content visibility override

--# SHOW_NEXT_CONTENT <complex_block_type >

--# HIDE_NEXT_CONTENT <complex_block_type >

Set the local content visibility override for the next instance of the specified
complex block type respectively to true and false.

A.4.3 Treating complex blocks as atomic

--# TREAT_ALL_AS_COMPLEX <complex_block_type >

--# TREAT_ALL_AS_ATOMIC <complex_block_type >

From now on, treat all occurrences of blocks of type ‘¡complex block type¿’
respectively as complex blocks (default behavior) or as atomic blocks.

--# TREAT_NEXT_AS_COMPLEX <complex_block_type >

--# TREAT_NEXT_AS_ATOMIC <complex_block_type >

Regardless of the current processing policy, treat the single next occurrence of
a block of type ‘¡complex block type¿’ respectively as a complex block or as
an atomic blocks.

A.4.4 Other commands

MODE

--# MODE newmode

AutoTeach reference - Meta-command reference 76

Switch to the specified mode until the end of the current class. Valid values
for ‘newmode’ are ‘auto’, ‘manual’ and ‘custom’.

PLACEHOLDER

--# PLACEHOLDER (on | off | True | False)

Enable or disable the insertion of a code placeholder when a region of code is
skipped. Note that a blank line is always inserted regardless of placeholders
being enabled or not.

HINT and hint continuation

--# [4] HINT: First line of hint text.

--#- Second line of hint text.

Print a textual hint to the output. If a hint spans more than one line, lines
following the first one must start with ‘--#-’. The hint continuation construct
is only allowed if the preceding meta-command in the source code is not a hint.

Meta-comments

--## Meta -comment text.

This command does nothing. However, unlike normal Eiffel comments, it will
not appear in the output file.

AutoTeach reference - Custom hint table file format 77

A.5 Custom hint table file format

Custom hint tables can be loaded from a plain text file formatted how explained
here.

Empty lines or lines only containing whitespace characters are ignored. Lines
starting with a hash (‘#’) symbol are considered comments and are also ignored.

On every non-ignored line, elements are separated by whitespace (one or
more space or tab characters). The parsing is completely case-insensitive.

Every non-ignored line starting with word ‘content’ represents a row in the
content visibility table. All other lines represent a row in the basic visibility
table. Except for the additional leading ‘content’ word, the syntax of the two
types of row is the same.

Remember that a row in a visibility table corresponds to a block type (only
complex block types are allowed in the content visibility table). Columns cor-
respond to hint levels. The number of columns is not fixed, that is, some rows
can be longer than others. Attempts to access a row outside of its upper bound
will return the value of the last defined cell of the row.

Following the optional ‘content’ word, the name of the block type is expected.
In case of ‘content’ rows, this must be a complex block type. Following the
block type name, a list of one or more trilean values, separated by whitespace,
is expected. The row is zero-based, meaning that the first of these values will
go into the zeroth cell.

Valid string representation of trilean values are:

• For true: ‘true’, ‘t’, ‘yes’, ‘y’

• For false: ‘false’, ‘f’, ‘no’, ‘n’

• For undefined : ‘undefined’, ‘u’, ‘?’

The parsing of trileans is also case-insensitive.

Example of the syntax:

Hint level: 0 1 2

feature T

content feature U

arguments T

content arguments F T

precondition T

content precondition F F T

A
u

to
T

e
a
ch

re
fe

re
n

c
e

-
D

e
fa

u
lt

h
in

t
ta

b
le

fo
r

a
u

to
m

a
tic

m
o
d

e
7
8

A.6 Default hint table for automatic mode

Full contents of file default auto table.txt . The syntax is the same explained in A.5.

The behavior of the default hint table for automatic mode is explained in section 3.4.3.

This is the default table used in automatic mode , that is , when the users trusts AutoTeach

to do the job. It implements a (hopefully) reasonable default , general -purpose policy ,

revealing the code gradually. The user can still override whatever he wishes with annotations.

#

DO NOT EDIT THIS FILE UNLESS YOU KNOW WHAT YOU ARE DOING.

This file should only be edited by a developer who is modifying AutoTeach and wants to

change its default policies. Users of AutoTeach willing to use a different policy from

AutoTeach ’s default should load a custom table instead of modifying this file.

#

#

#

Summary

Level 0: only show the skeleton of features

Level 1: show all routine arguments.

Level 2: show all contracts

Level 3: show all local declarations

Level 4: show the existence of compound statements (‘if ’, ‘inspect ’, loops)

Level 5: show the secondary clauses of all compound statements (‘if_condition ’,

‘loop_initialization ’, ‘loop_invariant ’, ‘loop_termination_expression ’, etc.)

Level 6: show all instructions in routines which are outside compound statements.

Keep hiding instructions within ‘if_branch ’, ‘loop_body ’, ‘inspect_branch ’.

Level 7: show everything

#

Levels in the above summary are incremental. Whatever is shown at level ’x’, is implicitly intended

A
u

to
T

e
a
ch

re
fe

re
n

c
e

-
D

e
fa

u
lt

h
in

t
ta

b
le

fo
r

a
u

to
m

a
tic

m
o
d

e
7
9

to be shown at level ’x’ + 1 as well.

