
Rule-Based Code Analysis

Master Thesis

Stefan Zur�uh
ETH Zurich

zur�uhs@student.ethz.ch

October 1, 2013 - April 1, 2014

Supervised by:
Julian Tschannen
Prof. Dr. Bertrand Meyer

Abstract

Program analysis � static or dynamic � is an important method to improve
and maintain code quality. Static analysis gives immediate feedback during the
development of a computer program, and can be a great help for programmers.
The language design of the Ei�el programming language already encourages
high code quality, but the Ei�el IDE has no light-weight static analysis tool.

We designed a versatile and extensible rule-based framework for light-weight
static program analysis for the Ei�el language called Inspector Eiffel. We
implemented a basic set of rules and developed a user interface that is integrated
in Ei�elStudio, the main Ei�el IDE. The tool is fully usable by programmers and
integrates well in the development process. We present several case studies of
applying the tool on existing libraries and programs, which show the usefulness
of the tool by detecting coding issues and suggesting improvements.

Acknowledgments

I would like to thank my supervisor Julian Tschannen very much for his
continuous outstanding help during my whole thesis project. Many thanks go
to Prof. Dr. Bertrand Meyer for his great support. As well I want to thank
Ðurica Nikoli¢, Mischael Schill and many others from the Chair of Software
Engineering for their helpful comments.

Then I thank the people from Ei�elSoftware, especially Emmanuel Stapf,
Alexander Kogtenkov, and Jocelyn Fiat, for their many suggestions and com-
ments they made regarding the analyses, and for their help in regard to Ei�el-
Studio.

Stefan Zur�uh

Contents

1 Introduction 9

2 Inspector Ei�el 11

2.1 Method . 11
2.1.1 Framework . 11
2.1.2 Interface . 13

2.2 Rules . 13
2.2.1 Classi�cation . 14

2.3 User Interfaces . 16
2.4 Command-Line Mode . 16

2.4.1 Execution . 16
2.4.2 Output . 17

2.5 Graphical User Interface . 17
2.5.1 Running Inspector Ei�el 17
2.5.2 Using Analysis Results . 19
2.5.3 Customization . 20

3 Case Studies 23

3.1 Ei�elBase . 23
3.1.1 Results Overview . 23
3.1.2 Notable Rule Violations 24
3.1.3 Proposals . 25

3.2 Ei�elVision . 26
3.2.1 Results Overview . 26
3.2.2 Notable Rule Violations 27
3.2.3 Proposals . 29

3.3 Ei�elStudio . 30
3.3.1 Results Overview . 30
3.3.2 CLASS_C In Detail . 31

3.4 Self-Analysis . 31
3.4.1 Results Overview . 31
3.4.2 Commentary . 31

4 Implementation 37

4.1 Library Implementation . 37
4.1.1 Class Relations . 37
4.1.2 Interface . 38
4.1.3 Rule Checking . 39

7

4.2 Example: Rule #71: Self-Comparison 42
4.3 Example: Rule #2: Unused Argument 45
4.4 Adding New Rules . 51

4.4.1 Standard Rules . 51
4.4.2 More Customized Rules 54
4.4.3 Accessing Type Information 54
4.4.4 Accessing the Control Flow Graph 55

4.5 UI Implementation . 56
4.5.1 Graphical User Interface 56
4.5.2 Command-Line Interface 60

5 Conclusions 63

5.1 Conclusions . 63
5.2 Future Work . 63
5.3 Related Work . 64

A Rules 65

A.1 List of Rules with Description and Classi�cation 66
A.2 List of Rules with Sample Code 76

Chapter 1

Introduction

Achieving and maintaining high code quality is one of the biggest challenges
in software engineering [6, 11]. Very often it does not su�ce to have some
important practices in mind. Many times, having a written document with
coding guidelines [5] does not work in practice either. Checking code against
a document is tedious and time-consuming. Here, automated tools aiming at
high code quality come into play [2, 3].

Because they need only little user input and they point out the �aws in the
code to the developer, automated tools are both e�cient and convenient from
the perspective of the software developer. The e�ort needed by the developer
is reduced, which encourages the explicit and continuous improvement of code
quality. Some tools are fully automatic, meaning that running them both diag-
noses problems and �xes them immediately. The tool we developed is partially
automated: The diagnosis part runs automatically, while the decision to change
the code is left to the user. Changes can be made manually or automatically.
Human judgment is inevitable in connection with our method.

Our approach uses a framework and a tool for static code analysis called
Inspector Eiffel. It is useful for improving code quality in many di�erent
contexts and on many di�erent levels. It can be used to detect potentially
dangerous runtime behavior. It may also be used to enforce a consistent coding
style. It is capable of suggesting code patterns and alternative ways of coding
to the programmer.

In Chapter 2 we present Inspector Eiffel for Ei�elStudio in detail. In-

spector Eiffel is the result of this thesis project and is its main outcome.
We explain the method we pursued. Then the rules are discussed. They form
an essential part of the concept of Inspector Eiffel. We also go through the
various parts of the user interface, covering both command-line and GUI usage.

Results from applying Inspector Eiffel to a large amount of code is shown
in Chapter 3. We have analyzed two fundamental libraries used in Ei�el systems:
Ei�elBase and Ei�elVision. From the code of Ei�elStudio (which has a seven-
digit number of lines of code) we analyzed only selected parts. All three projects
mentioned have been released under an open source license. Moreover, we made

9

Introduction 10

an analysis of our own code, the results of which are shown in a further Section.

Chapter 4 deals with the implementation of the Inspector Eiffel frame-
work and tool. We present key parts of our software design as well as important
interfaces. In addition to that, it is shown how rules are checked by the code
analyzer. Then, we present two examples where we show in detail how a rule is
implemented. We also dedicate a section to adding new rules, including more
complicated ones. The implementation of the user interfaces (graphical and
command-line) is discussed in a further section.

We conclude our thesis by mentioning possible future work and related work.

The appendix consists of a comprehensive list of the rules that were proposed
during the project.

Chapter 2

Inspector Ei�el

2.1 Method

2.1.1 Framework

The Inspector Eiffel framework for Ei�el is designed in a manner that allows
for extensibility and customizability. Any analysis that the framework contains
is based on a rule. The framework currently contains a set of more than 30 rules
(see Appendix A). The rules range from simple pattern-matching to sophisti-
cated control-�ow analysis. The Inspector Eiffel framework is implemented
as an Ei�el library, a reusable component which can be included in any Ei�el
system.

Every compiler performs some static program analyses, an example being
static type checking [1, 13]. The Ei�el compiler already includes analyses that
are not syntactically required: warnings are displayed after compilation, such
as when a local variable is not used. Our framework is separated from the
compiler but not fully independent. We retrieve the abstract syntax trees and
other information about the analyzed classes from the compiler. Therefore a
necessary requirement for making a code analysis is that the code was compiled
successfully. Then, during analysis, the interfaces to the Ei�el compiler are used
by Inspector Eiffel. Like this we can avoid redundancies: we can avoid to
do computations that have already been done by the compiler.

Operation

From an external viewpoint, the operation of Inspector Eiffel is described
as follows: Inspector Eiffel takes as an input a set of classes and produces
as an output a set of rule violations for these classes. The input classes must
be a part of the Ei�el system or of a referenced library. Yet it is possible that
some of them are not compiled since they are not referenced (transitively) in
the code of the system. These classes are skipped and are not analyzed.

The API of Inspector Eiffel directly corresponds to the class input and

11

Inspector Ei�el - Method 12

Class

List

Classes

(Source)

Class ASTs

Type

Tables
Rule Checker

CFG

Builder

Routine

CFGs

Rules

Rule

Violations

s

Inspector Eiffel

Compiler

Figure 2.1: Data �ow in Inspector Eiffel.

the rule violations output. Some other functionality was added for convenience.
(See Section 4.1 on API implementation.)

Internally, there is more data �ow than what is visible from the user side.
Figure 2.1 shows a schematic representation of the data �ow during code anal-
ysis. The Ei�el compiler plays an essential part in preparing the code analysis.
The compiler provides Inspector Eiffel with the abstract syntax trees (ASTs)
of all the classes from the user's list that are compiled. In addition, Inspector
Eiffel requests type information from the compiler for all the classes. This
is needed since the AST of the Ei�el compiler does not contain complete type
information. Apart from the AST and the type table Inspector Eiffel is
in need of the control �ow graph (�CFG�) for every feature of each class. The
control �ow graph is computed by a module of Inspector Eiffel.

A list of rules is available to Inspector Eiffel. The user is able to disable
or enable rules and to set options for individual rules and for Inspector Eiffel

in general. What is most important in the context of data �ow is that all the
enabled rules are used to check the classes for rule violations. We de�ned two
types of rules: standard rules and control �ow graph rules. Standard rules
operate on the AST only, and they have the type information available. Control
�ow graph rules, operating on the control �ow graph, can also access the type
information and, if needed, they can access the abstract syntax tree.

Each active rule creates a list of rule violations. Inspector Eiffel collects
the violations of all rules and outputs them to the user.

Inspector Ei�el - Rules 13

Checking Rules

We will explain brie�y our method of analyzing classes with regard to rule
violations. We denote this process as rule checking. The method for a single
class will be explained; multiple classes are analyzed sequentially, so in this case
the procedure would be repeated.

Standard Rules When initialized, every standard rule noti�es Inspector

Eiffel of the AST node types the rule needs to process. There is a rule
checker module that keeps track of these AST processing actions. Now,
for analysis, the module iterates over the AST of the class only once, which
increases performance as compared to an iteration for each rule. At each
node all the rules that registered an action for the corresponding node
type, are noti�ed. At the end of the AST iteration all standard rules have
completed their analysis.

Control �ow graph rules The control �ow graph is created for each feature
de�ned in the class. Usually a control �ow graph rule does a �xpoint iter-
ation over the graph edges using a worklist algorithm. The rule checking
is complete when the algorithm has reached a �xpoint.

Fixes

Some violations of rules can be �xed automatically. This fact is taken into
consideration by the possibility to attach one or more �xes to a rule violation.
It should still be left to the user whether to �x a rule violation, so �xing should
be a further step after outputting the rule violations to the user interface.

2.1.2 Interface

We designed a graphical tool for the Ei�elStudio integrated development en-
vironment. Like many other tools it appears as a panel, i. e., a movable and
dockable child window. It essentially consists of two components: a toolbar
and a table that can be �lled with rule violations. The tool panel closely inter-
acts with the editor. One can navigate through the violations and the editor
instantly navigates to the corresponding source code location. Many elements
in the table are interactively connected to the editor and to other functionality
provided by the Ei�elStudio API.

There is limited caching of rule violations so that consecutive analyses do
not need to consider unchanged code multiple times, and the tool also supports
automatic �xing of rule violations.

2.2 Rules

Since Inspector Eiffel is rule-based it is important to clarify what we mean
by a rule. In the context of Inspector Eiffel, a rule can be understood as

Inspector Ei�el - Rules 14

(a) a certain kind of static code analysis, or

(b) a certain property that must hold for the program code or for speci�c parts
of it.

Being very precise one could argue that (b) de�nes what a rule is and (a) is
merely the means of checking that the rule holds. This makes sense, however
in the implementation this distinction is not upheld for practical and design
reasons, as we will see in Chapter 4. Thus in the following we will use the term
rule interchangeably for both the property and the analysis.

If the source code violates a rule (i. e., does not follow what the rule pre-
scribes) then we call it a rule violation. A rule violation describes:

1. The rule that is violated;

2. Its exact location in the program code (or in some cases perhaps only the
a�ected class or feature);

3. Optionally, the name(s) of the a�ected variable(s) and other relevant data;

4. Optionally, one or more possible ways to �x the problem.

2.2.1 Classi�cation

When we were composing the list of possible rules that Inspector Eiffel

could contain, we classi�ed the rules by the following criteria: severity, scope,
and applicability.

Severity

To each rule we assigned one of the following four severity categories: error,
warning, suggestion, or hint. The severity of a rule describes how serious a rule
violation is and suggests how a violation should be treated.1

Error An error indicates code that is very dangerous to execute. Compilation
should be aborted, or the program should not be executed. Code for which
the code analyzer found errors may be very critical.

Warning A warning indicates that there is code that may lead to dangerous
program behavior. Unlike errors, the program may be executed despite
of warnings. In certain cases human judgment can show that dangerous
behavior will not arise or is very unlikely to arise.

Suggestion A suggestion advises that the code should be corrected. However
in most of the cases, such code will not lead to dangerous program behav-
ior. For example, one might expect a performance decrease. Bad coding
style often falls into this category, too.

1The rule severity has been implemented as described here (four categories). This imple-
mentation may be extended or adapted, though.

Inspector Ei�el - Rules 15

Hint A hint is only an insigni�cant rule violation. Hints may for example
suggest di�erent ways of coding. In some cases, hints may even be bi-
directional in the sense that if such a violation is corrected as the hint
proposes then one gets a hint that proposes to change the code back to
the old state.

Scope

The scope of a rule indicates roughly how much code has to be analyzed at
once in order to detect a rule violation. We clustered the rules into the scopes
instruction, feature, class, and system. Here is an overview of what each of the
scopes stands for:

Instruction scope The rule analyzes certain kinds of instructions individu-
ally. It does not need to consider interconnections between multiple in-
structions. Note however that such instructions may be complex and may
contain many other instructions. Any rule that checks for simpli�able if

instructions is such an example.

Feature scope The rule needs to analyze a whole feature in order to determine
whether there exists a violation. E. g., a rule that checks for unused feature
arguments has feature scope.

Class scope The rule analyzes multiple features or refers to other class-wide
code properties. A good example is the rule that checks for very big classes
(#33).

System scope The rule analyzes code structures that stretch across several
classes. This is the case for the Feature never called rule (#3).

Applicability

Most rules apply to all kinds of classes. Some rules however should be limited
to either library classes or non-library classes.

Library class rules It is imaginable to have rules that want to enforce a
particularly strict and good coding style only analyze classes from a library.
Such classes may be used in many di�erent projects. Here, there may be a need
for coding standards that are even higher than for normal classes. Therefore
one may want special rules that deal with library classes only.

Non-library class rules Non-library class rules exclude all library classes.
For example, one rule checks for features that are never called. For many classes
a feature that is not used indicates some mistake, and this feature should be
suggested to be removed. Many features from libraries however are not called
and this is normal, even in the context of a large system that uses this library.
Of course such features must remain in the library.

Inspector Ei�el - User Interfaces 16

The current implementation of Inspector Eiffel requires the programmer
to manually mark library and non-library classes. Classes that are not marked
will be analyzed by rules of any applicability.

2.3 User Interfaces

Inspector Eiffel is integrated in Ei�elStudio. There is no stand-alone version
of Inspector Eiffel. After all it uses the Ei�elStudio compiler and many
other parts of the Ei�elStudio API. Moreover, an Ei�el system must compile
without any error in order to be allowed for analysis.

There are two ways of running Inspector Eiffel:

1. Using command-line arguments with the command-line version of Ei�el-
Studio. The command-line version of Ei�elStudio is run by starting the
same executable as for the GUI version, with the -gui argument omitted.
An Ei�el system must be provided as an argument. This system is com-
piled (if necessary) and then analyzed. The output of the analysis will be
directed to the terminal window.

2. Running the tool in the Graphical User Interface of Ei�elStudio. In the
GUI, Inspector Eiffel appears as a panel (a movable and dockable tool
window). The panel is mainly used for displaying analysis results. The
command to carry out an analysis can be found not only in the panel but
also in various context menus. Like that, analyzing speci�c classes or sets
of classes is very straightforward and easy.

2.4 Command-Line Mode

2.4.1 Execution

In order to run Inspector Eiffel in command-line mode the Ei�elStudio exe-
cutable ec.exe (on Windows systems) or ec (on Unix systems) must be launched,
which can be found in the bin subfolder of the Ei�elStudio program directory.
We only present the most important options that are usually needed in conjunc-
tion with Inspector Eiffel.

The following command will perform a code analysis:

ec.exe -config projectfile [-target target] -code-analysis

[-cadefaults] [-caloadprefs preffile] [-caclass CLASS1 CLASS2 ...]

The arguments in brackets are optional.

projectfile The .ecf �le of the project to compile and analyze.

target The speci�c system target to act on. If -target is omitted and there is
more than one target de�ned in the project, then a user prompt to choose
the target is shown before compilation.

