
Eiffel Inspector Improvements

Bachelor Thesis

Samuel Schmid
ETH Zurich

schmisam@student.ethz.ch

September 15, 2014 - March 15, 2015

Supervised by:
Julian Tschannen
Prof. Bertrand Meyer

Abstract

Code quality is an important issue in software engineering. It is a topic which is
hard to define because it is mostly a subjective matter. The Eiffel programming
language encourages high code quality and also, with the addition of the Eiffel
Inspector, provides means to detect code smells.

The Eiffel Inspector is a tool designed for static analysis of code. The frame-
work is rule-based, meaning that every analysis of the code is based on a set
of rules that define violations of code quality. With this tool’s help developers
can easily check their work for code quality issues and even apply automated
fixes to violations of the rules offered by the tool. The automated fix mechanic
changes the source code directly in the EiffelStudio IDE.

We extended the Eiffel Inspector by several new rules. All of the rules have
been implemented in Eiffel and added to the EVE IDE, a research branch of the
EiffelStudio IDE. We implemented user interface improvements like undoing
the changes done by automated fixes and being able to select only a set of
rules which are used in the analysis of the code. With this addition the Eiffel
Inspector now contains 57 rules checking for code quality and adding new rules
to the framework has been simplified with the introduction of the interface
improvements.

Acknowledgments

First and foremost I would like to thank my supervisor Julian Tschannen for
all his help and support during the thesis project.

Also I want to thank the Eiffel EVE Wiki page contributors for provid-
ing a tutorial for setting up EiffelStudio on MacOS. Special thanks also go to
Emmanuel Stapf for his eager support with the setup on the Mac.

Last but not least I want to thank my parents for their moral and financial
support during my time at ETH.

Samuel Schmid

Contents

1 Introduction 6
1.1 The Eiffel Inspector . 6
1.2 Related Work . 7

2 New Rules 8
2.1 Object test always failing . 8

2.1.1 Rule . 8
2.1.2 Implementation . 9
2.1.3 Fix . 9

2.2 Useless contract with Void-safety 10
2.2.1 Rule . 10
2.2.2 Implementation . 11
2.2.3 Fix . 11

2.3 Object test or non-Void test always succeeds 12
2.3.1 Rule . 12
2.3.2 Implementation . 12
2.3.3 Fix . 12

2.4 Comparison of {REAL}.nan . 13
2.4.1 Rule . 13
2.4.2 Implementation . 14
2.4.3 Fix . 14

2.5 Local variable only used for Result 15
2.5.1 Rule . 15
2.5.2 Implementation . 16
2.5.3 Fix . 17

2.6 Feature export can be restricted 17
2.6.1 Rule . 17
2.6.2 Implementation . 18
2.6.3 Fix . 18

2.7 Generic parameter has more than one character 19
2.7.1 Rule . 19
2.7.2 Implementation . 19
2.7.3 Fix . 19

2.8 Mergeable conditionals . 20
2.8.1 Rule . 20
2.8.2 Implementation . 21
2.8.3 Fix . 22

4

3 UI Improvements 23
3.1 Fix-Button . 23
3.2 Undo-Button . 24
3.3 New class options . 24

4 Integration with the Verification Assistant 26
4.1 The Verification Assistant . 26
4.2 The Eiffel Inspector . 27

5 Improvements of existing rules 28

6 Conclusions and future work 30
6.1 Conclusions . 30
6.2 Future Work . 30

Chapter 1

Introduction

1.1 The Eiffel Inspector

Good code quality is difficult to achieve and maintain, especially when working
in a large team. It is one of the biggest challenges in software engineering [10, 11].
Every programmer has different views about what is good code. Having a coding
style guideline document [9] to check against the code is a highly time-consuming
task. So the only sensible solution that remains is to do automated testing [1, 4].

The EiffelStudio IDE provides the tool called the Eiffel Inspector [20] for au-
tomated testing of code quality. The Eiffel Inspector is a rule-based framework.
For detecting code smells, it runs the code against a set of rules defining good
code quality or coding style guidelines. After the analysis all the rule violations
are presented to the developer with annotations as to where the violation was
found in the code. There are fully automated tools which not only detect bad
code but also provide automated fixing of the detected issues (without the user
having to select any), but the Eiffel Inspector is only partially automated. The
developer can choose which violations should be fixed automatically by the tool
and which ones he wants to resolve himself.

This thesis is aiming at improving the Eiffel Inspector tool by adding new
rules, adding automatic fixes for the rules where applicable, and improving the
user interface. We also integrated the Eiffel Inspector with another tool in the
Eiffel IDE, the Verification Assistant [17].

In Chapter 2 we discuss the newly added rules to the Eiffel Inspector. Each
section contains a new rule and a short explanation of its implementation.

The additions to the user interface are shown in Chapter 3. We added two
new buttons to improve the way the user can automatically fix violations in the
code. Also we added a new tag for classes to make selective verification possible.

In Chapter 4 we discuss the integration of Eiffel Inspector with the Verifi-
cation Assistant, a tool which provides a unified interface for various analysis
and verifications tools (such as the Eiffel Inspector and other tools mentioned
in Section 1.2).

6

Introduction - Related Work 7

Chapter 5 talks about the improvements made to the existing framework
of the Eiffel Inspector. These include refactoring of rules, changing the folder
hierarchy of the framework to be more sensible, and increasing the performance
of the analysis.

Chapter 6 shows our conclusions and possible future work.

1.2 Related Work

The EiffelStudio IDE provides additional tools for automated testing and verifi-
cation of software. AutoTest [12] is an analysis tool which uses random testing.
AutoFix [19] then generates fixes for software faults found by AutoTest. Auto-
Proof [18] verifies software using Hoare-style proofs with static program analysis.
AutoProof and AutoFix are available in the EVE IDE.

