
Model-based Contracts for C#

Bachelor Thesis

By: Tobias Kiefer
Supervised by: Nadia Polikarpova

Prof. Dr. Bertrand Meyer

Abstract

Programming-by-contract has been proven a powerful method for software
developers to write bug-free, high-quality software ever since it became popular
with the appearance of the Eiffel programming language. This thesis deals with
model-based contracts, which represent an extension of the classic Design by
Contract approach. Just like the original concept the core component of this
mechanism, the Mathematical Model Library, first was available for the Eiffel
programming language only. This report describes the porting of the library
to the .Net platform using the C# language, the application of model-based
contract techniques to existing .Net software, as well as automated white box
testing experiments of the contract-enhanced code using the Pex testing tool.

Contents

1. Introduction 4
1.1. Design by Contract . 4
1.2. Model-based Contracts and the MML 4

2. The C# Version of the MML 6
2.1. Initial Situation and the Porting Process 6
2.2. The Overall Structure of the Library 7
2.3. Improvements Made . 9
2.4. Differences between Eiffel and C# Versions 11

3. Model Based Contracts for the DSA Library 15
3.1. Introduction . 15
3.2. Contract Development . 17
3.3. Incomplete Contracts . 19
3.4. Specification Overhead . 22

4. Automatic Testing of the MBC-Enhanced DSA Library 24
4.1. The Pex Testing Tool . 24
4.2. The Testing Project . 24
4.3. The Testing Procedure . 26
4.4. Testing Results . 27

4.4.1. AvlTree . 28
4.4.2. BinarySearchTree . 28
4.4.3. Heap . 29
4.4.4. DoublyLinkedList . 30
4.4.5. SinglyLinkedList . 31

5. Conclusion and Future Work 33
5.1. Conclusion . 33
5.2. Future Work . 33

A. API Documentation for the C# MML Port 35

3

1. Introduction

1.1. Design by Contract
In Eiffel, programmers are able to express parts of the program specification
within the actual code, without having to use external tools or languages. To
enable this, Eiffel provides special assertions known as contracts. The relevant
types of contracts in this context are preconditions, postconditions, and class
invariants. While pre and postconditions relate to and essentially are part of
a single method, a class invariant relates to a whole class. A precondition is a
predicate that is checked and has to be true at the beginning of a method. In
the same way, a postcondition must evaluate to true just after the execution
of the method. A class invariant is an expression constraining the state of a
whole type of objects, and can probably best be imagined as a pre and post-
condition for all methods of the class.
Combined with run-time checking of the contracts the Design by Contract
methodology can be a great help for programmers while developing and test-
ing, especially since they do not need to be familiar with formal specification
techniques. On the other hand, traditional contracts seem rather limited in a
way that they leave a lot of the programmer’s informal understanding of the
program specification uncovered[1].

1.2. Model-based Contracts and the MML
Model-based contracts is an approach to extend the classic Design by Con-
tract concept by associating each class with a mathematical model, consist-
ing of so called model queries provided by immutable model classes. As the
model classes are simply translations of mathematical concepts (e.g. sets, func-
tions,..) into the respective programming language, the model queries can be
used inside the traditional contract expressions. This allows the programmer
to express even more powerful specifications without having to learn any new
and complicated formal techniques or languages.

4

Listing 1.1: A model-based contract in C#
public new void AddLast(T item)
{

// new == old & item
Contract.Ensures(m_Sequence ==

Contract.OldValue(m_Sequence).Extended(item));

base.AddLast(item);
}

A typical example for a contract involving a model query is shown in listing
1.1. It is a contract for the AddLast1function of the DSA DoublyLinkedList
implementation. The model for this class was chosen to be a sequence, and thus
m Sequence, the model query, is a member object of type MML.Sequence. In
C#/.Net contracts Contract.Ensures denotes the static postcondition func-
tion which will check if the specified expression evaluates to true. Note that
despite appearing at the top of the method body, the postcondition function
will always be executed after all other code contained in the method. The
contract checks (at the end of the method) if the resulting object is indeed the
old object with the item appended at the end. For a more detailed introduc-
tion into model based contracts and some more background on related work
in software specification see [1] and [2].

In the original Eiffel implementation the model classes are encapsulated in
a library named the Mathematical Model Library(MML)[2]. Since recently
Microsoft has developed a contract framework for their .Net platform[3], there
exist the opportunity of porting the MML and thereby creating the possibility
of applying the model-based contracts approach to a much larger software base.
The porting of the MML code from Eiffel to C# is described in the second
chapter of this report, while the third chapter covers the development of model-
based contracts for DSA[4], a library of algorithms and data structures for the
.Net platform. Chapter 4 describes test experiments involving contract-based
automatic testing of the DSA code using the Pex[5] testing tool.

1Because we are dealing with a cross-language project, and for the sake of readability,
throughout this document functions will be referred to mostly by their plain names, i.e.,
without return types and parameters, as long as this does not cause any ambiguity.

5

2. The C# Version of the MML

2.1. Initial Situation and the Porting Process
The first step towards a fully-functional, usable port of the MML was to in-
spect the current state of the code, both on the Eiffel and the C# side. As
there had already been an attempt at porting the code to C# during a previ-
ous project[6], the question was to decide if the existing code would be worth
building upon. Unfortunately was there neither a project report available, nor
was there any information about completeness or correctness of the existing
C# code. Still, since the amount of ported code looked quite substantial, it
seemed worth of being manually inspected for compliance with the correspond-
ing Eiffel implementation.
At the beginning of this process some minor structural differences became ob-
vious; they will be described in the next section which is about the overall
structure of the library on a class level. The major workload, however, was
to deal with numerous implementation-based issues: bugs had to be fixed and
missing functionality had to be implemented. These topics will be dealt with
in Section 2.3. Even after these steps and the whole porting process, there were
a few remaining inconsistencies left between the original Eiffel implementation
and the C# version, mostly caused by differences and constraints regarding
the two programming languages. Section 2.4 concludes this chapter by sum-
marizing these minor discrepancies.

In general, though, it has to be noted that porting the library from Eiffel
to C# was rather straightforward. To illustrate this, an example is shown in
listings 2.1 and 2.2. This code was already part of the initial version of the port,
and one can see how the developer could easily use the functional programming
inspired features of the C# language, along with a lambda expression, to
beautifully convert the agent-based Eiffel code without having to explicitly
implement delegates or even manual iteration.

6

Listing 2.1: The is constant function of class MML BAG in Eiffel
is_constant (c: INTEGER): BOOLEAN

-- Are all values equal to ‘c’?
do

Result := values.for_all (agent reference_equal (c, ?))
end

Listing 2.2: The IsConstant function of class MML.Bag in C#
[Pure]
public bool IsConstant(int c)
{

return Array.TrueForAll(values, x => Equals(x, c));
}

2.2. The Overall Structure of the Library
The current version of the MML is a rather small piece of code. It consists of
six classes, each one representing a different mathematical “object” or concept.
Figure 2.1 shows a class diagram of the whole library. The class names should
be self-explanatory. For a more detailed documentation about the individual
classes and their functionality see Appendix A.
Although the diagram shows only the C# version of the code, the Eiffel version
looks nearly the same. The only difference is that the Eiffel MML classes all
have a common base class (MML MODEL), which basically only serves the needs
of an agent-related workaround and is thus not needed in C#. On the other
hand, the C# classes MML.Sequence and MML.Set implement the IEnumerator
interface. This enables users of the class to call the GetEnumerator function
to receive an iterator for the data structure. Even though this functionality
was seldom used in practice, this decision made for the initial version for the
port has not been altered during this project.

From an object-oriented perspective, another design decision worth mention-
ing is that only little use of inheritance is made. Of course with the inheritance
structure being the same in Eiffel and C#, apart from the above mentioned

7

exceptions, this observation is also true for the Eiffel version. Although rea-
soning about the original design goals of the library is beyond the scope of
this thesis, this phenomenon most likely dates back to a decision made by the
initial MML developer. He states that “The inheritance hierarchy of a class
library modeling mathematical concepts does not necessarily correspond to the
natural taxonomy of mathematical structures.” ([2], p.55)

Figure 2.1.: A class diagram of the MML in C#

8

2.3. Improvements Made
Although a significant part of the Eiffel code has already been ported during
the aforementioned initial project, there were still several improvements to be
made. First of all there were still some functions in the Eiffel code that didn’t
have a C#-counterpart yet. For the port to provide the same functionality as
the Eiffel version the following functions had to be newly implemented1:

• Class Map:
– ToBag

• Class Intervall:
– Intervall(Tuple<int, int>)2

• Class Sequence:
– ToBag

– Removed

– Restricted

– ExtendedAt3

In addition to the newly implemented functions there were some implemen-
tation errors, showing up during the manual revision of the code, that had to
be fixed. Luckily, there were only two functions affected:

• Set.Disjoint
In this case the error was restricted to the C# code, with the Eiffel
code being correct. The failure was rather simple, as the original code
returned the expression Exists(other.Has), which paradoxically eval-
uates to true iff the sets are not disjoint (i.e., have a common element).

1The class and function names listed here correspond to the C# version of the code.
The corresponding Eiffel entities have generally very similar names, adhering to the
Eiffel style: i.e. MML MAP and to bag. Therefore, for the sake of readability, mentioning
both versions of the names will often be omitted throughout this document unless it is
considered useful.

2The constructor corresponding to the from tuple creation procedure in Eiffel.
3Additionally, the implementation of Sequence.Extended was changed completely to make

use of ExtendedAt

9

• Relation.Has
This issue in the C# function was not caused by a mistake in porting
the code, but rather revealed a similar bug in the original Eiffel imple-
mentation. It is illustrated in listing 2.3 as an example for the bugfixing
aspect of the porting related work during this project.
In contrast to the first bug described, the problem here is a little bit less
obvious to see. The original implementation is commented out in the
first two lines of the method body. The Array.IndexOf function returns
the first index containing x on the left “side”(of the modeled relation).
Then in the next line it is checked if the “right” value corresponding to
this index matches the y value.
Unfortunately this means that in a relation containing the pairs (1, 2)
and (1, 3), i.e., the lefts array containing the tuple (1, 1) and rights
containing (2, 3), the call to Has(1, 3) always returns false.
In C# the issue was finally fixed using the ImageOf function, which re-
turns all indices of occurrences of x. Moreover, the maintainer of the
Eiffel MML code has been informed and the corresponding code was
corrected as well.

Listing 2.3: A fixed bug in MML.Relation.Has
public bool Has(L x, R y)
{
// int i = Array.IndexOf(lefts, x);
// return i >= 0 && Equals(rights[i], y);

return ImageOf(x).Has(y);
}

In addition to these major porting tasks like implementing new methods and
correcting errors, a lot of work has also been done in areas that may at first
not that obviously be seen as being important to contributing towards a fully
functional port of the Eiffel code. Nonetheless, one goal of the porting effort
was to reduce the remaining differences between the two MML versions and
to improve the overall quality of the port. Therefore the following additional
work has been done:

10

• Aliases
In Eiffel it is easy to declare an arbitrary alias, made out of non-alphanumeric
symbols, for a function. The MML interface makes extensive use of this.
In C# it was attempted to implement these aliases using overloaded op-
erators. During this project new operators were implemented to make
the interface more similar to that of the Eiffel version. The current state
of all aliases for both versions can be found in Table 2.1.