#

------------------------- Complex blocks -------------------------

Hint level: 0 1 2 3 4 5 6 7

feature T

content feature U

arguments T

content arguments F T

precondition T

content precondition F F T

locals T

content locals F F F T

routine_body T

content routine_body F F F F F F T

if F F F F T

content if U

if_condition F F F F F T

if_branch T

content if_branch F F F F F F F T

inspect F F F F T

content inspect U

inspect_branch T

A
u

to
T

e
a
ch

re
fe

re
n

c
e

-
D

e
fa

u
lt

h
in

t
ta

b
le

fo
r

a
u

to
m

a
tic

m
o
d

e
8
0

content inspect_branch F F F F F F F T

loop F F F F T

content loop U

loop_initialization T

content loop_initialization F F F F F T

loop_termination T

content loop_termination F F F F F T

See below for loop_termination_expression

loop_invariant T

content loop_invariant F F F F F T

loop_body T

content loop_body F F F F F F F T

loop_variant T

content loop_variant F F F F F T

See below for loop_variant_expression

postcondition T

content postcondition F F T

class_invariant T

content class_invariant F F T

------------------------- Atomic blocks -------------------------

The visibility of atomic blocks should in general not be fixed.

Instead , it should be determined by the content visibility of

the location where they appear.

A
u

to
T

e
a
ch

re
fe

re
n

c
e

-
D

e
fa

u
lt

h
in

t
ta

b
le

fo
r

a
u

to
m

a
tic

m
o
d

e
8
1

Hint level: 0

argument_declaration U

local_declaration U

assertion U

instruction U

loop_termination_expression U

loop_variant_expression U

A
u

to
T

e
a
ch

re
fe

re
n

c
e

-
D

e
fa

u
lt

h
in

t
ta

b
le

fo
r

m
a
n
u

a
l

m
o
d

e
8
2

A.7 Default hint table for manual mode

Full contents of file default manual table.txt . The syntax is the same explained in A.5.

The behavior of the default hint table for automatic mode is explained in section 3.4.3.

This is the default table used in manual mode. Manual mode means that everything

is handled manually by the user through annotations.

This table shows the bare skeleton of features (including arguments) and hides all the rest ,

giving total freedom to the user to do what he wants with manual annotations (and possibly textual

hints).

#

DO NOT EDIT THIS FILE UNLESS YOU KNOW WHAT YOU ARE DOING.

This file should only be edited by a developer who is modifying AutoTeach and wants to

change its default policies. Users of AutoTeach willing to use a different policy from

AutoTeach ’s default should load a custom table instead of modifying this file.

#

#

#

Summary

Level 0: show the skeleton of features , including all arguments. Hide all the rest.

#

------------------------- Complex blocks -------------------------

Hint level: 0

Always show features ...

feature T

A
u

to
T

e
a
ch

re
fe

re
n

c
e

-
D

e
fa

u
lt

h
in

t
ta

b
le

fo
r

m
a
n
u

a
l

m
o
d

e
8
3

...but always hide their content ...

content feature F

... with the exception of arguments:

arguments T

content arguments T

The following complex blocks should be visible , but without their content:

precondition T

locals T

routine_body T

postcondition T

class_invariant T

If , inspect and loop blocks are hidden , but their inner complex blocks

(e.g. branches) must be shown if the parent blocks are shown:

if F

if_branch T

inspect F

inspect_branch T

loop F

loop_initialization T

loop_invariant T

loop_termination T

See below for loop_termination_expression

loop_body T

loop_variant T

See below for loop_variant_expression

A
u

to
T

e
a
ch

re
fe

re
n

c
e

-
D

e
fa

u
lt

h
in

t
ta

b
le

fo
r

m
a
n
u

a
l

m
o
d

e
8
4

------------------------- Atomic blocks -------------------------

The visibility of atomic blocks should in general not be fixed.

Instead , it should be determined by the content visibility of

the location where they appear.

Hint level: 0

argument_declaration U

local_declaration U

assertion U

instruction U

loop_termination_expression U

loop_variant_expression U

Appendix B

Eiffel Inspector: the new
rules

In this appendix we present the 11 new rules that we have implemented for the
Eiffel Inspector code analysis tool as a part of the work of this thesis.

B.1 Eiffel Inspector

Eiffel Inspector ([17], formerly known as Inspector Eiffel) is a static code analysis
tool for Eiffel. It is implemented as a part of EiffelStudio, the Eiffel integrated
development environment [8]. The tool is integrated with the Eiffel compiler,
which makes it possible for it to access all the internal semantic information
generated by the compiler.

Eiffel Inspector initially came with a first set of code analysis rules. It is
however easily extensible, and several other rules have been implemented in the
months following its release.

Eiffel Inspector is a general purpose code analysis tool, however nothing
forbids to create rules targeting specific aspects that are only applicable in
particular situations. In the future, with only minor modifications, this tool
could be integrated with the Introduction to Programming MOOC and used for
giving automatic feedback to students about some aspects of their code, through
the use of exercise-specific rules that check for predefined patterns.

As a part of the thesis we present eleven new rules. While these rules are
still general-purpose (that is, they check for general good or bad programming
practices), several of them are particularly suitable for first-year programming
students, as they target mistakes that experienced programmers would never
make.

