
Concurrent programming in SCOOP:
a tutorial

Ever more often, users want programs to be concurrent. A concurrent e-mail client,
for example, can download new messages while you are reading earlier ones. The
alternative is asequentialprogram, which does only one thing at a time: a sequen-
tial e-mail client would force the download to wait while you read, and, once down-
loading starts, would force you to wait before reading again. Not attractive.

SCOOP is the Eiffel mechanism that enables you to make your programs con-
current. The name meansSimple Concurrent Object-Oriented Programming. Sim-
plicity is indeed one of SCOOP’s biggest draws. The “S” could also stand for Safe:
concurrent programming with traditional approaches can be very tricky, but
SCOOP removes many of the traditional pitfalls, such as “race conditions”.

You can read in detail about the theory and rationale in the bibliographic refer-
ences. This tutorial is a hands-on presentation of how to use SCOOP in practice.
We will go through a simple example, an email client with its viewer and debugger.

You can download an Eiffel project with all the default SCOOP settings at
http://..., load it into EiffelStudio, then fill in the initially empty class texts from the
models below, compile them and run then as you go. Athttp://...you will find the
final version of the example.

1 HERE AND THERE

The basic way to make a program a SCOOP program is to declare some of its
entities asseparate, so that operations on the associated objects run elsewhere.

Withoutseparate, a sequential version of an email client could read:

yielding at run time a simple object structure, with all objects in a singleregion:

class CLIENTfeature
messages: LIST[STRING] -- Email messages received
downloader: DOWNLOADER -- Downloading engine
viewer: VIEWER -- Message viewing engine
… More features…

end

18 April 2015

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §12

TheCLIENTobject represents an email client and contains references correspond-
ing to the attributes of the class:

• downloader, a reference to an object of typeDOWNLOADER.

• viewer, a reference to an object of typeVIEWER.

• messages, a reference to a list header, which itself gives access to other objects,
the actual list elements (messages).

Because these objects are all in one region, a single processor will take care of
operations on all of them; if the classDOWNLOADERhas a routinedownloadto
download messages andVIEWERhasview_oneto view messages, at most one of
these routines will be running at any time.

With SCOOP you can make things concurrent by putting objects in different
regions, handled by different processors. You declare somethingseparateto spec-
ify that it will be in a different region:

The run-time picture changes to reflect the distribution of objects into regions:

class CLIENTfeature
messages: LIST[STRING] -- Email messages received
downloader: DOWNLOADER -- Downloading engine
viewer: VIEWER -- Message viewing engine

end

(CLIENT)

downloader
viewer

messages

(VIEWER) (DOWNLOADER)

Sequential:
one region for
all objects(LIST)

separate
separate

(CLIENT)

downloader

Region 3Region 2

viewer (LIST)

messages

(VIEWER) (DOWNLOADER)

Concurrent:
three separate
regions

Region 1

§2 PROCESSORS 3

The existence of three regions, delimited in the figure by curvy red lines, follows
from theseparatedeclarations. The list header and list element objects are not sep-
arate from theCLIENTobject, so they belong with it in region 1. But sinceviewer
is separatethe viewer object is in a different region, number 2 in the figure. The
downloader also has its own region, called region 3.

Here each of the classesCLIENT, DOWNLOADERandVIEWERneeds only one
instance (they are “singleton” classes), but in general a class may have many
instances, spread over any number of regions.

You now know the basic rule of concurrency with SCOOP: declaring entities as
separate to ensure that the corresponding objects belong to different regions.

2 PROCESSORS

To handle operations on objects, we needprocessors. A processor in SCOOP is
simply a mechanism that can execute instructions in sequence. It can be a physical
processing unit (one of the cores in a computer) but more commonly it will be a
software mechanism such as athread, as in the current SCOOP implementation.

Whatever the implementation, a processor has two fundamental properties:

• It is sequential. Each processor executes instructions one at a time. You get
concurrency by usingseveral processors.

• Every processor is associated with a region. The processor handles all opera-
tions on objects in the region; we say it is theirhandler. The example has three
processors: one handling the email client, the list header and the list elements
(region 1); another handling the viewer object (region 2); and a third, handling
operations on the downloader (region 3).

To “handle” an object means to execute all the operations on that object. In
object-oriented programming, every operation indeed works on an object, in the
sense thatx.r (…) works on the object attached tox. That object is in a region, and
the region’s handler will execute all such operations.