Inspector Ei�el - Graphical User Interface 17

-cadefaults If provided, all preferences regarding Inspector Eiffel will be
reset to their default values (before this analysis is run). For example, this
leads to enabling all rules that are enabled by default, even though they
may have been disabled in the GUI before.

-caloadprefs Use preferences from preffile, an XML �le containing Inspec-
tor Eiffel preferences. preffile can be generated by exporting the
current preferences in the GUI.

-caclass Followed by a list of class names (without �le extension .e) of the
classes that shall be analyzed. If omitted, the whole system will be ana-
lyzed.

Ei�elStudio will try to compile the system if needed. Inspector Eiffel

will only work with syntactically correct code and a compiled system. Should
the compilation fail, Ei�elStudio will abort and Inspector Eiffel will not
start.

2.4.2 Output

Upon a successful compilation either the whole system or the classes mentioned
in the arguments will be analyzed. The class that is currently being analyzed
will be displayed so that the user can follow the progress.

As soon as everything needed has been analyzed the results will be displayed
as a list of rule violations. These rule violations are sorted by class and by loca-
tion. In addition to the name of the violated rule and the rule ID, a description
of the concrete violation will be displayed as well.

2.5 Graphical User Interface

2.5.1 Running Inspector Ei�el

There are several di�erent ways of running Inspector Eiffel. Most impor-
tantly, you can select the scope of the analysis. For example it is possible to
analyze single classes, or whole systems. Also for the same scope there are
di�erent ways of running Inspector Eiffel depending on your personal pref-
erences.

Analyzing the System

If you want to analyze the whole system of the currently open project press the
Analyze System button on the toolbar of the Inspector Eiffel panel. Every
compiled class of the system will be analyzed.

Inspector Ei�el - Graphical User Interface 18

Figure 2.2: The buttons in the tool panel.

Figure 2.3: The class context menu.

Analyzing a Class or Group

Current Class Left-clicking the Analyze Item button on the toolbar of the
Inspector Eiffel panel starts an analysis of the class that is currently open
in the editor.

Any Class There are two ways of analyzing an arbitrary class (either from
your system or from a library):

1. Right-click its class name (anywhere you �nd it) and select Run Inspector
Ei�el on Class �. . . � from the context menu (see Figure 2.3).

2. Pick a class and drop it on the Analyze Item button in the panel.

Inspector Ei�el - Graphical User Interface 19

Figure 2.4: The cluster context menu.

Clusters To analyze a cluster there are two possibilities, like for classes:

1. You can either right-click the cluster and select Run Inspector Ei�el on
cluster from the context menu (see Figure 2.4).

2. Pick a cluster and drop it on the Analyze Item button in the panel.

Other Groups Not only clusters but any group (such as a library) can be
analyzed by pick-and-dropping it on the Analyze Item button in the panel.

2.5.2 Using Analysis Results

Sorting and Filtering

The list of rule violations can be sorted by any column by clicking on its header.
Click it again to switch the sorting direction. You can hide and show errors,
warnings, suggestions, and hints by clicking the corresponding toggle buttons in
the middle of the toolbar. Typing in the text �eld on the right side of the panel
toolbar �lters the results. The �lter takes into consideration the title, the ID,
the a�ected class, and the description of the rule. It is a live �lter that �lters
while you are typing. Press the button on the right of the text �eld to clear
the �lter and display again all violations. Figure 2.5 shows Inspector Eiffel

displaying results.

Navigating Through the Results

In the list of rule violations, formatted elements like classes and features are
clickable and draggable like anywhere else. In order to navigate to a speci�c
rule violation just double-click the corresponding row. The corresponding class
will be opened (if needed) and the cursor will jump to the exact location of the
rule violation (some violations do not have an exact location because they refer
to a whole class). You can also navigate through the results using the Go to
next rule violation and Go to previous rule violation buttons on the right side
of the panel toolbar.

Inspector Ei�el - Graphical User Interface 20

Figure 2.5: The results of code analysis as a list of rule violations (example).

Figure 2.6: Fixing a rule violation.

Fixing Rule Violations

Some violations provide automatic �xing. Right-clicking the corresponding row
in the tool panel opens a context menu where you can choose from one or more
possible �xes (shown in Figure 2.6). When you click on Fix: �. . . � the source
code will be adapted and the project will be recompiled.

Exceptions During Analysis

In case of a bug in a rule, which leads to an exception being thrown during
analysis, the exception is caught by Inspector Eiffel. It will show up as an
error on the very top of the list in the panel, above all rule violations. You can
double-click on the entry to see the exception details (the call stack, which rule
caused it, and so forth).

When an exception occurs while a class is being analyzed Inspector Eiffel

continues with the next class. Despite of exceptions Inspector Eiffel tries
to analyze as much as possible. However, some rule violations (of bug-free rules
as well) may be missing in this case.

2.5.3 Customization

General Preferences

The Preferences button in the panel toolbar opens a dialog containing all pref-
erences for Inspector Eiffel. There you can enable and disable all rules of a

Inspector Ei�el - Graphical User Interface 21

Figure 2.7: The preferences dialog of Inspector Eiffel.

certain severity, you can choose colors for the results, and there are many pref-
erences that control individual rules. Figure 2.7 shows the preferences dialog
for Inspector Eiffel.

Rule-Speci�c Preferences

The rule-speci�c preferences are located in the Rules subfolder (shown in Figure
2.8). Two preferences can be found for every rule: Enabled/disabled and the
severity score. Some rules have additional integer or boolean preferences like
thresholds.

Exporting and Importing Preference Pro�les

Using the buttons in the preferences dialog one can export these preferences to
an XML �le or import them. This can be used for creating pro�les that stretch
across multiple machines. Just set the desired preferences on one machine,
export them to a �le, distribute this �le, and import it.

Note: Inspector Eiffel preferences are separate from the general Ei�el-
Studio preferences. Pressing Restore Defaults, Import �. . . �, or Export �. . . �
only a�ects preferences for Inspector Eiffel.

Inspector Ei�el - Graphical User Interface 22

Figure 2.8: Rule-speci�c preferences.

Class Options

There are cases in which you might want to customize code analysis for parts of
your code only. Inspector Eiffel provides a way to set options per class. You
can exclude a class from being checked by certain rules. Also you can declare a
class to be a library or a non-library class. All class-wide options for Inspector
Eiffel are set in the indexing clause (after the note keyword).

Library and Non-Library Classes If the programmer uses the default val-
ues then a rule checks all classes. But a rule can be de�ned (hard-coded) not to
check either library or non-library classes. How does Inspector Eiffel now
know which classes are library classes and which classes are non-library classes?
This is de�ned by the user. If, for a certain class, the user does not de�ne
anything then the class will be analyzed in every case. Only if the user declares
a class to be a library class then this class will not be checked by a rule that has
disabled checking library classes. The same goes for classes that are declared as
non-library.

To declare a class to be a library class add ca_library : "true" to the (top
or bottom) indexing clause.

To declare a class to be a nonlibrary class add ca_library : "false" to the
(top or bottom) indexing clause.

Classes Ignored By Rules You can declare a class to be ignored by certain
rules, which is equivalent to saying that some rules shall be disabled for a class.

To let a class be ignored by certain rules, add the ca_ignoredby tag to the
(top or bottom) indexing clause. Then put all the relevant rule IDs separated
by commas in the content. It may look like this:

ca_ignoredby : "CA005,CA092"

Chapter 3

Case Studies

For all of the case studies including the self-analysis we used the default settings
(see appendix A) except for disabling rule number 201.

3.1 Ei�elBase

Ei�elBase is the base library that is by default included in every Ei�el system.
It is a �library of fundamental structures and algorithms covering the basics
of computing� [18]. Ei�elBase contains classes such as INTEGER, LINKED_LIST,
ARRAY, or FUNCTION. It has been released under an open-source license.

We now present the results of a code analysis of the whole Ei�elBase library,
which contains more than 300 classes. The analysis was performed on Ei�elBase
as of February 10, 2014.

3.1.1 Results Overview

436 warnings and 248 suggestions have been generated, making a total of 684
rule violations. Ei�elBase has an average warning density of 1.33 warnings per
class. Table 3.1 shows the frequencies of the rules that were violated the most.

1Rule #20 (�Variable not read after assignment�) is triggered in the case a variable is not
read in the main feature body but is read in the rescue clause. This is very often the case
in our case studies. Enabling this rule would lead to many false rule violations. The reason
for the behavior of this rule is the following: Our control �ow graph framework does not yet
support exception handling. Hence, the rule, which uses the control �ow graph functionality,
ignores the rescue clause and assumes that the variable is not read at all.

23

Case Studies - Ei�elBase 24

No command-query separation (W #4) 161
Unneeded parentheses (S #23) 110
Many feature arguments (W #11) 103
Unneeded helper variable (S #85) 63
Creation procedure is exported (W #13) 51
Deeply nested if instructions (W #43) 40
High complexity of nested branches and loops (W #10) 31
Short-circuit ifs (S #28) 22

Table 3.1: Frequency table of rule violations in Ei�elBase (top eight).

3.1.2 Notable Rule Violations

Code Structure and Code Size at Large

14 classes are considered very big and 3 routine implementations are considered
very long by Inspector Eiffel. One of the big classes, CHARACTER_PROPERTY,
contains 73 features and 342 instructions. The class �le has 1863 lines. This class
consists of �[h]elper functions to provide property of a Unicode character of type
CHARACTER_32� (quoting from the class description). Indeed the class contains
over a dozen helper functions. Most of the features though are attributes that
are hard coded arrays with often more than 50 elements.

CHARACTER_PROPERTY also stands out due to the complexity of some features.
The functions to_lower, to_upper, and property all have triggered both the �High
NPATH� and the �High complexity of nested branches and loops� rules. To the
reader of the code they look very complex indeed. The metrics of property for
example, having 8 nested branches and loops and having an NPATH measure
of 388316838, con�rm this result.

Function Side E�ects

There is an alarmingly high number of �No command-query separation� warn-
ings. We should take them with a pinch of salt. It is obvious that in most or all
of the cases this design is intentional. The rule is triggered for example when
a function contains a procedure call. This must not necessarily mean that the
command-query separation principle is violated.

The most a�ected class is FILE. A lot of functions contain a call to the
set_buffer procedure, which �[r]esynchronizes information on [the] �le�. That
seems appropriate and necessary. It is thus no cause for concern.

Redundancies and Possible Shortcuts

The code in Listing 3.1 is taken from class LIST. cursor is de�ned in
CURSOR_STRUCTURE. It is of type CURSOR. Since other is of type LIST, also
other.cursor must conform to CURSOR, and both two object tests for type CURSOR
are redundant.

Case Studies - Ei�elBase 25

Listing 3.1: Extract from LIST.

1 if

2 attached {CURSOR} cursor as c1 and then

3 attached {CURSOR} other.cursor as c2

4 then

Listing 3.2: From {OBJECT_GRAPH_TRAVERSABLE}.internal_traverse.

1 if l_reflected_object.is_special then

2 if l_reflected_object.is_special_of_reference then

3 if attached {SPECIAL [detachable ANY]} l_object as l_sp then

4 from

5 i := 0

6 nb := l_sp.count

7 until

8 i = nb

9 loop

10 if l_reflected_object.is_special_copy_semantics_item (i)

then

The rule �Two if instructions can be combined using short-circuit operator�
was triggered 22 times. This code can certainly be simpli�ed without risking
any kind of drawbacks.

3.1.3 Proposals

Based on the outcome of our analysis we propose the following changes:

Extract Routines

Parts of the code in complex and very long routines should be extracted to
separate routines. Listings 3.2 and 3.3 showcase relevant parts of features that
each caused at least 3 rule violations. Starting at a certain depth of conditionals
and loops, the �inner� code should be moved to new routines.

Listing 3.3: Small extract from {CHARACTER_PROPERTY}.property.

1 if (128 <= l_code) and (l_code <= 687) then

2 Result := property_table_1.item ((l_code - 128).to_integer_32)

3 else

4 if l_code <= 43002 then

5 if l_code <= 6829 then

6 if l_code <= 4968 then

7 if l_code <= 3439 then

8 if l_code <= 2142 then

9 if l_code <= 1805 then

10 if l_code >= 880 then

Case Studies - Ei�elVision 26

Listing 3.4: From ISE_EXCEPTION_MANAGER.

1 set_exception_data (code: INTEGER; new_obj: BOOLEAN;

2 signal_code: INTEGER; error_code: INTEGER; tag ,

3 recipient , eclass: STRING; rf_routine , rf_class: STRING;

4 trace: STRING; line_number: INTEGER; is_invariant_entry: BOOLEAN)

Reduce Number of Arguments

Features with a high number of arguments should be redesigned. To reduce
the number of arguments one can split the functionality into multiple features.
Additionally, a default value can be de�ned for some arguments so the client
only needs to set the value (calling a di�erent feature) if it di�ers from the
default. The most severe case in shown in Listing 3.4.

Use and then Operators

Nested if instructions according to rule #28 should be combined using the
short-circuit and then operators.

Consistent Use of Parentheses

Not all of the 110 parentheses that were marked as unneeded must be removed.
What we propose however is to use parentheses consistently in Ei�elBase (or,
even better, throughout all Ei�el libraries). An example of inconsistent use of
parentheses is the expression

((Result.lower = lower) and (Result.upper = upper))

in line 244 of ARRAY. Yet line 256 of the same class is

elseif lower = other.lower and then upper = other.upper and then.

This line is missing two pairs of parentheses compared to line 244.

3.2 Ei�elVision

The analysis was performed on Ei�elVision as of February 10, 2014.

3.2.1 Results Overview

1074 warnings and 685 suggestions have been generated when Ei�elVision was
analyzed. Ei�elVision consists of 745 classes, so the average warning density is
1.44 warnings per class. Table 3.2 shows the frequencies of the rules that were
violated the most.

Case Studies - Ei�elVision 27

Many feature arguments (W #11) 360
No command-query separation (W #4) 336
Unneeded helper variable (S #85) 198
Deeply nested if instructions (W #43) 168
Unneeded parentheses (S #23) 160
Short-circuit ifs (S #28) 93
from-until loop into across loop (S #24) 78

Table 3.2: Frequency table of rule violations in Ei�elVision (top seven).

3.2.2 Notable Rule Violations

Many Feature Arguments

It is no coincidence that �Many feature arguments� is the most frequent rule vi-
olation for Ei�elVision. Many of the correspondent features are used as agents
and therefore require 4 or more arguments. Additionally there is a very large
number of arguments representing coordinates. This is very typical and normal
for a graphical user interface library. �x�, �y�, �width�, and �height� (or similarly
named) arguments are used very frequently throughout the library. Often, ad-
ditional arguments are present, leading to an argument count that is certainly
above the default threshold.

Function Side E�ects

Many features triggered the �No command-query separation� rule, which essen-
tially means that these functions are suspected to change the state of the object.
We must investigate the cases further in order to determine whether they really
change the external state of the object or whether they just call some internal
features to optimize or cache something.

In the cases from Ei�elVision almost all such violations are indeed not prob-
lematic. A very large amount of them is caused by functions that create internal
variables when they are called for the �rst time. Then, many of the a�ected
classes are descendants of ITERABLE and iterate over themselves inside a func-
tion. Some rule violations point to calls to procedures that update cached data
if necessary. In a graphical user interface library this seems to be necessary
more often than in other kinds of code.

We discovered the function {WEL_WINDOW}.process_message which contains
procedure calls. In Listing 3.5 are the �rst few lines thereof. It resembles very
much a window �message loop� that is used for example in the Windows API. It
is actually used (in an indirect way) for the interface to the operating system.

A function where we could not identify the purpose of its result is the one
in Listing 3.6. Such cases were very rare though.

Case Studies - Ei�elVision 28

Listing 3.5: Excerpt from {WEL_WINDOW}.process_message

1 window_process_message , process_message (hwnd: POINTER; msg:

INTEGER;

2 wparam , lparam: POINTER): POINTER

3 −− Cal l the rou t ine `on_∗ ' co r re spond ing to the
4 −− message `msg ' .
5 require

6 exists: exists

7 local

8 l_message: detachable WEL_COMMAND_EXEC

9 l_commands: like commands

10 do

11 inspect msg

12 when Wm_mousemove then

13 on_mouse_move (wparam.to_integer_32 ,

14 x_position_from_lparam (lparam),

15 y_position_from_lparam (lparam))

16 when Wm_setcursor then

17 on_set_cursor (cwin_lo_word (lparam))

18 when Wm_windowposchanging then

19 on_wm_window_pos_changing (lparam)

Listing 3.6: A nontypical violation of �command-query separation�.