85

Eiffel Inspector: the new rules - The new rules 86

B.2 The new rules

We are about to present the list of the new Eiffel Inspector rules. Notice how
many of these are clearly oriented towards inexperienced programmers.

To name an example, rule CA030 checks for unnecessary unary sign opera-
tors. No experienced programmer would ever write ‘+3’, if not in really excep-
tional cases. The only people who would reasonably write such an expression
are first-year students, who might not be aware that the plus sign is redundant,
or, in case they are, might erroneously think that this kind of redundancy is
sometimes appreciated in programming. In fact, redundancy is not always a bad
thing, however redundant unary operator are not considered a good practice.

Another example are naming conventions, which is something that first-year
students have a strong tendency to overlook. Four of the new rules concern
naming conventions.

For each of the new rules, at least one Eweasel test (see appendix C) has
been created.

The list of rules follows here. For every rule, the name, severity, score and
the official description (i.e. the text used in EiffelStudio) is reported, followed
by a short explanation and an example.

B.2.1 CA030: Unnecessary sign operator

• Name: Unnecessary sign operator

• Severity: suggestion

• Scope: instruction

• Description: All unary operators for numbers are unnecessary, except
for a single minus sign. They should be removed or the instruction should
be checked for errors.

This rule checks for unnecessary unary sign operators, suggesting the removal
of the redundant ones. The rule only applies to the sign of constants and will
also work in the case of single constant values wrapped in one or more layers
of parentheses. It does not apply to all types of expressions because Eiffel
supports redefining operators. If the plus and minus operators are redefined,
the assumptions we make for determining that they are unnecessary may no
longer hold.

All the following lines trigger a violation of this rule:

Listing B.1: Eiffel : Sample violations of rule CA030

−− Too many s i g n s
l_int := +-2

l_real := -+4.1 −− Double v i o l a t i o n by des ign
l_real := - -4.2

Eiffel Inspector: the new rules - The new rules 87

l_int := +(4)

l_int := -(-7)

l_real := -(-7.0)

l_int := -(0)

−− Unnecessary s i n g l e s i g n s
l_int := +3

l_int := -0

l_real := +3.7

l_real := +0.0

The following lines will not trigger any violation:

Listing B.2: Eiffel : Example of code not violating rule CA030

l_int := +(-(-2 - 1)) −− Complex expr e s s i on in parenthese s
l_int := +l_int −− This r u l e only a p p l i e s to l i t e r a l s
l_real := -0.0 −− −0.0 i s not the same number as +0.0 .

B.2.2 CA051: Empty and uncommented routine

• Name: Empty and uncommented routine

• Severity: warning

• Scope: feature

• Description: A routine which does not contain any instructions and has
no comment too indicates that the implementation might be missing.

As a good practice, all features should be commented in Eiffel, and this is
checked by the pre-existing CA036 rule. However, if the implementation of a
routine is left empty for whatever reason, it becomes even more important to
make sure that the feature is commented, explaining why is it fine that the
implementation is blank.

this rule checks that all empty routines have a feature comment. If the
comment is missing, the body of the routine is scanned, searching for a comment.
If the routine body also contains no comments, a violation is triggered. The
violation is a warning, thus has a higher severity than violations of rule CA036.

Sample violation:

Listing B.3: Eiffel : Sample violations of rule CA051

−− This comment won ’ t save us .
−− There i s no f e a t u r e comment and no comment
−− in the rou t ine body .

no_op

do

end

The following routines will not trigger any violation:

Eiffel Inspector: the new rules - The new rules 88

Listing B.4: Eiffel : Example of code not violating rule CA051

no_op

−− Do nothing .
do

end

reset

do

−− This ob j e c t i s s t a t e l e s s , no need to r e s e t anything .
−− Even i f t h i s f e a t u r e has no proper f e a t u r e comment ,
−− the se comments with in i t s body w i l l save us from a

v i o l a t i o n .
end

B.2.3 CA059: Empty ‘rescue’ clause

• Name: Empty ‘rescue’ clause

• Severity: warning

• Scope: feature

• Description: An empty rescue clause should be avoided and leads to
undesirable program behaviour.

An empty ‘rescue’ clause in an Eiffel feature is useless, as it will not help
handle exceptions in any way. It might however convey the wrong idea that
that routine is able to handle exceptions, especially as EiffelStudio displays a
special icon in the call stack next to routines having a rescue clause. For this
reason, empty ‘rescue’ clauses should be always avoided.

Sample violation:

Listing B.5: Eiffel : Sample violation of rule CA059

do_something

−− This f e a t u r e should t r i g g e r a v i o l a t i o n .
do

io.put_string ("Foo")

rescue

end

B.2.4 CA060: Inspect instruction has no ‘when’ branch

• Name: Inspect instruction has no ‘when’ branch

• Severity: warning

• Scope: instruction

Eiffel Inspector: the new rules - The new rules 89

• Description: An inspect instruction that has no ’when’ branch must be
avoided. If there is an ’else’ branch then these instructions will always be
executed: thus the Multi-branch instruction is not needed. If there is no
branch at all then an exception is always raised, for there is no matching
branch for any value of the inspected variable.