Looking beyond the Eiffel programming language there are other tools for
detecting bad code in languages like Java, C#, VB.NET, and many others as
well. SonarQubeTM [16] is an open platform to manage code quality. It is a web-
based application which covers over 20 different programming languages. Pmd
[15] is a code analyser to find common programming flaws in Java, Javascript,
XML, and XSL. FxCop [13] is a graphical user interface and command line tools
for performing static code analysis of .NET code developed by Microsoft.

Chapter 2

New Rules

In this chapter we will present the new rules which we added to the Eiffel
Inspector. Each section contains a new rule and talks about the implementation
and the automated fix which can be applied to its violations.

There is an internal working document for the development of the Eiffel In-
spector describing all of the rules 1. Each section starts with its rule’s description
from that document.

2.1 Object test always failing

2.1.1 Rule

Description:

An object test will always fail if the type that the variable is tested for
does not conform to any type that conforms to the static type of the
tested variable. The whole if block will therefore never be executed
and it is redundant.

Listing 2.1: Example violation of object test always failing rule.

1 local

2 l_string: STRING

3 do

4 if attached {PERSON} l_string as l_person then

5 −− do something
6 end

7 end

An object test is a construct in Eiffel used to test the dynamic type of an
object. In order for this test to be able to succeed there needs to be a common

1This document can be accessed upon request.

8

New Rules - Object test always failing 9

child between the type in the object test (here PERSON) and the static type of
the variable (here STRING). Since this is most probably not true for the types
PERSON and STRING we can see an example violation of this rule in Listing 2.1.

2.1.2 Implementation

This rule is implemented using the visitor pattern [8] over the abstract syntax
tree created by the Eiffel compiler. Part of the implementation can be seen in
Listing 2.2.

We visit all the OBJECT_TEST_AS nodes to check every object test in the pro-
gram. In lines 2 and 3 we extract the types used in the test from the type
recorder and run the feature has_common_child on them in line 5. This feature
checks whether there is a common child for the type used in the object test and
the static type of the variable being tested. If that is not the case, we create a
violation of this rule for this class in line 6.

Listing 2.2: Part of the object test always failing rule implementation.

1 if attached a_ot.type then

2 l_type_1 := current_context.node_type (a_ot.expression)

3 l_type_2 := current_context.node_type (a_ot.type)

4
5 if not has_common_child (l_type_1 , l_type_2) then

6 create_violation (a_ot)

7 end

8 end

2.1.3 Fix

Fixing violations of this rule is not as simple as stated in the rule description in
Section 2.1.1. The condition of the if block might be connected with or keywords
and therefore the condition might still hold, even though the object test itself
always evaluates to False. There might not even be an if block, as the object
test construct can be used anywhere where one can also use a BOOLEAN variable.

So we decided on the following procedure: If we have a violation of this rule,
we simply replace the object test construct with the keyword False and leave
the rest up to the Eiffel Inspector to find further code quality issues (e.g. an if
block that reads if False then after applying this fix).

New Rules - Useless contract with Void-safety 10

Figure 2.1: The project settings window of EiffelStudio.

2.2 Useless contract with Void-safety

2.2.1 Rule

Description:

If a certain variable is declared as attached, either explicitly or by
the project setting ”Are types attached by default?” then a contract
declaring this variable not to be Void is useless. This rule only ap-
plies if the project setting for Void safety is set to ”Complete”.

Every variable in Eiffel can be declared as an attached type. This means
that the variable cannot be set to Void or set to anything that can be set to
Void. There are two settings in the menu ”Project Settings” in EiffelStudio.
One of them is the Void safety setting, which we will look at later, and the
other one is the Are types attached by default? setting as seen in Figure 2.1.

When the latter is set to True, then a normal type declaration of a vari-
able like l_string: STRING would result in an attached type variable l_string,
meaning that an assignment like l_string := Void would result in a compiler
error. Now this does not mean that there are no more ways to create variables
that are Void in fact, it is sometimes important to be able to assign Void to
some variables.

New Rules - Useless contract with Void-safety 11

That is why there is another keyword: detachable. It is basically the oppo-
site of attached, meaning that any variable of a detachable type can be set to
Void or set to anything that can be set to Void.

The other setting (Void safety) is a feature in Eiffel which ensures at compile
time that your system will not attempt to apply a feature to a Void reference
at run time. This is achieved using the aforementioned attached types.

This rule is only applied and checked if the class that is being checked has
Void safety set to Complete, because the attached marks are only recorded when
Void safety is available. Otherwise they are ignored because they are of no use
to the compiler.

2.2.2 Implementation

Again we use the visitor pattern to find violations to this rule. We visit all the
FEATURE_AS nodes to cover all the features in the class to be checked. There we
iterate through possible pre- and or postconditions to see if any of them contain
a BIN_NE_AS node. These nodes represent binary /= operations (not equal).

Now all that is left, is to check whether one side of the binary equation is
Void and the other side a variable which has an attached type. If that is the
case we create a violation for this rule.

2.2.3 Fix

Fixing violations of this rule is simple: We remove the violating pre- or post-
condition and if it is the only contract in the block we remove the preceding
keyword (require or ensure, depending on the condition) as well. Listings 2.3
and 2.4 show an example of an application of this automated fix.

Listing 2.3: Example violation of use-
less contract rule.

1 feature foo (a_1: attached A)

2 require

3 a_1 /= Void

4 do

5 a_1.cleanup

6 ensure

7 a_1.is_clean

8 end

Listing 2.4: Automated fix applied to
violation in Listing 2.3.

feature foo (a_1: attached A)

do

a_1.cleanup

ensure

a_1.is_clean

end

New Rules - Object test or non-Void test always succeeds 12

2.3 Object test or non-Void test always succeeds

2.3.1 Rule

Description:

For an attached variable object tests and non-Void tests always suc-
ceed. Also, objects tests that check if an entity is attached to a su-
pertype always suceed. The tests should be removed.