1 show_disabled_close_button: BOOLEAN

2 −− Ensure ` disabled_close_button_shown ' i s `True ' .
3 do

4 disabled_close_button_shown := True

5 end

Case Studies - Ei�elVision 29

Listing 3.7: From {EV_EDITABLE_LIST}.is_vaild_text.

1 if (a_string.is_equal (item @ c) and not (index = r)) then

2 Result := False

3 elseif (not empty_column_values) and (a_string.is_empty) then

4 Result := False

5 end

Listing 3.8: From EV_POSTSCRIPT_DRAWABLE_IMP.

1 draw_point (x, y: INTEGER)

2 −− Draw point at (` x ' , ` y ') .
3 do

4 translate_to (x, (- y))

5 add_ps ("newpath")

6 draw_arc_ps (1, 0, 360)

7 add_ps ("closepath")

8 add_ps ("fill")

9 add_ps ("stroke")

10 translate_to (-x, y)

11 end

Conditionals, Loops, and Code Style

Whereas the deeply nested if instructions can be left untouched (in most of the
cases the code is still well-readable), there are 93 cases where at least one if

instruction can be avoided by using the and then operator.

Most of the unneeded parentheses that Inspector Eiffel found in Eif-
felVision are arguable. In Listing 3.7 Inspector Eiffel suggests to remove
the outer parentheses in line 1 and to remove the right pair of parentheses in
line 3.

The next example in Listing 3.8 has unneeded parentheses (according to our
de�nition) in line 4 ((- y)). Notice the inconsistency (line 10) within the same
routine.

Also notable regarding coding style are the 78 cases where a from-until loop
can be rewritten as an across loop. For some reason this number is signi�cantly
higher compared to Ei�elBase (where there were 17 such rule violations).

3.2.3 Proposals

Based on our analysis we propose the following changes to Ei�elVision:

Simplify ifs Using and then

Nested if instructions should be combined using the short-circuit and then op-
erators. This will make all 93 violations of rule #28 disappear.

Case Studies - Ei�elStudio 30

No command-query separation (W #4) 353
Deeply nested if instructions (W #43) 332
Many feature arguments (W #11) 205
High NPATH (W #34) 147
High complexity of nested branches and loops (W #10) 138
Very long routine implementation (W #32) 70
Creation procedure is exported (W #13) 68

Table 3.3: Frequency table of warnings in the compiler cluster (top seven).

Consistent Style For Loops

Ei�elVision does not use across loops to iterate over an ITERABLE instance.2

Only conventional from-until loops are used. There are 78 cases which indicate
a from-until loop that can be transformed into an across loop. We propose to
consider using the more up-to-date across loop whenever it is possible.

Use Parentheses Consistently

Parentheses should be used in a consistent manner throughout Ei�elVision�or,
better, throughout all Ei�el libraries.

Revise Feature Arguments

Despite the special nature of a graphical library, in which coordinates are used
in many places, the features that have many arguments (there are 360 of them)
should be revised. Having less arguments makes features easier to use for clients.

3.3 Ei�elStudio

We analyzed a small exemplary part from the huge Ei�elStudio source code:
the cluster compiler from the library compiler_kernel. It has 683 classes.
Due to this large number of classes we �rst show a statistical overview of the
results and then pick a single class for a detailed discussion. The analysis was
performed on the source code as of March 7, 2014.

3.3.1 Results Overview

Table 3.3 shows the top frequencies of warnings, of which 1382 were generated.
The 951 suggestions are not shown. The compiler cluster has an average warn-
ing density of 2.02 warnings per class, which is considerably higher than the
values of Ei�elBase and Ei�elVision.

2across loops have been introduced into Ei�el only in 2010 [12].

Case Studies - Self-Analysis 31

NPATH #43 #10 #32

fill_parents 4482 x x x
update_generic_features 1470 x x �
update_anchors 540 x � �
process_skeleton � x x �
is_fully_deferred � x x �
check_validity 24961 � � �

Table 3.4: Features with high complexity.

3.3.2 CLASS_C In Detail

CLASS_C represents a compiled class. The Ei�el language alone de�nes many
properties of a class, many of which must be represented in CLASS_C�a class for
a �class�. Many features actually deal with the relation to other classes. It is
these classes that generated many of the warnings.

We observe a conspicuously large number of warnings related to complexity.
Table 3.4 lists features that caused signi�cant rule violations regarding routine
complexity. The NPATH measure is stated only if it caused a rule violation, i.
e., if it is above the threshold of 200.

We think that one should attempt to extract functionality from the reported
features to separate (new) features or to other (new) classes.

3.4 Self-Analysis

Analyzing our own code is a very important and a very interesting case study.
As you will see Inspector Eiffel actually found a few issues in its own code,
even though�as compared to the case studies above�we had the advantage
of knowing how to code in order to avoid rule violations. The analysis was
performed on the Inspector Eiffel code as of February 12, 2014.

3.4.1 Results Overview

The self-analysis has generated 39 warnings and 8 suggestions. The Inspector
Eiffel framework contains 76 classes, making it an average warning density of
.51 warnings per class. Table 3.5 shows the frequencies of the violated rules.

3.4.2 Commentary

In the following we will comment on the most signi�cant issues in our code.
Sometimes there is a clear reason for rule violations, which we are going to
explain. Other issues are just shown as they are. We have left them deliberately
open for discussion.

Case Studies - Self-Analysis 32

Deeply nested if instructions (W #43) 21
Unneeded helper variable (S #85) 6
No command-query separation (W #4) 5
Very big class (W #33) 4
Many feature arguments (W #11) 4
High NPATH (W #34) 2
High complexity of nested branches and loops (W #10) 2
Missing is_equal rede�nition (W #82) 1
from-until loop into across loop (S #24) 1
Unneeded parentheses (S #23) 1

Table 3.5: Frequency table of rule violations in the code analysis framework.

Deeply Nested if Instructions

The large number thereof is mainly due to the manner in which many static
analyses on the abstract syntax tree work. With 12 rule violations located
in CA_PRETTY_PRINTER, a class that we took from an external source, only 9
violations a�ect our own code. Often in our analyses we start at an AST node.
From there we follow the object graph. Usually this includes some conditionals
such as object tests. Despite some nested conditionals the code remains well-
readable in our opinion. Listing 3.9 shows an example.

Unneeded Helper Variable

The 6 suggestions to remove helper variables essentially concern coding style.
In all the cases we decided to leave it as it is. Leaving the helper variable there
makes the code easier to read. With �unneeded helper variable� suggestions one
should always check the code context before changing the code. Listings 3.10,
3.11, and 3.12 show extracts from the Inspector Eiffel source.

No Command-Query Separation

One of the rule violations is caused by the function
{CA_RULE_VIOLATION}.csv_line

which calls
{CA_RULE_VIOLATION}.format_violation_description (a_tf: TEXT_FORMATTER).
format_violation_description is syntactically a procedure but acts as a function
because a_tf is an in-out argument. So this rule violation is a false positive. The
procedure call does not change the state of the object (as most of the procedure
calls do). This shows a weakness of the rule implementation.

All the other violations of command-query separation a�ect the class
CA_VARIABLE_NOT_READ_RULE. In its function
visit_edge (a_from, a_to: attached CA_CFG_BASIC_BLOCK): BOOLEAN

from CA_CFG_ITERATOR lies the cause of the violations. Processing the edge and
using the result to decide whether to carry on iterating (see Section 4.4.4 for

Case Studies - Self-Analysis 33

Listing 3.9: Extract from CA_SELF_COMPARISON_RULE.

1 pre_process_loop (a_loop: LOOP_AS)

2 −− Checking a loop ` a_loop ' f o r s e l f −comparisons needs more
work . I f the un t i l e xp r e s s i on

3 −− i s a s e l f −comparison that does not compare f o r e qua l i t y then
the loop w i l l

4 −− not terminate , which i s more s eve r e consequence compared to
other s e l f −comparisons .

5 local

6 l_viol: CA_RULE_VIOLATION

7 do

8 if attached {BINARY_AS} a_loop.stop as l_bin then

9 analyze_self (l_bin)

10 if is_self then

11 create l_viol.make_with_rule (Current)

12 l_viol.set_location (a_loop.stop.start_location)

13 l_viol.long_description_info.extend (self_name)

14 if not attached {BIN_EQ_AS} l_bin then

15 −− I t i s only a dangerous loop stop cond i t i on i f we do
not have

16 −− an equa l i t y comparison .
17 l_viol.long_description_info.extend ("loop_stop")

18 end

19 violations.extend (l_viol)

20 in_loop := True

21 end

22 end

23 end

Listing 3.10: From CA_NPATH_RULE.

1 inner_npath := npath_stack.item + 1

2 npath_stack.remove

3 outer_npath := npath_stack.item

4 npath_stack.replace (inner_npath * outer_npath)

Listing 3.11: From CA_VARIABLE_NOT_READ_RULE.

1 l_from := a_from.label

2 l_to := a_to.label

3
4 Result := node_union (l_from , l_to)

Listing 3.12: From CA_UNNEEDED_HELPER_VARIABLE_RULE.

1 l_used := locals_usage [l_id]

2 locals_usage.force (l_used + 1, l_id)

Case Studies - Self-Analysis 34

details) is convenient although it could also be done by writing to an attribute
instead of using the result.

Very Big Class

Four classes were reported as very big:

CA_ALL_RULES_CHECKER The vast majority of its 99 features are visitors and
ACTION_SEQUENCE attributes, both of which are used to process the various
types of abstract syntax tree nodes during analysis.

CA_NAMES and CA_MESSAGES These classes with approximately 100 features each
contain all the localized strings.

CA_PRETTY_PRINTER This class was taken as it was from an external source and
will therefore not be discussed here.

Many Feature Arguments

All the reported features have 4 or 5 arguments, which may be not ideal but is
acceptable. (The default threshold is at 4 arguments.) Two of this features are
creation procedures, the other two are record_node_type and type_of_node from
CA_AST_TYPE_RECORDER. This class depends heavily on the interface to the Ei�el
compiler.

High NPATH

Both features with a high NPATH measure belong to CA_PRETTY_PRINTER which,
as explained before, we will not discuss.

High Complexity of Nested Branches and Loops

These rule violations are closely related to those about �deeply nested if in-
structions�. Again we follow the object graph which requires object tests, loops,
and other conditionals. Listing 3.13 is taken from the implementation of rule
#13: creation procedure is exported.

Case Studies - Self-Analysis 35

Listing 3.13: Extract from CA_CREATION_PROC_EXPORTED_RULE.

1 process_feature_clause (a_clause: FEATURE_CLAUSE_AS)

2 −− Checks ` a_clause ' f o r f e a t u r e s that are c r e a t i on procedures .
3 local

4 l_feature: FEATURE_AS

5 l_exported: BOOLEAN

6 l_viol: CA_RULE_VIOLATION

7 do

8 if creation_procedures /= Void then

9 across creation_procedures as ic loop

10 l_feature := a_clause.feature_with_name (ic.item.

internal_name.name_id)

11 if l_feature /= Void then

12 if attached a_clause.clients as l_clients then

13 across l_clients.clients as l_class_list loop

14 if not l_class_list.item.name_32.is_equal ("NONE")

then

15 −− The f e a tu r e i s exported to something .
16 l_exported := True

17 end

18 end

19 else

20 −− No c l i e n t s are de f ined . I t means that the f e a tu r e
i s exported to {ANY} .

21 l_exported := True

22 end

23
24 if l_exported then

25 create l_viol.make_with_rule (Current)

26 l_viol.set_location (a_clause.start_location)

27 l_viol.long_description_info.extend (l_feature.

feature_name.name_32)

28 violations.extend (l_viol)

29 end

30 end

31 end

32 end

33 end

Chapter 4

Implementation

The code for Inspector Eiffel is located at three di�erent places in the
Ei�elStudio source:

1. The framework�by far the largest part, with the rule checking, the rules,
the control �ow graph functionality, and more�is represented as a library ;

2. The graphical user interface can be found in the interface cluster of
Ei�elStudio;

3. The command-line interface for Inspector Eiffel is a single class in the
tty cluster of Ei�elStudio.

4.1 Library Implementation

The whole Inspector Eiffel framework is located in the library
code_analysis.

4.1.1 Class Relations

The diagram in Figure 4.1 shows an overview of the relations between the
classes of the Inspector Eiffel framework. All classes are located in the
code_analysis library except for:

• CLASS_C (Ei�elStudio),

• ROTA_TIMED_TASK_I (ecosystem cluster),

• EWB_CODE_ANALYSIS (command-line interface),

• ES_CODE_ANALYSIS_BENCH_HELPER (GUI).

36

Implementation - Library Implementation 37

Figure 4.1: The most relevant classes of the Inspector Eiffel framework.

4.1.2 Interface

In this section it is explained from a client view how to use Inspector Eiffel.
The Inspector Eiffel code analyzer is represented by the class
CA_CODE_ANALYZER, so a client must have or access an instance of this class.
Before the analyzer can be launched all the classes that shall be analyzed must
be added using one of the following features. If you use more than one of these
commands then the added classes from all commands will be conjoined.

{CA_CODE_ANALYZER}.add_whole_system � Adds all the classes that are part
of the current system. Classes of referenced libraries will not be added. So,
for example, if your system consists of the classes MY_MAIN, MY_BOX, and MY_ITEM

then these three classes will be added to the list of classes to be analyzed.

.add_class (a_class: attached CONF_CLASS) � Adds a single class.

.add_classes (a_classes: attached ITERABLE [attached CONF_CLASS]) �
Adds a list of classes.

.add_cluster (a_cluster: attached CLUSTER_I)�Adds all classes of a clus-
ter (and all the classes of the sub-clusters recursively).

.add_group (a_group: attached CONF_GROUP) � Adds all classes of a con�g-
uration group. An example of a con�guration group is a library.

There are other features which can be called before starting to analyze:

{CA_CODE_ANALYZER}.clear_classes_to_analyze � Removes all classes that
have been added to the list of classes to analyze.

.add_completed_action (a_action: attached PROCEDURE [ANY, TUPLE

[ITERABLE [TUPLE [detachable EXCEPTION, CLASS_C]]]]) � Adds a_action to
the list of procedures that will be called when analysis has completed. The pro-
cedures have one argument, a list of exceptions (with the corresponding class).

Implementation - Library Implementation 38

Listing 4.1: From {CA_CODE_ANALYZER}.analyze.

1 create l_task.make (l_rules_checker , l_rules_to_check ,

classes_to_analyze , agent analysis_completed)

2 l_task.set_output_actions (output_actions)

3 rota.run_task (l_task)

In the case an exception is thrown during analysis the exception is caught by
the code analyzer and is added to this list. In the graphical user interface such
exceptions would show up as errors at the top of the list of rule violations.

.add_output_action (a_action: attached PROCEDURE [ANY, TUPLE

[READABLE_STRING_GENERAL]])�Adds a_action to the procedures that are called
for outputting the status. The �nal results (rule violations) are not given to
these procedures. These output actions are used by the command-line mode
and by the status bar in the GUI.

.is_rule_checkable (a_rule: attached CA_RULE): BOOLEAN � Tells whether
a_rule will be checked based on the current preferences and based on the current
checking scope (whole system or custom set of classes).

Then, to start analyzing simply call {CA_CODE_ANALYZER}.analyze.

4.1.3 Rule Checking

In the GUI we want to be able to continue to work while Inspector Eiffel

is running. Analyzing larger sets of classes (such as whole libraries) can take
from several seconds to several minutes. For this reason the code analyzer uses
an asynchronous task, CA_RULE_CHECKING_TASK. In {CA_CODE_ANALYZER}.analyze

this task (l_task) is invoked as shown in Listing 4.1.

CA_RULE_CHECKING_TASK essentially carries out the whole analysis. Like all
other subclasses of ROTA_TASK_I this class executes a series of steps between
which the user interface gets some time to process its events. In
CA_RULE_CHECKING_TASK each step analyses one class. This means that a class
is checked for violations by all the rules. This is done by the code from Listing
4.2.

type_recorder is of type CA_AST_TYPE_RECORDER. It uses a functionality of the
Ei�el compiler to determine the type of some AST nodes in the current class.
The AST itself (as provided by the Ei�el compiler) does not contain complete
type information. context has type CA_ANALYSIS_CONTEXT and contains any side-
information such as the previously mentioned types and the current class. The
rules were given this context before so that they can access it when needed.