There is never any point in an ‘inspect’ instruction having no ‘when’ branches.
In such cases, if the ‘inspect’ instruction has an ‘else’ branch, then the instruc-
tions in it will always be executed, and if it has no ‘else’ branch an exception
will always be thrown. In both cases, this should be avoided.

The violation message will be different depending on the presence or absence
of the ‘else’ branch.

Sample violations:

Listing B.6: Eiffel : Sample violations of rule CA060

inspect l_foo

end

inspect l_foo

else

io.put_integer (0)

end

B.2.5 CA063: Class naming convention violated

• Name: Class naming convention violated

• Severity: warning

• Scope: class

• Description: Upholding naming conventions is one of the elements of a
consistent coding style and enhances readability.

this rule checks that the Eiffel naming conventions for class names are re-
spected. In particular, it checks that class identifiers are written in upper case
and do not contain multiple consecutive underscore characters or trailing un-
derscores.

All the following class identifiers violate this rule:

Listing B.7: Eiffel : Sample violations of rule CA063

non_uppercase

Not_ENTIRELY_UPPERCASE

DOUBLE__UNDERSCORE

TRAILING_UNDERSCORE_

Eiffel Inspector: the new rules - The new rules 90

B.2.6 CA064: Feature naming convention violated

• Name: Feature naming convention violated

• Severity: warning

• Scope: feature

• Description: Upholding naming conventions is one of the elements of a
consistent coding style and enhances readability.

this rule checks that the Eiffel naming conventions for features are respected.
In particular, it checks that feature identifiers are written in lower case and do
not contain multiple consecutive underscore characters or trailing underscores.

All the following feature identifiers violate this rule:

Listing B.8: Eiffel : Sample violations of rule CA064

NON_LOWERCASE

Not_entirely_lowercase

double__underscore

trailing_underscore_

B.2.7 CA065: Local variable naming convention violated

• Name: Local variable naming convention violated

• Severity: warning

• Scope: feature

• Description: Upholding naming conventions is one of the elements of a
consistent coding style and enhances readability.

this rule checks that the Eiffel naming conventions for locals are respected.
In particular, it checks that local variable identifiers are written in lower case
and do not contain multiple consecutive underscore characters or trailing un-
derscores.

This rule can also check that local variable names start with the standard
‘l ’ prefix, as is common practice in Eiffel. This check is optional and can be
enabled or disabled in the rule preferences. Even when the check is enabled,
commonly used single-letter names (‘i’, ‘j’, ‘k’, ‘n’) are allowed.

All the following local variable identifiers violate this rule:

Listing B.9: Eiffel : Sample violations of rule CA065

l_bad__1: STRING

l_baD_2: STRING

l_baD_3: STRING

bad_4: STRING −− Acceptable i f ‘ l ’ p r e f i x i s not en fo rced

Eiffel Inspector: the new rules - The new rules 91

B.2.8 CA066: Argument naming convention violated

• Name: Argument naming convention violated

• Severity: warning

• Scope: feature

• Description: Upholding naming conventions is one of the elements of a
consistent coding style and enhances readability.

this rule checks that the Eiffel naming conventions for arguments are re-
spected. In particular, it checks that argument identifiers are written in lower
case and do not contain multiple consecutive underscore characters or trailing
underscores.

This rule can also check that argument names start with the standard ‘a ’
prefix, as is common practice in Eiffel. This check is optional and can be enabled
or disabled in the rule preferences. Even when the check is enabled, commonly
used single-letter names (‘i’, ‘j’, ‘k’, ‘n’) are allowed.

All the following argument identifiers violate this rule:

Listing B.10: Eiffel : Sample violations of rule CA066

feature_with_many_arguments (

a_bad__1: STRING;

a_baD_2: STRING;

a_baD_3: STRING;

bad_4: STRING; −− Acceptable i f ‘a ’ p r e f i x i s not en fo rced
)

B.2.9 CA079: Unneeded accessor function

• Name: Unneeded accessor function

• Severity: suggestion

• Scope: class

• Description: In Eiffel, it is not necessary to use a secret attribute to-
gether with an exported accessor (‘getter’) function. Since it is not allowed
to write to an attribute from outside a class, an exported attribute can be
used instead and the accessor may be removed.

A violation of this rule is triggered by a function the body of which consists
of a single assignment of the value of an attribute to ‘Result’.

Unlike other programming languages, in Eiffel all attributes are not writable
from outside the class. For this reason, in these situations it is generally better
to expose the attribute directly and avoid a redundant getter function. The
possibility that in future development the getter function is extended and needs

Eiffel Inspector: the new rules - The new rules 92

to implement some logic is still generally not a good justification, as in Eiffel
converting an attribute to a function requires no changes to clients.

This mistake is typical of programmers landing to Eiffel from other program-
ming languages, and in this case the attribute will most of the times be secret
(not exported to anyone). However, this rule does not take the visibility of the
attribute into account.

The following listing shows example of functions violating and not violating
this rule.

