Concurrent programming in SCOOP:
a tutorial

18 April 2015

Ever more often, users want programs to be concurrent. A concurrent e-mail client,
for example, can download new messages while you are reading earlier ones. The
alternative is aequentiaprogram, which does only one thing at a time: a sequen-
tial e-mail client would force the download to wait while you read, and, once down-
loading starts, would force you to wait before reading again. Not attractive.

SCOORP is the Eiffel mechanism that enables you to make your programs con-
current. The name meafsmple Concurrent Object-Oriented Programmi&gm-
plicity is indeed one of SCOOP’s biggest draws. The “S” could also stand for Safe:
concurrent programming with traditional approaches can be very tricky, but
SCOOP removes many of the traditional pitfalls, such as “race conditions”.

You can read in detail about the theory and rationale in the bibliographic refer-
ences. This tutorial is a hands-on presentation of how to use SCOOP in practice.
We will go through a simple example, an email client with its viewer and debugger.

You can download an Eiffel project with all the default SCOOP settings at
http://.., load it into EiffelStudio, then fill in the initially empty class texts from the
models below, compile them and run then as you gditid://...you will find the
final version of the example.

1 HERE AND THERE

The basic way to make a program a SCOOP program is to declare some of its
entities aseparate so that operations on the associated objects run elsewhere.

Without separate a sequential version of an email client could read:

classCLIENTfeature

messaged IST[STRING -- Email messages received
downloader DOWNLOADER -- Downloading engine
viewer VIEWER -- Message viewing engine

... More features..
end

yielding at run time a simple object structure, with all objects in a siegjen

2 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1

Sequentiai

messager > = H] oneregionfor
downloader

Il objects
: LIS a
viewer | (T)

% (CLIENT)

(VIEWER (DOWNLOADER
The CLIENT object represents an email client and contains references correspond-
ing to the attributes of the class:

» downloadera reference to an object of typ©WNLOADER
» viewer a reference to an object of tygeEWER

* messages reference to a list header, which itself gives access to other objects,
the actual list elements (messages).

Because these objects are all in one region, a single processor will take care of
operations on all of them; if the claBEOWNLOADERhas a routinglownloadto
download messages aWE\WWERhasview_onego view messages, at most one of
these routines will be running at any time.

With SCOOP you can make things concurrent by putting objects in different
regions, handled by different processors. You declare sometbjpayateto spec-
ify that it will be in a different region:

classCLIENTfeature
messaged IST[STRING -- Email messages received
downloader separate DOWNLOADER -- Downloading engine
viewer. separate VIEWER -- Message viewing engine
end

The run-time picture changes to reflect the distribution of objects into regions:

messages$ Concurrent
downloac?er\> > __>D_D_D_D_D three separate
i LIS regions
viewer [} (LIST) |
(CLIENT) Region 1
/_/_/W
Region 2 Y Region 3

(VIEWER (DOWNLOADER

§2 PROCESSORS 3

The existence of three regions, delimited in the figure by curvy red lines, follows
from theseparatedeclarations. The list header and list element objects are not sep-
arate from theCLIENT object, so they belong with it in region 1. But sindewer

is separatethe viewer object is in a different region, number 2 in the figure. The
downloaderalso has its own region, called region 3.

Here each of the class€&IENT, DOWNLOADERandVIEWERneeds only one
instance (they are “singleton” classes), but in general a class may have many
instances, spread over any number of regions.

You now know the basic rule of concurrency with SCOOP: declaring entities as
separateto ensure that the corresponding objects belong to different regions.

2 PROCESSORS

To handle operations on objects, we ngedcessorsA processor in SCOOP is
simply a mechanism that can execute instructions in sequence. It can be a physical
processing unit (one of the cores in a computer) but more commonly it will be a
software mechanism such atheead as in the current SCOOP implementation.

Whatever the implementation, a processor has two fundamental properties:

» It is sequential. Each processor executes instructions one at a time. You get
concurrency by usingeveralprocessors.

» Every processor is associated with a region. The processor handles all opera-
tions on objects in the region; we say it is thieemdler. The example has three
processors: one handling the email client, the list header and the list elements
(region 1); another handling the viewer object (region 2); and a third, handling
operations on the downloader (region 3).

To “handle” an object means to execute all the operations on that object. In

object-oriented programming, every operation indeed works on an object, in the

sense that.r (...) works on the object attachedxoThat object is in a region, and

the region’s handler will execute all such operations.

ClassDOWNLOADERheeds a routine for what downloaders do — download:

download_ondéml: separateLIST[STRING) In class
-- Read one message and record it mto DOWNLOADER
local
latest STRING
do
count:= count+ 1 -- Increment message count
latest:= "message " €ountto_string -- Make up new message
print ("Adding message: " fates) -- Display that message
ml.extend(lates) -- Add message to list

end

4 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 83

In an actual email system, the downloader would get message from a file or socket.
In the simulated downloader above, tiéh message is simply a string of the form
“Messagean”. (“+” between strings is concatenation, ad stringgives the text
representation of an integer.) The callpiont is not needed for the downloader’s
operation but will help us follow the execution when we try the email system in a
few moments.

To record the messagdpwnload_oneauses the procedumxtendfrom LIST,
which adds an element at the end of a list.

The processor handling tiEOWNLOADERbbject executes all the instructions
of download_onethe first three, which do not involve separate variables, and the
call torecord_ongsee the illustration below). But in the instruction.extendm)
of record_oneml, the list of messages, is separate, so it has a different handler, and
that processor — the handler for all region 1 objects — will execute the call to
extend

Referencing an

object in
(LIST) Region 1 another region

Region 3

(DOWNLOADER

The rule is simple:

* Any operation of the fornx.some_featurg...), wherex is separate, will be
executed by the handler xf

* The handler of the current object will, by default, execute all other operations:
simple operations such as the assignnuenint:= count+ 1, unqualified fea-
ture calls such asome_featuré...), and qualified callx.some_featurg...)
wherex is not separate.

3 STARTING A PROCESSOR

How do we get new regions and the associated processors? Simply by creating sep-
arate objects. If we start from@LIENT object, it can create the viewer and the
downloader as part of its own creation procedure (constructor):

8§84 KEEPING REFERENCES TO SEPARATE OBJECTS 5

classCLIENT create
make
feature -- Initialization
make
do
create{ LINKED_LIST} messagesnake -- Create message list
create downloadermake(messages
create viewertmake(messages
end

feature -- The attributes as before:
messaged IST[STRING
downloader separateDOWNLOADER
viewer separateVIEWER

end

The creation procedunmakeof CLIENT starts by creating the list of messages.
Sincemessagess not separate, this first instruction is a normal creation. The next
two, however, have targetlownloaderandviewerthat are declaredeparate the
effect is to create a new region for each of them, producing the situation shown in
the last two figures, and also to start a processor for each of these regions.