This rule is only applied and checked when the Void-safety setting of the
project is set to ”Complete” because it uses the attached marks for the variables
to check for violations. See Section 2.2.1 for more information about attached

and detachable.

When a variable has an attached type then both an object test without a
type (which is basically only checking if the variable is Void or not) as well as
an explicit non-Void test will aways succeed. These tests can either be removed
or replaced with the boolean constant True.

2.3.2 Implementation

We use the visitor pattern to visit the correct nodes in the abstract syntax tree.
We need to visit all the OBJECT_TEST_AS as well as BIN_NE_AS nodes to cover all
the cases.

In the OBJECT_TEST_AS nodes we check if the variable being tested is of an
attached type, and if that is the case we also need to make sure that the object
test does not check for a dynamic type. If it is checking for a dynamic type, we
cannot remove it because we cannot be sure that it will always succeed.

In the BIN_NE_AS nodes (which represent the binary /= operation) we look
for an operation that has the keyword Void on one side, i.e. one that is testing
if the other side is Void. Then we check if that other side is a variable of an
attached type.

For each occurrence of a non-Void test or object test with a variable of an
attached type we create a separate violation for this rule.

2.3.3 Fix

Since we do not know what the user is intending with the test and also because
we could be in a deeply nested if-condition, the automated fix for this rule
is simple: We replace the non-Void test or the object test construct with the
keyword True and leave the rest up to the Eiffel Inspector. An example of the
application of this fix can be seen in Listings 2.5 and 2.6.

New Rules - Comparison of {REAL}.nan 13

Listing 2.7: Example violation of comparison of {REAL}.nan rule.

1 local

2 l_real: REAL

3 do

4 if l_real = {REAL}.nan then

5 −− do something
6 end

7 end

Listing 2.5: Example violation of ob-
ject test always succeeds rule.

1 local

2 l_string: attached STRING

3 do

4 if l_string /= Void then

5 Result := l_string.length

6 end

7 end

Listing 2.6: Automated fix applied to
violation in Listing 2.5.

local

l_string: attached STRING

do

if True then

Result := l_string.length

end

end

In this example we end up with an if block which is redundant because the
condition always holds, and the next iteration of analysis in the Eiffel Inspector
will create a violation for that.

2.4 Comparison of {REAL}.nan

2.4.1 Rule

Description:

To check whether a REAL object is ”NaN” (not a number) a compar-
ison using the ’=’ symbol does not yield the intended result. Instead
one must use the query {REAL}.is nan.

In Listing 2.7 the user wants to check whether the local variable l_real is a
real number or NaN (not a number). The class REAL provides the features is_nan
and nan both of which can be accessed in a static way. The feature is_nan can
be used to check whether a REAL variable is a NaN or not. The Feature nan

on the other hand is used to represent a REAL variable which is NaN e.g. for
assigning it to a REAL variable.

The problem is that the way NaN is implemented, every comparison with
it will return False. Which means both {REAL}.nan = {REAL}.nan as well as {

REAL}.nan /= {REAL}.nan are False. Therefore one should rather use the query
{REAL}.is_nan on the variable to be tested.

New Rules - Comparison of {REAL}.nan 14

Listing 2.8: Checking for real types.

if

(l_type.is_equal ("REAL_32")

or else l_type.is_equal ("REAL_64")

or else l_type.is_equal ("REAL_32_REF")

or else l_type.is_equal ("REAL_64_REF"))

then

2.4.2 Implementation

Violations of this rule are checked using the visitor pattern. We visit all the
BIN_EQ_AS (binary comparison) nodes in the class in order to check all compar-
isons between two objects. We then check whether the binary equation contains
a REAL type variable on one side and a STATIC_ACCESS_AS node which calls the
feature {REAL}.nan on the other. This check needs to run twice because the user
could either write

if l_real = {REAL}.nan

or use the boolean comparison the other way around and write

if {REAL}.nan = l_real

Checking for a REAL type variable turned out to be more complicated because
Eiffel has four different classes for REAL variables. We ended up simply checking
the name of the type as seen in Listing 2.8 which is sufficient since Eiffel class
names are unique.

2.4.3 Fix

Fixing a violation of this rule is simple. One only needs to replace the violating
binary comparison with the static call to {REAL}.is_nan on the same variable
that has been used in the comparison. An example of a fix can be seen in
Listings 2.9 and 2.10.

Listing 2.9: Example violation of
{REAL}.nan comparison rule.

1 local

2 l_real: REAL

3 do

4 if l_real = {REAL}.nan then

5 −− do something
6 end

7 end

Listing 2.10: Automated fix applied
to violation in Listing 2.9.

local

l_real: REAL

do

if l_real.is_nan then

−− do something
end

end

New Rules - Local variable only used for Result 15

Listing 2.11: Example violation of local variable only used for Result rule.

1 local

2 l_list: LINKED_LIST

3 do

4 create l_list.make

5 if a_boolean then

6 l_list.extend (a_x)

7 else

8 l_list.extend (a_y)

9 end

10 Result := l_list

11 end

2.5 Local variable only used for Result

2.5.1 Rule

Description:

In a function, a local variable that is never read and that is not
assigned to any variable but the Result can be omitted. Instead the
Result can be directly used.

Listing 2.11 shows a feature populating a LINKED_LIST with some variable
depending on the value of a_boolean. This is done by creating a local variable
l_list of the type LINKED_LIST and, after adding the new element, assigning it
to Result in order to return the list. This can be done in a much more efficient
way by using Result directly to create the list and add the new element as we
can see in Listing 2.17.