ClassDOWNLOADER needs a routine for what downloaders do — download:

download_one(ml: separate LIST[STRING])
-- Read one message and record it intoml.

local
latest: STRING

do
count:= count+ 1 -- Increment message count
latest:= "message " +count.to_string) -- Make up new message
print ("Adding message: " +latest) -- Display that message

-- Add message to list
end

In class
DOWNLOADER.

ml.extend(latest)

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §34

In an actual email system, the downloader would get message from a file or socket.
In the simulated downloader above, then-th message is simply a string of the form
“Messagen”. (“ +” between strings is concatenation, andto_stringgives the text
representation of an integer.) The call toprint is not needed for the downloader’s
operation but will help us follow the execution when we try the email system in a
few moments.

To record the message,download_oneuses the procedureextendfrom LIST,
which adds an element at the end of a list.

The processor handling theDOWNLOADERobject executes all the instructions
of download_one: the first three, which do not involve separate variables, and the
call to record_one(see the illustration below). But in the instructionml.extend(m)
of record_one, ml, the list of messages, is separate, so it has a different handler, and
that processor — the handler for all region 1 objects — will execute the call to
extend.

The rule is simple:

• Any operation of the formx.some_feature(…), wherex is separate, will be
executed by the handler ofx.

• The handler of the current object will, by default, execute all other operations:
simple operations such as the assignmentcount:= count+ 1, unqualified fea-
ture calls such assome_feature(…), and qualified callsx.some_feature(…)
wherex is not separate.

3 STARTING A PROCESSOR

How do we get new regions and the associated processors? Simply by creating sep-
arate objects. If we start from aCLIENT object, it can create the viewer and the
downloader as part of its own creation procedure (constructor):

Region 3

(LIST)

(DOWNLOADER)

Referencing an
object in
another regionRegion 1

count ml

§4 KEEPING REFERENCES TO SEPARATE OBJECTS 5

The creation proceduremakeof CLIENT starts by creating the list of messages.
Sincemessagesis not separate, this first instruction is a normal creation. The next
two, however, have targetsdownloaderandviewerthat are declaredseparate; the
effect is to create a new region for each of them, producing the situation shown in
the last two figures, and also to start a processor for each of these regions.

What does it mean to “start a new processor”? In the default thread-based imple-
mentation of SCOOP, the simplest is to start a new thread. But the implementation
can be smarter; for example it can reuse an existing thread from a “thread pool”.
And remember that nothing constrains SCOOP to use threads. What matters, inde-
pendently of the implementation, is that when you create a processor it will be able
to host objects in its associated region and sequentially execute operations on them.

In the example, the client passesmessagesas argument to the creation proce-
dures of both separate objects, because both need access to the message list: the
downloader to add messages, and the viewer to find messages. (All the classes
involved have a creation procedure with the namemake.)

4 KEEPING REFERENCES TO SEPARATE OBJECTS

Take a closer look at the downloader object.

class CLIENT

feature -- Initialization
make

do
create{ LINKED_LIST} messages.make -- Create message list

end
feature -- The attributes as before:

messages: LIST[STRING]
downloader: separate DOWNLOADER
viewer: separateVIEWER

end

create
make

create downloader.make(messages)
create viewer.make(messages)

Region 3

(LIST)

(DOWNLOADER)

Concurrent:
three separate
regionsRegion 1

count
messages

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §46

To retain access to the message list in region 1, the object needs to keep a reference
to it; you can declare that reference in the class as

Since thismessagesfield will be a reference to an object in another region, it is
declared asseparate. (They both use same name,messages, which does not create
any confusion since they are in different classes.)

It is the job of themakecreation procedure ofDOWNLOADERto record that
reference. We saw that the client calls that procedure, as part of its own initializa-
tion, through the creation call

passing itself as argument, so that the downloader knows for which client it is
working. So here is howDOWNLOADER looks so far:

Both the argumentc of makeand the attributemessagesare declaredseparate,
because the client object and its message list belong to the client’s region (region
1) and hence, seen from the downloader, are separate.