What does it mean to “start a new processor”? In the default thread-based imple-
mentation of SCOOP, the simplest is to start a new thread. But the implementation
can be smarter; for example it can reuse an existing thread from a “thread pool”.
And remember that nothing constrains SCOOP to use threads. What matters, inde-
pendently of the implementation, is that when you create a processor it will be able
to host objects in its associated region and sequentially execute operations on them.

In the example, the client passeessageas argument to the creation proce-
dures of both separate objects, because both need access to the message list: the
downloader to add messages, and the viewer to find messages. (All the classes
involved have a creation procedure with the nama&e)

4 KEEPING REFERENCES TO SEPARATE OBJECTS

Take a closer look at the downloader object.

Concurrent

_ three separate
A (LST Region 1 regions

I S)

count Region 3
messages

(DOWNLOADER

6 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 84

To retain access to the message listin region 1, the object needs to keep a reference
to it; you can declare that reference in the class as

In class
DOWNLOADER

Since thismessagefeld will be a reference to an object in another region, it is
declared aseparate (They both use same nanmessagesvhich does not create
any confusion since they are in different classes.)

It is the job of themakecreation procedure ddOWNLOADER record that
reference. We saw that the client calls that procedure, as part of its own initializa-
tion, through the creation call

messageseparateLIST[STRING

create downloadermake(Current) In classCLIENT

passing itself as argument, so that the downloader knows for which client it is
working. So here is hoWOWNLOADERoo0ks so far:

For simplicity the
classDOWNLOADERcreate attribute represent-
make ing the message list
feature -- Initialization hasthesa_mename
. messagesn al
make(c: separate CLIENT) o relevant classedn
-- Initialize downloader so that it will download messagesfor | classes other than
do CLIENT,itis a sep-
arate reference to
messages- c.messages themessagelist of
end the client region
feature
messages separate LIST[STRING
count INTEGER -- Number of downloaded messages
download_onéml: separateLIST[STRING)
do... end -- As seen above (page
end

Both the argument of makeand the attributenessageare declaredeparate
because the client object and its message list belong to the client’s region (region
1) and hence, seen from the downloader, are separate.

The viewer side uses exactly the same initialization

classVIEWERcreate
make
feature
make(c: separateCLIENT)
-- Initialize viewer so that it will support viewing messages.of
do messages- c.messagesnd
messagesseparateLIST[STRING
... More features to come.
end

8§85 BUILDING A CONCURRENT PROGRAM 7

To refresh our minds here is the full run-time object picture:

messages$ > Em_ail system
downloader . —> M H] regions and
viewer (LISTA objects
(CLIENT) Region 1
messages coun
messagep
(VIEWER
(DOWNLOADER

Both the downloader and viewer objects have a separate referencecafisdges

in both cases, to the message listin the client region. For information hiding, it may
be preferable to gather all operations on the message list inClA&NT, so that

the viewer, downloader and other objects involved only keep a reference to the
client object, and go through it rather than working directly on the list. The
technique used here, however, illustrates the property that an object in any region
can have separate references attached to any object in another region.

5 BUILDING A CONCURRENT PROGRAM

We have set up the stage and can now start building our little email system. The
idea is to get right away to something that compiles and runs, so it is going to be
simulatedemail (do not throw away Outlook and Gmail yet).

We add tdOWNLOADERa procedure that repeatedly downloads messages:

live These four features
-- Get messages and add them to the client message list. gointo classDOWN
do LOADER
from until is_overloop
download_one(messages
wait (D_temporizatioh
end
end

is_over BOOLEAN -- Should we stop downloading? See sectidn

Until is_overis set,live repeatedly downloads a message and waits
D_temporizatiorseconds, using a system procedwsst. This is again simulated
email; a real mail downloader, instead of instead of “pulling” messages at preset
intervals, would be “pushed” to read messages as they become available.

8 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 85

On the simulated viewer’s side, things are similar, withiew_oneprocedure
and a proceduriéve describing the overall viewing process:

view_ongml: separateLIST[STRING) InVIEWER
-- Simulate viewing: ifml contains messages, display one, chosen randp
do Do not confusda’ve
. . andis_overwith
if not ml.is_emptythen the features of the
print ("Viewing message: *+ ml.i_th (random(1, ml.coun))) same name in
-- Assumingrandomyields a random integer in the given intewzg‘%\gg;ﬁﬁ?m
end
end
live
-- Simulate a user viewing a message o3fnce in a while.
do
from until is_overloop
view_ongmessages
wait (V_temporizatioh
end
end
is_over BOOLEAN -- Should we stop viewing? See sectidh

We can use the classes defined so far to build a mini-email system. To start the sys-
tem, it suffices to createLAYERobject and to call its routinplayl, which con-
currently runs the respectilige routines on the downloader and the viewer:

note
description "Driver class for trying out email mechanisms"
classPLAYERcreate makefeature
client separateCLIENT
downloader separateDOWNLOADER
viewer separateVIEWER
messages:separateLIST[STRING

make
do
create<NONE> client.make -- Creates downloader and viewer
downloader.= client.downloader
viewer:= client.viewer The<NONE>
. specification will
end section14.
playl

do live_both(downloadeyviewe) end

8§85 BUILDING A CONCURRENT PROGRAM

live_both(d: separateDOWNLOADERV: separateVIEWER
-- Rund andv concurrently.
do
d.live
V. live
end

end

You can compile a system with the above class angtayl. The execution output
will look something like this:

Adding message: Message 1
Adding message: Message 2
Adding message: Message 3
Viewing message: Message 2
Adding message: Message 4
Viewing message: Message 4
Adding message: Message 5
Viewing message: Message 2
Viewing message: Message 5

“Something likéthis, not necessarily exactly this, because the interleaving of mes-
sages of both kinds depends on several factorsiah@omfunction, the tempori-
zation values, and the speed of the physical processors and threads involved.

Such a behavior, where the program'’s results may depend on timing properties,
is callednon-deterministic

Like cholesterol, non-determinism comes in both good and bad flavors. SCOOP
supports “good” non-determinism and avoids the bad variety. Non-determinism is
bad if it is an artefact of the implementation and hence undesirable. It is good if it
follows from the problem specification.

Here the non-determinism is good since it follows from the use of random val-
ues for the simulation. But non-deterministic does not mean arbitrary. The output
shown here, and any variant that you get, will satisfy the following two properties:

* The download messagesAffding message...”) appear in the full order of
message numbers; 2, 3, ...

* No message is viewed before it has been downloaded.