The across loop only checks control �ow graph rules. All the standard rules
are checked by the line rules_checker.run_on_class (classes.item).
rules_checker has type CA_ALL_RULES_CHECKER. This is the class where each rule
must register the AST nodes the rule visits. run_on_class iterates over the AST
and calls all the actions that were registered by the standard rules. So this is
the way all rules are used to check the current class. step is executed repeatedly

Implementation - Library Implementation 39

Listing 4.2: From CA_RULE_CHECKING_TASK.

1 step

2 −− <Precursor>
3 do

4 if has_next_step then

5 −− Gather type in fo rmat ion
6 type_recorder.clear

7 type_recorder.analyze_class (classes.item)

8 context.set_node_types (type_recorder.node_types)

9 context.set_checking_class (classes.item)

10
11 across rules as l_rules loop

12 −− I f r u l e i s non−standard then i t w i l l not be checked by
l_rules_checker .

13 −− We w i l l have the ru l e check the cur rent c l a s s here :
14 if

15 l_rules.item.is_enabled.value

16 and then attached {CA_CFG_RULE} l_rules.item as

l_cfg_rule

17 then

18 l_cfg_rule.check_class (classes.item)

19 end

20 end

21
22 −− Status output .
23 if output_actions /= Void then

24 output_actions.call ([ca_messages.analyzing_class (classes.

item.name)])

25 end

26
27 rules_checker.run_on_class (classes.item)

28
29 classes.forth

30 has_next_step := not classes.after

31 if not has_next_step then

32 completed_action.call ([exceptions])

33 end

34 end

35 rescue

36 −− In s tant e r r o r output .
37 if output_actions /= Void then

38 output_actions.call ([ca_messages.error_on_class (classes.

item.name)])

39 end

40 exceptions.extend ([exception_manager.last_exception , classes.

item])

41 −− Jump to the next c l a s s .
42 classes.forth

43 has_next_step := not classes.after

44 if not has_next_step then

45 completed_action.call ([exceptions])

46 end

47 retry

48 end

Implementation - Library Implementation 40

Listing 4.3: �Pre� and �post� actions.

1 if_pre_actions , if_post_actions: ACTION_SEQUENCE [TUPLE [IF_AS]]

2
3 add_if_post_action (a_action: attached PROCEDURE [ANY , TUPLE [IF_AS

]])

4 do

5 if_post_actions.extend (a_action)

6 end

7
8 −− And s im i l a r f o r a l l o ther r e l e van t AST nodes . . .

Listing 4.4: An AST visitor routine.

1 process_if_as (a_if: IF_AS)

2 do

3 if_pre_actions.call ([a_if])

4 Precursor (a_if)

5 if_post_actions.call ([a_if])

6 end

7
8 −− And s im i l a r f o r a l l o ther r e l e van t AST nodes . . .

until there are no more classes left to analyze.

In the rescue clause all possible exceptions are caught and recorded. In case
of such an exception we proceed to the next class.

Checking Standard Rules

The relatively large class CA_ALL_RULES_CHECKER is responsible for checking stan-
dard rules. It does this in a straightforward way. It is a subclass of AST_ITERATOR,
a realization of a visitor1 on the AST.

Rules can register their actions with CA_ALL_RULES_CHECKER by calling a pro-
cedure like
add_bin_lt_pre_action(a_action: attached PROCEDURE[ANY,TUPLE[BIN_LT_AS]])

or
add_if_post_action (a_action: attached PROCEDURE [ANY, TUPLE [IF_AS]]).
These �pre� and �post� actions exist for many other types of AST nodes as well.
All the registered actions are stored in ACTION_SEQUENCE variables, as shown in
Listing 4.3. The corresponding visitor procedures are rede�ned. This is done
as shown in Listing 4.4. Since the actual iteration over the AST is done in the
ancestor we need only very little code to analyze a class.

Listing 4.5 shows code that analyzes a class with respect to all active standard
rules. class_pre_actions and class_post_actions are action sequences that are
identical to those for the AST nodes. process_class_as, which is implemented
in AST_ITERATOR will recursively visit all relevant AST nodes and execute their
action sequences.

1[4, p. 331�.] discusses visitors and mentions their use in program analysis.

Implementation - Example: Rule #71: Self-Comparison 41

Listing 4.5: Analyzing a class in regard to standard rules.

1 feature {CA_RULE_CHECKING_TASK} −− Execution Commands
2
3 run_on_class (a_class_to_check: CLASS_C)

4 −− Check a l l r u l e s that have added t h e i r agents .
5 local

6 l_ast: CLASS_AS

7 do

8 last_run_successful := False

9 l_ast := a_class_to_check.ast

10 class_pre_actions.call ([l_ast])

11 process_class_as (l_ast)

12 class_post_actions.call ([l_ast])

13 last_run_successful := True

14 end

4.2 Example: Rule #71: Self-Comparison

We will go through the implementation of rule #71 (Self-comparison) in detail.

The heart of this implementation lies in the feature analyze_self, which
is shown in Listing 4.6. There it is tested whether a binary expression is a
self-comparison. is_self, a BOOLEAN attribute, is set to True if and only if the
argument is a comparison between two identical variables.

Both sides of the comparison, a_bin.left and a_bin.right, are tested for
having the types that indicate that they are variable or feature accesses. If the
tests succeed then is_self is set according to the equality of the two feature
names. Then the name is stored in an internal attribute.

analyze_self is used in process_comparison (shown in Listing 4.7), which
creates a rule violation if a self-comparison was detected.

First we check that we are not dealing with a loop condition. Self-comparisons
in loop conditions are more dangerous and need special treatment (see Listing
4.9). For the rule violation, we set the location to the start location of the
binary comparison. We add the variable or feature name to the violation.

Di�erent kinds of comparisons also have di�erent types in the AST. That
is why in an AST iterator they are processed independently. Thus, we need
to delegate to process_comparison in each of the actions that are called when
processing a comparison. Listing 4.8 shows the visitors of the �binary� nodes of
the AST.

In the case that a loop condition is a self-comparison, the loop is either
never entered or it is never exited. Never exiting a loop is more severe; never
entering only arises when it is an equality comparison (= or ~). For this reason
we analyze loop conditions separately. This is shown in Listing 4.9. If we �nd
such a violation we set in_loop to True so that any further self-comparisons are
ignored until we have left the loop.

format_violation_description, which is declared in CA_RULE as deferred,
must be implemented (shown in Listing 4.10). Here, together with a prede-

Implementation - Example: Rule #71: Self-Comparison 42

Listing 4.6: {CA_SELF_COMPARISON_RULE}.analyze_self

1 analyze_self (a_bin: attached BINARY_AS)

2 −− I s ` a_bin ' a s e l f −comparison ?
3 do

4 is_self := False

5
6 if

7 attached {EXPR_CALL_AS} a_bin.left as l_e1

8 and then attached {ACCESS_ID_AS} l_e1.call as l_l

9 and then attached {EXPR_CALL_AS} a_bin.right as l_e2

10 and then attached {ACCESS_ID_AS} l_e2.call as l_r

11 then

12 is_self := l_l.feature_name.is_equal (l_r.feature_name)

13 self_name := l_l.access_name_32

14 end

15 end

16
17 is_self: BOOLEAN

18 −− I s ` a_bin ' from l a s t c a l l to ` ana lyze_se l f ' a s e l f −
comparison ?

19
20 self_name: detachable STRING_32

21 −− Name o f the s e l f −compared va r i ab l e .

Listing 4.7: {CA_SELF_COMPARISON_RULE}.process_comparison

1 process_comparison (a_comparison: BINARY_AS)

2 −− Checks ` a_comparison ' f o r r u l e v i o l a t i o n s .
3 local

4 l_viol: CA_RULE_VIOLATION

5 do

6 if not in_loop then

7 analyze_self (a_comparison)

8 if is_self then

9 create l_viol.make_with_rule (Current)

10 l_viol.set_location (a_comparison.start_location)

11 l_viol.long_description_info.extend (self_name)

12 violations.extend (l_viol)

13 end

14 end

15 end

Implementation - Example: Rule #71: Self-Comparison 43

Listing 4.8: Processing �binary� nodes in CA_SELF_COMPARISON_RULE

1 process_bin_eq (a_bin_eq: BIN_EQ_AS)

2 do

3 process_comparison (a_bin_eq)

4 end

5
6 process_bin_ge (a_bin_ge: BIN_GE_AS)

7 do

8 process_comparison (a_bin_ge)

9 end

10
11 process_bin_gt (a_bin_gt: BIN_GT_AS)

12 do

13 process_comparison (a_bin_gt)

14 end

15
16 process_bin_le (a_bin_le: BIN_LE_AS)

17 do

18 process_comparison (a_bin_le)

19 end

20
21 process_bin_lt (a_bin_lt: BIN_LT_AS)

22 do

23 process_comparison (a_bin_lt)

24 end

Listing 4.9: {CA_SELF_COMPARISON_RULE}.pre_process_loop

1 pre_process_loop (a_loop: LOOP_AS)

2 −− Checking a loop ` a_loop ' f o r s e l f −comparisons needs more
work . I f the un t i l e xp r e s s i on

3 −− i s a s e l f −comparison that does not compare f o r e qua l i t y then
the loop w i l l

4 −− not terminate , which i s more s eve r e consequence compared to
other s e l f −comparisons .

5 local

6 l_viol: CA_RULE_VIOLATION

7 do

8 if attached {BINARY_AS} a_loop.stop as l_bin then

9 analyze_self (l_bin)

10 if is_self then

11 create l_viol.make_with_rule (Current)

12 l_viol.set_location (a_loop.stop.start_location)

13 l_viol.long_description_info.extend (self_name)

14 if not attached {BIN_EQ_AS} l_bin then

15 −− I t i s only a dangerous loop stop cond i t i on i f we do
not have

16 −− an equa l i t y comparison .
17 l_viol.long_description_info.extend ("loop_stop")

18 end

19 violations.extend (l_viol)

20 in_loop := True

21 end

22 end

23 end

Implementation - Example: Rule #2: Unused Argument 44

Listing 4.10: {CA_SELF_COMPARISON_RULE}.format_violation_description

1 format_violation_description (a_violation: attached

CA_RULE_VIOLATION; a_formatter: attached TEXT_FORMATTER)

2 local

3 l_info: LINKED_LIST [ANY]

4 do

5 l_info := a_violation.long_description_info

6 a_formatter.add ("'")

7 if l_info.count >= 1 and then attached {STRING_32} l_info.first

as l_name then

8 a_formatter.add_local (l_name)

9 end

10 a_formatter.add (ca_messages.self_comparison_violation_1)

11
12 l_info.compare_objects

13 if l_info.has ("loop_stop") then

14 −− Dangerous loop stop cond i t i on .
15 a_formatter.add (ca_messages.self_comparison_violation_2)

16 end

17 end

Listing 4.11: Properties of CA_SELF_COMPARISON_RULE

1 title: STRING_32

2 do

3 Result := ca_names.self_comparison_title

4 end

5
6 id: STRING_32 = "CA071"

7 −− <Precursor>
8
9 description: STRING_32

10 do

11 Result := ca_names.self_comparison_description

12 end

�ned localized text, we mention the name of the self-compared variable. If the
self-comparison is located in a loop stop condition we add an additional warning
text. Then we must implement the usual properties, as shown in Listing 4.11.

Finally, in the initialization (shown in Listing 4.12) we use the default set-
tings, which can be set by calling {CA_RULE}.make_with_defaults. To the default
severity score we assign a custom value. In register_actions we must add all
the agents for processing the loop and comparison nodes of the AST.

4.3 Example: Rule #2: Unused Argument

The unused argument rule processes the feature, body, access id, and converted
expression AST nodes. The feature node is stored for the description and for
ignoring deferred features. The body node is used to retrieve the arguments.
The access id and converted expression nodes may represent used arguments,

Implementation - Example: Rule #2: Unused Argument 45

Listing 4.12: Initialization in CA_SELF_COMPARISON_RULE

1 feature {NONE} −− I n i t i a l i z a t i o n
2
3 make

4 −− I n i t i a l i z a t i o n .
5 do

6 make_with_defaults

7 default_severity_score := 70

8 end

9
10 feature {NONE} −− Act ivat ion
11
12 register_actions (a_checker: attached CA_ALL_RULES_CHECKER)

13 do

14 a_checker.add_bin_eq_pre_action (agent process_bin_eq)

15 a_checker.add_bin_ge_pre_action (agent process_bin_ge)

16 a_checker.add_bin_gt_pre_action (agent process_bin_gt)

17 a_checker.add_bin_le_pre_action (agent process_bin_le)

18 a_checker.add_bin_lt_pre_action (agent process_bin_lt)

19 a_checker.add_loop_pre_action (agent pre_process_loop)

20 a_checker.add_loop_post_action (agent post_process_loop)

21 end

Listing 4.13: {CA_UNUSED_ARGUMENT_RULE}.register_actions

1 feature {NONE} −− Act ivat ion
2
3 register_actions (a_checker: attached CA_ALL_RULES_CHECKER)

4 do

5 a_checker.add_feature_pre_action (agent process_feature)

6 a_checker.add_body_pre_action (agent process_body)

7 a_checker.add_body_post_action (agent post_process_body)

8 a_checker.add_access_id_pre_action (agent process_access_id)

9 a_checker.add_converted_expr_pre_action (agent

process_converted_expr)

10 end

so the nodes are used to mark arguments as read. We register the �pre� ac-
tions for all the AST nodes as well as the �post� action for the body node in
register_actions, shown in Listing 4.13.

On processing a feature we store the feature instance, which will be used
later. This is shown in Listing 4.14. Listing 4.15 shows the �pre� action for
body nodes. Before processing the body of a feature we store a list of all the
argument names. This is however only done if the feature is a routine, it has
arguments, and it is not external. In the code we need two nested loops since
the arguments are grouped by type. For example, two consecutive STRING argu-
ments as in feature print(first, second: STRING) are contained in one entry of
{BODY_AS}.arguments.

Both the nodes ACCESS_ID_AS and CONVERTED_EXPR_AS may represent used
arguments. ACCESS_ID_AS is a usual variable usage, while CONVERTED_EXPR_AS

stands for an argument used in inline C code (the dollar sign syntax: $arg). In
both routines check_arguments is called eventually, which updates the internal

Implementation - Example: Rule #2: Unused Argument 46

Listing 4.14: {CA_UNUSED_ARGUMENT_RULE}.process_feature

1 process_feature (a_feature_as: FEATURE_AS)

2 −− Sets the cur rent f e a tu r e .
3 do

4 current_feature := a_feature_as

5 end

Listing 4.15: {CA_UNUSED_ARGUMENT_RULE}.process_body

1 process_body (a_body_as: BODY_AS)

2 −− Ret r i eve s the arguments from `a_body_as ' .
3 local

4 j: INTEGER

5 do

6 has_arguments := (a_body_as.arguments /= Void)

7 create args_used.make (0)

8 n_arguments := 0

9 if

10 attached a_body_as.as_routine as l_rout

11 and then has_arguments

12 and then not l_rout.is_external

13 then

14 routine_body := a_body_as

15 create arg_names.make (0)

16 across a_body_as.arguments as l_args loop

17 from

18 j := 1

19 until

20 j > l_args.item.id_list.count

21 loop

22 arg_names.extend (l_args.item.item_name (j))

23 args_used.extend (False)

24 n_arguments := n_arguments + 1

25 j := j + 1

26 end

27 end

28 end

29 end

30
31 has_arguments: BOOLEAN

32 −− Does cur rent f e a t u r e have arguments ?
33
34 current_feature: FEATURE_AS

35 −− Current ly checked f e a tu r e .
36
37 routine_body: BODY_AS

38 −− Current rou t in e body .
39
40 n_arguments: INTEGER

41 −− # arguments f o r cur r ent rou t in e .
42
43 arg_names: ARRAYED_LIST [STRING_32]

44 −− Argument names o f cur r ent rou t in e .
45
46 args_used: ARRAYED_LIST [BOOLEAN]

47 −− Which argument has been used ?

Implementation - Example: Rule #2: Unused Argument 47

Listing 4.16: Checking for unused arguments.