The viewer side uses exactly the same initialization

messages: separate LIST[STRING]

create downloader.make(Current)

class DOWNLOADERcreate
make

feature -- Initialization
make(c: CLIENT)

-- Initialize downloader so that it will download messages forc.
do

end
feature

messages: LIST[STRING]
count: INTEGER -- Number of downloaded messages
download_one(ml: separate LIST[STRING])

do … end -- As seen above (page3)
end

class VIEWERcreate
make

feature
make(c: separateCLIENT)

-- Initialize viewer so that it will support viewing messages ofc.
do end

messages: separate LIST[STRING]
… More features to come…

end

In class
DOWNLOADER.

In class CLIENT.

For simplicity, the
attribute represent-
ing the message list
has the same name,
messages, in all
relevant classes. In
classes other than
CLIENT, it is a sep-
arate reference to
themessageslist of
the client region.

separate

messages:= c.messages

separate

messages:= c.messages

§5 BUILDING A CONCURRENT PROGRAM 7

To refresh our minds here is the full run-time object picture:

Both the downloader and viewer objects have a separate reference, calledmessages
in both cases, to the message list in the client region. For information hiding, it may
be preferable to gather all operations on the message list in classCLIENT, so that
the viewer, downloader and other objects involved only keep a reference to the
client object, and go through it rather than working directly on the list. The
technique used here, however, illustrates the property that an object in any region
can have separate references attached to any object in another region.

5 BUILDING A CONCURRENT PROGRAM

We have set up the stage and can now start building our little email system. The
idea is to get right away to something that compiles and runs, so it is going to be
simulated email (do not throw away Outlook and Gmail yet).

We add toDOWNLOADER a procedure that repeatedly downloads messages:

Until is_over is set, l ive repeatedly downloads a message and waits
D_temporizationseconds, using a system procedurewait. This is again simulated
email; a real mail downloader, instead of instead of “pulling” messages at preset
intervals, would be “pushed” to read messages as they become available.

live
-- Get messages and add them to the client message list.

do
from until is_overloop

wait (D_temporization)
end

end
is_over: BOOLEAN -- Should we stop downloading? See section13.

(CLIENT)

downloader

Region 3Region 2

viewer (LIST)

messages

(VIEWER)

Email system
regions and
objects

Region 1

(DOWNLOADER)

count
messages

messages

These four features
go intoclassDOWN-
LOADER.

download_one(messages)

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §58

On the simulated viewer’s side, things are similar, with aview_oneprocedure
and a procedurelive describing the overall viewing process:

We can use the classes defined so far to build a mini-email system. To start the sys-
tem, it suffices to create aPLAYERobject and to call its routineplay1, which con-
currently runs the respectivelive routines on the downloader and the viewer:

view_one(ml: separateLIST[STRING])
-- Simulate viewing: ifml contains messages, display one, chosen randomly.

do
if not ml.is_emptythen

print ("Viewing message: "+ ml.i_th (random(1, ml.count)))
-- Assumingrandomyields a random integer in the given interval

end
end

live
-- Simulate a user viewing a message o3fnce in a while.

do
from until is_overloop

wait (V_temporization)
end

end
is_over: BOOLEAN -- Should we stop viewing? See section13.

note
description: "Driver class for trying out email mechanisms"

class PLAYERcreate makefeature
client: separate CLIENT
downloader: separate DOWNLOADER
viewer: separate VIEWER
messages:: separateLIST[STRING]
make

do
create<NONE> client.make -- Creates downloader and viewer
downloader:= client.downloader
viewer:= client.viewer
messages:= client.messages

end

play1
do live_both (downloader, viewer) end

In VIEWER.

Do not confuselive
and is_over with
the features of the
same name in
DOWNLOADER,
pages6 and7.

view_one(messages)

The<NONE>
specification will
be explained in
section14.

§5 BUILDING A CONCURRENT PROGRAM 9

You can compile a system with the above class and runplay1. The execution output
will look something like this:

“Something like” this, not necessarily exactly this, because the interleaving of mes-
sages of both kinds depends on several factors: therandomfunction, the tempori-
zation values, and the speed of the physical processors and threads involved.

Such a behavior, where the program’s results may depend on timing properties,
is callednon-deterministic.

Like cholesterol, non-determinism comes in both good and bad flavors. SCOOP
supports “good” non-determinism and avoids the bad variety. Non-determinism is
bad if it is an artefact of the implementation and hence undesirable. It is good if it
follows from the problem specification.