• Contracts
Preconditions and class invariants corresponding to their respective equiv-
alents in the Eiffel code have been added to all classes.

• Comments and code structure
During the revision of the code, comments have been added as a natural
process of understanding foreign code that is very sparsely documented.
In addition to that, the structure of the source code files (e.g. the order
member functions appearing in a class declaration) has been changed to
match with the structure of the Eiffel code. This provides for easy com-
parison of corresponding code in both languages and has proven already
useful while manually revising the code.

• XML documentation
The code already contained some comments related to the automatic,
XML-based generation of documentation using Visual Studio. These
comments have been revised and extended. New XML comments have
been added for functions that were previously not documented. Now the
whole MML interface is covered by the automatically generated docu-
mentation, which is available in Appendix A of this report and as HTML
and PDF files in the ’Documents/Documentation’ subdirectory on the
project repository[7].

2.4. Differences between Eiffel and C# Versions
Even after all the above mentioned efforts to bring the C# code in line with
the original implementation, there are still some minor differences remaining.
There are several reasons for this: At a first look one immediately notices
that while the class and function names are very similar, the C# version
does not mimic the Eiffel style and naming conventions. It rather uses the
CamelCase convention which is popular among Windows and Java developers.

11

This decision was made by the original developer of the C# port and has not
been modified during this revision.

Apart from the slightly different function names caused by different naming
conventions there are very few differences left regarding functions and function-
ality. There are currently no Eiffel functions that don’t have a corresponding
equivalent in the C# code. On the other hand, there are even additional func-
tions in the C# code that were not part of the initial Eiffel version. These
functions were not implemented during this project but were part of the initial
porting attempt. The following C# functions have no Eiffel counterpart:

• Class Map:
– Has(K x)

• Class Sequence:
– Reverse

In addition to the intentional decisions regarding function implementation
and naming described above, there are also constraints caused by the target
language playing a role as a reason for inconsistencies between the two versions.
Probably the most important difference in this regard is the lack of flexibility
in the support of “operator aliases” for functions in C#. As already denoted
in the previous section, in Eiffel aliases for functions may be arbitrary strings,
as long as they do not contain alphanumeric symbols.

In C# no such flexibility exists. Eiffel aliases can therefore only be translated
if they match a valid C# operator. Thus aliases like ’#’ for Count will proba-
bly never be available in C#. In the case of the ’<=’ alias for the IsPrefixOf
function the C# compiler requires a matching ’>=’ operator to be defined. As
no such operator or functionality exists in the original Eiffel code, neither of
the two operators has been implemented in C#.
On the other hand, a lot of aliases were already supported in the initial port,
and during this project the number was even increased. Table 2.1 summarizes
all aliases of the MML interface, listing the respective names of the corre-
sponding functions for both languages, as well as information about when
they appeared in the C# version. Here “initial” means that they had already
been ported during the previous project, “current” means that the alias has
been added during this project, and “missing” denotes that the alias is not
available in the C# port.

12

Table 2.1.: Function aliases of the MML interface

Alias Function(Eiffel) Function(C#) Version

Bag:
[] occurrences Occurrences initial
|==|1 is model equal 2 initial
count - missing
& extended Extended current
/ removed Removed current
| restricted Restricted initial
+ union Union initial
- difference Difference initial

Map:
[] item Item initial
|==|1 is model equal 2 initial
| restricted Restricted initial
+ override Override initial

Relation:
[] has Has initial
|==|1 is model equal 2 initial
| restricted Restricted initial
+ union Union initial
* intersection Intersection initial
- difference Difference initial
ˆ sym difference SymDifference initial

Continued on next page

13

Table 2.1 – Continued from previous page

Alias Function(Eiffel) Function(C#) Version

Sequence:
[] item Item initial
count - missing
|==|1 is model equal 2 initial
<= is prefix of IsPrefixOf missing
& extended Extended current
+ concatenation Concatenation initial

Set:
[] has Has initial
| filtered Filtered current
count - missing
|==|1 is model equal 2 initial
<= is subset of IsSubsetOf current
>= is superset of IsSupersetOf current
& extended Extended current
/ removed Removed current
+ union Union initial
* intersection Intersection initial
- difference Difference initial
ˆ sym difference SymDifference initial

1The corresponding operator in C# is the ’==’ operator.
2In the C# implementation the ’==’ operator involves not a single function call but an

equivalent expression.

14

3. Model Based Contracts for the
DSA Library

3.1. Introduction
With the C# version of the MML being complete and fully functional, the
next project step was to demonstrate its usability in practice, making use of
the vast amount of C# and .Net software available. Because of the nature of
the mathematical models represented by its classes, the MML is particularly
well suited to model collection or container classes. A library providing such
classes is the Data Structures and Algorithms(DSA) library. Since its code
is open-source, it seemed to be a good candidate for being extended with
contracts. This chapter describes the integration of model-based contracts
into the existing DSA implementation using the MML in conjunction with the
.Net Code Contracts framework.

Figure 3.1 shows a class diagram of the Dsa.DataStructures namespace.
Small helper classes such as nodes for list classes or anything else not directly
affected by the contract implementation have been omitted. The classes with
names ending with “Contracts” have been added during this project as a wrap-
per for their parent classes. A typical method of such a wrapper class contains
only the model-based contracts and a call to the respective base function of
the parent class. In this way the contracts could mostly be separated from
the original code. The initial intention behind this design idea was to provide
more flexibility for the case that multiple older versions of the DSA implemen-
tation had to be tested, for example if the recent version hadn’t contained any
detectable bugs. But as Chapter 4 will show this has not even been necessary.

Nonetheless there have been some difficulties showing up during the pro-
cess of the integration of the contracts, these will be described in Section 3.2.
Section 3.3 gives an overview of contracts that are incomplete, i.e., listing all
methods where the contracts are not able to fully capture the effects of the
method in regard to the chosen model. To conclude this chapter the last sec-
tion will cover the overhead that was involved with implementing the contracts,
measured in working hours and lines of code.

15

16

Figure 3.1.: A class diagram showing the MBC-enhanced DSA library

3.2. Contract Development
Whereas the most useful kind of application of model-based contracts and
specifications in general would probably be the case where these techniques
are involved during the development process right from the beginning, it was
clear that the task of applying model-based contracts to software that has not
been developed with such concepts in mind would sooner or later bring up
some issues.

One of the main problems was to find the right level of abstraction for
the model of each class. Since it didn’t make sense to completely provide
alternate implementations for almost everything, including helper functions,
it was clear that the models would have to be build on top of some existing
“low level” functions of the DSA implementation. Thus for building the model
objects out of the data contained in the target class mostly the functions
GetEnumerator and ToArray were used which are present in all relevant classes
of the DSA.DataStructures namespace. As a consequence, though, as these
functions are involved in creating the model object, they can’t have contracts
based on these models in their implementation.

In general, during the contract development the main task was to find
suitable models for the DSA classes. A suitable model has to be not too
implementation-specific but it does also not have to ignore important effects
of the target code by being too abstract. As a consequence of finding a com-
promise between these two extremes leaving some methods with incomplete
specifications is often unavoidable. Incomplete contracts are covered in more
detail during the next section, while Table 3.1 gives a short summary of all
target classes along with their models.1

As already mentioned there was the idea of separating the contract from the
implementation, and this caused the contracts to be placed in an inconsistent
way throughout the DSA project. As can be seen in Figure 3.1 the most
common approach chosen for the contracts was to place them in classes derived
from the original DSA classes. This was of course only possible for non-abstract
classes at the leafs of the inheritance tree. To integrate contracts into abstract
classes there were two possibilities:

1Note that in this table and throughout the remaining document for readability reasons the
original DSA class names are used, although in a strict sense the contract-enhancements
are only present in the derived classes (suffixed with “Contracts”). In a similar manner,
generic parameters will often be omitted.

17

Table 3.1.: Contract-enhanced DSA classes and their models
Class Model

AVLTree public Map<Sequence<Direction>, TValue> m Map
BinarySearchTree public Map<Sequence<Direction>, TValue> m Map

CollectionBase public MML.Bag<T> m Bag
CommonBinaryTree public Map<Sequence<Direction>, TValue> m Map

Deque public MML.Sequence<T> m Sequence
DoublyLinkedList public MML.Sequence<T> m Sequence

Heap public MML.Sequence<T> m Sequence
public MML.Bag<T> m Bag

OrderedSet public MML.Sequence<T> m Sequence
PriorityQueue public MML.Sequence<T> m Sequence

SinglyLinkedList public MML.Sequence<T> m Sequence

• Providing a Contract Class using the ContractClassFor Attribute:
This was done in case of the CollectionBase class, which contained
mostly abstract functions. The class CollectionBaseContracts is there-
fore the Contract Class containing contracts for the abstract functions
declared in CollectionBase.

• Writing the contracts directly into the implementation code:
Since the first approach only works for abstract functions, the contracts
for the CommonBinaryTree class, containing a lot of non-abstract func-
tions while being an interior node in the inheritance tree, had to be
written directly into the class implementation.

Another problem was the inconsistent implementation of the GetEnumerator
function in various DSA classes. For example, the enumerator returned by
the AVLTree and BinarySearchTree objects requires a call to the Reset
method before it can be properly used, whereas the enumerator returned by
the DoublyLinkedList class for example does not need such a call, and even
throws an exception when the Reset function is called. This required that the
construction of the m Bag model query had to be specialized in classes derived
from CollectionBase, although the query itself belongs to the most abstract
level in the inheritance tree.

18

3.3. Incomplete Contracts
According to [1] a contract is incomplete if it does not fully capture the effect
of a method in regard to the chosen model an the return value of a function.
If, like in the DSA case, contracts are applied to a piece of software that was
initially developed without such concepts in mind, a certain amount of con-
tracts will most likely have to remain incomplete.
Yet, even incomplete contracts can still be very useful. Comparing the figures
in this section with the results presented in Chapter 4 it can be seen that
faults were detected automatically even in classes where a lot of contracts are
incomplete. Below is a list of all methods with incomplete contracts2:

• In class DoublyLinkedList:
– public new DoublyLinkedListNode<T> Head

– public new DoublyLinkedListNode<T> Tail

• In class SinglyLinkedList:
– public new SinglyLinkedListNode<T> Head

– public new SinglyLinkedListNode<T> Tail

• In class Heap:
– public Heap(IEnumerable<T> collection)

– public Heap(IEnumerable<T> collection, Strategy strategy)

– public override void Add(T item)

– public override bool Remove(T item)

• In class PriorityQueue:
– public PriorityQueue(IEnumerable<T> collection)

– public PriorityQueue(IEnumerable<T> collection, Strategy
strategy)

– public override void Add(T item)

– public T Dequeue()

19

• In class CommonBinaryTree:
– public TNode Root

– public TNode FindNode(TValue value)

– public TNode FindParent(TValue value)

• In class AvlTree:
– public AvlTree(IEnumerable<T> collection)

– public override void Add(T item)

– public override bool Remove(T item)

– public new int Height(AvlTreeNode<T> node)

• In class BinarySearchTree:
– public BinarySearchTree(IEnumerable<T> collection)

– public override void Add(T item)

– public override bool Remove(T item)

The incomplete contracts in the list and tree classes are basically all related
to the fact that these classes publicly expose their node-based implementation:
the Head and Tail nodes in case of the lists as well as the Root node for the
trees. The models, a Sequence of values for the lists and a Map of paths to
values for the trees, do not capture the underlying node structure, leading to
incomplete contracts for some methods. Still, these models have proven to be
a good compromise, as can be seen by looking at the test results in Chapter 4.