Violating either of these properties would be an example of “bad” non-determinism.

10 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 86

6 CONTROLLING MULTIPLE ACCESS TO SHARED RESOURCES

As illustrated by the preceding example, concurrent applications typically start
several threads of control but still need to access common resources, here the mes-
sage list. In other approaches to concurrency, you need to add synchronization
operations, to make sure that the various threads do not step on each other’s toes.
The technical term for such mix-upsnace condition(or “data race”). Here, for
example, you might worry that the viewer will try to access the message list,
throughi_th, while the downloader is not finished adding an element to it, through
extend Indeed, look up the text of both of these routines in the library class
LINKED_LIST both need to traverse the list, bextendmust modify the links
between elements to add an element. If the execution were permitted to start

at some intermediate stage of that process, it would either produce an incorrect
result or crash:

Incorrect
T D concurrent
(LIST) accesgnot in
A [] SCOOR

e T —”T TN
Trying to access

Already started
element modifying links
(VIEWER (DOWNLOADER

With SCOOP such race conditions cannot happen beeanséne always has exclu-
sive access to objects represented by its separate argumehtsre the routines

download_ondéml: separateLIST[STRING) -- In DOWNLOADER
view_ongml: separateLIST[STRING) -- In VIEWER

both guarantee exclusive access tanthargument, the message list, in calls

download(messages -- In DOWNLOADER
view_ongmessages -- In VIEWER

This guarantee —ro race conditiongperiod— is a major benefit of SCOOP.

§7 SIMULTANEOUS RESERVATION 11

7 SMULTANEOUS RESERVATION

Sometimes you will need exclusive access to more than one resource. In SCOOP
you get it easily, as a generalization of the just seen mechanism of passing the cor-
responding separate objects as arguments.

Consider a “merger” object that takes two email clients and adds to the first cli-
ent's message list all the messages from the second one. The routine may read

merge(¢, c2 separateCLIENT)
do
merge_list§cl.messages, chessages
end

merge_listg |11, 12: separateLIST[STRING)
do

acrossl2 aseloop I1.extend(e.item) end
I2.wipe_out

end

In classMERGER

(The implementation afherge_listselies on list features from EiffelBasextends
add an element at the end of a list, amge_outremoves all elements.)

We can assign the merger object its own region and processor (by now you know
how to do this: just declare #eparateand on creation it will spawn a new region
and the associated processor). Tergeoperation will then run concurrently with
all the other objects of the example, such as the downloader and the viewer. For the
duration of its execution, it must have exclusive access to both client objects; oth-
erwise you might get a race condition, inconsistent results and an botched data
structure. The SCOOP rule meets this requirement: a call

‘ merge(client_a client_b ‘

gets exclusive access &l the separate arguments. The implementatiomefge
again relies on this rule, since it calteerge_listsith two separate arguments rep-
resenting the clients’ message lists, getting exclusive access to both of these lists.

To guarantee this exclusive access the execution may have to wait until their
processors are available. With other concurrency mechanisms you might have to
program this “wait on multiple resources” operation manually; it is hard to get it
right. With SCOOP you get the multiple wait automatically. More generally,
SCOOP transfers the responsibility for some of the most difficult issues in concur-
rent programming from the programmer to the compiler and runtime.

12 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §8

8 CONDITIONAL WAIT

Next we are going to learn how to wait for a condition in another region. More pre-
cisely we want to waismartly If we remove that requirement an easy solution may
work: keep testing for the condition until it holds. This strategy is known as “busy
wait” but in many cases it really slly wait since it is wasteful of resources — and

in fact it may not even be correct, as we will see shortly. Instead, SCOOP lets you
specify an operation to be executed on a separate ddgestion as condition on

that object becomes true, guaranteeing correctness and avoiding busy wait.

As an example, let us introduce a new separate object in our email system, of
type MOVER The mover object takes action whenever the size of the mailbox
reaches a certain validax (say 10,000 messages) and leaves only theMast
(say 1,000) in the mailbox. In practice it should archive the removed messages but
we will ignore that part. The corresponding class can be as follows

Warning incorrect

classMOVERcreate makefeature preliminary ver-
messageseparateLIST[STRING-- Handled, as before, by the mail clignson. See the cor-
make(c: separateCLIENT) rect one below
... Setmessage® c. messageEeeDOWNLOADERVIEWER, PLAYER.. | P9¢%*
live
-- Keep watching for client’s mailbox to reabtax messages,
g -- and when it does, remove all messages excep¥liasines.
0
from until is_overloop moveend
end
move
-- When client’s mailbox reaches size Max, trim iivon.
do

“Wait until is_ready(messages

trim (messages
end

is_ready(ml: separateLIST[STRING)
-- Has the size ahl reachedMax messages?
do Result:= (ml.count>= Max) end

trim (ml: separateLIST[STRING)

do Remove fronml all messages except |agin ones.
0

acrossl |..|Min asi loop
ml [i.item] := ml[ml.count — Min+ i.item]

end
ml.remove_tai(Min) -- Cuts off list at positioMin.
end
is_over BOOLEAN -- Should we stop moving? See sectidn

end

§8 CONDITIONAL WAIT 13

The actual moving is done kyim. Repeatedlymovewaits for the size to reach
Max, by testing foiis_ready and when that happens it executes.

In move the waiting is — temporarily — represented by pseudoctdét
until is_ready(messaggs. A naive way to implement this pseudocode is

-- Warning: for discussion only, don’t program like this!
from until is_ready(s) loop wait_a_littleend

for sof some typeS wherewait_a_littlewaits for some preset time. This solution
uses busy wait, but the waste of CPU cycles is the least of its problems. The solu-
tion is in fact incorrect because of a typical concurrency error: between the time
is_ready(messag@astests positive and the time we take advantage of it to call
trim (messag@s another client may have changed thessageéist. This is pre-
cisely the kind of tricky errors that arise in pre-SCOOP approaches. Tricky because
the second call generally comes so quickly after the first that in most cases things
will work well; but every once in a while, depending on inputs and on relative exe-
cution speeds, a wrong result will ensue. Non-determinism makes the problem next
to impossible to reproduce and identify.

As guaranteed by the SCOOP rules, bsthreadyandtrim need to reserve the
messagelst, but the two operations need to run within semereservation of that
shared object. Another attempt, again naive, would be to transfer the wait (imple-
mented by the code above) to the beginningiof’'s implementation, to retain the
reservation olmessages

trim (ml: separateLIST[STRING) Warning still an

incorrect solution
do

“Wait until is_ready(ml)”
... The rest as abovagrossloop and call teaemove_tail ...

end

This solution gets rid of the concurrency conflict noted above, but only by creating
a worse problem: becausem now starts by reserving theessage#st, no one

else, such as the downloader, can access or modify that list; so nothing will ever
happen! The execution gets stuck. (Your CPU will show a lot of activity, since it
keeps executing the busy wait, but there isisefulactivity, defined as activity that
could change the list and hence allow the real execution to proceed.)