Here the non-determinism is good since it follows from the use of random val-
ues for the simulation. But non-deterministic does not mean arbitrary. The output
shown here, and any variant that you get, will satisfy the following two properties:

• The download messages (“Adding message:…”) appear in the full order of
message numbers:1, 2, 3, …

• No message is viewed before it has been downloaded.

Violating either of these properties would be an example of “bad” non-determinism.

live_both(d: separate DOWNLOADER; v: separate VIEWER)
-- Rund andv concurrently.

do
d.live
v. live

end
end

Adding message: Message 1
Adding message: Message 2
Adding message: Message 3
Viewing message: Message 2
Adding message: Message 4
Viewing message: Message 4
Adding message: Message 5
Viewing message: Message 2
Viewing message: Message 5
…

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §610

6 CONTROLLING MULTIPLE ACCESS TO SHARED RESOURCES

As illustrated by the preceding example, concurrent applications typically start
several threads of control but still need to access common resources, here the mes-
sage list. In other approaches to concurrency, you need to add synchronization
operations, to make sure that the various threads do not step on each other’s toes.
The technical term for such mix-ups israce condition(or “data race”). Here, for
example, you might worry that the viewer will try to access the message list,
throughi_th, while the downloader is not finished adding an element to it, through
extend. Indeed, look up the text of both of these routines in the library class
LINKED_LIST: both need to traverse the list, butextendmust modify the links
between elements to add an element. If the execution were permitted to starti_th

at some intermediate stage of that process, it would either produce an incorrect
result or crash:

WithSCOOPsuchraceconditionscannothappenbecausearoutinealwayshasexclu-
sive access to objects represented by its separate arguments. Here the routines

both guarantee exclusive access to theml argument, the message list, in calls

This guarantee —no race conditions, period — is a major benefit of SCOOP.

download_one(ml: separateLIST[STRING]) -- In DOWNLOADER
view_one(ml: separateLIST[STRING]) -- In VIEWER

download(messages) -- In DOWNLOADER
view_one(messages) -- In VIEWER

Incorrect
concurrent
access(not in
SCOOP)

(LIST)

(VIEWER) (DOWNLOADER)

Trying to access
element Already started

modifying links

§7 SIMULTANEOUS RESERVATION 11

7 SIMULTANEOUS RESERVATION

Sometimes you will need exclusive access to more than one resource. In SCOOP
you get it easily, as a generalization of the just seen mechanism of passing the cor-
responding separate objects as arguments.

Consider a “merger” object that takes two email clients and adds to the first cli-
ent’s message list all the messages from the second one. The routine may read

(The implementation ofmerge_listsrelies on list features from EiffelBase:extends
add an element at the end of a list, andwipe_out removes all elements.)

We can assign the merger object its own region and processor (by now you know
how to do this: just declare itseparateand on creation it will spawn a new region
and the associated processor). Themergeoperation will then run concurrently with
all the other objects of the example, such as the downloader and the viewer. For the
duration of its execution, it must have exclusive access to both client objects; oth-
erwise you might get a race condition, inconsistent results and an botched data
structure. The SCOOP rule meets this requirement: a call

gets exclusive access toall the separate arguments. The implementation ofmerge
again relies on this rule, since it callsmerge_listswith two separate arguments rep-
resenting the clients’ message lists, getting exclusive access to both of these lists.

To guarantee this exclusive access the execution may have to wait until their
processors are available. With other concurrency mechanisms you might have to
program this “wait on multiple resources” operation manually; it is hard to get it
right. With SCOOP you get the multiple wait automatically. More generally,
SCOOP transfers the responsibility for some of the most difficult issues in concur-
rent programming from the programmer to the compiler and runtime.

merge()
do

end

merge_lists()
do

across l2 as e loop l1.extend(e.item) end
l2.wipe_out

end

merge(client_a, client_b)

In classMERGER.
c1, c2: separate CLIENT

merge_lists(c1.messages, c2.messages)

l1, l2: separate LIST[STRING]

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §812

8 CONDITIONAL WAIT

Next we are going to learn how to wait for a condition in another region. More pre-
cisely we want to waitsmartly. If we remove that requirement an easy solution may
work: keep testing for the condition until it holds. This strategy is known as “busy
wait” but in many cases it really issilly wait since it is wasteful of resources — and
in fact it may not even be correct, as we will see shortly. Instead, SCOOP lets you
specify an operation to be executed on a separate objectas soon asa condition on
that object becomes true, guaranteeing correctness and avoiding busy wait.