1 process_access_id (a_aid: ACCESS_ID_AS)

2 −− Checks i f ` a_aid ' i s an argument .
3 do

4 check_arguments (a_aid.feature_name.name_32)

5 end

6
7 process_converted_expr (a_conv: CONVERTED_EXPR_AS)

8 −− Checks i f ` a_conv ' i s an argument used in the
9 −− form ` $arg ' .
10 local

11 j: INTEGER

12 do

13 if

14 attached {ADDRESS_AS} a_conv.expr as l_address

15 and then attached {FEAT_NAME_ID_AS} l_address.feature_name as

l_id

16 then

17 check_arguments (l_id.feature_name.name_32)

18 end

19 end

20
21 check_arguments (a_var_name: attached STRING_32)

22 −− Mark an argument as used i f i t cor re sponds to ` a_aid ' .
23 local

24 j: INTEGER

25 do

26 from

27 j := 1

28 until

29 j > n_arguments

30 loop

31 if not args_used [j] and then arg_names [j]. is_equal (

a_var_name) then

32 args_used [j] := True

33 end

34 j := j + 1

35 end

36 end

data structures of our rule class. This is shown in Listing 4.16.

post_process_body (shown in Listing 4.17) �nally checks if there exist unused
arguments. If this is the case then all the relevant variable names are stored
in the rule violation. Also, the feature is stored (for the feature name). The
location of the violation is set to the start of the routine body. No rule violation
is issued if the feature is deferred.

All the information that was stored in the rule violation is used for the
formatted description, shown in Listing 4.18.

Implementation - Example: Rule #2: Unused Argument 48

Listing 4.17: {CA_UNUSED_ARGUMENT_RULE}.post_process_body

1 post_process_body (a_body: BODY_AS)

2 −− Adds a v i o l a t i o n i f the f e a tu r e conta in s unused arguments .
3 local

4 l_violation: CA_RULE_VIOLATION

5 j: INTEGER

6 do

7 if

8 a_body.content /= Void

9 and then not current_feature.is_deferred

10 and then has_arguments

11 and then args_used.has (False)

12 then

13 create l_violation.make_with_rule (Current)

14 l_violation.set_location (routine_body.start_location)

15 l_violation.long_description_info.extend (current_feature)

16 from

17 j := 1

18 until

19 j > n_arguments

20 loop

21 if not args_used.at (j) then

22 l_violation.long_description_info.extend (arg_names.at (j

))

23 end

24 j := j + 1

25 end

26 violations.extend (l_violation)

27 end

28 end

Implementation - Example: Rule #2: Unused Argument 49

Listing 4.18: {CA_UNUSED_ARGUMENT_RULE}.formatted_description

1 format_violation_description (a_violation: attached

CA_RULE_VIOLATION; a_formatter: attached TEXT_FORMATTER)

2 local

3 j: INTEGER

4 do

5 a_formatter.add (ca_messages.unused_argument_violation_1)

6 from

7 j := 2

8 until

9 j > a_violation.long_description_info.count

10 loop

11 if j > 2 then a_formatter.add (", ") end

12 a_formatter.add ("'")

13 if attached {STRING_32} a_violation.long_description_info.at

(j) as l_arg then

14 a_formatter.add_local (l_arg)

15 end

16 a_formatter.add ("'")

17 j := j + 1

18 end

19 a_formatter.add (ca_messages.unused_argument_violation_2)

20 if attached {FEATURE_AS} a_violation.long_description_info.

first as l_feature then

21 a_formatter.add_feature_name (l_feature.feature_name.name_32 ,

a_violation.affected_class)

22 end

23 a_formatter.add (ca_messages.unused_argument_violation_3)

24 end

Implementation - Adding New Rules 50

4.4 Adding New Rules

The Inspector Eiffel framework was designed with regard to the fact that
adding new rules should be as simple and as fast as possible. Looking at the
set of rules that we implemented, nearly all of them have an implementation of
less than 200 lines of code. Many of them use even less than 100 lines of code.
Rules that search the code for certain patterns (this applies to the vast majority
of rules) are particularly simple to implement.

This section is about implementing a rule in the form of a class. After writing
such a class the rule must be added to the list of rules. This list is populated
in {CA_CODE_ANALYZER}.make. There, a line like

rules.extend (create {YOUR_RULE}.make)

must be added, where YOUR_RULE must be replaced by the name of your rule
class and the creation procedure make must be adapted if necessary.

4.4.1 Standard Rules

All rules must conform to CA_RULE. The class you implement for a rule is on one
hand responsible for checking the rule and contains metadata about the rule
(i. e., title, description) on the other hand. Rules must moreover conform to
either CA_STANDARD_RULE or CA_CFG_RULE, both of which are subtypes of CA_RULE.
A large number of possible rules are standard rules, no matter whether they are
trivial or more complicated.

All standard rules are checked by iterating over the AST of the class code.
The developer who adds a new rule can very well ignore the details thereof. He
needs to know however which AST nodes his rule needs to process. For each
type of AST node you need to add an agent so your routine will be called during
the iteration on the AST.

To start implementing a rule one has basically two possibilities.

1. Starting from scratch, implementing all deferred features of
CA_STANDARD_RULE;

2. Using a template such as Listing 4.19.

Listing 4.19: Standard rule template.

1 class

2 CA_YOUR_RULE

3
4 inherit

5 CA_STANDARD_RULE

6
7 create

8 make

9
10 feature {NONE} −− I n i t i a l i z a t i o n
11
12 make (a_pref_manager: attached PREFERENCE_MANAGER)

Implementation - Adding New Rules 51

13 −− I n i t i a l i z a t i o n f o r ` Current ' .
14 do

15 make_with_defaults

16 −− This i n i t i a l i z e s the a t t r i b u t e s to t h e i r d e f au l t va lue s :
17 −− Seve r i t y = warning
18 −− Defau l t S eve r i t y Score = 50 (` s e v e r i t y score ' can be

changed by user)
19 −− Rule enabled by de f au l t = True (` Rule enabled ' can be

changed by user)
20 −− Only f o r system wide checks = False
21 −− Checks l i b r a r y c l a s s e s = True
22 −− Checks non l ib ra ry c l a s s e s = True
23
24 initialize_options (a_pref_manager)

25
26 −− TODO: Add your i n i t i a l i z a t i o n here .
27 end

28
29 initialize_options (a_pref_manager: attached PREFERENCE_MANAGER)

30 −− I n i t i a l i z e s the ru l e p r e f e r e n c e s .
31 local

32 l_factory: BASIC_PREFERENCE_FACTORY

33 do

34 create l_factory

35
36 −− TODO: Add the i n i t i a l i z a t i o n o f your custom p r e f e r e n c e s

here .
37 −− Example :
38 −− th r e sho ld := l_fac to ry . new_integer_preference_value (

a_pref_manager ,
39 −− preference_namespace + "Threshold " ,
40 −− 30) −− de f au l t va lue
41 −− min_local_name_length . set_default_value ("30") −− de f au l t

value , too
42 −− min_local_name_length . set_val idat ion_agent (agent

is_integer_str ing_within_bounds (? , 1 , 1_000_000))
43 end

44
45 feature {NONE} −− Act ivat ion
46
47 register_actions (a_checker: attached CA_ALL_RULES_CHECKER)

48 do

49 −− TODO: Add agents f o r the f e a t u r e s in s e c t i o n ` Rule
checking ' here .

50 end

51
52 feature {NONE} −− Rule check ing
53
54 −− TODO: Add the AST proc e s s i ng here .
55
56 feature −− Prope r t i e s
57
58 title: STRING_32

59 do

60 −− TODO: Add the t i t l e o f your r u l e here .
61 Result := "(Your title)"

62 end

63
64 −− TODO: Add the ID o f your r u l e here . Should be unique !
65 id: STRING_32 = "(YourID)"

66
67 description: STRING_32

Implementation - Adding New Rules 52

68 do

69 −− TODO: Add the ru l e d e s c r i p t i o n here .
70 Result := "(Your description)"

71 end

72
73 format_violation_description (a_violation: attached

CA_RULE_VIOLATION; a_formatter: attached TEXT_FORMATTER)

74 do

75 −− TODO: Add a formatted d e s c r i p t i o n o f a conc r e t e v i o l a t i o n
o f t h i s r u l e here .

76 end

77
78 end

We now have a closer look at the various parts of a rule class.

Initialization

Calling make_with_defaults initializes the attributes to their default values and
makes sure that the class invariant is true. If you want to set an attribute to a
custom value you can do so by setting it after the call to make_with_defaults.

The creation procedure from the template takes an argument of type
PREFERENCE_MANAGER. This is used for initializing preferences that are speci�c
to your rule. Such preferences usually represent integral or boolean values. If
you do not need any custom preferences then you can leave out the argument
a_pref_manager of make and you can remove the whole initialize_options fea-
ture.

AST Processing

The main part of your rule implementation consists of checking the source code
for rule violations. Say, for example, that you want to check if instructions
to have certain properties. Then you would add a feature like process_if

(a_if_ast: IF_AS) to the section Rule checking. Also, you would need to modify
the register_actions feature by adding the line

a_checker.add_if_pre_action (agent process_if).

Of course you may register as many such agents as you want.

Properties

The title and the description of the rule may be constant strings, they may also
be localized strings. The rule ID must be unique among all rules. It should not
contain spaces and should be reasonably short. The main rules that come with
Inspector Eiffel have IDs that are numbered from CA001 to CA999 (many
of which are not used).

Implementation - Adding New Rules 53

Listing 4.20: Using TEXT_FORMATTER.

1 a_formatter.add ("Feature ")

2 if attached {STRING_32} a_violation.long_description_info.first as

l_feat_name then

3 a_formatter.add_feature_name (l_feat_name , a_violation.

affected_class)

4 end

5 a_formatter.add (" is very long.")

Formatted Violation Description

A rule should be able to produce a formatted description of a concrete rule
violation. This description is for example used in the Inspector Eiffel tool
panel of the GUI. There, class names and feature names are enabled for pick-
and-drop. Variable names, numbers, and strings will be displayed in a nice
way, too. In addition, this description is used in command line mode. In order
to produce normal, unformatted text, use {TEXT_FORMATTER}.add. For adding
formatted elements use features like:

• {TEXT_FORMATTER}.add_local,

• {TEXT_FORMATTER}.add_feature_name,

• and similar.

You should store all the data you need for this description (variables names,
numbers, etc.) in {CA_RULE_VIOLATION}.long_description_info.
format_violation_description can then retrieve this data for the formatted out-
put. Listing 4.20 shows a simple example of producing a formatted description.

4.4.2 More Customized Rules

For rules that do not �t into a simple AST visitor scheme you best inherit
your rule from CA_STANDARD_RULE, too. You can for example register agents that
are called when a class or a feature is processed. Based on these agents you
can perform your customized analysis on the classes and/or features. Using
multiple inheritance or aggregation it should hardly be a problem to include
any functionality you need for your analysis.

4.4.3 Accessing Type Information

The AST classes do not contain type information. Suppose your rule processes
function calls. Feature calls in the AST do not contain any information on the
types, such as the type of the result.

The Inspector Eiffel framework however provides functionality to re-
trieve the type of AST nodes. Before the analyzer lets a class be analyzed by

Implementation - Adding New Rules 54

all the rules it computes the types of the AST nodes of a class. Hence this data
will be available to your rule afterwards.

While your rule is being checked you can retrieve the type of node a_node

from feature a_feature by calling

current_context.node_type (a_node: AST_EIFFEL a_feature: FEATURE_I).

{CA_RULE}.current_context is of type CA_ANALYSIS_CONTEXT and contains other
information about current rule checking, too, such as the currently processed
class or the matchlist for this class.

4.4.4 Accessing the Control Flow Graph

Some kinds of static code analysis need and use the control �ow graph of a
program. The Inspector Eiffel framework supports rules that use the control
�ow graph. If there is at least one such rule, Inspector Eiffel computes the
control �ow graph of the procedures of the analyzed class before letting the rule
check this class.

Worklist Algorithms

Control �ow graph rules iterate over the control �ow graph. They do it using
a worklist�a list of CFG edges that remain to be processed. At the beginning,
the worklist contains all edges of the control �ow graph. The algorithm will
pick edges from the worklist for processing in an arbitrary order. The iteration
stops as soon as there are no more edges left in the worklist. How will the
worklist get smaller? Each edge that is processed is removed from the worklist.
After processing you will have to decide dynamically whether to add all the
outgoing (or incoming, depending on the direction) edges to the worklist. Like
this you can take the fact into account that some analyses need certain edges
to be processed more than once (a �xpoint iteration is such an example).

Implementation

A control �ow analysis may iterate in either direction. For a forward-directed
analysis inherit your rule from CA_CFG_FORWARD_RULE, for a backward analysis use
CA_CFG_BACKWARD_RULE instead. In either case you will then have to implement
the following deferred features:

initialize_processing (a_cfg: attached CA_CONTROL_FLOW_GRAPH)�This is
called before a routine is processed using the worklist. Essentially you may use
it to initialize and prepare all the data structures you will need during analysis.

visit_edge (a_from, a_to: attached CA_CFG_BASIC_BLOCK): BOOLEAN�This
will be called when an edge is being visited. Here, you can put the analysis. If
you let Result = False then no further edges will be added to the worklist. If
in contrary you let Result = True then edges will be added to the worklist: In
a forward analysis all the outgoing edges of the current one will be added; in a
backward analysis all the incoming edges will be added.

Implementation - UI Implementation 55

Non-Worklist Algorithms

If your control �ow graph does not �t into the structure of an algorithm as
described above you may directly inherit from CA_CFG_RULE and implement the
feature process_cfg (a_cfg: attached CA_CONTROL_FLOW_GRAPH) (in addition to
the features explained above). In this case you do not have to use a worklist;
basically you can process the control �ow graph in any way you want.

4.5 UI Implementation

4.5.1 Graphical User Interface

The classes of the graphical user interface of Inspector Eiffel are all located
in the interface cluster of Ei�elStudio, in the subfolder graphical → tools

→ code_analysis. The following is a short overview of what the single classes
do:

ES_CODE_ANALYSIS_TOOL�Represents the Inspector Eiffel GUI tool. The
relevant things it contains are the tool title and the icon.

ES_CODE_ANALYSIS_TOOL_PANEL � The graphical panel for the Inspector

Eiffel tool. It contains buttons, labels, the rule violations table view, and
other user interface elements.

ES_CODE_ANALYSIS_COMMAND � The command to launch Inspector Eiffel.
It can be added to toolbars and menus. It can be executed using stones. This
class also handles the caching (see Section 4.5.1).

ES_CODE_ANALYSIS_BENCH_HELPER � A helper class for the integration of In-
spector Eiffel. It contains shared instances of CA_CODE_ANALYZER and
ES_CODE_ANALYSIS_COMMAND, which are used by the GUI.

ES_CA_SHOW_PREFERENCES_COMMAND�The command is used by the Preferences
button in the panel.

ES_CA_FIX_EXECUTOR � This class �xes a rule violation that has been found
by Inspector Eiffel.

Figure 4.2 shows the relevant class relations for the Inspector Eiffel GUI.

Caching

It is a common case that GUI users run Inspector Eiffel again after having
made some changes to the code. We do not need to analyze the same un-
changed code again and again. Therefore Inspector Eiffel caches the results
in memory. This only applies to the GUI mode.

Inspector Eiffel uses cached results exactly in one case: when the whole
system is analyzed and the previous analysis was on the whole system, too.

The caching functionality is implemented in ES_CODE_ANALYSIS_COMMAND.
When the command for analyzing the system is executed, the timestamps of

Implementation - UI Implementation 56

Figure 4.2: The relevant class relations of the Inspector Eiffel GUI.

the last modi�cation of the classes are stored in
analysis_timestamp : HASH_TABLE [INTEGER, CLASS_I]

before the analysis. Note that the cached results (the rule violations) themselves
are managed by CA_CODE_ANALYZER. The only di�erence to a non-cached analysis
is that the rule violations are not deleted by ES_CODE_ANALYSIS_COMMAND before
the next analysis. Then, in case the next command is also for analyzing the
whole system, the current timestamps are compared to the stored timestamps.
Any class that has been changed in the meantime will be analyzed again; for
any unchanged class the rule violations are taken from the cache.

Example Command: Analyzing One Class

We will now roughly go through the code that is executed on the GUI part
when the user wants to analyze a single class. As mentioned in Section 2.5.1,
this can be done using the class context menu or by dropping the class stone on
the button Analyze Item.