Listing B.11: Eiffel : Sample violations of rule CA079

class MY_CLASS

feature −− Publ ic

get_secret_attribute_1: INTEGER

−− Vio l a t i on ! This i s a g e t t e r func t i on .
do

Result := secret_attribute

end

get_secret_attribute_2: INTEGER

−− No v i o l a t i o n . We are per forming some a d d i t i o n a l
computation .

do

Result := secret_attribute + 1

end

get_secret_attribute_3: INTEGER

−− No v i o l a t i o n , same as above .
do

Result := secret_attribute

io.put_string ("Foo")

end

get_secret_attribute_4: INTEGER

−− No v i o l a t i o n . Even i f t h i s i s c l e a r l y equ iva l en t
−− to the f i r s t funct ion , i t does not match the s imple
−− g e t t e r pattern . There i s c l e a r l y some problem here ,
−− but i t ’ s not up to us to guess what the programmer
−− was t ry ing to do .

do

Result := secret_attribute

Result := secret_attribute

end

feature {NONE} −− Sec r e t area !

secret_attribute: INTEGER

end

Eiffel Inspector: the new rules - The new rules 93

B.2.10 CA088: Mergeable feature clauses

• Name: Mergeable feature clauses

• Severity: hint

• Scope: class

• Description: Feature clauses with the same export status and comment
could be possibly merged into one, or their comments could be made more
specific.

This rule looks for ‘feature’ clauses having the same comment and the same
export status within a single class, and raises a violation if any are found. There
are some cases where this kind of duplication is intentional. For this reason,
this rule only has the severity of ‘hint’.

The rule is insensitive to case and whitespace in the comment text and the
ordering of classes in the export list.

The following listing shows examples of mergeable feature clauses.

Listing B.12: Eiffel : Sample violations of rule CA088. Comments explain what
feature clauses are considered duplicates and what not.

−− #1:
feature −− Publ ic

feature_1: INTEGER

feature_2: INTEGER

−− #2:
feature −− pub l i c

−− Dupl icate o f #1

feature_3: INTEGER

−− #3:
feature −− PuBlIc

−− Dupl icate o f #1

−− #4:
feature −− D i f f e r e n t s e c t i o n

−− #5:
feature {ARGUMENTS , TEST} −− R e s t r i c t e d

feature_4: INTEGER

−− #6:
feature {TEST , ARGUMENTS} −− r e s t r i c t e d

−− Dupl icate o f #5

−− #7:
feature {TEST , ARGUMENTS} −− D i f f e r e n t s e c t i o n

−− #8:
feature { TEST , ARGUMENTS } −−R e s t r i c t e d

Eiffel Inspector: the new rules - The new rules 94

−− Dupl icate o f #5

feature_5: INTEGER

B.2.11 CA089: Explicit redundant inheritance

• Name: Explicit redundant inheritance

• Severity: suggestion

• Scope: class

• Description: Explicitly duplicated inheritance links are redundant if
there is no renaming, redefining or change of export status. One should
be removed.

This rule raises a violation if a class explicitly declares the same parent
twice in the ‘inherit’ clause without any renaming, redefining or change of ex-
port status, which is redundant. In doing this, no distinction is made between
conforming and non-conforming inheritance.

The following listing shows an example of violation of this rule:

Listing B.13: Eiffel : Sample violations of rule CA089.

class

MY_CLASS

inherit

PARENT_CLASS

OTHER_PARENT_CLASS

PARENT_CLASS

end

Appendix C

Eiffel inspector: support for
testability of rules

Besides the implementation of the new code analysis rules, a contribution of
this thesis is the extension of the Eweasel unit testing tool so that it supports
unit testing of code analysis rules. This also required some changes in Eiffel
Inspector itself. In this appendix, we report on the changes on both tools.

C.1 Eweasel

Eweasel [10] is a unit testing tool for the Eiffel compiler, used at Eiffel Software
to make sure that changes and new implementations in the Eiffel compiler do
not introduce regressions or break existing code.

Eweasel can run tests in batch. Tests are organized in different categories,
depending on the features of the compiler that they are supposed to test (for
example, parsing, incremental compilation, etc.).

C.1.1 Tests

Every test is defined by a test control file. The control file contains a sequence
of commands in a simple ad-hoc language.

Most tests consist of creating a test project in an output folder, attempting
to compile it, possibily run it, and check that the output from the compiler
and from the executable file matches the expected output. For doing this, some
auxiliary files are also needed (typically the class files and the project file of the
project to be compiled).

The following example, taken from a real test for the Eiffel compiler (syn-
tax002) should make it immediately clear:

1 -- This is a test control file

2

95

Eiffel inspector: support for testability of rules - Eiffel Inspector
support for Eweasel 96

3 test_name no-index -tag

4 test_description Index_clause without an Index_tag

5 copy_sub Ace $TEST Ace

6 copy_raw test.e $CLUSTER test.e

7 compile_melted

8 compile_result syntax_warning TEST 8

9 test_end

Commands on lines 3 and 4 specify the test name and description.

On line 5, command ‘copy sub’ requests file ‘Ace’ (the Eiffel project file,
which is a part of this sample test) to be copied to the output directory ($TEST).
In doing this, the content of the Ace file is also modified, by substituting every
reference to any environment variable within its body with the actual value of
the variable when running Eweasel.

Command ‘copy raw’, on line 6, copies the ‘test.e’ class file to the output
directory ($CLUSTER is generally a subfolder of the output directory) without
applying any substitution.