The solution is to associate the condition wittm. For this purpose, SCOOP
relies onpreconditionspart of Eiffel's Design by Contract mechanism. The line of
pseudocode (the attempted waiting) disappears; and so does the need for routine
is_ready The correct version afim is:

14 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §8

trim (ml: separateLIST[STRING)
-- Whenml reachedMax messages, remove all except Mgt ones.
require
ml.count>= Max

do

4 As above &crossloop and call teemove_tail ...
en
end

The conditionml.count>= Max in the precondition is known asseparate pre-
condition clausebecause it uses a call with a target, haigthat is a separate argu-
ment of the routine. The effect of a separate precondition clause in SCOOP is to
make the call wait until the condition holds. At that point it will proceed as usual,
reserving all the separate arguments, mek& his policy is exactly what we need.

How to program the wait is the responsibility of the SCOOP implementation,
not the application programmer (you!). The implementation does not have to use
busy wait: if it finds the condition initially not satisfied, it can free the object for
use by other processors, such as the downloader’s, then check back at appropriate
moments until the condition becomes true and it can proceed with the badiyof

Since we started with an incorrect version of cls8SVERthen modified it a
few times, here is the actual version, consolidating for ease of reference the various
elements introduced above. The class is significantly simpler since we no longer
need the proceduresoveandis_ready

Replaces version of

classMOVERcreate makefeature page12

messageseparateLIST[STRING

make(c: separateCLIENT)
... Setmessage® c.messageseeDOWNLOADERVIEWER, PLAYER..

live
-- Keep watching for client’s mailbox to reabtax messages,
-- and when it does, remove all messages excep¥liasines.
do
from until is_overloop trim (messaggsnd
end

trim (ml: separateLIST[STRING)
-- Whenml reachedMax messages, remove all except Mgt ones.

require
ml.count>= Max
do
... As above &crossloop and call teemove_tali ...
end
is_over BOOLEAN -- Should we stop moving? See sectiéh

end

8§89 THE BUM WRAP?

15

9 THE BUM WRAP ?

The example classes discussed ab®@@WNLOADERVIEWER MOVER all
perform operations on the client’'s message list, to which they have access through
a separate attribute

messageseparateLIST[STRING

You might have expected that they manipulate that list directly, as in

messagesome_list_feature [1] -- Invalid, see below.

(for examplemessagesxtend(lates) in proceduredownload_oneof class
DOWNLOADER. But that is not what they do. Instead, the code achieves the
required effect through calls of the fonnfmessagégsfor a routiner with an argu-
mentml: separateLIST[STRING, where the body af executes

ml.some_list_feature [2]

Obviously this form does whdl] was intended to do, but at the cost (for the pro-
grammer) of extra coding, since you must write a wrapper routteewhich you
pass the separate attribute as an argument.

This wrapping is not just a peculiarity of the examples seen so far. In a call
x.f (...) where the target is separatex must by default be a formal argument of
the enclosing routine. So you are not permitted to write thg thdbove, but must
wrap it into a routine and pasgessageas actual argument to that routine.

Why this rule? It guards against race conditions. It would be just too natural
without the rule to write something like

messagegextend(vl) -- Invalid.
messagegextend(v2) -- Invalid.

believing that you are adding two valued,andv2, next to each other at the end

of the list. The trouble here is thatost of the timgou are. But in some execution

out of a million someone else will capture messages between the two calls and you
will end up with a transient bug (the jargon term is “Heisenbug”) which is next to
impossible to track and fix. The SCOOP convention forces you to get hold of sep-
arate objects before you can work on them, so if you do care about the elements
ending up in consecutive positions you will usgd_two(v1, v2), having declared

add_two(ml: LIST[STRING)
-- Add v1 andv2, in this order, next to each other, at the enchlof
do
ml.extend(vl)
ml.extend(v2)
end

16 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §9

While it is always necessary to reserve separate objects before you can work on
them, there is a simplified notation to avoid introducing lots of small wrapper rou-
tines such aadd_twain straightforward cases. It uses the keywsegarateagain

and is called thénline separateinstruction. You can get rid of the routimeld_two

if you replace the calldd_two(vl, v2) by the separate inline instruction

separatemessageas mldo
ml.extend(vl)
ml.extend(v2)

end

The syntax is self-explanatory; note the use of a local namhep capture the sep-
arate object within the separate inline instruction. The separate inline instruction
provides an implicit form of wrapping, not requiring the declaration of a routine,
and has exactly the same effect as the explicit wrapping form presented above.

As with the routine calmerge_listcl.messages, cGessagesyou can USEin classMOVER
an inline separate instruction to reserve two or more separate objects togethragell
example if this is the only call tmerge_listsyou can get rid of this routine, replac-
ing the call by

separatecl.messageasll, c2.messageas|2 do)
-- Rest of code identical to the bodyroérge_listan the previous form:

acrossl2 aseloop I1.extend(e.item) end
12.wipe_out

end

The separate inline instruction can also includeguire clause to cause waiting
on a separate precondition. For example int@VERclass you can entirely avoid
thetrim routine by writingmoveas

move | | I See the ogina
-- When client’s mailbox reaches silgkax, trim it to Min. trim on pagel2.
do
separatemessageasml require
ml.count>= Max
do -- The rest as in the earligim:
acrossl |..Minasi loop ml[i.item := mlI[ml.count—Min+i.item] end
ml.remove_tai(Min)
end
end

The fundamental rule remains: you may only call a routine on a separate target if
you have reserved the corresponding object, by either passing it as argument to a
wrapper routine or by using an inline separate instruction.

8§10 THE ORDER PRESERVATION RULE 17

10 THE ORDER PRESERVATION RULE

With concurrency comes non-determinism, but non-deterministic does not mean
random or arbitrary. SCOOP enforces time-ordering constraints that enable you to
reason about the execution of your programs in a way that is not so different from
reasoning about sequential programs.

We come back to our little playground for trying out our email mechanis; AY=R"as on
classPLAYER The “play” features that follow are in that class and let us exp...
ment with properties of concurrent computation. We alreadygiagl, which

calledlive_both but we start again with something much simpler: g'ayl""as on page

play2
-- Download two messages.
do
separatedownloaderasd do
d.download_onémessages
d.download_onémessages
end
end

download_onavas

Remember that in our simulated downloadervnload_oneprints out a messag | pages

indicating the message it is downloading. So we may expect an execufayaf
starting from scratch, to produce the following output:

Adding message: Message 1
Adding message: Message 2

Run it; this is indeed what you will get. No visible non-determinism here: you can
try any number of times, in any environment and will get the same result, with the
two messages in order. Adding delays(t (t) for somet) in play2, download_one

or both does not affect this property.