As an example, let us introduce a new separate object in our email system, of
type MOVER. The mover object takes action whenever the size of the mailbox
reaches a certain valueMax (say 10,000 messages) and leaves only the lastMin
(say 1,000) in the mailbox. In practice it should archive the removed messages but
we will ignore that part. The corresponding class can be as follows

class MOVERcreate makefeature
messages: separateLIST[STRING]-- Handled, as before, by the mail client
make(c: separateCLIENT)

… Setmessagestoc.messages(seeDOWNLOADER, VIEWER, PLAYER)…
live

-- Keep watching for client’s mailbox to reachMax messages,
-- and when it does, remove all messages except lastMin ones.

do
from until is_overloop moveend

end
move

-- When client’s mailbox reaches size Max, trim it toMin.
do

trim (messages)
end

is_ready(ml: separateLIST[STRING])
-- Has the size ofml reachedMax messages?

do Result:= (ml.count>= Max) end
trim (ml: separateLIST[STRING])

-- Remove fromml all messages except lastMin ones.
do

across1 |..|Min as i loop
ml [i.item] := ml [ml.count – Min+ i.item]

end
ml.remove_tail(Min) -- Cuts off list at positionMin.

end
is_over: BOOLEAN -- Should we stop moving? See section13.

end

Warning: incorrect
preliminary ver-
sion. See the cor-
rect one below,
page14.

“Wait until is_ready(messages)”

§8 CONDITIONAL WAIT 13

The actual moving is done bytrim. Repeatedly,movewaits for the size to reach
Max, by testing foris_ready, and when that happens it executestrim.

In move, the waiting is — temporarily — represented by pseudocode,“Wait
until is_ready(messages)” . A naïve way to implement this pseudocode is

for sof some typeS, wherewait_a_littlewaits for some preset time. This solution
uses busy wait, but the waste of CPU cycles is the least of its problems. The solu-
tion is in fact incorrect because of a typical concurrency error: between the time
is_ready(messages) tests positive and the time we take advantage of it to call
trim (messages), another client may have changed themessageslist. This is pre-
cisely the kind of tricky errors that arise in pre-SCOOP approaches. Tricky because
the second call generally comes so quickly after the first that in most cases things
will work well; but every once in a while, depending on inputs and on relative exe-
cution speeds, a wrong result will ensue. Non-determinism makes the problem next
to impossible to reproduce and identify.

As guaranteed by the SCOOP rules, bothis_readyandtrim need to reserve the
messageslist, but the two operations need to run within thesamereservation of that
shared object. Another attempt, again naïve, would be to transfer the wait (imple-
mented by the code above) to the beginning oftrim’s implementation, to retain the
reservation ofmessages:

This solution gets rid of the concurrency conflict noted above, but only by creating
a worse problem: becausetrim now starts by reserving themessageslist, no one
else, such as the downloader, can access or modify that list; so nothing will ever
happen! The execution gets stuck. (Your CPU will show a lot of activity, since it
keeps executing the busy wait, but there is nousefulactivity, defined as activity that
could change the list and hence allow the real execution to proceed.)

The solution is to associate the condition withtrim. For this purpose, SCOOP
relies onpreconditions, part of Eiffel’s Design by Contract mechanism. The line of
pseudocode (the attempted waiting) disappears; and so does the need for routine
is_ready. The correct version oftrim is:

-- Warning: for discussion only, don’t program like this!
from until is_ready(s) loop wait_a_littleend

trim (ml: separateLIST[STRING])
do

… The rest as above (across loop and call toremove_tail) …
end

Warning: still an
incorrect solution.

“Wait until is_ready(ml)”

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §814

The conditionml.count>= Max in the precondition is known as aseparate pre-
condition clausebecause it uses a call with a target, hereml, that is a separate argu-
ment of the routine. The effect of a separate precondition clause in SCOOP is to
make the call wait until the condition holds. At that point it will proceed as usual,
reserving all the separate arguments, hereml. This policy is exactly what we need.

How to program the wait is the responsibility of the SCOOP implementation,
not the application programmer (you!). The implementation does not have to use
busy wait: if it finds the condition initially not satisfied, it can free the object for
use by other processors, such as the downloader’s, then check back at appropriate
moments until the condition becomes true and it can proceed with the body oftrim.