In case of the heap class the model is a Sequence corresponding to the array-
based implementation of the heap. An invariant checks if the heap condition
is always fulfilled. In addition to that, the Bag part of the model checks if
the expected items are contained in the heap. However, there can exist two

2Unless not noted otherwise, during this section a method listed as having incomplete
contracts in a base class (see Figure 3.1) implies that the corresponding method in a
derived class also has incomplete contracts. This applies analogously to methods being
listed as having no contracts.

20

or more heap representations of the exact same content (in terms of a Bag),
both fulfilling the heap condition, where the order of the items (in terms of
a Sequence) is slightly different. This results in incomplete contracts with
respect to the Sequence model and it may be indicating that the model of the
class should be more abstract. However since the semantics of a heap were
represented quite well with the aforementioned model, it was kept. The same
facts apply to the PriorityQueue class, which has the same models, and ba-
sically only wraps Heap.

In addition to methods with incomplete contracts there were some methods
in the relevant DSA classes left completely without contracts. These functions
can generally be divided into two categories:

• Non-relevant methods:
Some functions were not considered relevant for being enhanced with con-
tracts. The reason for this was mostly that these functions were not really
a part of the “data structure related” interface (e.g. methods inherited
from C# interfaces and base classes, related to concurrency, etc.). This
applies to the following methods which are all part of CollectionBase:

- public bool IsSynchronized

- bool ICollection<T>.IsReadOnly

- object ICollection.SyncRoot

- public void CopyTo(T[] array, int arrayIndex)

• Methods involved in model queries:
As already mentioned in Section 3.2 there exist functions that could
not be extended with contracts because they were used for constructing
the model object in a model query. If these methods contained contracts
involving the same type of model query, a cyclic dependency would occur.
The following methods are therefore left without contracts. Again, they
are all defined (first) in the CollectionBase class:

- public int Count

- public abstract T[] ToArray()

- public abstract IEnumerator<T> GetEnumerator()

- IEnumerator IEnumerable.GetEnumerator()

21

3.4. Specification Overhead
A very important aspect of reasoning about the practical usefulness of the
model-based contracts specification technique is to look at the amount of work
the developer has to provide to implement the contracts. In regard to over-
head measured in working-time the total time needed for extending the DSA
library with model-based contracts was about 50 person-hours. Furthermore
there were about additional 8 person-hours needed to learn about the MBC
concepts and to familiarize with their practical application. Regarding over-
head measured in amount of code, detailed figures are given in Table 3.2.

In this table all classes of the DSA.DataStructures namespace that have
been enhanced with contracts during this project are listed by name in the
first column. The second column specifies the total number of lines of code
(LOC) for a given class, whereas the third column describes the part of this of
code (in LOC) that is used for contracts. The rest of the columns are rather
self-explanatory and describe in detail which pieces of code were added to the
DSA library during the contract development phase.
It is important to note, though, that for the overhead values in column two
only the LOC containing the actual contracts have been measured, not the
additional overhead caused by the decision to create designated classes for the
contracts. Because as this decision was purely based on design ideas it had no
influence on the functionality of the contracts. As can be seen, the overhead
is rather low compared to the overall amount of code in most classes.
It may also be especially useful to compare these values with the figures given
in Chapter 4 to get an impression on how much specification overhead was
needed to successfully detect faults in certain classes.

22

23

Table 3.2.: Specification overhead for the DSA library
Class LOC overall LOC contracts Routines added Preconditions added Postconditions added Invariants added
AVLTree 391 46 1 0 17 1
BinarySearchTree 213 8 0 0 6 0
CommonBinaryTree 536 117 11 2 19 5
Deque 231 30 1 0 15 2
DoublyLinkedList 458 50 2 2 24 2
Heap 390 19 1 0 8 3
OrderedSet 158 22 2 0 5 4
PriorityQueue 216 30 1 0 11 3
SinglyLinkedList 492 53 2 2 26 2
CollectionBase 244 68 6 0 12 1
Total 3329 443 27 6 143 23

4. Automatic Testing of the
MBC-Enhanced DSA Library

4.1. The Pex Testing Tool
The previous chapters describe the long way of manual development work up to
the point where the result is a C# library enhanced with over 150 handwritten
model-based contracts. Most of this work, though, was done just in order to
lay the foundation for the final project step: contract-based automated testing
experiments using the Pex testing tool.
Pex is a software by Microsoft Research that provides automatic whitebox
testing of .Net software. In contrast to e.g. black box testing approaches,
Pex constantly analyzes the execution of the code-under-test to find new test
inputs and to cover branches that are yet unexplored. This functionality has
been reported to be especially useful in conjunction with contracts, because
in this case the contracts will act as “guides” for the code explorations, and
of course also as testing oracles[8]. These features make Pex the ideal tool
for the purposes of this project, i.e., for providing evidence for the usefulness
of model-based contracts in conjunction with automatic testing on the .Net
platform. The following section describes how a Pex testing environment was
set up as part of the MBC solution in Visual Studio, and how the actual testing
experiments were being conducted. Section 4.4 finally summarizes all relevant
results extracted from the testing experiments.

4.2. The Testing Project
Pex is a tool that can be used comfortably from within the Visual Studio IDE,
and it can basically be used in two different modes: The first mode works
without the creation of a dedicated test project, and Pex explorations can
be triggered right from the context menu. The second one is the unit testing
mode, in which Pex offers a lot of more flexibility. During this project the latter
mode was used, and so the DSATest project was created as a part of the MBC
solution by letting Pex generate test classes containing parametrized unit tests

24

out of the contract-enhanced classes of the DSA.DataStructures namespace.
In such a test class, a test method for every public function is generated by
Pex. These test methods take objects of the “type under test”1as parameters,
and basically only wrap the respective method calls of these objects.
The most important parts of a typical test class generated by Pex can be
seen in Listing 4.1. The PexClass attribute denotes this class as a test class,
specifying the type of object to test (AvlTreeContracts), plus a few limit-
ing parameters for the Pex exploration. The higher these limiting values, the
longer Pex will explore a single method of this class before giving up and mov-
ing on to the next method. As can be seen in line 20, these values can also
be refined for individual methods as parameters of the PexMethod attribute.
This attribute denotes the function as a test method, and has to be present
(with or without parameters) for any method that shall be explored by Pex.
However, to really make use of its potential, Pex needs to be given a little more
information. The PexGenericArguments attribute in line 6 had to be added
to tell Pex which data type it shall use for the generic type parameter of the
classes, which in this case means that Pex will only instantiate and test trees of
type AvlTreeContracts<int>. This attribute was necessary in all test classes
to get Pex to work correctly, meaning that all test experiments were limited
to collections of int values.
Furthermore Pex initially had problems instantiating an appropriate imple-
mentation of the IComparer<int> interface, so a helper class named IntComp,
which wraps the default comparer for int values, hat to be implemented in
order to make Pex work correctly. In a similar way, Pex often had problems
to instantiate the collection classes or corresponding node classes themselves.
In these cases factory classes, taking care of the construction of the “object
under test” out of objects of more basic or intrinsic types, had to be added to
the project. There exist factory classes for all tested classes, and most classes
have been tested with and without their utilization.

Listing 4.1: A part of the AvlTreeTTest class
1 [PexClass(typeof(AvlTreeContracts<>),
2 MaxBranches = 80000,
3 Timeout = 400,
4 MaxRunsWithoutNewTests = 200)]
5

6 [PexGenericArguments(typeof(int))]
7 [PexUseType(typeof(IntComp))]

1The type which the test class was generated from

25

8 [PexUseType(typeof(AvlTreeContracts<int>))]
9 [PexAllowedException(typeof(NullReferenceException))]

10

11 [PexAllowedExceptionFromTypeUnderTest(
12 typeof(InvalidOperationException))]
13 [PexAllowedExceptionFromTypeUnderTest(
14 typeof(ArgumentException))]
15

16 [TestClass]
17 public partial class AvlTreeTTest
18 {
19 /// <summary>Test stub for Add(!0)</summary>
20 [PexMethod(MaxBranches = 160000,
21 Timeout = 600,
22 MaxRunsWithoutNewTests = 600)]
23 public void Add<T>([PexAssumeUnderTest]AvlTreeContracts<T>

target, T item)
24 where T : IComparable<T>
25 {
26 target.Add(item);
27 }
28 ...
29 }

4.3. The Testing Procedure
As already denoted in the previous section, the general approach during the
testing phase was to run the Pex explorations, observing errors, warnings, and
timeout messages, and then refine the Pex attributes, parameters, and limits
for the next test iteration. Therefore the values used for the MaxBranches,
Timeout, and MaxRunsWithoutNewTests were determined experimentally for
each class: by increasing limiting values until either errors were found, or the
testing time for a single method was considered infeasible long (e.g. several
hours). The main limiting factor in this regard was the MaxBranches value,
which has been doubled several times for all classes during the testing exper-
iments. It should also be noted that in all cases the test runs were executed
multiple times per class even when the parameters remained constant. This

26

Table 4.1.: Contract-enhanced DSA classes and their models
Class Max Branches Testing Time Faults Design Issues
AVLTree 80000 0:23:05 0 1
BinarySearchTree 80000 0:21:03 1 0
CommonBinaryTree 120000 1:22:30 0 0
Deque 120000 2:25:07 0 0
DoublyLinkedList 120000 2:51:05 2 1
Heap 1600000 1:01:10 1 0
OrderedSet 240000 0:09:44 0 0
PriorityQueue 120000 1:05:05 0 0
SinglyLinkedList 120000 2:28:22 2 1
Total 12:07:11 6 3

was due to the fact that Pex explorations are nondeterministic and that there-
fore there was no guarantee for finding a (detectable) fault in a single run.
Also because of these reasons it is that the figures in column two of Table 4.1
are not representative for the complete amount of time that was invested into
testing the class, they only represent the accumulated length of the two final
test runs.

4.4. Testing Results
The overall numbers of detected issues can be seen in columns 4 and 5 of Table
4.1. Issues denoted as faults represent clearly undesired program behaviour,
which mostly can be fixed by simple corrections in the implementation, while
problems classified as design issues describe more subtle kinds of issues where
the “suspicious” program behaviour was most likely intended by the developers,
and is not that easy to change.