SCOOP provides an ordering guarantee: in this example, the order of execution
of the two routines is the same as if we had a sequential (rather than concurrent)
system,; it is the order in which the algorithnptdy2 executes them.

This order preservation rule states tifaivo separate calls have the same
originating region and the same target region, the order of execution of the
routines’ bodies is the same as the order of the call$lere the originating region
is the player’s region, and the target region is the downloader’s region. Their order
will be preserved, as illustrated here:

Region A j Region C Bet_vveen glllven
Separate call Al——» :)E;glcgrnsrggerved
Separate call AZT—b P

18 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 8§10

Now let us see what happens when we change regions. Try this:

play3
-- Download a message, view a message.
do
separatedownloaderasd, viewerasv do
d.download_onémessaggs
V.view_ongmessages
end
end

Remember thatiew_oneprints a message, chosen at random from the clie
message list if not empty, but does nothing if the list is empty. If youpiay3
(from scratch) several times, you might get, in some executions

pages.

Adding message: Message 1 “Two-line output”
Viewing message: Message 1

where the first line comes froodownload_one&nd the second fromiew_oneBut
in other executions you might also get

Adding message: Message 1 “One-line output”

that is, just the first line! We call these two results the “two-line” and “one-line”
outputs. You get one-line if the executionwdéw_onecomes so fast on the heels
of the callv.view_ongmessaggghatdownload_ondas not had the time to start

its execution yet. (If you do not see yet how this can happen, we will study the
detailed timeline in the next section.)

Because computers are so fast these days it may be that on your system you
never get the one-line output over repeated executions. To be almost sure to get it,
add a line at the beginning of the textadwnload_ongin classDOWNLOADER

wait (Delay)

whereDelayis a time in milliseconds. For largeelay, say 1000, you should get
the one-line output, because the calNiew_onewill come much faster. For
Delay= 0you will probably get the two-line output. In-between, for small values,
you may get different values in successive executions. In sequential computation
this behavior would not make sense: whatever delays we introduce, we first execute
d.download_ongand only thens.view_oneso the second operation will always
find a non-empty list and print the two-line output.

What happened? We have three regions involved (player, downloader, viewer),
and each has its own processor with its own timing. There is no guarantee of order
preservation in such cases.

view_onewvas on

8§11 SEPARATE CALLS TO COMMANDS ARE BY DEFAULT ASYNCHRONOUS

Region A Region C B_etween
Separate call A dlffe_:rent
Separate call A regions call
order not

necessarily

Separate call B
Separate call B

Region B

(In the example there is only onf call, to download_ongand oneB call, to
view_one) The processor of region C will execute the routines ofAhealls in
order, and the routines of thigcalls in order, but you cannot count on any guaran-
tee between thas and theBs.

This behavior is of the “good non-determinism” kind: ensuring any order con-
straint between more two or more calling processors, or two or more called proces-
sors, would require the execution of concurrent systems to rely on a global clock;
that assumption would kill performance (since processors would spend their time
resynchronizing), and is unrealistic anyway in distributed systems.

11 SEPARATE CALLS TO COMMANDS ARE BY DEFAULT ASYNCHRONOUS

Let us take a closer look at what happens in the execution of the two calksyia

d.download_onémessaggs
V.view_ongmessages

whered andv are both separate, and attached to objects in different regiéris (*
and “B” in the last figure, both using the same client regi@ for the execution
of the respective routinewnload_onendview_ong.

Here is a possible timeline for the processors involved:

Log call Log call Processor
d.download_one v.view_one timelines
Player } m i >
Print i Add
downloader line message
]]] ']
Downloader = T | =t >
down?oad_one download_one
Viewer 1 il — _ —»
~ Start _ Print viewer line End
view_one if there is a message view_one

Following each of the timelines in turn:
* The player logs the call to the downloader, then the call to the viewer.

20 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 8§11

* The downloader, some time after the calldownload_onéias been logged,
executes the body of that routine. The execution consists of printing a control
line then adding a message to the list.

» The viewer, some time after the callteew_onehas been logged, executes the
body of that routine. The execution consists of finding out if there is a message
in the list andf soto print it, otherwise to print nothing.

In what order will the two print instructions (one of them a potential print) occur?
The preceding figure shows one possible order, but it is not the only possible one.
The only timing guarantees are the following:

* Instructions in a single processor are executed in sequence (remember, a pro-
cessor is sequential, and we get concurrency only by having several proces-
sors). This order guarantee corresponds to horizontal arrows in the figures
above and below.

* Inaseparate cakl.r (...), the logging of the call by the originating processor
comes before the application pby the target processor. This iscausality
guarantee, represented in the figure below by the two red cross-processor lines.

* In addition, the order preservation rule ensures ltiefiiveen two given regions
the order of routine body executions follows the order of the calls. We had that
behavior in the first examplplay2, but it does not occur in the current one.

Log call Log call Intra- and
d. download _one vwew one inter-processor

Player >
order
AM ED constraints
Downloader T 1 >
_ tv PPV EV
Viewer : i —»

SV

The figure is the same as the previous one, with all the order constraints repre-
sented. (Straightforward abbreviations: SD for Start Download, PD for Print
Downloader line, AM for Add Message, ED for End Download, SV for Start
Viewer, PPV for Potentially Print Viewer line, EV for End Viewer.) Thely tim-

ing guarantees are the three horizontal arrows, one per processor, and the two
cross-processor red arrows. The relative timing of the two critical operations, “Add
message” in the downloader and “Print line if there is a message” in the viewer,
depends on the speed parameters, shown in the figtpetd$, td2 andtv: instruc-

tion execution times in the player, downloader and viewer.

As a consequence, all of the following scenarios are possible. If PPV occurs
after AM, we get two lines of output:

8§11 SEPARATE CALLS TO COMMANDS ARE BY DEFAULT ASYNCHRONOUS

21

PD 2 AM A two-line
Downloader } } P scenario

Viewer J {F

If that timing is reversed, however, we get just the downloader’s line:
PD td2 AM A one-line
Downloader : i » scenario

' SV tv PPV
Viewer Il } '

The relative order of PD and PPV does not matter, only the order of AM and PPV,
so that the following ordering yields the same result as the previous one:

PD td2 AM Another
Downloader i i P one-line
IV PPV scenario
. V
Viewer Il {F '

You can play with the values of2 and v to force one of the two behaviors, by add-
ing await (Delay) call in the body ofdownload_ongin DOWNLOADER or
view_oneg(in VIEWER, whereDelayis a time, for example1/10th of a second,
orders of magnitude greater than computer-level execution times. Try it:
» If you add the call after therint instruction indownload you are makindgd2

very large, and are almost sure to get the one-line output.
» Ifyouadditinstead at the beginningwéw_oneyou are makingv very large,

and are almost sure to get the two-line output.