Command ‘compile melted’ on line 7 launchs the compiler on the output
project.

Command ‘compile result’ checks that the actual compiler output corre-
sponds to the expected output (which in this case is a syntax warning on line
8 of class ‘TEST’). This command can be considered an assertion. If the com-
pilation output corresponds to the expected output, the assertion holds and
execution continues to the next line. If it doesn’t, an error is generated and the
execution of the test interrupted.

If no error is raised by the preceding commands, command ‘test end’ is
eventually reached and the test terminates successfully.

It is important to note that the Eiffel compiler is simply invoked from the
command line. This means that the output of the compiler must be manually
parsed by Eweasel before being compared to to the expected one.

C.2 Eiffel Inspector support for Eweasel

As the Eiffel Inspector tool, after being developed as a Master’s thesis project
[17], was merged into the EiffelStudio trunk, it became crucial to have a way
for running unit tests and regression tests on code analysis rules.

A typical test for an Eiffel Inspector rule should generally consist of a class
file including some code violating the rule and other code not violating it. The
code should be analyzed disabling all rules but the one that should be tested,
and it should be checked that the raised violations match the expectation. This
is very similar to Eweasel tests in principle, therefore extending Eweasel for
supporting this kind of tests was a natural choice.

The most notable additions to Eweasel that were necessary were the ‘ana-
lyze code’ and ‘analysis result’ command. In principle, these are analogous to

Eiffel inspector: support for testability of rules - Changes and
improvements to Eiffel Inspector 97

the ‘compile *’ and ‘compile result’ instructions, however they clearly require
different arguments and perform a different parsing of the output.

An example is the most effective way to give an idea. The following listing
shows a test control file for an Eiffel Inspector test:

1 -- This is a test control file

2
3 test_name ca-forced -rules -preferences

4 test_description Test forcing rules and preferences from the

command line.

5 copy_sub Ace $TEST Ace

6 copy_raw test.e $CLUSTER test.e

7
8 -- Non -existent preference

9 analyze_code rule "CA043 (Depth threshold =3, Fake preference

=9); CA080"

10 analyze_code_result violation "TEST CA043 CA080"

preference_warning

Up to line 6, everything is substantially the same as in a standard test control
file. On line 9 we find the first new command, ‘analyze code’. This command
will first compile the target project and then, if compilation is successful, run the
code analysis on it. Even though the names are slightly different, this commands
supports all the command line switches implemented by Eiffel Inspector, which
can be found in the Eiffel Inspector online documentation [7].

On line 10, command ‘analyze code result’ checks that the analysis result
matches the expected results. In this example, the expected result consists of
two violations, respectively of rules CA043 and CA080, both of them in class
TEST. The lines where the violations are expected to occur can also specified
(by writing ‘CA080:23’), however this is optional. If no line number is specified
for a certain expected violation, as in this example, Eweasel will ‘accept’ it
regardless of the location where it appears.

The expected result can also include other errors reported by Eiffel Inspector,
such a class or rule not being found. In our example, the ‘preference warning’
keyword signifies that Eiffel Inspector is expected to throw a warning about a
non-existing rule preference name being specified. Eweasel is now able to parse
such warnings, allowing to test that Eiffel Inspector throws the correct warnings
or errors when called with incorrect arguments.

C.3 Changes and improvements to Eiffel Inspec-
tor

The implementation of support for rule testability also required some changes
to Eiffel Inspector itself, mostly related to the command line support. We made
changes to the formatting and the information included in the output messages
in order to achieve better readability and parsability.

The most notable change is probably the addition of the new ‘-caforcerules’

Eiffel inspector: support for testability of rules - Changes and
improvements to Eiffel Inspector 98

command line switch. This makes it possible to specify a list of rules to be used
for the analysis directly from the command line. Before the implementation of
this switch, the only way for selecting the rules to be used from the command
line was using the ‘-caloadprefs’ switch, which loads an XML preference file.
This was however very inconvenient, as XML preference files are expected to
explicitly list all the supported rules, so this approach required to maintain a
large preference file for every single test.

The new ‘-caforcerules’ switch supports specifying preferences directly from
the command line for those rules supporting special preferences.

C.3.1 Eiffel Inspector as an automated feedback generator
for programming exercises

It is worth noting that these changes, although not major, take Eiffel Inspector
one step closer to being ready for being used for analyzing code submitted by
students in programming exercises.

Eiffel Inspector already provides a flexible framework for rule and pattern
checking in the code. Its main characteristic which doesn’t fit well the pur-
pose of student code assessment is that rules are assumed to be general, i.e.,
applicable to any program. On the other hand, automated code assessment of-
ten requires to check some rules that are specific for the exercise being checked
(such as a maximum number of allowed locals, or forbidding the use of a par-
ticular instruction or class). However, the ability of invoking Eiffel Inspector
conveniently selecting and parametrizing the rules to be enabled directly from
the command line, makes it possible to create special code analysis rules which
are normally kept disabled and are only enabled when processing the exercises
which they apply to.

Further modifications to Inspector Eiffel have the potential of making it
very easy to integrate into the Introduction to Programming MOOC without
the need to write a new separate tool, which would eventually mostly overlap
with Eiffel Inspector’s functionality.