Although the classes OrderedSet, Deque, CommonBinaryTree, and
PriorityQueue have been tested at least as extensively as the rest of the
relevant code, there could no problems be detected. In all other tested classes,
though, there were issues showing up during the experiments, and throughout
the following subsections they will be described in detail and in a uniform way:
First the problems will be presented by the Description and Remarks sections,
followed by the code of the contract that detected the issue. Additionally, a

27

path — relative to the ’Documents/TestReports’ subdirectory of the project’s
SVN repository[7] — to the detailed auto-generated HTML test report of the
relevant test run will be given.

4.4.1. AvlTree
• Design Issue in Add:

Description:
AvlTree allows adding duplicate items as keys in the tree.
BinarySearchTree disallows this. Still both share a lot of code
in the common base class CommonBinaryTree. No special code
for handling duplicate nodes is available. The comments on
Remove or FindParent functions suggest that every item only
appears once. Furthermore there is no comment at all about
this fundamentally differing behaviour of the two binary search
tree implementations.

Remarks:
- This might not be a bug in the strict sense, but it is surely not

desirable. Of course this is highly speculative, but such an issue
might have been caused by two people implementing the two
tree classes independently.

Failing Contract:

// Tree allows no duplicate values
Contract.Invariant(m_Map.ToBag().Domain.ForAll(

i => m_Map.ToBag()[i] == 1));

(CommonBinaryTree.cs, line 262)

Test Report:
AvlTree-120801.213241.4124.pex/

4.4.2. BinarySearchTree

• Fault in Add:

28

Description:
The Count member gets increased even when an item is already
in the tree. Add calls InsertNode, which only adds an item to
the tree if it is not already present, i.e., BinarySearchTree does
not allow duplicate elements. Still Add increases the Count in
any case. In the end, this leads to the Count value not matching
the actual amount of nodes in the tree anymore.

Remarks:
- This could easily be fixed by increasing Count only if the item

was actually added. Therefore this can be considered a fault.

Failing Contract:

Contract.Invariant(this.GetType()
== typeof(AvlTreeContracts<int>)
|| Count == m_Bag.Count);

(CollectionBaseContracts.cs, line 35)

Test Report:
BinarySearchTree-Add-120801.182723.5624.pex/

4.4.3. Heap

• Fault in Remove:

Description:
Heaps of generic type <int> suffer from the misinterpretation of
zero-initialized empty array fields as keys of value 0. The Heap
is implemented as an array, and initially an array of size 4 is
constructed. If it is full, its size will be doubled by the Add func-
tion. So in any case there is at least one empty field at the end.
In C# memory is initialized to 0 by default, and for Heap<int>
objects the Remove function regards these empty fields as keys
of value 0. In the end this causes the call to Remove(0) to
always remove the last element in the heap (regardless of its
value), and also to violate the heap condition.

29

Remarks: -

Failing Contract:

// Object state
Contract.Ensures(Contract.Result<bool>() ?

Contract.OldValue(m_Bag).Removed(item)
== m_Bag

: Contract.OldValue(m_Bag) == m_Bag);

(CollectionBaseContracts.cs, line 169)

Test Report:
Heap-120802.153211.5196.pex/

4.4.4. DoublyLinkedList

• Fault in AddAfter, AddBefore:

Description:
The AddAfter and AddBefore functions take a node and an
item as parameters. When an arbitrary node (not in the tree)
is passed, the item will not be added to the tree. Still the Count
member is increased at the end of the method.

Remarks:
- This could easily be fixed by increasing Count only if the item

was actually added. Therefore this can be considered a fault.
- Similar issues apply to the SinglyLinkedList class.

Failing Contract:

Contract.Invariant(this.GetType()
== typeof(AvlTreeContracts<int>)
|| Count == m_Bag.Count);

(CollectionBaseContracts.cs, line 35)

Test Report:
DoublyLinkedList-120730.022938.3784.pex/

30

• Design Issue in Add:

Description:
The Next and Previous fields in the DoublyLinkedListNode
class are publicly writable. Therefore the user can manipulate
the list structure at any time without using the DoublyLinkedList
interface. Because of this the list object ”looses track” of the
node count.

Remarks:
- The generated test only works with the factory method guessed

by Pex, not with the manually written one. Because the auto
generated method sets the Head/Tail references which would
not be allowed using a normal constructor and public functions.

- Similar issues apply to the SinglyLinkedList class.

Failing Contract:
Contract.Invariant(this.GetType()

== typeof(AvlTreeContracts<int>)
|| Count == m_Bag.Count);

(CollectionBaseContracts.cs, line 35)

Test Report:
DoublyLinkedList-120802.102635.2948.pex/

4.4.5. SinglyLinkedList

• Fault in AddAfter, AddBefore:

Description:
The AddAfter and AddBefore functions take a node and an
item as parameters. When an arbitrary node (not in the tree)
is passed, the item will not be added to the tree. Still the Count
member is increased at the end of the method.

Remarks:
- This could easily be fixed by increasing Count only if the item

was actually added. Therefore this can be considered a fault.

31

- Similar issues apply to the DoublyLinkedList class.

Failing Contract:

Contract.Invariant(this.GetType()
== typeof(AvlTreeContracts<int>)
|| Count == m_Bag.Count);

(CollectionBaseContracts.cs, line 35)

Test Report:
SinglyLinkedList-120730.023012.2492.pex/

• Design Issue in AddLast:

Description:
The Next field in the SinglyLinkedListNode class is publicly
writable. Therefore the user can manipulate the list structure
at any time without using the SinglyLinkedList interface.
Because of this the list object ”looses track” of the node count.

Remarks:
- The generated test only works with the factory method guessed

by Pex, not with the manually written one. Because the auto
generated method sets the Head/Tail references which would
not be allowed using a normal constructor and public functions.

- Similar issues apply to the DoublyLinkedList class.

Failing Contract:

Contract.Invariant(this.GetType()
== typeof(AvlTreeContracts<int>)
|| Count == m_Bag.Count);

(CollectionBaseContracts.cs, line 35)

Test Report:
SinglyLinkedList-120801.235505.5376.pex/

32

5. Conclusion and Future Work

5.1. Conclusion
During this project it has been shown that the ability of model-based contracts
to detect serious faults and design flaws is not limited to code written in the
rather academic Eiffel language, but also applies to a more common software
development scenario: using C# and .Net.

Furthermore, combining the description of the specification deployment pro-
cess in Chapter 3, and in this regard especially the overhead measured in
working-time and lines of code, with the testing results presented in Chapter 4,
it has been demonstrated, although in a rather small scale, that model-based
contracts can be a powerful and very efficient specification and verification
mechanism — especially when combined with automatic white box testing.

As a positive side effect, the Mathematical Model Library has been com-
pletely ported to .Net, and has also been extensively used and practically
tested during the contract development and testing phases. In the end, this
process did even slightly improve the Eiffel version of the library by having
revealed a bug that was present in both the C# port and the original imple-
mentation.

5.2. Future Work
With the Mathematical Model Library now being fully usable, considering the
the success of the experiments, the large amount of existing .Net software,
and the availability of the sophisticated Pex testing tool, there exists a lot
of potential for further experiments on the .Net platform to demonstrate the
capabilities and maybe also to explore the limitations of the model-based con-
tract approach.
As a follow-up to this project there will similar experiments be conducted tar-
geting the .Net collection classes, but there could also lie some potential in
trying to apply model-based-contracts to software other than collection-like
datastructures. For example, with the QuickGraph[9] library being available
for C# one could possibly try to model graph data structures using the MML

33

library, and as a more long-term perspective it could even be considered to
determine the usefulness of the MBC-approach for the specification and veri-
fication of application software.

34

A. API Documentation for the
C# MML Port

The following documentation of the .Net version of the MML was automatically
generated using XML comments in the C# code. It is also available as a hyper-
linked PDF file and as an HTML version in the ’Documents/Documentation/’
subdirectory of the SVN project repository[7].