In both cases the result is only “almost” sure: it is still in principle non-determinis-
tic, but would only change under extreme differences between the speeds of the
processors involved, more likely to occur on a network than on a single machine.

These examples of execution timeline highlight the asynchronous nature, by
default, of procedure calls in SCOOP. In sequential programming, calls are always
synchronous, in the sense that when you execute

some_objecsome_routingsome_argumenis
other_instruction

you know thatother_instructiorwill not start until the body okome_routindas
run all the way to the end. This behavior is known as synchronous. No other is pos-
sible since in sequential programming there is only one processor, and it is busy
executingsome_routineBut in a concurrent setting some_objectesides in
another region, which may have its own processor, the original processor — the

22 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 8§12

one executing the code above — can proceed on its ownaotlithr_instructions
independently of the other processor’s handlingsome_routine’sody. The
behavior in this case is said to be asynchronous.
Asynchrony is what makes a program concurrent. The rule isatpabcedure
call on a separate target are by default executed asynchronousk/By default”
because we will see a way to change that policy, but the behavior just described is
the normal one and except for some advanced uses you should rely on it.)
A practical consequence, visible in the above timelines, is that for a separate call
we need to distinguish betwetgature call andfeature application:
 For the calling processor, executing an asynchronous call, such as
d.download_onégmessaggsor v.view_one(messaggsabove, simply means
“logging” the call: registering the information, so that the target processor will
be notified. This operation is the feataed!.
» The target processor must eventually execute the body of the routine, such as
download_onéor the downloader andew_ondor the viewer. That execution
can occur any time later, depending on processor speed and requests from other
processors. It is the featurelpplication
The distinction is irrelevant in sequential programming, and in SCOOP with
non-separate calls, since feature application always follows feature call directly.
But with concurrency the two are decoupled.
This concept also gives us a simpler and more precise version of the fundamen-
tal ordering rule of the previous sectiomithin one region or between two given
regions the order of feature applications is the order of feature calls

12 SEPARATE CALLS TO QUERIES ARE SYNCHRONOUS

For the next example remember tikatintin DOWNLOADERyives the number of
downloaded messages; every applicatiomofvnload _onencreases it by one.
Add this routine td°’LAYER

play4
-- Download two messages, find out how many were downloaded.
local
n: INTEGER
do

separatedownloaderasd do
d.download_onémessages
d.download_onémessages
n:=d.count
print (n)
end
end

8§12 SEPARATE CALLS TO QUERIES ARE SYNCHRONOUS

23

We can dispense with the local varialblé we replace the last two instructions by
just one print (d.coun), but using the variable makes the details of the computa-
tion more visible. If you run this code you will get the output 2, as expected since
every call todownload_onéncreasesountby one and the order preservation rule
implies that the calls tdownload_oneare applied before the evaluationadunt

The rule is applicable here since the two processors involved are the same in all
three cases.

With asynchrony, however, we might wonder whether we are guaranteed to get
any result at all: if the calil.countwere asynchronous, there would be no way to
be sure that it will be finished when we assign its resutt t8o we might be trying
to print an undefined value.

You need not fear such a scenario: the ahltount unlike the calls to
download_ongis synchronous, meaning that the execution of the cogéai, in
particular the assignment ipwill not continue untildownload_onéas completed
its application. The rule is thaeparate calls to a query are executed synchro-
nously. Remember that a cailf (...) is separate if its targetis separate. A feature
fis aqueryif returns a result, meaning that it is either:

* An attribute, such asounthere, describing a field present in every instance of
the class.

» A function, computing the result through some algorithm.

As always in Eiffel, attributes and functions have the same effect when viewed

from outside of their class. Try out this property by addind@WNLOADER

the function

computed_countNTEGER
-- Number of messages in client’s message list.
do
separatemessageas mdo
Result:= m.count
end
end

and toPLAYERa routineplay5 identical toplay4 except for the call
d.computed_counteplacingd.count In other words, instead of relying on the
downloader object'sountfield, incremented on each download, we compute the
number of messages each time from scratch, as the length of the message list. The
result does not change: the assignment tannot proceed until the execution of
computed_courfinishes. You can also experiment by adding delaypl&y4 or
computed_courdnd see that the result does not change.

The converse notion of “query” is “command”, a synonym for “procedure”: a
feature that does not return a result. So the SCOOP synchrony policy is that, after
logging of a call to a feature on a target handled by a different processor:

24 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 8§13

» If the feature is a command, its application, by default, proceeds asynchro-
nously. This means that the calling processor can continue with the execution
of instructions following the call; the target processor will execute the body of
the command some time later.

» If the feature is a query, its application proceeds synchronously. This means
that the calling processor will not continue with the execution of other instruc-
tions until the target processor has executed the body of the query, and returned
the corresponding result.

13 THIRD -PARTY CONTROL

Instances of class&OWNLOADERVIEWERandMOVERare “active” objects in live procedures:
the sense that they have their own scenario, represented by the loop in their P29es7, 8and14
tive live procedures. The exit condition in all cases is cafledver

How can another object, such as the email client, tell one of these objects to stop
its live? The declarations given above suggestedithalveris a boolean attribute.
An initial idea for allowing clients to request termination is to include in the corre-
sponding class, for exampaIEOWNLOADERa procedure to set that attribute:

stop
-- Stop operation.
dois_over:=True end

This approach does not work, however: while the downloader is busy exetuéing
its processor can do nothing else: whatever frantic attempts the client makes to call
downloaderstopwill have no effect.

A correct solution, using a SCOOP pattern knowit asd-Party Contro] relies
on a third “controller” processor serving as intermediary:

: Sending signals
e 's_downloader_over yo,gh a

third-party

A (CONTROLLER controller
Region 4

Region 1 (CLIENT)

queryis_downloader_ovar Region 3

(DOWNLOADER

8§13 THIRD-PARTY CONTROL

25

In bothCLIENT andDOWNLOADERwe declare
controller. separateCONTROLLER

Thenis_overin DOWNLOADERshould no longer be an attribute but a function:

is_over: BOOLEAN
-- Has operation termination been requested?
do
separatecontrollerasc do
Result:= c.is_downloader_over
end
end

CONTROLLERfor its part, has the corresponding attribute and procedure:

is_downloader_oveBOOLEAN -- Should downloader stop operation?
stop_downloader
-- Record request to stop downloader operation
dois_downloader_over True end

The names explicitly refer to the downloader, so that a single controller can let the
client stop other objects (with featuiesviewer_overstop_viewemland so on).