Listing 2.12: Example with no viola-
tion.

1 local

2 l_string: STRING

3 do

4 create l_string.make

5 create Result.make

6
7 l_string.append ("Hello ")

8 Result.append ("World")

9
10 Result := l_string

11 end

Listing 2.13: Attempted fix of exam-
ple in Listing 2.12.

do

create Result.make

create Result.make

Result.append ("Hello ")

Result.append ("World")

end

This rule cannot be applied if the local variable which gets assigned to Result

is also assigned to any other variable because then removing the local variable is
not possible. Another case where we are unable to remove the local variable is
when Result itself is created and or modified in the feature. An example of such

New Rules - Local variable only used for Result 16

a case can be seen in Listings 2.12 and 2.13. If we would see this example as a
violation of the rule and carry out the steps explained above we would change
the semantics of the code. In the original code the returning STRING value would
be "Hello " and after removing the local variable and replacing it with Result

we would get "Hello World" as the output.

Another case where we are not allowed to remove the local variable is when
the assignment to Result is nested. We cannot be sure if the assignment is even
executed if it is in an if block for example. Therefore removing the assignment
and the local variable could lead to changing the semantics of the code again. In
Listings 2.14 and 2.15 we can see a code example of this case. In this example
applying the fix to the code would lead to a different return value than in the
original code. If a_boolean’s value is False then the original code would return
Void and the fixed version always a string with value "True" (no matter the
value of a_boolean.

2.5.2 Implementation

This rule is implemented using the visitor pattern. We check every FEATURE_AS

node that has a return type as well as local variables. We then let the visitor run
through the feature body and look for all the ASSIGN_AS and CREATE_CREATION_AS

nodes. In the CREATE_CREATION_AS nodes we simply check if the target of the
creation is Result and if so, we can be sure that there cannot be any violations
because there is a create Result instruction of some form in the feature body.

Listing 2.14: Example with no viola-
tion.

1 local

2 l_string: STRING

3 do

4 create l_string.make

5 l_string.append ("True")

6
7 if a_boolean then

8 Result := l_string

9 end

10 end

Listing 2.15: Attempted fix of exam-
ple in Listing 2.14.

do

create Result.make

Result.append ("True")

if a_boolean then

end

end

After checking the creation nodes we go to the assignment nodes. Here we
check whether we have found an assignment from one of the local variables
to Result. If there is one we remember the node and keep going through the
feature body. In the case that we find another assignment to Result we have to
abort and the rule is not violated.

After finishing the feature body and having found only one assignment to
Result we check if the assignment node is not nested. When all these criteria
are met we finally have a violation of the rule.

New Rules - Feature export can be restricted 17

Listing 2.16: Example violation of lo-
cal only used for Result rule.

1 local

2 l_list: LINKED_LIST

3 do

4 create l_list.make

5 if a_boolean then

6 l_list.extend (a_x)

7 else

8 l_list.extend (a_y)

9 end

10 Result := l_list

11 end

Listing 2.17: Automated fix applied
to violation in Listing 2.16.

do

create Result.make

if a_boolean then

Result.extend (a_x)

else

Result.extend (a_y)

end

end

2.5.3 Fix

In order to fix violations of this rule we need to remove the declaration of
the local variable that gets assigned to Result, replace every occurrence in the
feature body of said local variable and finally remove the assignment to Result

itself. Listings 2.16 and 2.17 show the application of this fix to the example
introduced in Listing 2.11.

The EiffelStudio IDE already provides an implementation for removing an
unused local variable automatically. So all we need to do is to run this feature,
telling it that this local variable is unused and then its declaration will be
removed.

2.6 Feature export can be restricted

2.6.1 Rule

Description:

An exported feature that is used only in unqualified calls may be
changed to secret.

This rule is about improving information hiding in the user’s code [14].
In Listing 2.18 we can see an example violation of this rule. The feature
feature_one’s export status is public which means that anyone can call it by
either creating an instance of A or inheriting from A directly. Now if we inherit
from A, we are allowed to call feature_one in an unqualified way as seen in class
B from Listing 2.18. If these unqualified calls are the only calls to feature_one

in the whole system, we can improve the information hiding by restricting
feature_one’s export status to {NONE}. If there are any qualified calls to that
feature though, we cannot restrict the export status because otherwise those
feature calls could not be executed anymore.

New Rules - Feature export can be restricted 18

Listing 2.18: Example violation of the feature export can be restricted rule.

1 class A class B

2
3 feature inherit

4 feature_one A

5 do

6 do_nothing feature

7 end feature_two

8 do

9 end feature_one

10 end

11 end

2.6.2 Implementation

We go through all the features of the class to be checked for violations and check
two things for every feature. First, we check if the feature is called outside of
the class’ descendants. If we find a call to a feature from outside the class’
hierarchy, we are not allowed to restrict this feature’s export status since this
call has to be a qualified one, otherwise we can continue. Secondly, we need to
check if all the calls to the feature in the descendants are unqualified. One might
think that this is automatically the case, but as Listing 2.19 shows, qualified
calls are possible as well when an instance of the superclass is created. If we
find such a qualified call we again cannot restrict the export status, even though
the qualified call is in a class which inherits from the feature’s class.

Listing 2.19: Example with qualified call in descendant class.

1 class B

2
3 inherit

4 A

5
6 feature

7 feature_two

8 do

9 instance.feature_one

10 end

11
12 instance: A

13
14 end

2.6.3 Fix

Since the export status of a feature is not explicitly given for every feature but
rather for a whole block of features, it is difficult to predict how the user would
want to arrange things when the violating feature is going to change its export
status.

New Rules - Generic parameter has more than one character 19

Listing 2.20: Generic parameters with more than one character.