35

MML - C# Version

Generated by Doxygen 1.8.2

Thu Nov 1 2012

Contents

1 Hierarchical Index 1

1.1 Class Hierarchy . 1

2 Class Index 3

2.1 Class List . 3

3 Class Documentation 5

3.1 MML.Bag< T > Class Template Reference . 5

3.1.1 Detailed Description . 6

3.1.2 Constructor & Destructor Documentation . 6

3.1.2.1 Bag . 6

3.1.2.2 Bag . 6

3.1.2.3 Bag . 6

3.1.3 Member Function Documentation . 6

3.1.3.1 Difference . 6

3.1.3.2 Equals . 6

3.1.3.3 Extended . 6

3.1.3.4 ExtendedMultiple . 6

3.1.3.5 Has . 6

3.1.3.6 IsConstant . 7

3.1.3.7 IsEmpty . 7

3.1.3.8 Occurrences . 7

3.1.3.9 operator!= . 7

3.1.3.10 operator& . 7

3.1.3.11 operator/ . 7

3.1.3.12 operator== . 7

3.1.3.13 operator| . 7

3.1.3.14 Removed . 8

3.1.3.15 RemovedAll . 8

3.1.3.16 RemovedMultiple . 8

3.1.3.17 Restricted . 8

3.1.3.18 Union . 8

ii CONTENTS

3.1.4 Property Documentation . 8

3.1.4.1 Count . 8

3.1.4.2 Domain . 8

3.1.4.3 this[T x] . 8

3.2 MML.Interval Class Reference . 8

3.2.1 Detailed Description . 9

3.2.2 Constructor & Destructor Documentation . 9

3.2.2.1 Interval . 9

3.2.2.2 Interval . 9

3.2.3 Member Function Documentation . 9

3.2.3.1 Lower . 9

3.2.3.2 Upper . 9

3.3 MML.Map< K, V > Class Template Reference . 9

3.3.1 Detailed Description . 10

3.3.2 Constructor & Destructor Documentation . 10

3.3.2.1 Map . 10

3.3.2.2 Map . 10

3.3.3 Member Function Documentation . 10

3.3.3.1 Equals . 10

3.3.3.2 Has . 10

3.3.3.3 Has . 11

3.3.3.4 Image . 11

3.3.3.5 Inverse . 11

3.3.3.6 IsConstant . 11

3.3.3.7 IsEmpty . 11

3.3.3.8 Item . 11

3.3.3.9 operator!= . 11

3.3.3.10 operator+ . 11

3.3.3.11 operator== . 11

3.3.3.12 operator| . 11

3.3.3.13 Override . 12

3.3.3.14 Removed . 12

3.3.3.15 Restricted . 12

3.3.3.16 SequenceImage . 12

3.3.3.17 ToBag . 12

3.3.3.18 Updated . 12

3.3.4 Property Documentation . 12

3.3.4.1 Count . 12

3.3.4.2 Domain . 12

3.3.4.3 Range . 12

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

CONTENTS iii

3.3.4.4 this[K k] . 12

3.4 MML.Relation< L, R > Class Template Reference . 12

3.4.1 Detailed Description . 13

3.4.2 Constructor & Destructor Documentation . 13

3.4.2.1 Relation . 13

3.4.2.2 Relation . 13

3.4.3 Member Function Documentation . 14

3.4.3.1 Difference . 14

3.4.3.2 Equals . 14

3.4.3.3 Extended . 14

3.4.3.4 Has . 14

3.4.3.5 Image . 14

3.4.3.6 ImageOf . 14

3.4.3.7 Intersection . 14

3.4.3.8 Inverse . 14

3.4.3.9 IsEmpty . 14

3.4.3.10 operator!= . 15

3.4.3.11 operator∗ . 15

3.4.3.12 operator+ . 15

3.4.3.13 operator- . 15

3.4.3.14 operator== . 15

3.4.3.15 operator∧ . 15

3.4.3.16 operator| . 16

3.4.3.17 Removed . 16

3.4.3.18 Restricted . 16

3.4.3.19 SymDifference . 16

3.4.3.20 Union . 16

3.4.4 Property Documentation . 16

3.4.4.1 Count . 16

3.4.4.2 Domain . 16

3.4.4.3 Range . 16

3.4.4.4 this[L x, R y] . 16

3.5 MML.Sequence< T > Class Template Reference . 16

3.5.1 Detailed Description . 18

3.5.2 Constructor & Destructor Documentation . 18

3.5.2.1 Sequence . 18

3.5.2.2 Sequence . 18

3.5.3 Member Function Documentation . 18

3.5.3.1 ButFirst . 18

3.5.3.2 ButLast . 18

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

iv CONTENTS

3.5.3.3 Concatenation . 18

3.5.3.4 Equals . 18

3.5.3.5 Extended . 18

3.5.3.6 First . 18

3.5.3.7 Front . 18

3.5.3.8 Has . 19

3.5.3.9 Interval . 19

3.5.3.10 Inverse . 19

3.5.3.11 IsConstant . 19

3.5.3.12 IsEmpty . 19

3.5.3.13 IsPrefixOf . 19

3.5.3.14 Item . 19

3.5.3.15 Last . 19

3.5.3.16 Occurrences . 19

3.5.3.17 operator!= . 19

3.5.3.18 operator& . 19

3.5.3.19 operator+ . 20

3.5.3.20 operator== . 20

3.5.3.21 Prepended . 20

3.5.3.22 Removed . 20

3.5.3.23 RemovedAt . 20

3.5.3.24 ReplacedAt . 20

3.5.3.25 Restricted . 20

3.5.3.26 Reverse . 20

3.5.3.27 Tail . 20

3.5.3.28 ToBag . 20

3.5.4 Property Documentation . 21

3.5.4.1 Count . 21

3.5.4.2 Domain . 21

3.5.4.3 Range . 21

3.5.4.4 this[int i] . 21

3.6 MML.Set< T > Class Template Reference . 21

3.6.1 Detailed Description . 22

3.6.2 Constructor & Destructor Documentation . 22

3.6.2.1 Set . 22

3.6.2.2 Set . 22

3.6.3 Member Function Documentation . 22

3.6.3.1 AnyItem . 23

3.6.3.2 Difference . 23

3.6.3.3 Disjoint . 23

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

CONTENTS v

3.6.3.4 Equals . 23

3.6.3.5 Exists . 23

3.6.3.6 Extended . 23

3.6.3.7 Extremum . 23

3.6.3.8 Filtered . 23

3.6.3.9 ForAll . 23

3.6.3.10 Has . 23

3.6.3.11 Intersection . 23

3.6.3.12 IsEmpty . 23

3.6.3.13 IsSubsetOf . 24

3.6.3.14 IsSupersetOf . 24

3.6.3.15 operator!= . 24

3.6.3.16 operator& . 24

3.6.3.17 operator∗ . 24

3.6.3.18 operator+ . 24

3.6.3.19 operator- . 24

3.6.3.20 operator/ . 25

3.6.3.21 operator<= . 25

3.6.3.22 operator== . 25

3.6.3.23 operator>= . 25

3.6.3.24 operator∧ . 25

3.6.3.25 operator| . 25

3.6.3.26 Removed . 26

3.6.3.27 SymDifference . 26

3.6.3.28 Union . 26

3.6.4 Property Documentation . 26

3.6.4.1 Count . 26

3.6.4.2 this[T x] . 26

Index 26

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

MML.Bag< T > . 5
IEnumerable

MML.Sequence< T > . 16
MML.Set< T > . 21

MML.Interval . 8
MML.Map< K, V > . 9
MML.Relation< L, R > . 12

2 Hierarchical Index

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

MML.Bag< T >
Finite bag . 5

MML.Interval
Closed integer intervals . 8

MML.Map< K, V >
Finite map . 9

MML.Relation< L, R >
Finite relation . 12

MML.Sequence< T >
Finite sequence. Indexing starts from 0. 16

MML.Set< T >
Finite set . 21

4 Class Index

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

Chapter 3

Class Documentation

3.1 MML.Bag< T > Class Template Reference

Public Member Functions

• Bag ()
• Bag (T x)
• Bag (T x, int n)
• bool Has (T x)
• bool IsEmpty ()
• bool IsConstant (int c)
• int Occurrences (T x)
• override bool Equals (object obj)
• override int GetHashCode ()
• Bag< T > Extended (T x)
• Bag< T > ExtendedMultiple (T x, int n)
• Bag< T > Removed (T x)
• Bag< T > RemovedMultiple (T x, int n)
• Bag< T > RemovedAll (T x)
• Bag< T > Restricted (Set< T > subdomain)
• Bag< T > Union (Bag< T > other)
• Bag< T > Difference (Bag< T > other)

Static Public Member Functions

• static bool operator== (Bag< T > b1, Bag< T > b2)
• static bool operator!= (Bag< T > b1, Bag< T > b2)
• static Bag< T > operator& (Bag< T > b1, T t)
• static Bag< T > operator/ (Bag< T > b1, T t)
• static Bag< T > operator| (Bag< T > b, Set< T > s)
• static Bag< T > operator+ (Bag< T > b1, Bag< T > b2)
• static Bag< T > operator- (Bag< T > b1, Bag< T > b2)

Properties

• Set< T > Domain [get]

• int this[T x] [get]

• int Count [get]

6 Class Documentation

3.1.1 Detailed Description

Finite bag

Template Parameters

T Type of bag elements

3.1.2 Constructor & Destructor Documentation

3.1.2.1 MML.Bag< T >.Bag ()

Create an empty bag

3.1.2.2 MML.Bag< T >.Bag (T x)

Create a singleton bag

Parameters
x The only element in the bag

3.1.2.3 MML.Bag< T >.Bag (T x, int n)

Create a bag with multiple occurrences of the same element

Parameters
x The element of the bag
n Number of occurrences

3.1.3 Member Function Documentation

3.1.3.1 Bag<T> MML.Bag< T >.Difference (Bag< T > other)

This bag with all occurrences of values from other removed

3.1.3.2 override bool MML.Bag< T >.Equals (object obj)

Is obj a bag with the same elements?

3.1.3.3 Bag<T> MML.Bag< T >.Extended (T x)

Current bag extended with one occurrence of x

3.1.3.4 Bag<T> MML.Bag< T >.ExtendedMultiple (T x, int n)

Current bag extended with n occurrences of x

3.1.3.5 bool MML.Bag< T >.Has (T x)

Is x contained?

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.1 MML.Bag< T > Class Template Reference 7

3.1.3.6 bool MML.Bag< T >.IsConstant (int c)

Are all values equal to c ?

3.1.3.7 bool MML.Bag< T >.IsEmpty ()

Is bag empty?

Returns

3.1.3.8 int MML.Bag< T >.Occurrences (T x)

How many times x appears

3.1.3.9 static bool MML.Bag< T >.operator!= (Bag< T > b1, Bag< T > b2) [static]

Are the two objects not equal?

3.1.3.10 static Bag<T> MML.Bag< T >.operator& (Bag< T > b1, T t) [static]

Operator equivalent for extended operation

See Also

Extended(T)

>

3.1.3.11 static Bag<T> MML.Bag< T >.operator/ (Bag< T > b1, T t) [static]

Operator equivalent for removed operation

See Also

Removed(T)

>

3.1.3.12 static bool MML.Bag< T >.operator== (Bag< T > b1, Bag< T > b2) [static]

Are the two objects equal? (Operator is equivalent to the |=| alias in Eiffel)

3.1.3.13 static Bag<T> MML.Bag< T >.operator| (Bag< T > b, Set< T > s) [static]

Operator equivalent for restricted operation

See Also

Restricted(Set<T>)

>

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

8 Class Documentation

3.1.3.14 Bag<T> MML.Bag< T >.Removed (T x)

Current bag with one occurrence of x removed if contained

3.1.3.15 Bag<T> MML.Bag< T >.RemovedAll (T x)

Current bag with all occurrences of x removed, if contained

3.1.3.16 Bag<T> MML.Bag< T >.RemovedMultiple (T x, int n)

Current bag with at most n occurrence of x removed if contained

3.1.3.17 Bag<T> MML.Bag< T >.Restricted (Set< T > subdomain)

Bag that consists of all elements of this bag that are in subdomain .

3.1.3.18 Bag<T> MML.Bag< T >.Union (Bag< T > other)

Bag that contains all elements from this bag and other

3.1.4 Property Documentation

3.1.4.1 int MML.Bag< T >.Count [get]

Total number of elements

3.1.4.2 Set<T> MML.Bag< T >.Domain [get]

Set of values that occur at least once

3.1.4.3 int MML.Bag< T >.this[T x] [get]

Indexer alias for Occurrences

3.2 MML.Interval Class Reference

Inheritance diagram for MML.Interval:

MML.Interval

MML.Set< T >

IEnumerable

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.3 MML.Map< K, V > Class Template Reference 9

Public Member Functions

• Interval (int l, int u)
• Interval (Tuple< int, int > tuple)
• int Lower ()
• int Upper ()

Additional Inherited Members

3.2.1 Detailed Description

Closed integer intervals

3.2.2 Constructor & Destructor Documentation

3.2.2.1 MML.Interval.Interval (int l, int u)

Create interval [l , u]

3.2.2.2 MML.Interval.Interval (Tuple< int, int > tuple)

Create interval from tuple[tuple]

3.2.3 Member Function Documentation

3.2.3.1 int MML.Interval.Lower ()

Lower bound

3.2.3.2 int MML.Interval.Upper ()

Upper bound

3.3 MML.Map< K, V > Class Template Reference

Public Member Functions

• Map ()
• Map (K key, V value)
• bool Has (V x)
• bool Has (K x)
• bool IsEmpty ()
• bool IsConstant (V c)
• V Item (K k)
• Set< V > Image (Set< K > subdomain)
• Sequence< V > SequenceImage (Sequence< K > s)
• Bag< V > ToBag ()
• override bool Equals (object obj)
• override int GetHashCode ()
• Map< K, V > Updated (K k, V v)
• Map< K, V > Removed (K k)

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

10 Class Documentation

• Map< K, V > Restricted (Set< K > subdomain)
• Map< K, V > Override (Map< K, V > other)
• Relation< V, K > Inverse ()

Static Public Member Functions

• static bool operator== (Map< K, V > m1, Map< K, V > m2)
• static bool operator!= (Map< K, V > m1, Map< K, V > m2)
• static Map< K, V > operator| (Map< K, V > m, Set< K > s)
• static Map< K, V > operator+ (Map< K, V > m1, Map< K, V > m2)

Properties

• V this[K k] [get]
• Set< K > Domain [get]
• Set< V > Range [get]
• int Count [get]

3.3.1 Detailed Description

Finite map

Template Parameters

K Type of key elements
V Type of value elements

3.3.2 Constructor & Destructor Documentation

3.3.2.1 MML.Map< K, V >.Map ()

Create an empty map

3.3.2.2 MML.Map< K, V >.Map (K key, V value)

Create a singleton map

Parameters
key The only key in the map

value The only value in the map

3.3.3 Member Function Documentation

3.3.3.1 override bool MML.Map< K, V >.Equals (object obj)

Is obj a map with the same key-value pairs?