In either case {ES_CODE_ANALYSIS_COMMAND}.execute_with_stone is called,
which delegates to execute_with_stone_content (shown in Listing 4.21). If there
are modi�ed unsaved windows, a save con�rmation dialog is displayed. Eventu-
ally program �ow passes on to compile_and_analyze, shown in Listing 4.22.

eiffel_project.quick_melt starts the compilation. A successful compilation
is required for code analysis; otherwise nothing is analyzed. After compilation
has succeeded we check if Inspector Eiffel is already running. If this is the
case then a dialog is displayed. If on the other hand this last possible obstacle
is not present we �nally start analyzing by calling perform_analysis, shown in
Listing 4.23 (the code that deals with stones other than classes is omitted).

Implementation - UI Implementation 57

Listing 4.21: Code for the command for analyzing a single class.

1 execute_with_stone (a_stone: STONE)

2 −− Execute with ` a_stone ' .
3 do

4 execute_with_stone_content (a_stone , Void)

5 end

6
7 execute_with_stone_content (a_stone: STONE; a_content: SD_CONTENT)

8 −− Execute with ` a_stone ' .
9 local

10 l_save_confirm: ES_DISCARDABLE_COMPILE_SAVE_FILES_PROMPT

11 l_classes: DS_ARRAYED_LIST [CLASS_I]

12 do

13 −− Show the t o o l r i g h t from the s t a r t .
14 show_ca_tool

15
16 if not eiffel_project.is_compiling then

17 if window_manager.has_modified_windows then

18 create l_classes.make_default

19 window_manager.all_modified_classes.do_all (agent l_classes

.force_last)

20 create l_save_confirm.make (l_classes)

21 l_save_confirm.set_button_action (l_save_confirm.

dialog_buttons.yes_button , agent

save_compile_and_analyze (a_stone))

22 l_save_confirm.set_button_action (l_save_confirm.

dialog_buttons.no_button , agent compile_and_analyze (

a_stone))

23 l_save_confirm.show_on_active_window

24 else

25 compile_and_analyze (a_stone)

26 end

27 end

28 end

Listing 4.22: {ES_CODE_ANALYSIS_COMMAND}.compile_and_analyze

1 compile_and_analyze (a_stone: STONE)

2 −− Compile p r o j e c t and perform ana l y s i s o f s tone ` a_stone ' .
3 local

4 l_helper: ES_CODE_ANALYSIS_BENCH_HELPER

5 l_dialog: ES_INFORMATION_PROMPT

6 do

7 −− Compile the p r o j e c t and only ana lyze i f the compi la t ion
was s u c c e s s f u l .

8 eiffel_project.quick_melt (True , True , True)

9 if eiffel_project.successful then

10 create l_helper

11 if l_helper.code_analyzer.is_running then

12 create l_dialog.make_standard (ca_messages.

already_running_long)

13 l_dialog.show_on_active_window

14 else

15 perform_analysis (a_stone)

16 end

17 end

18 end

Implementation - UI Implementation 58

Listing 4.23: {ES_CODE_ANALYSIS_COMMAND}.perform_analysis

1 perform_analysis (a_stone: STONE)

2 −− Analyze ` a_stone ' only .
3 local

4 l_helper: ES_CODE_ANALYSIS_BENCH_HELPER

5 l_scope_label: EV_LABEL

6 do

7 −− For s imp l i c i t y l e t us assume that ` a_stone ' does not
8 −− correspond to the system or i s equ iva l en t to i t .
9 last_was_analyze_all := False

10
11 create l_helper

12 code_analyzer := l_helper.code_analyzer

13 code_analyzer.clear_classes_to_analyze

14 code_analyzer.rule_violations.wipe_out

15
16 l_scope_label := ca_tool.panel.scope_label

17
18 if attached {CLASSC_STONE} a_stone as s then

19 code_analyzer.add_class (s.class_i.config_class)

20 l_scope_label.set_text (s.class_name)

21 l_scope_label.set_foreground_color (create {EV_COLOR }.

make_with_8_bit_rgb (140, 140, 255))

22 l_scope_label.set_pebble (s)

23 l_scope_label.set_pick_and_drop_mode

24 l_scope_label.set_tooltip (ca_messages.class_scope_tooltip)

25 elseif [...]

26 [...]

27 end

28
29 disable_tool_button

30 window_manager.display_message (ca_messages.status_bar_running)

31 code_analyzer.add_completed_action (agent analysis_completed)

32 code_analyzer.analyze

33 end

Implementation - UI Implementation 59

Listing 4.24: Invocation of the command-line version of code analysis.

1 elseif option.is_equal ("-code -analysis") then

2 l_at_args := arguments_in_range (current_option + 1,

argument_count)

3 current_option := argument_count + 1

4 create {EWB_CODE_ANALYSIS} command.make_with_arguments (l_at_args

)

At the start of the routine the code analyzer instance is retrieved from the
helper class. All classes that may have been added before, are removed. All
previous rule violations are removed as well. The if clause creates a stone for
the Last Scope label in the graphical panel. Then, the button in the tool is
disabled so that starting another analysis is prevented until the current one
has completed. Finally, the analysis is started. As soon as the analysis has
completed {ES_CODE_ANALYSIS_COMMAND}.analysis_completed is called. In this
procedure the rule violations (and possibly the exceptions) are retrieved from
the code analyzer and displayed in the list in the tool panel.

4.5.2 Command-Line Interface

The whole command-line functionality of Inspector Eiffel is located in
the class EWB_CODE_ANALYSIS. It is located in the tty cluster of Ei�elStudio.
EWB_CODE_ANALYSIS is invoked by ES, the root class for the batch (command-line)
version of Ei�elStudio. In ES, the invocation looks as shown in Listing 4.24.

Any command-line arguments after -code-analysis are passed on to
EWB_CODE_ANALYSIS. This class, in its creation procedure, processes the argu-
ments as described in Section 2.4. Classes that were passed as command-line
arguments are added to the analyzer. Then the actual execution happens in
the procedure execute. EWB_CODE_ANALYSIS of course uses the code_analysis

library and the previously described interface of CA_CODE_ANALYZER. After anal-
ysis a list of rule violations is output to the command-line. The relevant code
is shown in Listing 4.25.

Implementation - UI Implementation 60

Listing 4.25: Command-line output.

1 across l_code_analyzer.rule_violations as l_vlist loop

2 if not l_vlist.item.is_empty then

3 l_has_violations := True

4 −− Always s o r t the ru l e v i o l a t i o n s by the c l a s s they are
r e f e r r i n g to .

5 output_window.add (ca_messages.cmd_class + l_vlist.key.name + "

':%N")

6
7 −− See `{CA_RULE_VIOLATION} . i s_ l e s s ' f o r in fo rmat ion on the

s o r t i n g .
8 across l_vlist.item as ic loop

9 l_rule_name := ic.item.rule.title

10 l_rule_id := ic.item.rule.id

11 if attached ic.item.location as l_loc then

12 l_line := ic.item.location.line.out

13 l_col := ic.item.location.column.out

14 output_window.add (" (" + l_line + ":" + l_col + "): "

15 + l_rule_name + " (" + l_rule_id + "): ")

16 else −− No l o c a t i o n attached . Pr int without l o c a t i o n .
17 output_window.add (" " + l_rule_name + " (" + l_rule_id +

"): ")

18 end

19 ic.item.format_violation_description (output_window)

20 output_window.add ("%N")

21 end

22 end

23 end

24
25 if not l_has_violations then output_window.add (ca_messages.

no_issues + "%N") end

Chapter 5

Conclusions

5.1 Conclusions

Our code analysis framework is capable of detecting many di�erent issues in
Ei�el source code. The fact that many implementations of rules are very short
strongly supports our claim that Inspector Eiffel is simple to extend. The
framework supports the functionality required for code analysis, as it has been
used successfully by Inspector Eiffel. Inspector Eiffel has been success-
fully integrated in Ei�elStudio and will be part of the next o�cial release.

Our case studies show that our tool points to a signi�cant number of actual
code issues, and we were able to propose improvements. According to our
statistics, Ei�elBase has the highest code quality of all three external projects
we investigated. This is a satisfactory result given that Ei�elBase contains
fundamental structures and algorithms of Ei�el. Ei�elVision has only a slightly
higher number of issues, whereas for the cluster from Ei�elStudio we measured
a signi�cantly lower code quality.

5.2 Future Work

Amongst the rules in Appendix A there are 54 rules that we de�ned but did
not implement. Adding these rules to Inspector Eiffel will make it more
useful and more complete. Some of the drafted rules are already in the process
of being implemented by other people.

Enabling automatic �xes for more rules�also for the ones that have already
been implemented�is another important improvement. It leads to a greater as-
sistance during the software development process. Additionally, we can imagine
a more interactive �xing implementation: One could for example see a preview
of the code as it will look once it has been �xed; one should be able to undo
�xes and make the rule violation appear again.

We could make the connection to the code editor closer. Rule violations

61

Conclusions - Related Work 62

could be marked directly in the code, making the code re�nement process more
visual and more interactive (similar functionality can be seen for example in
[21]).

We think that a �nal goal of assistance and veri�cation tools is to be inte-
grated well enough so that they seem unseparated. If they do not appear as a
separate tool but as an integral part of the IDE (i. e., the editor, or whatever
it will be in the future of programming) then the hurdle and fear of constantly
using the tools while programming might disappear.

5.3 Related Work

Ei�elStudio has other components that cover analysis and testing of software:
AutoProof, AutoTest and AutoFix. AutoProof statically veri�es programs using
Hoare-style proofs [16]. AutoTest is a dynamic analysis tool that does random
testing [9]. AutoFix [17] automatically generates and validates �xes for software
faults based on the results of AutoTest.

Several tools use static program analysis to detect code issues in languages
other than Ei�el. They support Java, C# and VB.NET, as well as other lan-
guages. SonarCubeTM [20] is an open platform to manage code quality, thereby
it uses static program analysis extensively. It supports Java, C#, C++, and
many more languages. PMD [19] is a rule-based static code analyzer for Java,
JavaScript, XML, and XSL. FxCop [22] from Microsoft performs static analysis
of .NET code. It analyzes the object code rather than the source code. It was
published both as a standalone tool and as a part in some integrated devel-
opment environments from Microsoft. ReSharper from the company JetBrains
[21] is a productivity tool for Microsoft Visual Studio that contains rule-based
static analysis as one of its main features.

Appendix A

Rules

The following rules were proposed during the project, mostly before the imple-
mentation of Inspector Eiffel started. Hoping that the list is as comprehen-
sive as possible�related to the Ei�el language�, it is not (and probably will
never be) complete. One may always come up with more kinds of static analysis
that would �t in our framework. Still we think that the important issues are
all covered. Some rules might be controversial, especially the ones which are
marked to be disabled by default and the ones that concern programming style.
We are fully aware that programming style is to some extent a matter of taste.

The rules that have been implemented have the number in bold text1.

Although many of the rules are speci�c to the Ei�el language and method,
this list was partially inspired by our experience with the Java and C# static
code analysis tools [19] and [21].

Due to the many properties a rule has, there are two tables which contain
the exact same rules. The �rst table contains descriptions and classi�cations,
whereas the second table shows code examples and lists the options (parameters)
of the rules.

1The order of the rules is arbitrary. The numbering evolved during the project. Missing
numbers are intentional; some numbers are missing due to nonambiguous numbering during
the project.

63

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
6
4

A.1 List of Rules with Description and Classi�cation

Abbreviations:

En. � Enabled Is the rule enabled by default?

Sev. � Severity The proposed rule severity; (W)arning, (S)uggestion, or (H)int. (We did not classify any rule as an error.)

Appl. � Applicability Non-library classes (NL) and/or library classes (L).

Rule Scope Description En. Sev. Appl.

1 Self-assignment instruction Assigning a variable to itself is a meaningless instruction due to a typing error.
Most probably, one of the two variable names was misspelled. One example
among many others: the programmer wanted to assign a local variable to a class
attribute and used one of the variable names twice.
Cf. rule #71.

yes W NL, L

2 Unused argument feature A feature should only have arguments which are actually needed and used in the
computation.

no W NL, L

3 Feature never called system There is no use for a feature that is never called by any class (including the one
where it is de�ned).
� For attributes, see also rule #19.
� A �x is implemented, which removes the corresponding feature.

no W NL

4 No command-query separation
(possible function side e�ect)

class To the client of a class it is not important whether a query is implemented as an
attribute or as a function. When a class evolves an attribute may be changed into
a function, for example. A function should never change the state of an object.
A function containing a procedure call, assigning to an attribute, or creating an
attribute is a strong indication that this principle is violated. This rule applies
exactly in these three last-mentioned cases. There are rather exceptional but
sometimes useful class designs in which the externally visible state of an object
(i. e. the values of exported queries) does not change even though the function
contains a rule-violating instruction.
� Basically ensuring that no query changes the state of the current object or
calls a command.
� [11, p. 748�.]

yes W NL, L

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
6
5

Rule Scope Description En. Sev. Appl.

5 Object test with object test local
on read-only variable (locals,
object test locals, arguments)

feature The attached syntax prevents the program from calling a feature on a void ref-
erence. This is useful for attributes for they might be set to void by another
feature, either in the code before the critical call or even by another thread. For
local variables and feature arguments it is unnecessary to let the attached key-
word create a new and safe local reference. Instead one should use a Certi�ed
Attachment Pattern [10].
A �x is implemented, which removes the object test local.

yes S NL, L

6 Object test typing not needed system An object test is redundant if the static type of the tested variable is the same
as the type (in curly braces) that the variable is tested for.
Cf. rule #5.

yes S NL, L

7 Object test always failing system An object test will always fail if the type that the variable is tested for does not
conform to any type that conforms to the static type of the tested variable. The
whole if block will therefore never be executed and it is redundant.

8 Non-reinitializing of variable used
in a loop

feature Forgetting to re-initialize a variable in a loop may lead to errors that are often
di�cult to detect (without code analysis).
If the variable i was used previously in the code, we most likely need to reinitialize
it to a sensible value especially if the loop is part of a larger loop.

9 Useless contract with void-safety class If a certain variable is declared as attached, either explicitly or by the project
setting �Are types attached by default?� then a contract declaring this variable
not to be void is useless. This rule only applies if void safety is enabled in the
project settings.
If code is compiled in void-safe mode, we should remove contracts related to
checking void-safe properties.

10 High complexity of nested
branches and loops

feature With the number of nested branches or loops increasing, the code get less read-
able. If the branch and loop complexity is high then the code should be refactored
in such a way as to reduce its complexity.

yes W NL, L

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
6
6

Rule Scope Description En. Sev. Appl.

11 Many feature arguments feature A feature that has many arguments should be avoided since it makes the class
interface complicated and it is not easy to use. The feature arguments may
include options, which should be considered to be moved to separate features.
Interfaces of features with a large number of arguments are complicated, in the

sense for example that they are hard to remember for the programmer. Often
many arguments are of the same type (such as INTEGER). So, in a call, the passed
arguments are likely to get mixed up, too, without the compiler detecting it.
Arguments where in most of the cases the same value is passed�the default

value�are called options. As opposed to operands, which are necessary in each
feature call, each option should be moved to a separate feature. The features
for options can then be called before the operational feature call in order to set
(or unset) certain options. If a feature for an option is not called then the class
assumes the default value for this option.
[11, p. 764�.]

yes W NL, L

12 Missing creation procedure with
no arguments

class In most of the cases a class that has at least one creation procedure with argu-
ments should also have a creation procedure with no arguments. Arguments of
creation procedures most often are some initializing data or options. Normally,
one should be able to create a class with empty initializing data, where the client
can set or add the data later. For options, an argumentless creation procedure
may assume default values.

S

13 Creation procedure is exported
and may be called after object
creation

class If the creation procedure is exported then it may still be called by clients after the
object has been created. Usually, this is not intended and ought to be changed.
A client might, for example, by accident call x.make instead of create x.make,
causing the class invariant or postconditions of make to not hold any more.

yes W NL, L

14 Unused local variable feature A routine should only de�ne local variables that are actually needed and used in
the computation.
(Already done by the compiler.)

W

15 Double negation instruction A double negation appearing in an expression can be safely removed. It is also
possible that the developer has intended to put a single negation and the instruc-
tion is erroneous.

16 Empty loop instruction A loop with an empty body should be removed. In most of the cases the loop
never exits.

17 Empty conditional instruction instruction An empty conditional instruction is useless and should be removed. yes W NL, L

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
6
7

Rule Scope Description En. Sev. Appl.

19 Attribute never gets assigned class An attribute that never gets assigned will always keep its default value.
See also rule #3.

20 Variable not read after assignment feature An assignment to a local variable has no e�ect at all if the variable is not read
after the assignment, and before it is reassigned or out of scope.

yes W NL, L

21 Loop invariant computation
within loop

instruction A loop invariant computation that lies within a loop should be moved outside the
loop.