1 class MY_HASH_MAP [KEY , VALUE]

One solution would have been to create a new feature {NONE} block at the
end of all other feature blocks, but then again there could already be such a
block somewhere else where all the secret features lie and the user would have
to copy the feature back to that place himself.

Therefore we decided to omit an automatic fix for this rule and leave the
user simply with the notification of the violation of the rule.

2.7 Generic parameter has more than one char-
acter

2.7.1 Rule

Description:

Names of formal generic parameters in generic class declarations
should only have one character.

According to the EiffelSoftware style guidelines for coding [3], formal generic
parameters are only allowed to have a single character. Listing 2.20 shows an
example of a generic class declaration that violates this rule.

2.7.2 Implementation

The implementation for this rule is simple: We check if the class contains gener-
ics via the feature generics from the CLASS_AS node. We then check if their
names are longer than a single character. If so, we create a violation for this
rule for this specific generic parameter.

2.7.3 Fix

We give the user several options for fixing this violation automatically. If a
generic parameter is too long, we offer the user to replace the parameter and
all its occurrences in the class by the first letter of said parameter. Now if
there already is another generic parameter with only a single character and it
happens to be the same as the first one of the violating parameter, we do not
offer an automatic fix and the user must decide for himself which character he
chooses. In the case that there are multiple parameters which are too long and
all start with the same character, the user can choose from a dropdown menu
which parameter should be replaced with its starting character automatically.
The remaining parameter still must be changed by the user himself.

New Rules - Mergeable conditionals 20

Figure 2.2: The dropdown menu for multiple fix options.

To achieve this we first iterate through all the generic parameters once to find
the existing single characters and store them in a list. Now we iterate through
the generic parameters a second time to find the ones which are longer than a
single character. For every match, we check if its first character is already in
the list and if it is we generate a violation without an automatic fix. If it is not
in the list yet, we add a violation with an automatic fix which would replace
this parameter with its first character. In the case that another match starts
with the same character, we need to generate a new violation which contains
all the fixes for this starting character, and also add the fix for this new match
to the existing violations of the same character. This way we ensure that every
generic parameter that starts with the same letter contains a dropdown menu
of fixes for all the parameters that start with that letter. An example of this
can be seen in Figure 2.2.

2.8 Mergeable conditionals

2.8.1 Rule

Description:

Successive conditional instructions with the same condition can be
merged.

Conditional statements, i.e. if-then-else blocks, which check for the same
condition can be merged together to increase code readability. We only merge
conditionals which are syntactically the same and whose conditions only consist
of locals and boolean constants. This is because if we had a boolean feature
in the conditions a parallel execution could change its value between the two
blocks and therefore merging them would change the semantics of the code.
Also to simplify the implementation we only allow the blocks to be successive
in the code otherwise we would need to check all the statements in between to
make sure the value of the condition does not change until execution reaches
the second conditional.

New Rules - Mergeable conditionals 21

Listing 2.21: Mergeable conditionals implementation.

1 if

2 attached {IF_AS} l_previous as l_if_1

3 and then attached {IF_AS} l_current as l_if_2

4 and then l_if_1.condition = l_if_2.condition

5 and then is_condition_valid (l_if_1.condition)

6 and then is_body_valid (l_if_1)

7 then

8 create_violation(l_if_1 , l_if_2)

9 end

2.8.2 Implementation

Again we use the visitor pattern over the abstract syntax tree. We visit all the
FEATURE_AS nodes to check all the feature of the class. First we extract all the
locals from the feature and save them in a list. Then we iterate through the
feature body always looking at two successive instructions at a time. Listing
2.21 shows the next step of the implementation.2 We see a large if block where
all the conditions must hold. Let us look at them in more detail.

The variables l_current and l_previous hold the current and previous in-
struction of the feature body respectively. Lines 2 and 3 check if the instructions
are of type IF_AS and if that is the case we assign them to the local variables
l_if_1 and l_if_2. The ordering matters here. l_if_1 holds the conditional
which is executed first in the code. We will see later why this is important.

Line 4 compares the two conditions of the if blocks to see if they are the
same.

If that is the case line 5 checks whether the condition is valid. The feature
is_condition_valid returns True when the condition of the if block only contains
boolean constants and local variables. We only need to check one of the two
conditions because we already know they are the same because of the check in
line 4.

Finally, line 6 checks if the body of the condition that is executed first is
valid. This is where the ordering of the two conditionals is important. The
feature is_body_valid checks the body of the if block to see if any of the local
variables used in the condition are assigned new values. If that is the case, it
will return False and no violation will be created. Listings 2.22 and 2.23 show
a short example why this check is important.

In this example if the conditionals are merged we change the value of Result
at the end of the feature, even though the conditions of the two conditionals
are the same. Because the first conditional’s body changes the value of the
condition, we cannot merge in this case. This is what the check in feature
is_body_valid is for.

2N.B.: The code has been simplified to increase readability. E.g. the conditions in line 4
would need to be extracted further from the IF_AS node, but this notation is sufficient to get
an understanding of the implementation of the rule.

New Rules - Mergeable conditionals 22

Listing 2.22: Example with invalid
body.

1 local

2 l_bool: BOOLEAN

3 do

4 l_bool := True

5 if l_bool then

6 l_bool := False

7 Result := 10

8 end

9 if l_bool then

10 Result := 12

11 end

12 end

Listing 2.23: Automated fix applied
to violation in Listing 2.22.

local

l_bool: BOOLEAN

do

l_bool := True

if l_bool then

l_bool := False

Result := 10

Result := 12

end

end

Going back to Listing 2.21, we are almost done. If all the checks return True,
we can create a violation because the two conditionals can be merged without
any changes to the outcome of the feature. So in line 8 we create a new violation
for the two instructions of the feature body.