Since we started with an incorrect version of classMOVERthen modified it a
few times, here is the actual version, consolidating for ease of reference the various
elements introduced above. The class is significantly simpler since we no longer
need the proceduresmove andis_ready:

trim (ml: separateLIST[STRING])
-- Whenml reachesMax messages, remove all except lastMin ones.

do
… As above (across loop and call toremove_tail) …

end
end

class MOVERcreate makefeature
messages: separateLIST[STRING]

make(c: separateCLIENT)
… Setmessagestoc.messages(seeDOWNLOADER, VIEWER, PLAYER)…

live
-- Keep watching for client’s mailbox to reachMax messages,
-- and when it does, remove all messages except lastMin ones.

do
from until is_overloop trim (messages) end

end

trim (ml: separateLIST[STRING])
-- Whenml reachesMax messages, remove all except lastMin ones.

require
ml.count>= Max

do
… As above (across loop and call toremove_tail) …

end
is_over: BOOLEAN -- Should we stop moving? See section13.

end

require
ml.count>= Max

Replacesversionof
page12.

§9 THE BUM WRAP? 15

9 THE BUM WRAP ?

The example classes discussed above,DOWNLOADER, VIEWER, MOVER, all
perform operations on the client’s message list, to which they have access through
a separate attribute

You might have expected that they manipulate that list directly, as in

(for examplemessages.extend(latest) in proceduredownload_oneof class
DOWNLOADER). But that is not what they do. Instead, the code achieves the
required effect through calls of the formr (messages), for a routiner with an argu-
mentml: separate LIST[STRING], where the body ofr executes

Obviously this form does what[1] was intended to do, but at the cost (for the pro-
grammer) of extra coding, since you must write a wrapper routiner to which you
pass the separate attribute as an argument.

This wrapping is not just a peculiarity of the examples seen so far. In a call
x.f (…) where the targetx is separate,x must by default be a formal argument of
the enclosing routine. So you are not permitted to write the call[1] above, but must
wrap it into a routine and passmessages as actual argument to that routine.

Why this rule? It guards against race conditions. It would be just too natural
without the rule to write something like

believing that you are adding two values,v1 andv2, next to each other at the end
of the list. The trouble here is thatmost of the timeyou are. But in some execution
out of a million someone else will capture messages between the two calls and you
will end up with a transient bug (the jargon term is “Heisenbug”) which is next to
impossible to track and fix. The SCOOP convention forces you to get hold of sep-
arate objects before you can work on them, so if you do care about the elements
ending up in consecutive positions you will useadd_two(v1, v2), having declared

messages: separate LIST[STRING]

messages.some_list_feature [1] -- Invalid, see below.

ml.some_list_feature [2]

messages.extend(v1) -- Invalid.
messages.extend(v2) -- Invalid.

add_two(ml: LIST[STRING])
-- Add v1 andv2, in this order, next to each other, at the end ofml.

do
ml.extend(v1)
ml.extend(v2)

end

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §916

While it is always necessary to reserve separate objects before you can work on
them, there is a simplified notation to avoid introducing lots of small wrapper rou-
tines such asadd_twoin straightforward cases. It uses the keywordseparateagain
and is called theinline separateinstruction. You can get rid of the routineadd_two
if you replace the calladd_two(v1, v2) by the separate inline instruction

The syntax is self-explanatory; note the use of a local name,ml, to capture the sep-
arate object within the separate inline instruction. The separate inline instruction
provides an implicit form of wrapping, not requiring the declaration of a routine,
and has exactly the same effect as the explicit wrapping form presented above.

As with the routine callmerge_lists(c1.messages, c2.messages), you can use
an inline separate instruction to reserve two or more separate objects together. For
example if this is the only call tomerge_lists, you can get rid of this routine, replac-
ing the call by

The separate inline instruction can also include arequire clause to cause waiting
on a separate precondition. For example in theMOVERclass you can entirely avoid
thetrim routine by writingmove as

The fundamental rule remains: you may only call a routine on a separate target if
you have reserved the corresponding object, by either passing it as argument to a
wrapper routine or by using an inline separate instruction.

separate messagesas ml do
ml.extend(v1)
ml.extend(v2)

end

)
-- Rest of code identical to the body ofmerge_lists in the previous form:
across l2 as e loop l1.extend(e.item) end
l2.wipe_out

end

move
-- When client’s mailbox reaches sizeMax, trim it to Min.