22 Unreachable code feature Code that will never be executed should be removed. It may be there for debug
purposes or due to a programmer's mistake. One example is a series of instruc-
tions (in the same block) which follows an assertion that always evaluates to
false.

23 Unneeded parentheses instruction Parentheses that are not needed should be removed. This helps enforcing a con-
sistent coding style.
One might consider allowing expressions like in z := (z + 3) and only forbid-
ding z := ((z + 3)) and alike.

yes S NL, L

24 From-until loop on ITERABLE can
be reduced to across loop

instruction A from-until loop iterating through an ITERABLE data structure from beginning
to end can be transformed into a (more recommendable) across loop.

yes S NL, L

25 Semicolon to separate arguments feature Routine arguments should be separated with semicolons. Although this is op-
tional, it is bad style not to put semicolons.

yes S NL, L

28 Two if instructions can be
combined using short-circuit
operator

instruction Two nested if instructions, both not having an else clause, should be combined
into a single if instruction using the short circuit and then operator.

yes S NL, L

29 Object test or non-void test
always succeeds

instruction For an attached variable object tests and non-void tests always succeed. The
tests should be removed.

30 Unnecessary sign operand instruction All unary operands for numbers are unnecessary, except for a single minus sign.
They should be removed or the instruction should be checked for errors.

31 Explicit inheritance from ANY class Inheritance with no adaptations from the ANY class need not explicitly be de�ned.
This should be removed.

H

32 Very long routine implementation feature A routine implementation that contains many instructions should be shortened.
It might contain copy-and-pasted code, or computations that are not part of what
the feature should do, or computation that can be moved to separate routines.

yes W NL, L

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
6
8

Rule Scope Description En. Sev. Appl.

33 Very big class class A class declaration that is very large (not including inherited features) may be
problematic. The class might provide features it is not responsible for.

yes W NL, L

34 High NPATH complexity feature NPATH is the number of acyclic execution paths through a routine. A routine's
NPATH complexity should not be too high. In order to reduce the NPATH
complexity one can move some functionality to separate routines.
� [14]
� Cf. rule #91.

yes W NL, L

35 Feature section not commented class A feature section should have a comment. This comment serves as caption and
is used for example by the `Features' panel.

no S NL, L

36 Feature not commented feature A feature should have a comment. Feature comments are particularly helpful for
writing clients of this class. To the programmer, feature comments will appear
as tooltip documentation.

no S NL, L

37 Undesirable comment content comment Under some circumstances it might be desirable to keep a certain language level.
Imaginable cases include source code that will be visible to people outside the
company or that will even be released publicly.

no W

38 Empty argumentless creation
procedure can be removed

class If there exists only one creation procedure in a class and this procedure takes
no arguments and has an empty body then the creation procedure should be
considered to be removed. Note that in this case all the clients of the class need
to call create c instead of create c.make, where c is an object of the relevant
class and make is its creation procedure.

no S

39 Indication of high class coupling class A too high number of di�erent types appearing in a class (types of attributes,
argument, local variables, results) is a strong indicator for high coupling between
classes.

W

40 Command call on object returned
from query (high coupling)

feature On an object that has been obtained from a previous query on another object
no command should be called. This is one of the forms of high coupling between
objects, which should be avoided. One way to avoid such chained calls is by
creating delegate methods.

no W

41 Boolean result can be returned
directly

feature For a boolean result there is no need for an if/else clause with Result := True

and Result := False, respectively. One can directly assign the if condition (or
its negation) to the result.

yes S NL, L

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
6
9

Rule Scope Description En. Sev. Appl.

42 Unneeded comparison of boolean
variables or queries

instruction In expressions, boolean variables or queries need not be compared to True or
False.
There may be other cases where a boolean expression can be simpli�ed in a rea-
sonable way.

yes S NL, L

43 Deeply nested if instructions instruction Deeply nested if instructions make the code less readable. They should be
avoided; one can refactor the a�ected code by changing the decision logic or
by introducing separate routines.

yes W NL, L

44 Many instructions in an inspect

case
instruction A case of an inspect construct containing many instructions decreases code read-

ability. The number of instructions should be lowered, for example by moving
functionality to separate features.

yes S NL, L

45 Comparison of {REAL}.nan instruction To check whether a REAL object is �NaN� (not a number) a comparison using
the = symbol does not yield the intended result. Instead one must use the query
{REAL}.is_nan.

W

46 Avoid `not equal' in if-else

instructions
instruction Having an if-else instruction with a condition that checks for inequality is not

optimal for readability. Instead an equality comparison should be made. Refac-
toring by negating the condition and by switching the instructions solves this
issue.

yes S NL, L

47 Void-check using is_equal instruction Checking a local variable or argument to be void should not be done by calling
is_equal but by the = or /= operators.

W

48 Attribute can be made constant class An attribute that is assigned the same value by every creation procedure but not
assigned by any other routine can be made constant.
Cf. rule #19.

S

49 Comparison of object references instruction The = operator always compares two object references by checking whether they
point to the same object in memory. In the majority of cases one wants to
compare the object states, which can be done by the ~ operator.

W

50 Local variable only used for result feature In a function, a local variable that is never read and that is not assigned to any
variable but the result can be omitted. Instead the result can be directly used.

51 Empty and uncommented routine feature A routine which does not contain any instructions and has no comment too indi-
cates that some implementation might be missing there.
The routine may also be one of the creation procedures.

H

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
7
0

Rule Scope Description En. Sev. Appl.

52 Number of elements of a structure
is compared to zero

instruction In a data structure, comparing the number of elements to zero can be transformed
into the boolean query is_empty.
We must check for all descendants of FINITE, since both count and is_empty are
de�ned there.

yes S NL, L

53 Empty routine in deferred class feature A routine with an empty body in a deferred class should be considered to be
declared as deferred. That way it will not be forgotten to implement the routine
in the descendant classes and errors can be avoided.

no S NL, L

54 Attribute is only used inside a
single routine

class An attribute that is only used inside a single routine of the class where it is
de�ned (and that is not read by any other class) can be transformed into a local
variable.

yes S NL, L

55 Result of structure is void feature In some cases, a query that returns a data structure is not returning any elements.
Then, instead of setting the Result to void one should consider to assign the Result
an empty data structure instead.

no S

56 inspect instruction has few
branches

instruction In order to increase readability, an inspect instruction that contains only very
few branches should be converted to an if-elseif instruction.

S

57 Simpli�able boolean expression instruction Some negated boolean expressions can be simpli�ed using the inverse comparison
operator.
� not (a < b) → a >= b

� not (a <= b) → a > b

� not (a > b) → a <= b

� not (a >= b) → a < b

� not (a = b) → a /= b

� not (a /= b) → a = b

� not (a ~ b) → a /~ b

� not (a /~ b) → a ~ b

yes S NL, L

58 �God� class A �God� class is a large and complex class that heavily accesses data of other
simpler classes and has a low cohesion between its features. Such a class is
potentially harmful to the design of the system.
[7, p. 80�.]

59 Empty rescue clause feature An empty rescue clause should be avoided and leads to undesirable program
behavior.

W

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
7
1

Rule Scope Description En. Sev. Appl.

60 inspect instruction has no when

branch
instruction An inspect instruction that has no when branch must be avoided. If there is

an else branch then these instructions will always be executed: thus the multi-
branch instruction is not needed. If there is no branch at all then an exception
is always raised, for there is no matching branch for any value of the inspected
variable.

W

61 Very short identi�er instruction A name of a feature, an argument, or a local variable that is very short is bad for
code readability.

no S NL, L

62 Very long identi�er instruction A name of a feature, an argument, or a local variable that is very long is bad for
code readability.

no S NL, L

63 Class naming convention violated instruction Upholding naming conventions is one of the elements of a consistent coding style
and enhances readability.
Since this convention is very widespread in the Ei�el world, providing options
for alternative conventions (CamelCase etc.) is not intended.

no

64 Feature naming convention
violated

instruction Upholding naming conventions is one of the elements of a consistent coding style
and enhances readability.
Since this convention is very widespread in the Ei�el world, providing options
for alternative conventions (CamelCase etc.) is not intended.

65 Local variable naming convention
violated

instruction Upholding naming conventions is one of the elements of a consistent coding style
and enhances readability.

66 Argument naming convention
violated

instruction Upholding naming conventions is one of the elements of a consistent coding style
and enhances readability.

67 Formal generic parameter name
has more than one character

class Names of formal generic parameters in generic class declarations should only have
one character.

68 Object creation within loop instruction Creating objects within a loop may decrease performance. On such an occurrence
it should be checked whether the object creation can be moved outside the loop.

H

70 Creation procedure initializes
attribute to default value

class Assigning an attribute its default value (e. g. 0 for INTEGER) in creation proce-
dures is not needed. Default values are assigned during object creation anyway.
This instruction can be removed.

H

71 Self-comparison instruction An expression comparing a variable to itself always evaluates to the same boolean
value. The comparison is thus redundant. In an until expression it may lead to
non-termination. Usually it is a typing error.
Cf. rule #1.

yes W NL, L

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
7
2

Rule Scope Description En. Sev. Appl.

72 Implicit string conversion instruction Concatenating a string variable (READABLE_STRING_GENERAL) and a string literal
causes an implicit conversion of the variable into a STRING_8 object. Through the
conversion, unicode characters will get lost.

W

73 Comment not well phrased comment The comment does not end with a period or question mark. This indicates that
the comment is not well phrased. A comment should always consist of whole
sentences.
Cf. rule #74.

NL, L

74 Indexing clause not well phrased class Some class indexing clauses such as description should be well phrased, i. e.
consist of whole sentences.
Cf. rule #73.

L

75 Exported feature never called
outside class

system An exported feature that is used only in unquali�ed calls may be changed to
secret.

NL

76 Incomplete feature comment feature The feature comment should mention all the feature arguments.

77 Unused inheritance system A class has an inheritance link that is used neither for implementation nor for
polymorphism. This inheritance link should be removed.

78 Unused subtyping system A class uses an inheritance link only for implementation. Consider making this
inheritance secret.

79 Unneeded accessor function class In Ei�el, it is not necessary to use a secret attribute together with an exported
accessor (`getter') function. Since it is not allowed to write to an attribute from
outside a class, an exported attribute can be used instead and the accessor may
be removed.

80 TODO instruction A comment line starting with the string �TODO� or �To do� means remaining
work to be done.

yes S NL, L

81 Feature can be moved to ancestor system If all direct descendants of a class have the same implementation of a feature then
the feature can be moved to the common ancestor class.

NL, L

82 Missing is_equal rede�nition class The class de�nes {HASHABLE}.hash_code, but does not rede�ne is_equal.
is_equal may need to be rede�ned.

yes W NL, L

83 Unneeded expanded type creation instruction An object of an expanded type is explicitly created. Normally the creation is
performed automatically by run-time.

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

D
e
sc
r
ip
tio

n
a
n
d
C
la
ssi�

c
a
tio

n
7
3

Rule Scope Description En. Sev. Appl.

84 Class can be made expanded class An e�ective class without attributes that is used only as a collection of features
may be declared as expanded to avoid explicit object creation to call these fea-
tures.

85 Unneeded helper variable feature A variable that is assigned a value only once and is then used only once can be
replaced with the expression that computes this value. This applies as long as
the line where the expression is inserted will not have too many characters.
Cf. rule #86.

yes S NL, L

86 Introduce helper variable feature Common subexpressions may need to be refactored by assigning their value to a
local variable to reduce code complexity and make the values of the expressions
explicit. Also, whenever a line has too many characters, consider extracting the
longest expression into a local helper variable.
Cf. rule #85.

S NL, L

87 Mergeable conditionals feature Successive conditional instructions with the same condition can be merged. yes S NL, L

88 Mergeable feature clauses class Feature clauses with the same export status and comment maybe merged into
one.

89 Explicit redundant inheritance class Explicitly duplicated inheritance links are redundant if there is no renaming,
rede�ning, or change of export status. One should be removed.
Cf. rule #90.

S NL, L

90 Implicit redundant inheritance class Implicitly duplicated inheritance links are redundant if there is no renaming,
rede�ning, or change of export status. The direct ancestor can be removed.
Cf. rule #89.

S NL, L

91 High cyclomatic complexity feature Cyclomatic complexity measures the number of linearly independent paths
through a routine. A routine's cyclomatic complexity should not be too high.
In order to reduce the cyclomatic complexity one can move some functionality to
separate routines.
� [8]
� Cf. rule #34.

92 Wrong loop iteration instruction Often, from-until loops use an integer variable for iteration. Initialization, stop
condition and the loop body follow a simple scheme. A loop following this scheme
but violating it at some point is an indication for an error.

yes W NL, L

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

7
4

A.2 List of Rules with Sample Code

Rule Sample Code Replace By Options [default]

1 Self-assignment a := a Replace LHS or RHS by intended variable.

2 Unused argument feature double (n: INTEGER): INTEGER

do

Result := 2 * 2

end

Remove the argument (mind the callers) or
�x the code.

3 Feature never called

4 No command-query
separation (possible
function side e�ect)

feature width: INTEGER

do

height := height + 10

Result := 100 - height

end

Remove assignment to attribute height.

5 Object test with
object test local on
read-only variable
(locals, object test
locals, arguments)

if attached a_local as another_local

then

if a_local /= Void then

or
if attached a_local then

6 Object test typing not
needed

if attached {FOO} foo as l_foo

7 Object test always
failing

if attached {PERSON} a_string as

l_person then

Remove whole if clause.

8 Non-reinitializing of
variable used in a loop

from (...) until (...) loop

(...)

i := i + 1

end

9 Useless contract with
void-safety

feature foo (a: attached FOO)

require a /= Void

(...)

Remove useless contract.

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

7
5

Rule Sample Code Replace By Options [default]

10 High complexity of
nested branches and
loops

if a > 0 then

from j = 1 until j >= s loop

from k = 7 until k < 0 loop

if enable_check = True then

foo (k, j-1)

if log_level = 3 then

foobar

end

else

bar (2 * j)

end

k := k - 1

end

j := j + 1

end

end

� Complexity threshold [5]

11 Many feature
arguments

Client side [11, p. 766]:
my_document.print (printer_name,

paper_size, color_or_not,

postscript_level, print_resolution)

Client side [11, p. 767]:
my_document.set_printing_size

(paper_size)

my_document.set_color

my_document.print

� # arguments threshold [4]

12 Missing creation
procedure with no
arguments

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

7
6

Rule Sample Code Replace By Options [default]

13 Creation procedure is
exported and may be
called after object
creation

create

make

feature

make

do

(...)

end

other

do

(...)

end

create

make

feature {NONE} -- Init

make

do

(...)

end

feature -- Other

other

do

(...)

end

14 Unused local variable

15 Double negation if l_some_boolean and (not (not

l_other)) then

if l_some_boolean and l_other then

16 Empty loop from j := 1 until j > 100 loop

end

Remove it.

17 Empty conditional
instruction

if x And (a Or b) then

end

Remove it.

18 Unused routine

19 Attribute never gets
assigned

20 Variable not read after
assignment

l_x := 3

l_a := x.get_width (True)

l_x := x.get_height

Remove �rst line, for example.

21 Loop invariant
computation within
loop

across some_list as l_list loop

foo (l_list.item)

a := 4

end

across some_list as l_list loop

foo (l_list.item)

end

a := 4

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

7
7

Rule Sample Code Replace By Options [default]

22 Unreachable code (...)

check False end

x := 5

(...)

Remove code after check False end.

23 Unneeded parentheses if (z > 3) then z := (z - 5) end if z > 3 then z := z - 5 end

24 from-until loop on
ITERABLE can be
reduced to across loop

from list.start

until list.after

loop

(...)

list.forth

end

across list as l_list

loop

(...)

end

25 Semicolon to separate
arguments

f (a: INTEGER b: STRING) do end f (a: INTEGER; b: STRING) do end

28 Two if instructions
can be combined using
short-circuit operator

if l_user /= Void then

if l_user.age >= 18 then

foo

end

end

if l_user /= Void and then l_user.age >=

18 then

foo

end

29 Object test or
non-void test always
succeeds

if l_attached_var /= Void then

or
if attached attached_attribute as l_a

then

Remove conditional.