2.8.3 Fix

Automatic fixing for this rule is done by merging the bodies of the violating if
blocks that share the same condition. Listings 2.24 and 2.25 show the applica-
tion of this fix to an example of a violation of this rule.

Listing 2.24: Example violation of
mergeable conditionals rule.

1 local

2 l_boolean: BOOLEAN

3 do

4 if l_boolean then

5 Result := 3

6 end

7
8 if l_boolean then

9 Result := Result + 5

10 end

11 end

Listing 2.25: Automated fix applied
to violation in Listing 2.24.

local

l_boolean: BOOLEAN

do

if l_boolean then

Result := 3

Result := Result + 5

end

end

Chapter 3

UI Improvements

This chapter describes the improvements in the user interface of the Eiffel In-
spector and the new tags for class options.

3.1 Fix-Button

When we first started using the Eiffel Inspector, a violation could be fixed
automatically by right clicking on it to bring up a menu that shows available
fixes. If there is no fix, one still has to right click the violation to find out that
that is the case. To remedy this design flaw we implemented a button which is
active when there is a fix available and blank if there are no automated fixes for
this rule violation.

In Figure 3.1 we can see a typical view of the Eiffel Inspector after the
analysis with some violations in the list. We added a new column called ”Fix”
where the new button shows up. Upon clicking it, the usual drop-down menu
appears to select a fix for the violation. An example of the drop-down menu is
shown in Section 2.7 in Figure 2.2.

Figure 3.1: The Eiffel Inspector tool window.

23

UI Improvements - Undo-Button 24

Figure 3.2: Warning for undoing fixes.

3.2 Undo-Button

Applying an automated fix for a violation can be fearsome because you do not
know exactly how the Eiffel Inspector is going to adjust your code. Maybe it
will change something you did not expect, or it will be changed in a way that
does not suit your coding style. Either way, after an application of a fix, the
code gets recompiled and analysed again, meaning that we are unable to just
hit Ctrl + Z to undo the changes that have been made by the Eiffel Inspector.

Hence we decided to implement a new button in the user interface for re-
versing the changes made by a automated fix. When debugging a fix for a new
rule you will want to be able to go back and forth without having to retype the
violation again every time. We added this button to the top bar as we can see
in Figure 3.1.

The button is greyed out when no fixes have been applied yet, and it also
keeps a history of all the fixes that have been applied so far. So we can always
restore the code back to the original state if needed.

One limitation though is that if the code is changed by the user, the undo-
ing of fixes can result in an inconsistent state because statements might be in
different locations or be gone altogether. That is why the user is presented with
a warning when trying to undo a fix, letting him know of the potential mishap.
An example of the warning can be seen in Figure 3.2

3.3 New class options

The Eiffel Inspector supports class options which can be added to the indexing
clause (after the note keyword) of a class. One of these options is the tag
ca_ignoredby. It means that this class should be ignored by a certain rule,
and the tag should be followed by a rule ID or a list of such IDs. For better
understanding we renamed this tag to ca_ignore.

While debugging and writing test cases for the new rules it is cumbersome
to have so many violations showing in the Eiffel Inspector window when we are
only interested in viewing the violations for the new rule we just implemented.
Of course we could have used the ca_ignore tag and added all the rules except
the one we wanted to see, but clearly that is a very tedious task given the

UI Improvements - New class options 25

increasing number of rules, and every time we would implement a new rule, the
list would have to be adjusted again.

That is why we introduced a new tag for these class options called ca_only.
It works the same way, you put the tag into the indexing clause of your class
and add a rule ID (e.g. ca_only: "CA040", if you want to check rule #40). What
this does, is that all the rules are now ignored, except the rule with the ID given
from this tag. This also overwrites any restrictions from the tag ca_ignore. As
soon as the ca_only tag is used, it is the only one that counts. This makes
debugging rules much more user-friendly.

Chapter 4

Integration with the
Verification Assistant

In this chapter we will discuss the integration of the Eiffel Inspector with the
Verification Assistant tool.

4.1 The Verification Assistant

The Verification Assistant [17] is a tool implemented in the EVE IDE that brings
together several tools. It provides a unified interface for analysis and verification
tools to help developers maintain code quality and correctness. The implemen-
tation of EVE is freely available for download [7] and therefore continues to
grow larger, offering integration for more verification tools. The currently avail-
able implementation supports the Eiffel Inspector and two other tools, namely
AutoTest and AutoProof (See Chapter 1.2 for more information on these tools).

The Verification Assistant assigns scores to results of a testing tool for every
routine tested. A score of -1 denotes certain incorrectness, for example when
testing found an error. Assigning positive scores is harder because in most tools,
we can never be 100% certain that a routine will never fail. So the positive score
should be normalised so that it never exceeds an upper limit of 1, which denotes
definite correctness and is therefore unattainable by testing.

For verification tools which are sound and complete, a successful test should
generally yield a score of 1 and a failed proof a score of -1, since it denotes a
certain fault. For incomplete tools, a failed proof simply denotes uncertainty
and the scoring in that case depends on the details of the technique used in that
tool.

Figure 4.1 depicts an example of an analysis showing the scores achieved
from an analysis with Eiffel Inspector. For more readability, the scores in the
user interface are adjusted by expanding their scale from [-1, 1] to [-100, 100],
rounding to the closest integer.

26

Integration with the Ver. Assistant - The Eiffel Inspector 27

Figure 4.1: The Verification Assistant tool window.

4.2 The Eiffel Inspector

The Eiffel Inspector does not focus on correctness. Very few rules reveal definite
coding errors and in most cases it is used for indicating bad code quality. When
the tool yields many rule violations, it is still only little evidence for incorrect-
ness and finding no violations does not show correctness of the program. The
Verification Assistant accounts for this fact by setting the scores accordingly.