3.3.3.2 bool MML.Map< K, V >.Has (V x)

Does map contain value x

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.3 MML.Map< K, V > Class Template Reference 11

3.3.3.3 bool MML.Map< K, V >.Has (K x)

Does map contain key x

3.3.3.4 Set<V> MML.Map< K, V >.Image (Set< K > subdomain)

Set of values corresponding to keys in subdomain

3.3.3.5 Relation<V, K> MML.Map< K, V >.Inverse ()

Relation consisting of inverted pairs from this map

3.3.3.6 bool MML.Map< K, V >.IsConstant (V c)

Are all values equal to c ?

3.3.3.7 bool MML.Map< K, V >.IsEmpty ()

Is map empty?

3.3.3.8 V MML.Map< K, V >.Item (K k)

Value associated with k

3.3.3.9 static bool MML.Map< K, V >.operator!= (Map< K, V > m1, Map< K, V > m2) [static]

Are the two objects not equal?

3.3.3.10 static Map<K, V> MML.Map< K, V >.operator+ (Map< K, V > m1, Map< K, V > m2) [static]

Operator equivalent for override operation

See Also

Override(Map<K, V>)

>

3.3.3.11 static bool MML.Map< K, V >.operator== (Map< K, V > m1, Map< K, V > m2) [static]

Are the two objects equal? (Operator is equivalent to the |=| alias in Eiffel)

3.3.3.12 static Map<K, V> MML.Map< K, V >.operator| (Map< K, V > m, Set< K > s) [static]

Operator equivalent for restricted operation

See Also

Restricted(Set<K>)

>

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

12 Class Documentation

3.3.3.13 Map<K, V> MML.Map< K, V >.Override (Map< K, V > other)

Map that is equal to other on its domain and to this map on its domain minus the domain of other

3.3.3.14 Map<K, V> MML.Map< K, V >.Removed (K k)

Current map without key k and the corresponding value

3.3.3.15 Map<K, V> MML.Map< K, V >.Restricted (Set< K > subdomain)

Map that consists of all key-value pairs of this map whose key is in subdomain

3.3.3.16 Sequence<V> MML.Map< K, V >.SequenceImage (Sequence< K > s)

Sequence of images of s elements under this map

3.3.3.17 Bag<V> MML.Map< K, V >.ToBag ()

Bag of map values

3.3.3.18 Map<K, V> MML.Map< K, V >.Updated (K k, V v)

Current map with v associated with k . If k already exists, the value is replaced, otherwise added.

3.3.4 Property Documentation

3.3.4.1 int MML.Map< K, V >.Count [get]

Map cardinality

3.3.4.2 Set<K> MML.Map< K, V >.Domain [get]

Set of keys

3.3.4.3 Set<V> MML.Map< K, V >.Range [get]

Set of values

3.3.4.4 V MML.Map< K, V >.this[K k] [get]

Indexer alias for Item

3.4 MML.Relation< L, R > Class Template Reference

Public Member Functions

• Relation ()
• Relation (L left, R right)
• bool Has (L x, R y)

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.4 MML.Relation< L, R > Class Template Reference 13

• bool IsEmpty ()
• Set< R > ImageOf (L x)
• Set< R > Image (Set< L > subdomain)
• override bool Equals (object obj)
• override int GetHashCode ()
• Relation< L, R > Extended (L x, R y)
• Relation< L, R > Removed (L x, R y)
• Relation< L, R > Restricted (Set< L > subdomain)
• Relation< R, L > Inverse ()
• Relation< L, R > Union (Relation< L, R > other)
• Relation< L, R > Intersection (Relation< L, R > other)
• Relation< L, R > Difference (Relation< L, R > other)
• Relation< L, R > SymDifference (Relation< L, R > other)

Static Public Member Functions

• static bool operator== (Relation< L, R > r1, Relation< L, R > r2)
• static bool operator!= (Relation< L, R > r1, Relation< L, R > r2)
• static Relation< L, R > operator| (Relation< L, R > r, Set< L > s)
• static Relation< L, R > operator+ (Relation< L, R > r1, Relation< L, R > r2)
• static Relation< L, R > operator∗ (Relation< L, R > r1, Relation< L, R > r2)
• static Relation< L, R > operator- (Relation< L, R > r1, Relation< L, R > r2)
• static Relation< L, R > operator∧ (Relation< L, R > r1, Relation< L, R > r2)

Properties

• bool this[L x, R y] [get]
• Set< L > Domain [get]
• Set< R > Range [get]
• int Count [get]

3.4.1 Detailed Description

Finite relation

Template Parameters

L Domain type of the relation
R Range type of the relation

3.4.2 Constructor & Destructor Documentation

3.4.2.1 MML.Relation< L, R >.Relation ()

Create an empty relation

3.4.2.2 MML.Relation< L, R >.Relation (L left, R right)

Create a singleton relation

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

14 Class Documentation

Parameters
left Left component of the only element

right Right component of the only element

3.4.3 Member Function Documentation

3.4.3.1 Relation<L, R> MML.Relation< L, R >.Difference (Relation< L, R > other)

Set of values contained in this relation but not in other

3.4.3.2 override bool MML.Relation< L, R >.Equals (object obj)

Is obj a relation with the same pairs?

3.4.3.3 Relation<L, R> MML.Relation< L, R >.Extended (L x, R y)

Current relation extended with pair (x , y) if absent

3.4.3.4 bool MML.Relation< L, R >.Has (L x, R y)

Is x related to y ?

3.4.3.5 Set<R> MML.Relation< L, R >.Image (Set< L > subdomain)

Set of values related to any value in subdomain

3.4.3.6 Set<R> MML.Relation< L, R >.ImageOf (L x)

Set of values related to x

3.4.3.7 Relation<L, R> MML.Relation< L, R >.Intersection (Relation< L, R > other)

Relation that consists of pairs contained in both this relation and other

Parameters
other

Returns

3.4.3.8 Relation<R, L> MML.Relation< L, R >.Inverse ()

Relation that consists of inverted pairs from this relation

3.4.3.9 bool MML.Relation< L, R >.IsEmpty ()

Is map empty?

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.4 MML.Relation< L, R > Class Template Reference 15

Returns

3.4.3.10 static bool MML.Relation< L, R >.operator!= (Relation< L, R > r1, Relation< L, R > r2) [static]

Are the two objects not equal?

3.4.3.11 static Relation<L, R> MML.Relation< L, R >.operator∗ (Relation< L, R > r1, Relation< L, R > r2)
[static]

Operator equivalent for intersection operation

See Also

Intersection(Relation<L, R>)

>

3.4.3.12 static Relation<L, R> MML.Relation< L, R >.operator+ (Relation< L, R > r1, Relation< L, R > r2)
[static]

Operator equivalent for union operation

See Also

Union(Relation<L, R>)

>

3.4.3.13 static Relation<L, R> MML.Relation< L, R >.operator- (Relation< L, R > r1, Relation< L, R > r2)
[static]

Operator equivalent for difference operation

See Also

Difference(Relation<L, R>)

>

3.4.3.14 static bool MML.Relation< L, R >.operator== (Relation< L, R > r1, Relation< L, R > r2) [static]

Are the two objects equal? (Operator is equivalent to the |=| alias in Eiffel)

3.4.3.15 static Relation<L, R> MML.Relation< L, R >.operator∧ (Relation< L, R > r1, Relation< L, R > r2)
[static]

Operator equivalent for symmetric difference operation

See Also

SymDifference(Relation<L, R>)

>

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

16 Class Documentation

3.4.3.16 static Relation<L, R> MML.Relation< L, R >.operator| (Relation< L, R > r, Set< L > s) [static]

Operator equivalent for restricted operation

See Also

Restricted(Set<L>)

>

3.4.3.17 Relation<L, R> MML.Relation< L, R >.Removed (L x, R y)

Current relation with pair (x , y) removed if present

3.4.3.18 Relation<L, R> MML.Relation< L, R >.Restricted (Set< L > subdomain)

Relation that consists of all pairs in this relation whose left component is in subdomain .

3.4.3.19 Relation<L, R> MML.Relation< L, R >.SymDifference (Relation< L, R > other)

Relation that consists of pairs contained in either this relation or other , but not in both

3.4.3.20 Relation<L, R> MML.Relation< L, R >.Union (Relation< L, R > other)

Relation that consists of pairs contained in either this relation or other

3.4.4 Property Documentation

3.4.4.1 int MML.Relation< L, R >.Count [get]

Cardinality

3.4.4.2 Set<L> MML.Relation< L, R >.Domain [get]

The set of left components

3.4.4.3 Set<R> MML.Relation< L, R >.Range [get]

The set of right components

3.4.4.4 bool MML.Relation< L, R >.this[L x, R y] [get]

Indexer alias for Has

3.5 MML.Sequence< T > Class Template Reference

Inheritance diagram for MML.Sequence< T >:

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.5 MML.Sequence< T > Class Template Reference 17

MML.Sequence< T >

IEnumerable

Public Member Functions

• System.Collections.IEnumerator GetEnumerator ()
• Sequence ()
• Sequence (T x)
• bool Has (T x)
• bool IsEmpty ()
• bool IsConstant (T c)
• T Item (int i)
• Bag< T > ToBag ()
• int Occurrences (T x)
• override bool Equals (object obj)
• override int GetHashCode ()
• bool IsPrefixOf (Sequence< T > other)
• T First ()
• T Last ()
• Sequence< T > ButFirst ()
• Sequence< T > ButLast ()
• Sequence< T > Front (int upper)
• Sequence< T > Tail (int lower)
• Sequence< T > Interval (int lower, int upper)
• Sequence< T > RemovedAt (int i)
• Sequence< T > Restricted (Set< int > subdomain)
• Sequence< T > Removed (Set< int > subdomain)
• Sequence< T > Extended (T x)
• Sequence< T > ExtendedAt (int i, T x)
• Sequence< T > Prepended (T x)
• Sequence< T > Concatenation (Sequence< T > other)
• Sequence< T > ReplacedAt (int i, T x)
• Relation< T, int > Inverse ()
• Sequence< T > Reverse ()

Static Public Member Functions

• static bool operator== (Sequence< T > s1, Sequence< T > s2)
• static bool operator!= (Sequence< T > s1, Sequence< T > s2)
• static Sequence< T > operator& (Sequence< T > s1, T t)
• static Sequence< T > operator+ (Sequence< T > s1, Sequence< T > s2)

Properties

• T this[int i] [get]

• Interval Domain [get]

• Set< T > Range [get]

• int Count [get]

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

18 Class Documentation

3.5.1 Detailed Description

Finite sequence. Indexing starts from 0.