30 Unnecessary sign
operand

x := + 4

y := - -7

z := + - 9

x := 4

y := 7

z := -9

31 Explicit inheritance
from ANY

class FOO inherit ANY class FOO

32 Very long routine
implementation

� # instructions threshold
[70]

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

7
8

Rule Sample Code Replace By Options [default]

33 Very big class � # features threshold [20]
� # instructions threshold
[300]

34 High NPATH
complexity

� NPATH complexity
threshold [200]

35 Feature section not
commented

feature

set_size (size: INTEGER)

do

(...)

end

enable_transparency

do

(...)

end

feature -- Set Appearance

set_size (size: INTEGER)

do

(...)

end

enable_transparency

do

(...)

end

36 Feature not
commented

feature enable_transparency

do

(...)

end

feature enable_transparency

-- Enables transparency for the

current element and all of its children.

do

(...)

end

37 Undesirable comment
content

-- not working properly when running

on xyz configuration (to be fixed)

x.foo (bar)

� List of problematic strings
[�to be �xed�, . . .]
� Case sensitivity

38 Empty argumentless
creation procedure can
be removed

create

make

feature {NONE}

make

do

end

Remove make from create and feature
sections.

39 Indication of high
class coupling

�# di�erent types threshold
[25]

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

7
9

Rule Sample Code Replace By Options [default]

40 Command call on
object returned from
query (high coupling)

l_bar = foo.bar

bar.enable_transparency or equivalently
foo.bar.enable_transparency

(Probably requires creation of delegate
method.)
foo.enable_bar_transparency

41 Boolean result can be
returned directly

if x > 4 then

Result := False

else

Result := True

Result := (x <= 4)

42 Unneeded comparison
of boolean variables or
queries

if l_some_boolean = False then

do_something

end

if a.has_children = True then

(...)

if not l_some_boolean then

do_something

end

if a.has_children then

(...)

43 Deeply nested if

instructions
if attached {FOO} a.item as l_item then

if search_enabled then

if l_item.x > x_threshold then

(...)

� Minimum depth [3]

44 Many instructions in
an inspect case

inspect l_days_left

(...)

when 3 then

[10 instructions]

(...)

end

inspect l_days_left

(...)

when 3 then

show_warning

(...)

end

(...)

feature show_warning do

[10 instructions]

end

� # instructions threshold
[8]

45 Comparison of
{REAL}.nan

if my_real = {REAL}.nan then

(...)

if my_real.is_nan then

(...)

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

8
0

Rule Sample Code Replace By Options [default]

46 Avoid `not equal' in
if-else instructions

if x /= 3 then

(...)

else

(...)

end

if x = 3 then

(...)

else

(...)

end

47 Void-check using
is_equal

if a_list.is_equal (Void) then

or if not a_list.is_equal (Void) then

if a_list = Void then or if a_list /=

Void then

48 Attribute can be made
constant

feature

make do some_constant := 42 end

(...)

some_constant: INTEGER

feature

make do end

(...)

some_constant: INTEGER = 42

49 Comparison of object
references

if a = b then if a.is_equal (b) then

50 Local variable only
used for result

create l_list.make

if basic then

l_list.extend (x)

else

l_list.extend (y)

Result := l_list

create Result.make

if basic then

Result.extend (x)

else

Result.extend (y)

51 Empty and
uncommented routine

feature foo

do

end

feature foo

-- Empty body intentional - can be

redefined by descendant if needed.

do

end

52 Number of elements of
a structure is
compared to zero

if l_list.count /= 0 then

(...)

if not l_list.is_empty then

(...)

53 Empty routine in
deferred class

compute_mean

do

end

compute_mean

deferred

end

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

8
1

Rule Sample Code Replace By Options [default]

54 Attribute is only used
inside a single routine

55 Result of structure is
void

feature

violations_list: LINKED_LIST

do

if not_started then

Result := Void

else

(...)

feature

violations_list: LINKED_LIST

do

if not_started then

create Result.make

else

(...)

56 inspect instruction
has few branches

inspect l_list.count

when 1 then foo (l_list)

when 2 then bar (l_list)

end

if l_list.count = 1 then

foo (l_list)

elseif l_list.count = 2 then

bar (l_list)

� Minimum # branches re-
quired [3]

57 Simpli�able boolean
expression

if not (level > 3) then

(...)

if level <= 3 then

(...)

58 �God� class

59 Empty rescue clause

60 inspect instruction
has no when branch

inspect l_id

else

foo (l_id)

bar

end

foo (l_id)

bar

61 Very short identi�er � Minimum feature name
length [3]
� Minimum argument name
length [3]
� Minimum local name
length [3]
� Count argument pre�x
`a_' [true]
� Count local variable pre�x
`l_' [true]

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

8
2

Rule Sample Code Replace By Options [default]

62 Very long identi�er � Maximum feature name
length [30]
� Maximum argument name
length [20]
� Maximum local name
length [20]

63 Class naming
convention violated

64 Feature naming
convention violated

65 Local variable naming
convention violated

� Naming schema [`l_*']

66 Argument naming
convention violated

� Naming schema [`a_*']

67 Formal generic
parameter name has
more than one
character

class OPTIMIZER [CLNT]

(...)

class OPTIMIZER [G]

(...)

� Allow letters other than
`G' for classes with only
one formal generic parameter
[true]

68 Object creation within
loop

from j := 1 to n_items loop

create l_optimizer

l_optimizer.check (item.at (j))

end

create l_optimizer

from j := 1 to n_items loop

l_optimizer.check (item.at (j))

end

69 until expression in
loop always evaluates
to False

from j := 10 until j > j loop

(...)

j := j - 1

end

70 Creation procedure
initializes attribute to
default value

make

do

count := 0

(...)

end

Remove count := 0.

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

8
3

Rule Sample Code Replace By Options [default]

71 Self-comparison if a > a then

(...)

end

72 Implicit string
conversion

(target: READABLE_STRING_GENERAL

unicode_name: STRING_GENERAL)
target := "name: " + unicode_name

73 Comment not well
phrased

-- checks size of structure -- Checks the size of the structure.

74 Indexing clause not
well phrased

75 Exported feature never
called outside class

76 Incomplete feature
comment

77 Unused inheritance

78 Unused subtyping

79 Unneeded accessor
function

feature {NONE} -- Implementation

internal_value: INTEGER

feature -- Properties

value: INTEGER

do Result := internal_value end

feature -- Properties

value: INTEGER

80 TODO

81 Feature can be moved
to ancestor

82 Missing is_equal
rede�nition

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

8
4

Rule Sample Code Replace By Options [default]

83 Unneeded expanded
type creation

feature

foo

local

j: INTEGER

do

create j

j := 2

(...)

if bar then

create j

end

(...)

end

feature

foo

local

j: INTEGER

do

j := 2

(...)

if bar then

j := 0

end

(...)

end

84 Class can be made
expanded

85 Unneeded helper
variable

l_name := "yoda"

print (l_name)

print ("yoda") � Maximum allowed charac-
ters per line [80]

86 Introduce helper
variable

a_formatter.add_feature_name

(a_violation.long_description_info.first,

a_violation.affected_class)

l_inf :=

a_violation.long_description_info.first

a_formatter.add_feature_name (l_inf,

a_violation.affected_class)

� Maximum allowed charac-
ters per line [80]

87 Mergeable conditionals if a then

foo

else

bar

end

if a then

baz

end

if a then

foo

baz

else

bar

end

R
u
le
s
-
L
ist

o
f
R
u
le
s
w
ith

S
a
m
p
le
C
o
d
e

8
5

Rule Sample Code Replace By Options [default]

88 Mergeable feature
clauses

feature -- Properties

foo

do (...) end

(...)

feature -- Properties

width: INTEGER

feature -- Properties

foo

do (...) end

width: INTEGER

(...)

89 Explicit redundant
inheritance

class

APPLICATION

inherit

ARGUMENTS

MY_CLASS

ARGUMENTS

class

APPLICATION

inherit

ARGUMENTS

MY_CLASS

90 Implicit redundant
inheritance

class

MY_CLASS

inherit ARGUMENTS

(...)

class

APPLICATION

inherit

ARGUMENTS

MY_CLASS

class

MY_CLASS

inherit ARGUMENTS

(...)

class

APPLICATION

inherit MY_CLASS

91 High cyclomatic
complexity

92 Wrong loop iteration from j := 1 until j > 100 loop

foo (j)

j := j - 1

end

or
from j := 1 until j < 100 loop

foo (j)

j := j + 1

end

(both)
from j := 1 until j > 100 loop

foo (j)

j := j + 1

end

List of Figures

2.1 Data �ow in Inspector Eiffel. 12
2.2 The buttons in the tool panel. 18
2.3 Class context menu. 18
2.4 Cluster context menu. 19
2.5 Code analysis results. 20
2.6 Fixing a rule violation. 20
2.7 Preferences dialog. 21
2.8 Rule-speci�c preferences. 22

4.1 Framework class diagram. 38
4.2 GUI class diagram. 57

86

Listings

3.1 Extract from LIST. 25
3.2 From {OBJECT_GRAPH_TRAVERSABLE}.internal_traverse. . . . 25
3.3 Small extract from {CHARACTER_PROPERTY}.property. 25
3.4 From ISE_EXCEPTION_MANAGER. 26
3.5 Excerpt from {WEL_WINDOW}.process_message 28
3.6 A nontypical violation of �command-query separation�. 28
3.7 From {EV_EDITABLE_LIST}.is_vaild_text. 29
3.8 From EV_POSTSCRIPT_DRAWABLE_IMP. 29
3.9 Extract from CA_SELF_COMPARISON_RULE. 33
3.10 From CA_NPATH_RULE. 33
3.11 From CA_VARIABLE_NOT_READ_RULE. 33
3.12 From CA_UNNEEDED_HELPER_VARIABLE_RULE. 33
3.13 Extract from CA_CREATION_PROC_EXPORTED_RULE. 35
4.1 From {CA_CODE_ANALYZER}.analyze. 39
4.2 From CA_RULE_CHECKING_TASK. 40
4.3 �Pre� and �post� actions. 41
4.4 An AST visitor routine. 41
4.5 Analyzing a class in regard to standard rules. 42
4.6 {CA_SELF_COMPARISON_RULE}.analyze_self 43
4.7 {CA_SELF_COMPARISON_RULE}.process_comparison 43
4.8 Processing �binary� nodes in CA_SELF_COMPARISON_RULE 44
4.9 {CA_SELF_COMPARISON_RULE}.pre_process_loop 44
4.10 {CA_SELF_COMPARISON_RULE}.format_violation_description 45
4.11 Properties of CA_SELF_COMPARISON_RULE 45
4.12 Initialization in CA_SELF_COMPARISON_RULE 46
4.13 {CA_UNUSED_ARGUMENT_RULE}.register_actions 46
4.14 {CA_UNUSED_ARGUMENT_RULE}.process_feature 47
4.15 {CA_UNUSED_ARGUMENT_RULE}.process_body 47
4.16 Checking for unused arguments. 48
4.17 {CA_UNUSED_ARGUMENT_RULE}.post_process_body 49
4.18 {CA_UNUSED_ARGUMENT_RULE}.formatted_description 50
4.19 Standard rule template. 51
4.20 Using TEXT_FORMATTER. 54
4.21 Code for the command for analyzing a single class. 58
4.22 {ES_CODE_ANALYSIS_COMMAND}.compile_and_analyze 58
4.23 {ES_CODE_ANALYSIS_COMMAND}.perform_analysis 59
4.24 Invocation of the command-line version of code analysis. 60
4.25 Command-line output. 61

87

Bibliography

[1] Alfred V. Aho, Monica Lam, Ravi Sethi, and Je�rey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 2nd edition, 2007.

[2] Dennis M. Breuker, Jan Derriks, and Jacob Brunekreef. Measuring static
quality of student code. In Proceedings of the 16th Annual Joint Conference
on Innovation and Technology in Computer Science Education, ITiCSE '11,
pages 13�17, New York, NY, USA, 2011. ACM.

[3] Lamia Djoudi and William Jalby. Automatic analysis for managing and
optimizing performance-code quality. In Proceedings of the 2008 Workshop
on Static Analysis, SAW '08, pages 30�38, New York, NY, USA, 2008.
ACM.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[5] Robert Green and Henry Ledgard. Coding guidelines: Finding the art in
the science. Commun. ACM, 54(12):57�63, December 2011.

[6] Chaitanya Kothapalli, S. G. Ganesh, Himanshu K. Singh, D. V. Radhika,
T. Rajaram, K. Ravikanth, Shrinath Gupta, and Kiron Rao. Continual
monitoring of code quality. In Proceedings of the 4th India Software Engi-
neering Conference, ISEC '11, pages 175�184, New York, NY, USA, 2011.
ACM.

[7] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice.
Springer, 2006.

[8] Thomas J. McCabe. A complexity measure. IEEE Transactions on Soft-
ware Engineering, SE-2(4), December 1976.

[9] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Yi Wei, and E. Stapf. Programs
that test themselves. Computer, 42(9):46�55, Sept 2009.

[10] Bertrand Meyer. Ei�el: The Language. Prentice-Hall, 1991.

[11] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
2nd edition, 1997.

[12] Bertrand Meyer. More expressive loops for ei�el. http://bertrandmeyer.
com/2010/01/26/more-expressive-loops-for-eiffel/, March 2014.

88

http://bertrandmeyer.com/2010/01/26/more-expressive-loops-for-eiffel/
http://bertrandmeyer.com/2010/01/26/more-expressive-loops-for-eiffel/

[13] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[14] Brian A. Nejmeh. Npath: A measure of execution path complexity and its
applications. Communications of the ACM, 31(2), February 1988.

[15] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 2005.

[16] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Automatic veri�cation of advanced object-oriented features: The autoproof
approach. In Tools for Practical Software Veri�cation - LASER 2011, Inter-
national Summer School, volume 7682 of LNCS, pages 134�156. Springer,
2012.

[17] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand
Meyer, and Andreas Zeller. Automated �xing of programs with contracts.
In ISSTA '10: Proceedings of the 19th international symposium on Software
testing and analysis, pages 61�72, New York, NY, USA, 2010. ACM.

[18] Ei�elbase in the ei�el documentation. http://docs.eiffel.com/book/

solutions/eiffelbase, January 2014.

[19] Pmd. http://pmd.sourceforge.net/, March 2014.

[20] SonarcubeTM. http://www.sonarcube.org/, March 2014.

[21] Jetbrains resharper. http://www.jetbrains.com/resharper/, March
2014.

[22] Microsoft fxcop. http://www.microsoft.com/en-us/download/

details.aspx?id=6544, March 2014.

89

http://docs.eiffel.com/book/solutions/eiffelbase
http://docs.eiffel.com/book/solutions/eiffelbase
http://pmd.sourceforge.net/
http://www.sonarcube.org/
http://www.jetbrains.com/resharper/
http://www.microsoft.com/en-us/download/details.aspx?id=6544
http://www.microsoft.com/en-us/download/details.aspx?id=6544

	1 Introduction
	2 Inspector Eiffel
	2.1 Method
	2.1.1 Framework
	2.1.2 Interface

	2.2 Rules
	2.2.1 Classification

	2.3 User Interfaces
	2.4 Command-Line Mode
	2.4.1 Execution
	2.4.2 Output

	2.5 Graphical User Interface
	2.5.1 Running Inspector Eiffel
	2.5.2 Using Analysis Results
	2.5.3 Customization

	3 Case Studies
	3.1 EiffelBase
	3.1.1 Results Overview
	3.1.2 Notable Rule Violations
	3.1.3 Proposals

	3.2 EiffelVision
	3.2.1 Results Overview
	3.2.2 Notable Rule Violations
	3.2.3 Proposals

	3.3 EiffelStudio
	3.3.1 Results Overview
	3.3.2 CLASS_C In Detail

	3.4 Self-Analysis
	3.4.1 Results Overview
	3.4.2 Commentary

	4 Implementation
	4.1 Library Implementation
	4.1.1 Class Relations
	4.1.2 Interface
	4.1.3 Rule Checking

	4.2 Example: Rule #71: Self-Comparison
	4.3 Example: Rule #2: Unused Argument
	4.4 Adding New Rules
	4.4.1 Standard Rules
	4.4.2 More Customized Rules
	4.4.3 Accessing Type Information
	4.4.4 Accessing the Control Flow Graph

	4.5 UI Implementation
	4.5.1 Graphical User Interface
	4.5.2 Command-Line Interface

	5 Conclusions
	5.1 Conclusions
	5.2 Future Work
	5.3 Related Work

	A Rules
	A.1 List of Rules with Description and Classification
	A.2 List of Rules with Sample Code