With this technique the client requests downloader termination through a call
controller.stop_downloadeithe next iteration of the downloadetise will query
is_downloader_oveand find out that it is now true. (Remember that all boolean
attributes are initialized tBalseby default.)

The Third-Party Control pattern takes advantage of asynchrony to allow objects
to pursue their own scenarios — to be “active” — while opening themselves up to
interaction with other processors at defined times.

Another example where the pattern provides an elegant solution is a situation
where a certain client user interface, for example in a browser, has started down-
loading a file and wants to display a progress bar, but not be stuck waiting for the
download to proceed. Once the download has started, the client can engage in
whatever other operations it wishes; every once in a while, it queries a third-party
controller, and as a result updates the progress bar in the Ul. For its part, the down-

loading operation notifies the controller whenever it has progressed by some preset
amount such as 1%.

26 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 8§14

14 PASSIVE REGIONS

Every object is in a region. Every processor has its own region, where it handles all
x.f (...) calls wherex denotes an object in the region.

The reverse property does not have to hold: not every region has its own proces-
sor. Most do, but it is possible to defipassiveregions, in which calls will be han-
dled by the calling processors.

You specify that a region is passive in the creation of the region’s first object.
Remember that regions get created through creation instructions of the form

createsepp(...)

where the targetepis separate.[is the optional creation procedure, which in all
examples of this tutorial has the nameke) This instruction putsepin the newly
created region and starts the associated processor. The region in this case is
“active”: it has its own processor. You can, however, use

create <NONE> sepp(...)

to get only a new region, and no new processor. In that case the new region is pas-
sive: any processor executing a separatexcéll...) on an object in the region will
carry out itself the execution af

Syntax note: if you specify an explicit type for the new object, it comes after the
<NONE> mark, as ircreate<NONE> { SOME_TYPEsepp (...).

Using a passive region does not change the access rules: a separate feature appli-
cation always has exclusive access to all separate arguments, and if there are any
separate preconditions it will wait until they hold.

What does change is the possibility of asynchrony. When the target of a call is
in a passive region, only one processor is in charge of both the call and the appli-
cation, so the call is synchronous. The default policy of asynchronous calls for
commands no longer applies (that is why it was only the “default” policy): all calls,
whether to queries or commands, are now synchronous.

With passive regions we have the final picture of which calls are synchronous
and asynchronous (empty entries indicate an irrelevant criterion):

27

8§14 PASSIVE REGIONS
Kind of call |Kind of feature Target region |Behavior
Unqualified Synchronous
f(...)
Query
Qualified (attribute or function) Synchronous
x.f(...) |Command Passive Synchronous
(procedure) Active Asynchronous

Calls are synchronous except in the bottom-right case, qualified command call to a
target in an active region.

When should you use passive regions? The first part of the answer is: usually

you should not! Most regions should be active, since the very aim of concurrent
programming is to take advantage of the availability of several processors, each of
which can proceed on its own. For that you need asynchrony.

Passive regions are aptimization mechanism. You should not bother with

them until you have a running system and want to increase its performance.

Asynchrony is generally good for performance (as well as correctness). But

there can be too much of it. An asynchronous call implies communication and
other overhead: the target processor must register calls and manage the call queue.
Making a region passive can help if all objects in it satisfy two properties:

They represerghared resourceproviding services to clients, but do not them-

selves have their own agenda (their own process). For example if in a clasa/(\elgrgcedureg
find the need for a procedure suchias in DOWNLOADERor VIEWER rep- pages7 ands.
resenting an object’s independent lifecyle, instances of the class should

active (non-passive) regions.

A passive region makes sense if clients only need to reserve the corresponding
resources foshort periodsOtherwise it will hurt performance rather than help

it, since it will prevent the client processors from proceeding asynchronously
with other tasks.

In the running example of this tutorial:

It would be a mistake to use passive regions for the downloader, viewer and
mover. These objects and the associated data structures need their own proces-
sors to give us the concurrency expected of an email system.

The client, on the other hand, makes a data structure, the message list, atrgsassive
ble to other processors. It does not need a thread of control of its own ancreation was on
be hosted in a passive region. We accordingly speciftd@NE> in the corre- Pages
sponding object creation.

28 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 8§15

15 TYPE RULES AND ARGUMENT PASSING

The final step to mastering SCOOP is to understand a few rules that govern how
you can combine separate and non-separate elements in the program text.

Add the following to clasPLAYER

play6 explanaton below,
local
c. CLIENT
do
c :=client
-- Operations o to be added (see below)
end

Remember thatlient, a reference to the email client object, is declared of type
separateCLIENT. Compile and run the resulting system. Rather, try to: you will
not get to execute anything but will receive a compile-time error message:

VJAR: Source of assignment is not compatible with target.

The reason should be clear. You are trying to use a local variable declared as
non-separate, to represent a reference to an object in a different region:
Non-separate

Player region Client region ¢
o messages references
‘_3—> ! A should not cross
client —] (LIST) region
boundaries
(PLAYER (CLIENT)

If such a reference must cross region boundaries, you must declare the correspond-
ing variable aseparate Otherwise uses of that variable would violate concurrency
rules and create havoc. For example, the body of the roptags could include
(where the comment above sagpgérations or”):

c.messageextend"ABC")

which tries to add a string at the end of the message list, but without any of the
exclusive access properties that SCOOP guarantees for shared resources. Data
races would follow, in the form of conflicting modifications to the list structure.
Fortunately, SCOOP forbids such games.

A correct declaration for, instead of jJus€CLIENT, is separateCLIENT.

Without this requirement, assignments suclt &s client would, at run-time,
create fraitors ”. A traitor is a reference — in this case;— that denotes a separate
object but is not declared accordingly.

8§15 TYPE RULES AND ARGUMENT PASSING

29

The SCOOP type rules guarantee that no execution will produce traitors. There
are three key rules. We have just seen the first ibtiee source of an assignment
is of a separate type, the target must be of a separate type too

The second rule is similar, but for argument passing rather than assignment. Add
a routine

play7(c: CLIENT)
do end -- Empty body OK, the signature is enough

as well as

play8
do play7 (client) end

The compiler will rejectplay8 because it passes a separate expressiemy, as
actual argument to a routine which has a non-separate formal argunvéete the
call permitted, the body gilay7 (empty above) could include a non-protected call

on a separate object, for example the same one as in the assignment example:

c.messageextend"ABC"), creating the potential of race conditions.