Template Parameters

T Type of sequence elements

3.5.2 Constructor & Destructor Documentation

3.5.2.1 MML.Sequence< T >.Sequence ()

Create an empty sequence

3.5.2.2 MML.Sequence< T >.Sequence (T x)

Create a singleton sequence

Parameters
x The only element in the sequence

3.5.3 Member Function Documentation

3.5.3.1 Sequence<T> MML.Sequence< T >.ButFirst ()

This sequence without the first element

3.5.3.2 Sequence<T> MML.Sequence< T >.ButLast ()

This sequence without the last element

3.5.3.3 Sequence<T> MML.Sequence< T >.Concatenation (Sequence< T > other)

The concatenation of the this sequence and other

3.5.3.4 override bool MML.Sequence< T >.Equals (object obj)

Is obj a set with the same elements in the same order?

3.5.3.5 Sequence<T> MML.Sequence< T >.Extended (T x)

Current sequence extended with x at the end

3.5.3.6 T MML.Sequence< T >.First ()

First element

3.5.3.7 Sequence<T> MML.Sequence< T >.Front (int upper)

Prefix up to upper

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.5 MML.Sequence< T > Class Template Reference 19

3.5.3.8 bool MML.Sequence< T >.Has (T x)

Is x contained?

3.5.3.9 Sequence<T> MML.Sequence< T >.Interval (int lower, int upper)

Subsequence from lower to upper .

3.5.3.10 Relation<T, int> MML.Sequence< T >.Inverse ()

Relation of values in this sequence to their indexes

3.5.3.11 bool MML.Sequence< T >.IsConstant (T c)

Are all values equal to c ?

3.5.3.12 bool MML.Sequence< T >.IsEmpty ()

Is the sequence empty?

3.5.3.13 bool MML.Sequence< T >.IsPrefixOf (Sequence< T > other)

Is this sequence prefix of other ?

3.5.3.14 T MML.Sequence< T >.Item (int i)

Value at position i

3.5.3.15 T MML.Sequence< T >.Last ()

Last element

3.5.3.16 int MML.Sequence< T >.Occurrences (T x)

How many times does x occur

3.5.3.17 static bool MML.Sequence< T >.operator!= (Sequence< T > s1, Sequence< T > s2) [static]

Are the two objects not equal?

3.5.3.18 static Sequence<T> MML.Sequence< T >.operator& (Sequence< T > s1, T t) [static]

Operator equivalent for extended operation

See Also

Extended(T)

>

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

20 Class Documentation

3.5.3.19 static Sequence<T> MML.Sequence< T >.operator+ (Sequence< T > s1, Sequence< T > s2)
[static]

Operator equivalent for concatenation operation

See Also

Concatenation (Sequence<T>)

>

3.5.3.20 static bool MML.Sequence< T >.operator== (Sequence< T > s1, Sequence< T > s2) [static]

Are the two objects equal? (Operator is equivalent to the |=| alias in Eiffel)

3.5.3.21 Sequence<T> MML.Sequence< T >.Prepended (T x)

Current sequence prepended with x at the beginning

3.5.3.22 Sequence<T> MML.Sequence< T >.Removed (Set< int > subdomain)

Current sequence with all elements with indexes from subdomain removed.

3.5.3.23 Sequence<T> MML.Sequence< T >.RemovedAt (int i)

This sequence with element at position i removed

3.5.3.24 Sequence<T> MML.Sequence< T >.ReplacedAt (int i, T x)

This sequence with x at position i

3.5.3.25 Sequence<T> MML.Sequence< T >.Restricted (Set< int > subdomain)

Current sequence with all elements with indexes outside of subdomain removed.

3.5.3.26 Sequence<T> MML.Sequence< T >.Reverse ()

Reverses the order of the elements in a Sequence.

3.5.3.27 Sequence<T> MML.Sequence< T >.Tail (int lower)

Suffix from lower

3.5.3.28 Bag<T> MML.Sequence< T >.ToBag ()

Bag of sequence values

Returns

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.6 MML.Set< T > Class Template Reference 21

3.5.4 Property Documentation

3.5.4.1 int MML.Sequence< T >.Count [get]

Number of elements

3.5.4.2 Interval MML.Sequence< T >.Domain [get]

Set of indexes

3.5.4.3 Set<T> MML.Sequence< T >.Range [get]

Set of values

Returns

3.5.4.4 T MML.Sequence< T >.this[int i] [get]

Indexer alias for Item

3.6 MML.Set< T > Class Template Reference

Inheritance diagram for MML.Set< T >:

MML.Set< T >

IEnumerable

MML.Interval

Public Member Functions

• System.Collections.IEnumerator GetEnumerator ()
• Set ()
• Set (T x)
• bool Has (T x)
• bool IsEmpty ()
• bool ForAll (Predicate< T > test)
• bool Exists (Predicate< T > test)
• T AnyItem ()
• delegate bool OrderType (T x, T y)
• T Extremum (OrderType order)
• Set< T > Filtered (Predicate< T > test)
• override bool Equals (object obj)
• override int GetHashCode ()
• bool IsSubsetOf (Set< T > other)
• bool IsSupersetOf (Set< T > other)

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

22 Class Documentation

• bool Disjoint (Set< T > other)
• Set< T > Extended (T x)
• Set< T > Removed (T x)
• Set< T > Union (Set< T > other)
• Set< T > Intersection (Set< T > other)
• Set< T > Difference (Set< T > other)
• Set< T > SymDifference (Set< T > other)

Static Public Member Functions

• static Set< T > operator| (Set< T > s1, Predicate< T > p)
• static bool operator== (Set< T > s1, Set< T > s2)
• static bool operator!= (Set< T > s1, Set< T > s2)
• static bool operator<= (Set< T > s1, Set< T > s2)
• static bool operator>= (Set< T > s1, Set< T > s2)
• static Set< T > operator& (Set< T > s1, T t)
• static Set< T > operator/ (Set< T > s1, T t)
• static Set< T > operator+ (Set< T > s1, Set< T > s2)
• static Set< T > operator∗ (Set< T > s1, Set< T > s2)
• static Set< T > operator- (Set< T > s1, Set< T > s2)
• static Set< T > operator∧ (Set< T > s1, Set< T > s2)

Properties

• bool this[T x] [get]
• int Count [get]

3.6.1 Detailed Description

Finite set

Template Parameters

T Type of set elements

3.6.2 Constructor & Destructor Documentation

3.6.2.1 MML.Set< T >.Set ()

Create an empty set

3.6.2.2 MML.Set< T >.Set (T x)

Create a singleton set

Parameters
x The only element of the set

3.6.3 Member Function Documentation

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.6 MML.Set< T > Class Template Reference 23

3.6.3.1 T MML.Set< T >.AnyItem ()

Arbitrary element

3.6.3.2 Set<T> MML.Set< T >.Difference (Set< T > other)

Set of values contained in this set but not in other

3.6.3.3 bool MML.Set< T >.Disjoint (Set< T > other)

Do no elements of other occur in this set?

3.6.3.4 override bool MML.Set< T >.Equals (object obj)

Is obj a set with the same elements?

3.6.3.5 bool MML.Set< T >.Exists (Predicate< T > test)

Does test hold for at least one element?

3.6.3.6 Set<T> MML.Set< T >.Extended (T x)

This set extended with x if absent

3.6.3.7 T MML.Set< T >.Extremum (OrderType order)

Least element with respect to order .

3.6.3.8 Set<T> MML.Set< T >.Filtered (Predicate< T > test)

Set of all elements that satisfy test

3.6.3.9 bool MML.Set< T >.ForAll (Predicate< T > test)

Does test hold for all elements?

3.6.3.10 bool MML.Set< T >.Has (T x)

Is x contained?

3.6.3.11 Set<T> MML.Set< T >.Intersection (Set< T > other)

Set of values contained in both this set and other

3.6.3.12 bool MML.Set< T >.IsEmpty ()

Is the set empty?

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

24 Class Documentation

3.6.3.13 bool MML.Set< T >.IsSubsetOf (Set< T > other)

Does other have all elements of this set?

3.6.3.14 bool MML.Set< T >.IsSupersetOf (Set< T > other)

Does this set have all elements of other ?

3.6.3.15 static bool MML.Set< T >.operator!= (Set< T > s1, Set< T > s2) [static]

Are the two objects not equal?

3.6.3.16 static Set<T> MML.Set< T >.operator& (Set< T > s1, T t) [static]

Operator equivalent for extended operation

See Also

Extended(T)

>

3.6.3.17 static Set<T> MML.Set< T >.operator∗ (Set< T > s1, Set< T > s2) [static]

Operator equivalent for intersection operation

See Also

Intersection(Set<T>)

>

3.6.3.18 static Set<T> MML.Set< T >.operator+ (Set< T > s1, Set< T > s2) [static]

Operator equivalent for union operation

See Also

Union(Set<T>)

>

3.6.3.19 static Set<T> MML.Set< T >.operator- (Set< T > s1, Set< T > s2) [static]

Operator equivalent for difference operation

See Also

Difference(Set<T>)

>

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

3.6 MML.Set< T > Class Template Reference 25

3.6.3.20 static Set<T> MML.Set< T >.operator/ (Set< T > s1, T t) [static]

Operator equivalent for removed operation

See Also

Removed(T)

>

3.6.3.21 static bool MML.Set< T >.operator<= (Set< T > s1, Set< T > s2) [static]

Operator equivalent for IsSubsetOf operation

See Also

IsSubsetOf(Set<T>)

>

3.6.3.22 static bool MML.Set< T >.operator== (Set< T > s1, Set< T > s2) [static]

Are the two objects equal? (Operator is equivalent to the |=| alias in Eiffel)

3.6.3.23 static bool MML.Set< T >.operator>= (Set< T > s1, Set< T > s2) [static]

Operator equivalent for IsSupersetOf operation

See Also

IsSupersetOf(Set<T>)

>

3.6.3.24 static Set<T> MML.Set< T >.operator∧ (Set< T > s1, Set< T > s2) [static]

Operator equivalent for symmetric difference operation

See Also

SymDifference(Set<T>)

>

3.6.3.25 static Set<T> MML.Set< T >.operator| (Set< T > s1, Predicate< T > p) [static]

Operator equivalent for filtered operation

See Also

Filtered(Predicate<T>)