C.3.2 Additional contributions

While working on Eiffel Inspector, some other minor enhancements or bug fixes
have been made. Additionally, Eiffel Inspector has been run on the source
code of AutoTeach during its development, with the purpose of improving code
quality. Besides highlighting code quality issues in AutoTeach, this process also
brought to light some bugs or issues in some of the code analysis tools. We
have fixed some of these straight away, for all the others we have created an
Eweasel test highlighting the incorrect behavior, so that the Eiffel developers
could address the issue.

Bibliography

[1] Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. “Plaggie: GNU-
licensed Source Code Plagiarism Detection Engine for Java Exercises”.
In: Proceedings of the 6th Baltic Sea Conference on Computing Education
Research: Koli Calling 2006. Baltic Sea ’06. Uppsala, Sweden: ACM, 2006,
pp. 141–142. doi: 10.1145/1315803.1315831. url: http://doi.acm.
org/10.1145/1315803.1315831.

[2] Alex Aiken. Moss: Measure Of Software Similarity. 1994. url: http://
theory.stanford.edu/~aiken/moss/.

[3] Armando Fox. “From MOOCs to SPOCs”. In: Commun. ACM 56.12 (Dec.
2013), pp. 38–40. issn: 0001-0782. doi: 10.1145/2535918. url: http:
//doi.acm.org/10.1145/2535918.

[4] J. B. Hext and J. W. Winings. “An Automatic Grading Scheme for Simple
Programming Exercises”. In: Commun. ACM 12.5 (May 1969), pp. 272–
275. issn: 0001-0782. doi: 10.1145/362946.362981. url: http://doi.
acm.org/10.1145/362946.362981.

[5] Petri Ihantola et al. “Review of Recent Systems for Automatic Assessment
of Programming Assignments”. In: Proceedings of the 10th Koli Calling
International Conference on Computing Education Research. Koli Calling
’10. Koli, Finland: ACM, 2010, pp. 86–93. isbn: 978-1-4503-0520-4. doi:
10.1145/1930464.1930480. url: http://doi.acm.org/10.1145/

1930464.1930480.

[6] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. “Automated
Feedback Generation for Introductory Programming Assignments”. In:
SIGPLAN Not. 48.6 (June 2013), pp. 15–26. issn: 0362-1340. doi: 10.
1145/2499370.2462195. url: http://doi.acm.org/10.1145/2499370.
2462195.

[7] Eiffel Software. Eiffel Inspector command line documentation. url: https:
//docs.eiffel.com/book/eiffelstudio/eiffel-inspector-running-

analyzer#Command_Line (visited on 09/16/2014).

[8] Eiffel Software. Eiffel language. url: http://www.eiffel.com.

[9] Eiffel Software. EiffelStudio command line documentation. url: https:
/ / docs . eiffel . com / book / eiffelstudio / eiffelstudio - using -

command-line-options (visited on 09/17/2014).

[10] Eiffel Software. Eweasel. url: https://dev.eiffel.com/Eweasel (vis-
ited on 09/16/2014).

99

http://dx.doi.org/10.1145/1315803.1315831
http://doi.acm.org/10.1145/1315803.1315831
http://doi.acm.org/10.1145/1315803.1315831
http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/moss/
http://dx.doi.org/10.1145/2535918
http://doi.acm.org/10.1145/2535918
http://doi.acm.org/10.1145/2535918
http://dx.doi.org/10.1145/362946.362981
http://doi.acm.org/10.1145/362946.362981
http://doi.acm.org/10.1145/362946.362981
http://dx.doi.org/10.1145/1930464.1930480
http://doi.acm.org/10.1145/1930464.1930480
http://doi.acm.org/10.1145/1930464.1930480
http://dx.doi.org/10.1145/2499370.2462195
http://dx.doi.org/10.1145/2499370.2462195
http://doi.acm.org/10.1145/2499370.2462195
http://doi.acm.org/10.1145/2499370.2462195
https://docs.eiffel.com/book/eiffelstudio/eiffel-inspector-running-analyzer#Command_Line
https://docs.eiffel.com/book/eiffelstudio/eiffel-inspector-running-analyzer#Command_Line
https://docs.eiffel.com/book/eiffelstudio/eiffel-inspector-running-analyzer#Command_Line
http://www.eiffel.com
https://docs.eiffel.com/book/eiffelstudio/eiffelstudio-using-command-line-options
https://docs.eiffel.com/book/eiffelstudio/eiffelstudio-using-command-line-options
https://docs.eiffel.com/book/eiffelstudio/eiffelstudio-using-command-line-options
https://dev.eiffel.com/Eweasel

[11] Chair of Software Engineering. EVE (Eiffel Verification Environment).
url: http://se.inf.ethz.ch/research/eve/.

[12] UHS. Universal Hint System. 1988. url: http://www.uhs-hints.com/
(visited on 09/17/2014).

[13] Milena Vujošević-Janičić et al. “Software Verification and Graph Similar-
ity for Automated Evaluation of Students’ Assignments”. In: Inf. Softw.
Technol. 55.6 (June 2013), pp. 1004–1016. issn: 0950-5849. doi: 10.1016/
j.infsof.2012.12.005. url: http://dx.doi.org/10.1016/j.infsof.
2012.12.005.