The second type rule, then, is thizdt formal argument of a routine is of a sep-
arate type, the corresponding actual in any call should be of a separate type too

The third type rule reflects the third principal way one could try (sneakily) to
create a traitor. To play, a player can have “friends”, separate or not:

close friend: PLAYER
remote_friendseparatePLAYER
set_close_frien¢p: PLAYER
-- Makep this player’s local (that is, non-separate) friend.
do
close_friend=p
end

Now try this:

play9
do
createremote_friendmake
remote_friendset_close_frien@Current)
end

The feature call, if we ever got to execute it, would create a traitor: we are passing
ourselves Current denotes the current object, likieis in some other object-ori-
ented languages) to an object in another region, which wantsdee_friendan
object in its own region. But, as illustrated bel@myrent is not in that region!

30 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 8§15

Should not pass

First player’s region Second player’s region
play g play g oneself off as a
Current _ separate object
close_friend ? close_friend
remote_friend >
(PLAYER (PLAYER

Using Current is not critical to the example; any other object in the first player’s
region would cause the same problem, as if you replace the p&ly@by:

remote_friendset_close_frien: (close_friendl

trying to make our remote friend use our own close friend as its close friend too.
This is just as bad:

Should not pass

First player’s region Second player’s region
Py J Py g off alocal object
) _ as a separate
close_friend — T—— close_friend gpject
remote_friend »
(PLAYER (PLAYER

These obvious cases of traitor creation are, however, not covered by the previous
rules: the routineset_close_friendp: PLAYER) has a non-separate formal argu-
ment, of typePLAYER notseparatePLAYER That is how it should be since every
player want a non-separate object as its “close” friend. The actual argument in the
call toset_close_friendvhetherCurrent orlocal_player is also non-separate, so

rule 2 lets it pass. The problem is that the calimote friendset_close_friendl..),

has a separatarget, remote_friendwe say that it is a “separate call”), causing the
actual argument to be separaddatively to the target regior— “second player’s
region” in the figures — although the routine expects a non-separate reference.

The third rule addresses this casea separate call, it is permitted to pass a
reference as actual argument only if the corresponding formal argument is of
a separate type.

8§15 TYPE RULES AND ARGUMENT PASSING

31

In the present example, the rule prohibétsy separate call whatsoever to
set_close_friendcalls must be either unqualified, asset_close_frienda), or
qualified but with a non-separate target, anamsepset_close_frien¢g). In both
cases, of course should be of a non-separate type. To support separate calls,
set_close_frienghould be changed to have a separate formal argument, although
in this example the change does not make sense.

This third rule only applies to reference arguments. The overall behavior is the
general one in Eiffel: the type of an expression is either a reference type or an
expanded type. Expanded types (known in some other languages as value types)
cover in particular basic typeBOOLEAN CHARACTERINTEGERandREAL
and have copy semantics. So:

» If ais areference to an object, what will be copied into the routine’s formal
argument in a calf (a) is that reference to that object; in SCOOP it may
become a separate reference if the object belongs to a different region.

» If ais of an expanded type, its value is an object (possibly a very small object,
such as a single word, for basic types suclNIEEGER, and that object will
be copied as part of the call. In SCOOP, the copy can take place across region
boundaries.

As our last example, let us add@.IENTa query returning the first message if any

first: STRING
-- First message if any, otherwise empty.
do
Result:=
if not messagess_emptythen Result:= messagefl] end
end

nn

and toPLAYERa procedure to print that first message from the client’s list

play1l0
-- Print first client message if any.
do
separateclientasc do
i0.put_new_lingc.first)
end
end

Try compiling the system with this routine. Indeed it compiles (and runs). With the
rules seen above, it should n@TRINGIs a reference type, since the value of a
variable of typeSTRINGis a reference to an object representing a string; the argu-
mentc.first is of typeseparateSTRING but the library routingout_new_line
expects a plai®STRING so we are violating the second type rule.

32 CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL 8§16

In fact the routineview_oneof VIEWERhad the same problem, since it alview_onewas on
prints a separate string. pages.

One approach would be to make all routines that expect strings, such as
put_new_linework on potentially separate strings instead, but it would be heavy
and inconvenient.

Sticking toput_new_lineas it is, we can use an explicit solution by relying on
the built-in string creation proceduimport which, from a separat€ TRING
yields a non-separate string. Insteadcoiirst, the code ofplayl0can pass to
put_new_lingas actual argumerdreate { STRING .import (c.first).

Because strings are so frequently used across region lines, STd&ENG
declaresmportas a conversion procedure, taking advantage of Eiffel’s conversion
mechanism. As a consequence, you can ssparateSTRINGnN any context that
expects a plais TRING A conversion will occur, importing a copy of the string to
the desired region. This convention explains wilgy10as shown above, and
view_onen VIEWER are valid and run with the expected effect.

16 FURTHER READING

With this tutorial you have seen all of the key SCOOP concepts. There is consider-
able more information available, some of it comprehensive, some of it up to date.
At the time of writing no document is both comprehensive and up to date, but we
are working hard to fill this gap.

For the exact reference to the texts cited below see the documentation page of
the SCOOP-based Concurrency Made Easy project at ETH Zurich:
cme.ethz.ch/publications/

The basic concepts and motivation behind SCOOP appear in Meyer’s book
Object-Oriented Software Constructi@@nd edition).

For an informal but fairly detailed survey, see the SCOOP slides of the ETH
“Concepts of Concurrent Computation” course.

Three ETH PhD theses have made major contributions to the SCOOP technol-
ogy. Nienatltowski’'s 2007 thesis remains a prime reference on the concepts and
many details, although some aspects of the model have changed since then. It con-
tains in particular a more complete and systematic presentation of the type rules.
Morandi’s more recent thesis introduced the notion of passive regions (called “pas-
sive processors”) and contains a detailed formal semantics. West'’s thesis, also from
2014, provides many insights and critical performance improvements.

SCOORP is part of the current implementation of EiffelStudio, which can be
downloaded atiffel.com The SCOOP mechanisms are embedded in those of the
Eiffel language, on which extensive information is availabksfédl.org.

http://cme.ethz.ch/publications/
http://eiffel.com
http://eiffel.org

	Concurrent programming in SCOOP: a tutorial
	1 Here and there
	2 Processors
	3 Starting a processor
	4 Keeping references to separate objects
	5 Building a concurrent program
	6 Controlling multiple access to shared resources
	7 Simultaneous reservation
	8 Conditional wait
	9 The bum wrap?
	10 The order preservation rule
	11 Separate calls to commands are by default asynchronous
	12 Separate calls to queries are synchronous
	13 Third-party control
	14 Passive regions
	15 Type rules and argument passing
	16 Further reading