>

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

26 Class Documentation

3.6.3.26 Set<T> MML.Set< T >.Removed (T x)

Current set with x removed if present

3.6.3.27 Set<T> MML.Set< T >.SymDifference (Set< T > other)

Set of values contained in either this set or other , but not in both

3.6.3.28 Set<T> MML.Set< T >.Union (Set< T > other)

Set of values contained in either this set or other

3.6.4 Property Documentation

3.6.4.1 int MML.Set< T >.Count [get]

Cardinality

3.6.4.2 bool MML.Set< T >.this[T x] [get]

Indexer alias for Has

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

Index

AnyItem
MML::Set< T >, 22

Bag
MML::Bag< T >, 6

ButFirst
MML::Sequence< T >, 18

ButLast
MML::Sequence< T >, 18

Concatenation
MML::Sequence< T >, 18

Count
MML::Bag< T >, 8
MML::Map< K, V >, 12
MML::Relation< L, R >, 16
MML::Sequence< T >, 21
MML::Set< T >, 26

Difference
MML::Bag< T >, 6
MML::Relation< L, R >, 14
MML::Set< T >, 23

Disjoint
MML::Set< T >, 23

Domain
MML::Bag< T >, 8
MML::Map< K, V >, 12
MML::Relation< L, R >, 16
MML::Sequence< T >, 21

Equals
MML::Bag< T >, 6
MML::Map< K, V >, 10
MML::Relation< L, R >, 14
MML::Sequence< T >, 18
MML::Set< T >, 23

Exists
MML::Set< T >, 23

Extended
MML::Bag< T >, 6
MML::Relation< L, R >, 14
MML::Sequence< T >, 18
MML::Set< T >, 23

ExtendedMultiple
MML::Bag< T >, 6

Extremum
MML::Set< T >, 23

Filtered
MML::Set< T >, 23

First
MML::Sequence< T >, 18

ForAll
MML::Set< T >, 23

Front
MML::Sequence< T >, 18

Has
MML::Bag< T >, 6
MML::Map< K, V >, 10
MML::Relation< L, R >, 14
MML::Sequence< T >, 18
MML::Set< T >, 23

Image
MML::Map< K, V >, 11
MML::Relation< L, R >, 14

ImageOf
MML::Relation< L, R >, 14

Intersection
MML::Relation< L, R >, 14
MML::Set< T >, 23

Interval
MML::Interval, 9
MML::Sequence< T >, 19

Inverse
MML::Map< K, V >, 11
MML::Relation< L, R >, 14
MML::Sequence< T >, 19

IsConstant
MML::Bag< T >, 6
MML::Map< K, V >, 11
MML::Sequence< T >, 19

IsEmpty
MML::Bag< T >, 7
MML::Map< K, V >, 11
MML::Relation< L, R >, 14
MML::Sequence< T >, 19
MML::Set< T >, 23

IsPrefixOf
MML::Sequence< T >, 19

IsSubsetOf
MML::Set< T >, 23

IsSupersetOf
MML::Set< T >, 24

Item
MML::Map< K, V >, 11
MML::Sequence< T >, 19

Last

28 INDEX

MML::Sequence< T >, 19
Lower

MML::Interval, 9

MML.Bag< T >, 5
MML.Interval, 8
MML.Map< K, V >, 9
MML.Relation< L, R >, 12
MML.Sequence< T >, 16
MML.Set< T >, 21
MML::Bag< T >

Bag, 6
Count, 8
Difference, 6
Domain, 8
Equals, 6
Extended, 6
ExtendedMultiple, 6
Has, 6
IsConstant, 6
IsEmpty, 7
Occurrences, 7
operator/, 7
operator==, 7
operator&, 7
Removed, 7
RemovedAll, 8
RemovedMultiple, 8
Restricted, 8
Union, 8

MML::Interval
Interval, 9
Lower, 9
Upper, 9

MML::Map< K, V >
Count, 12
Domain, 12
Equals, 10
Has, 10
Image, 11
Inverse, 11
IsConstant, 11
IsEmpty, 11
Item, 11
Map, 10
operator+, 11
operator==, 11
Override, 11
Range, 12
Removed, 12
Restricted, 12
SequenceImage, 12
ToBag, 12
Updated, 12

MML::Relation< L, R >
Count, 16
Difference, 14
Domain, 16
Equals, 14

Extended, 14
Has, 14
Image, 14
ImageOf, 14
Intersection, 14
Inverse, 14
IsEmpty, 14
operator∗, 15
operator∧, 15
operator+, 15
operator-, 15
operator==, 15
Range, 16
Relation, 13
Removed, 16
Restricted, 16
SymDifference, 16
Union, 16

MML::Sequence< T >
ButFirst, 18
ButLast, 18
Concatenation, 18
Count, 21
Domain, 21
Equals, 18
Extended, 18
First, 18
Front, 18
Has, 18
Interval, 19
Inverse, 19
IsConstant, 19
IsEmpty, 19
IsPrefixOf, 19
Item, 19
Last, 19
Occurrences, 19
operator+, 19
operator==, 20
operator&, 19
Prepended, 20
Range, 21
Removed, 20
RemovedAt, 20
ReplacedAt, 20
Restricted, 20
Reverse, 20
Sequence, 18
Tail, 20
ToBag, 20

MML::Set< T >
AnyItem, 22
Count, 26
Difference, 23
Disjoint, 23
Equals, 23
Exists, 23
Extended, 23

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

INDEX 29

Extremum, 23
Filtered, 23
ForAll, 23
Has, 23
Intersection, 23
IsEmpty, 23
IsSubsetOf, 23
IsSupersetOf, 24
operator<=, 25
operator>=, 25
operator∗, 24
operator∧, 25
operator+, 24
operator-, 24
operator/, 24
operator==, 25
operator&, 24
Removed, 25
Set, 22
SymDifference, 26
Union, 26

Map
MML::Map< K, V >, 10

Occurrences
MML::Bag< T >, 7
MML::Sequence< T >, 19

operator<=
MML::Set< T >, 25

operator>=
MML::Set< T >, 25

operator∗
MML::Relation< L, R >, 15
MML::Set< T >, 24

operator∧

MML::Relation< L, R >, 15
MML::Set< T >, 25

operator+
MML::Map< K, V >, 11
MML::Relation< L, R >, 15
MML::Sequence< T >, 19
MML::Set< T >, 24

operator-
MML::Relation< L, R >, 15
MML::Set< T >, 24

operator/
MML::Bag< T >, 7
MML::Set< T >, 24

operator==
MML::Bag< T >, 7
MML::Map< K, V >, 11
MML::Relation< L, R >, 15
MML::Sequence< T >, 20
MML::Set< T >, 25

operator&
MML::Bag< T >, 7
MML::Sequence< T >, 19
MML::Set< T >, 24

Override

MML::Map< K, V >, 11

Prepended
MML::Sequence< T >, 20

Range
MML::Map< K, V >, 12
MML::Relation< L, R >, 16
MML::Sequence< T >, 21

Relation
MML::Relation< L, R >, 13

Removed
MML::Bag< T >, 7
MML::Map< K, V >, 12
MML::Relation< L, R >, 16
MML::Sequence< T >, 20
MML::Set< T >, 25

RemovedAll
MML::Bag< T >, 8

RemovedAt
MML::Sequence< T >, 20

RemovedMultiple
MML::Bag< T >, 8

ReplacedAt
MML::Sequence< T >, 20

Restricted
MML::Bag< T >, 8
MML::Map< K, V >, 12
MML::Relation< L, R >, 16
MML::Sequence< T >, 20

Reverse
MML::Sequence< T >, 20

Sequence
MML::Sequence< T >, 18

SequenceImage
MML::Map< K, V >, 12

Set
MML::Set< T >, 22

SymDifference
MML::Relation< L, R >, 16
MML::Set< T >, 26

Tail
MML::Sequence< T >, 20

ToBag
MML::Map< K, V >, 12
MML::Sequence< T >, 20

Union
MML::Bag< T >, 8
MML::Relation< L, R >, 16
MML::Set< T >, 26

Updated
MML::Map< K, V >, 12

Upper
MML::Interval, 9

Generated on Thu Nov 1 2012 16:59:39 for MML - C# Version by Doxygen

Bibliography
[1] N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying Reusable

Components,” in Proceedings of the 3rd International Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE’10), G. T.
Leavens, P. O’Hearn, and S. Rajamani, eds., vol. 6217 of Lecture Notes in
Computer Science, pp. 127–141. Springer, August, 2010.

[2] T. Widmer, “Reusable Mathematical Models,” Master’s thesis, ETH
Zurich, 2004. http://se.inf.ethz.ch/old/projects/tobias_widmer/
Thesis-Widmer2004.pdf.

[3] http://research.microsoft.com/en-us/projects/contracts/.
[Online; accessed 30-October-2012].

[4] http://dsa.codeplex.com. [Online; accessed 30-October-2012].

[5] http://research.microsoft.com/en-us/projects/pex/. [Online;
accessed 30-October-2012].

[6] http://se.inf.ethz.ch/student_projects/elena_mokhon/. [Online;
accessed 30-October-2012].

[7] https://code.vis.ethz.ch/svn/mbc. [Online; accessed
30-October-2012].

[8] M. Barnett, M. Fähndrich, P. de Halleux, F. Logozzo, and N. Tillmann,
“Exploiting the synergy between automated-test-generation and
programming-by-contract.,” in ICSE Companion, pp. 401–402. IEEE,
2009. http://dblp.uni-trier.de/db/conf/icse/icse2009c.html#
BarnettFHLT09.

[9] http://quickgraph.codeplex.com/. [Online; accessed
30-October-2012].

73

http://se.inf.ethz.ch/old/projects/tobias_widmer/Thesis-Widmer2004.pdf
http://se.inf.ethz.ch/old/projects/tobias_widmer/Thesis-Widmer2004.pdf
http://research.microsoft.com/en-us/projects/contracts/
http://dsa.codeplex.com
http://research.microsoft.com/en-us/projects/pex/
http://se.inf.ethz.ch/student_projects/elena_mokhon/
https://code.vis.ethz.ch/svn/mbc
http://dblp.uni-trier.de/db/conf/icse/icse2009c.html#BarnettFHLT09
http://dblp.uni-trier.de/db/conf/icse/icse2009c.html#BarnettFHLT09
http://quickgraph.codeplex.com/

	Introduction
	Design by Contract
	Model-based Contracts and the MML

	The C# Version of the MML
	Initial Situation and the Porting Process
	The Overall Structure of the Library
	Improvements Made
	Differences between Eiffel and C# Versions

	Model Based Contracts for the DSA Library
	Introduction
	Contract Development
	Incomplete Contracts
	Specification Overhead

	Automatic Testing of the MBC-Enhanced DSA Library
	The Pex Testing Tool
	The Testing Project
	The Testing Procedure
	Testing Results
	AvlTree
	BinarySearchTree
	Heap
	DoublyLinkedList
	SinglyLinkedList

	Conclusion and Future Work
	Conclusion
	Future Work

	API Documentation for the C# MML Port