The rules in Eiffel Inspector are categorised as either a hint, a warning or
an error. Hint rules are ignored entirely, as they are only indicating coding
style errors. Error rules are very rare, and if violated the score is set to -1,
denoting certain incorrectness. If only warning rules are violated the score still
goes below 0 but only up to a maximum of -0.3, depending on the amount of
violations of these rules.

Chapter 5

Improvements of existing
rules

This chapter will list the improvements that have been added to the existing set
of rules and fixes already implemented in the Eiffel Inspector framework. Some
of the changes, like small refactorings or adjustments of code, have been very
minor and are not listed here.

• CA MOVE INSTRUCTION WITHIN LOOP FIX

Rule #21 checks if there is a loop invariant computation that lies within a
loop and therefore should be moved outside the loop. This rule supports
an automated fix where the violating instruction was moved outside the
loop. Another rule, #68, is addressing a similar issue where there is an
object creation instruction that lies within a loop and should also be moved
outside the loop but in this case it has to be before the loop. This rule
also supports an automated fix, moving the instruction after the loop.

We realised that the fixes for these rules are very similar and could be
merged into one new fix called CA_MOVE_INSTRUCTION_WITHIN_LOOP_FIX. This
automated fix takes three arguments: The LOOP_AS node of the loop with
the violation, the INSTRUCTION_AS node of the violating instruction within
the loop, and a BOOLEAN value, which defines if the violating instruction
should be moved before or after the loop.

This way both rules can use the same code, and maybe in the future even
other rules can reuse the merged fix.

• CA PRETTY PRINTER

In order to be able to have nicely formatted code when applying an auto-
mated fix of a rule violation, the class CA_PRETTY_PRINTER was introduced.
This is an exact copy of the class PRETTY_PRINTER which can be used to
output abstract syntax tree nodes in a well formatted manner. The copy-
ing was needed in order to make the class available for the code analysis
library.

28

Improvements of existing rules 29

One of the problems with the pretty printer was that if the user had
formatted his code in a different way than the pretty printer would do it
by default, then applying a fix would not only change the violating part,
but in some cases also other parts of the code, if for example a whole
if-block would be printed anew using the pretty printer. That is why we
removed the pretty printer. As there was only one fix who was using the
printer, we changed the implementation to calculate the indentation of the
violating instructions first and then replace the text of the existing node,
instead of creating a new one and sending it to the pretty printer.

• Automated fixes performance

The way automated fixes were executed when the user would choose to
run one was that the abstract syntax tree of the class under analysis would
be visited in its entirety until the violating node has been found and the
necessary changes could be made. In most cases though, the fix already
holds a reference to the violating node and would be able to directly change
that node without having to run the (in most cases) lengthy process of
visiting all the nodes until the correct one is found.

To correct this design flaw we introduced a new feature for the class CA_FIX
(every fix inherits from this class), called execute. This feature contains
the usual code of visiting all the class’ nodes so that the old way of fixing
violations is still usable. Now if a fix does already hold a reference to the
violating node, one can simply redefine the execute feature and only make
the changes to that node. This will increase the performance of most of
the fixes, as visiting all the nodes becomes redundant in those cases.

• Folder hierarchy

The folder hierarchy in the code analysis library was becoming increas-
ingly confusing because of the constantly growing amount of rules and
fixes implemented for the Eiffel Inspector. We redesigned the folder hier-
archy making it clean and sensible.

Chapter 6

Conclusions and future
work

6.1 Conclusions

In this thesis we implemented eight new rules for the rule-based framework Eiffel
Inspector. For all but one of these rules we also implemented an automated fix
that resolves rule violations. Most of the rules use a visitor pattern and iterate
through certain abstract syntax tree nodes created by the Eiffel compiler. In
the end we tested the rules against two large library classes EiffelBase [6] and
EiffelVision2 [5] to ensure the rules are running correctly.

We also improved the user interface of the Eiffel Inspector. Implementing
and debugging new rules or fixes has been simplified. Developers can now undo
fixes they applied to their code with a new button and also choose to run the
Eiffel Inspector with only a subset of the rules by using the new class tag ca_only.

With these improvements to the Eiffel Inspector developers have an even
better way of finding code quality issues in their projects and save a lot of
time compared to checking for code quality with a document or some other
guideline. Because the framework is rule-based and easily extendable and the
implementation of EVE is freely available for download [7], avid programmers
can easily create new rules for their own needs or edit existing ones.

The Eiffel Inspector is overall well designed and also adding new rules is very
well documented [2]. The only thing that is not well documented is the user
interface classes for the framework.

6.2 Future Work

As discussed about in Chapter 5 one of the new fixes implemented is called
CA_MOVE_INSTRUCTION_WITHIN_LOOP_FIX. This fix moves an instruction from within
a loop to the outside of the loop, either in front or directly after it. In order to

30

Conclusions and future work - Future Work 31

keep the code layout clean we need to know the indentation of the loop instruc-
tion because the loop in question might be nested in another construct. This
indentation is currently being calculated with a lot of nested calls to substring

and index_of on the raw text of the LOOP_AS node. This could be changed by
either introducing a feature indentation for the abstract syntax tree nodes or
by adding something like the PRETTY_PRINTER for the Eiffel Inspector.

The PRETTY_PRINTER, or rather a copy of it called CA_PRETTY_PRINTER, was
already in use when we first started with the Eiffel Inspector, but the problem
mentioned above still remains the same. The pretty printer does print the
successive instructions with correct indentations but the initial indentation is
still always put to zero and in fact, cannot even be changed (in the current
implementation the CA_PRETTY_PRINTER was removed, see Chapter 5 for more
details).