[14] Wikipedia. Garbage in, garbage out (GIGO principle). 2014. url: http://
en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/Garbage_

in,_garbage_out (visited on 09/17/2014).

[15] Wikipedia. Kleene logic. 2014. url: http://en.wikipedia.org/wiki/
Three-valued_logic#Kleene_logic (visited on 09/14/2014).

[16] Wikipedia. Three-valued logic. 2014. url: http://en.wikipedia.org/
wiki/Three-valued_logic (visited on 09/14/2014).

[17] Stefan Zurfluh. “Rule-Based Code Analysis”. MA thesis. ETH Zurich,
2014.

100

http://se.inf.ethz.ch/research/eve/
http://www.uhs-hints.com/
http://dx.doi.org/10.1016/j.infsof.2012.12.005
http://dx.doi.org/10.1016/j.infsof.2012.12.005
http://dx.doi.org/10.1016/j.infsof.2012.12.005
http://dx.doi.org/10.1016/j.infsof.2012.12.005
http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/Garbage_in,_garbage_out
http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/Garbage_in,_garbage_out
http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/Garbage_in,_garbage_out
http://en.wikipedia.org/wiki/Three-valued_logic#Kleene_logic
http://en.wikipedia.org/wiki/Three-valued_logic#Kleene_logic
http://en.wikipedia.org/wiki/Three-valued_logic
http://en.wikipedia.org/wiki/Three-valued_logic

	1 Introduction
	1.1 Automated exercise assessment
	1.2 Guiding students towards the solution
	1.3 Our contribution
	1.4 Outline

	2 AutoTeach Overview
	2.1 Introduction
	2.2 Evolution of the concept
	2.2.1 Annotated mode
	2.2.2 Unannotated mode

	2.3 The final solution

	3 AutoTeach principles
	3.1 Trileans
	3.1.1 Definition
	3.1.2 Subjection operation

	3.2 AutoTeach basics
	3.2.1 Input and output
	3.2.2 Hint levels
	3.2.3 Code blocks
	3.2.4 Hiding code

	3.3 Visibility
	3.3.1 Block visibility
	3.3.2 Complex blocks and content visibility
	3.3.3 The whole picture

	3.4 Hint tables
	3.4.1 Compactness
	3.4.2 Modes
	3.4.3 Hint table for automatic mode
	3.4.4 Hint table for manual mode
	3.4.5 Custom hint tables

	3.5 Meta-commands
	3.5.1 Syntax
	3.5.2 General characteristics of meta-commands
	3.5.3 Supported meta-commands

	3.6 Visibility overriding
	3.6.1 Basic visibility overriding
	3.6.2 Content visibility overriding
	3.6.3 Putting it all together

	3.7 Treating complex blocks as atomic
	3.8 Final thoughts
	3.8.1 Modularity of the model
	3.8.2 Content visibility inheritance
	3.8.3 Arbitrary choices

	4 AutoTeach tips & tricks
	4.1 Optimizing the hint table customization
	4.1.1 Visibility of atomic blocks
	4.1.2 Basic visibility of complex blocks

	4.2 Compacting hint levels
	4.3 Other tips and tricks
	4.3.1 Hybrid hints
	4.3.2 Sequences of instructions
	4.3.3 Treating complex blocks as atomic

	5 AutoTeach implementation
	5.1 EVE
	5.2 Classes
	5.2.1 AT_AST_ITERATOR
	5.2.2 AT_PROCESSING_ORACLE
	5.2.3 Complete list of classes

	5.3 Additional contributions to the Eiffel libraries
	5.3.1 Trileans
	5.3.2 Enumeration types

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work
	6.3 Related Work

	A AutoTeach reference
	A.1 Command line arguments and syntax
	A.2 Complete list of blocks
	A.3 Meta-command syntax
	A.4 Meta-command reference
	A.4.1 Syntax
	A.4.2 Visibility
	A.4.3 Treating complex blocks as atomic
	A.4.4 Other commands

	A.5 Custom hint table file format
	A.6 Default hint table for automatic mode
	A.7 Default hint table for manual mode

	B Eiffel Inspector: the new rules
	B.1 Eiffel Inspector
	B.2 The new rules
	B.2.1 CA030: Unnecessary sign operator
	B.2.2 CA051: Empty and uncommented routine
	B.2.3 CA059: Empty `rescue' clause
	B.2.4 CA060: Inspect instruction has no `when' branch
	B.2.5 CA063: Class naming convention violated
	B.2.6 CA064: Feature naming convention violated
	B.2.7 CA065: Local variable naming convention violated
	B.2.8 CA066: Argument naming convention violated
	B.2.9 CA079: Unneeded accessor function
	B.2.10 CA088: Mergeable feature clauses
	B.2.11 CA089: Explicit redundant inheritance

	C Eiffel inspector: support for testability of rules
	C.1 Eweasel
	C.1.1 Tests

	C.2 Eiffel Inspector support for Eweasel
	C.3 Changes and improvements to Eiffel Inspector
	C.3.1 Eiffel Inspector as an automated feedback generator for programming exercises
	C.3.2 Additional contributions