Another problem in the Eiffel Inspector framework is the way the code anal-
ysis works with the class tags. We introduced the ca_only class tag to reduce
the time an analysis would take by a considerable amount by only checking one
(or several) of the rules instead of all of them. To our surprise we found that
the analysis still took the same time. We later realised why this is the case:
The tags used in the indexing clause are only applied to the rule set after the
analysis is already done and the results are being displayed. Meaning that no
matter how little rules the user chooses, the analysis will still run the full set of
rules to then only display the violations of the rules that the user has chosen.

As of now all the new rules, fixes, improvements, and the user interface
changes are only implemented in the EVE IDE, which is a research branch of
EiffelStudio, the main IDE for Eiffel. All changes to the Eiffel Inspector version
of EVE need to be transferred to the version in EiffelStudio.

Bibliography

[1] Dennis M. Breuker, Jan Derriks, and Jacob Brunekreef. Measuring static
quality of student code. In Proceedings of the 16th Annual Joint Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’11,
pages 13–17, New York, NY, USA, 2011. ACM.

[2] EiffelSoftware contributors. EiffelSoftware Open Source - CA Adding new
rules. https://dev.eiffel.com/CA_Adding_New_Rules, March 2015.

[3] EiffelSoftware contributors. EiffelSoftware Open Source - Style
Guidelines. https://dev.eiffel.com/Style_Guidelines#Letter_case,
March 2015.

[4] Lamia Djoudi and William Jalby. Automatic analysis for managing and
optimizing performance-code quality. In Proceedings of the 2008 Workshop
on Static Analysis, SAW ’08, pages 30–38, New York, NY, USA, 2008.
ACM.

[5] Eiffel Documentation. EiffelVision 2 Library. https://docs.eiffel.com/
book/solutions/eiffelvision-2, March 2015.

[6] Eiffel Documentation. The EiffelBase Library. https://docs.eiffel.

com/book/solutions/eiffelbase, March 2015.

[7] Eiffel Verification Environment (EVE). http://se.inf.ethz.ch/

research/eve/, March 2015.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[9] Robert Green and Henry Ledgard. Coding guidelines: Finding the art in
the science. Queue, 9(11):10:10–10:22, November 2011.

[10] Chaitanya Kothapalli, S. G. Ganesh, Himanshu K. Singh, D. V. Radhika,
T. Rajaram, K. Ravikanth, Shrinath Gupta, and Kiron Rao. Continual
monitoring of code quality. In Proceedings of the 4th India Software Engi-
neering Conference, ISEC ’11, pages 175–184, New York, NY, USA, 2011.
ACM.

[11] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1st edition, 1988.

32

https://dev.eiffel.com/CA_Adding_New_Rules
https://dev.eiffel.com/Style_Guidelines#Letter_case
https://docs.eiffel.com/book/solutions/eiffelvision-2
https://docs.eiffel.com/book/solutions/eiffelvision-2
https://docs.eiffel.com/book/solutions/eiffelbase
https://docs.eiffel.com/book/solutions/eiffelbase
http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/research/eve/

[12] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and
Emmanuel Stapf. Programs that test themselves. IEEE Software, pages
22–24, 2009.

[13] Microsoft. FxCop. http://www.microsoft.com/en-us/download/

details.aspx?id=6544, March 2015.

[14] D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM, 15(12):1053–1058, December 1972.

[15] Pmd. http://pmd.sourceforge.net/, March 2015.

[16] SonarQubeTM. http://www.sonarqube.org/, March 2015.

[17] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Usable verification of object-oriented programs by combining static and
dynamic techniques. In Proceedings of the 9th International Conference on
Software Engineering and Formal Methods, SEFM ’11. Springer, 2011.

[18] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Automatic verification of advanced object-oriented features: The autoproof
approach. In Tools for Practical Software Verification - LASER 2011, Inter-
national Summer School, volume 7682 of LNCS, pages 134–156, Springer,
2012.

[19] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand
Meyer, and Andreas Zeller. Automated fixing of programs with contracts.
In Proceedings of the 19th International Symposium on Software Testing
and Analysis, ISSTA ’10, pages 61–72, New York, NY, USA, 2010. ACM.

[20] Stefan Zurfluh. Rule-based Code Analysis. ETH-Zürich, 2014.

33

http://www.microsoft.com/en-us/download/details.aspx?id=6544
http://www.microsoft.com/en-us/download/details.aspx?id=6544
http://pmd.sourceforge.net/
http://www.sonarqube.org/

	1 Introduction
	1.1 The Eiffel Inspector
	1.2 Related Work

	2 New Rules
	2.1 Object test always failing
	2.1.1 Rule
	2.1.2 Implementation
	2.1.3 Fix

	2.2 Useless contract with Void-safety
	2.2.1 Rule
	2.2.2 Implementation
	2.2.3 Fix

	2.3 Object test or non-Void test always succeeds
	2.3.1 Rule
	2.3.2 Implementation
	2.3.3 Fix

	2.4 Comparison of {REAL}.nan
	2.4.1 Rule
	2.4.2 Implementation
	2.4.3 Fix

	2.5 Local variable only used for Result
	2.5.1 Rule
	2.5.2 Implementation
	2.5.3 Fix

	2.6 Feature export can be restricted
	2.6.1 Rule
	2.6.2 Implementation
	2.6.3 Fix

	2.7 Generic parameter has more than one character
	2.7.1 Rule
	2.7.2 Implementation
	2.7.3 Fix

	2.8 Mergeable conditionals
	2.8.1 Rule
	2.8.2 Implementation
	2.8.3 Fix

	3 UI Improvements
	3.1 Fix-Button
	3.2 Undo-Button
	3.3 New class options

	4 Integration with the Verification Assistant
	4.1 The Verification Assistant
	4.2 The Eiffel Inspector

	5 Improvements of existing rules
	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future Work