do

do -- The rest as in the earliertrim:
across1 |..|Min asi loopml[i.item] := ml[ml.count –Min+ i.item] end
ml.remove_tail(Min)

end
end

In classMOVER,
page11.

separate c1.messagesas l1, c2.messagesas l2 do

In classMOVER.
See the original
trim on page12.

separatemessages asml require
ml.count>= Max

§10 THE ORDER PRESERVATION RULE 17

10 THE ORDER PRESERVATION RULE

With concurrency comes non-determinism, but non-deterministic does not mean
random or arbitrary. SCOOP enforces time-ordering constraints that enable you to
reason about the execution of your programs in a way that is not so different from
reasoning about sequential programs.

We come back to our little playground for trying out our email mechanisms:
classPLAYER. The “play” features that follow are in that class and let us experi-
ment with properties of concurrent computation. We already hadplay1, which
calledlive_both, but we start again with something much simpler:

Remember that in our simulated downloaderdownload_oneprints out a message
indicating the message it is downloading. So we may expect an execution ofplay2,
starting from scratch, to produce the following output:

Run it; this is indeed what you will get. No visible non-determinism here: you can
try any number of times, in any environment and will get the same result, with the
two messages in order. Adding delays (wait (t) for somet) in play2, download_one
or both does not affect this property.

SCOOP provides an ordering guarantee: in this example, the order of execution
of the two routines is the same as if we had a sequential (rather than concurrent)
system; it is the order in which the algorithm ofplay2 executes them.

This order preservation rule states thatif two separate calls have the same
originating region and the same target region, the order of execution of the
routines’ bodies is the same as the order of the calls. Here the originating region
is the player’s region, and the target region is the downloader’s region. Their order
will be preserved, as illustrated here:

play2
-- Download two messages.

do
separate downloaderas d do

end
end

Adding message: Message 1
Adding message: Message 2

PLAYERwas on
page8.

play1was on page
8.

d.download_one(messages)
d.download_one(messages)

download_onewas
on page3.

Between given
regions, call
order preserved

Region CRegion A
Separate call A1
Separate call A2
…

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1018

Now let us see what happens when we change regions. Try this:

Remember thatview_oneprints a message, chosen at random from the client’s
message list if not empty, but does nothing if the list is empty. If you runplay3
(from scratch) several times, you might get, in some executions

where the first line comes fromdownload_oneand the second fromview_one. But
in other executions you might also get

that is, just the first line! We call these two results the “two-line” and “one-line”
outputs. You get one-line if the execution ofview_onecomes so fast on the heels
of the callv.view_one(messages) thatdownload_onehas not had the time to start
its execution yet. (If you do not see yet how this can happen, we will study the
detailed timeline in the next section.)

Because computers are so fast these days it may be that on your system you
never get the one-line output over repeated executions. To be almost sure to get it,
add a line at the beginning of the text ofdownload_one, in classDOWNLOADER:

whereDelay is a time in milliseconds. For largeDelay, say 1000, you should get
the one-line output, because the callv.view_onewill come much faster. For
Delay= 0 you will probably get the two-line output. In-between, for small values,
you may get different values in successive executions. In sequential computation
this behavior would not make sense: whatever delays we introduce, we first execute
d.download_one, and only thenv.view_one; so the second operation will always
find a non-empty list and print the two-line output.

What happened? We have three regions involved (player, downloader, viewer),
and each has its own processor with its own timing. There is no guarantee of order
preservation in such cases.

play3
-- Download a message, view a message.

do
separate downloaderas d, do

d.download_one(messages)

end
end

Adding message: Message 1 “Two-line output”

Adding message: Message 1 “One-line output”

wait (Delay)

viewer asv

v.view_one(messages)

view_onewas on
page8.

Viewing message: Message 1

§11 SEPARATE CALLS TO COMMANDS ARE BY DEFAULT ASYNCHRONOUS 19

(In the example there is only oneA call, to download_one, and oneB call, to
view_one.) The processor of region C will execute the routines of theA calls in
order, and the routines of theB calls in order, but you cannot count on any guaran-
tee between theAs and theBs.

This behavior is of the “good non-determinism” kind: ensuring any order con-
straint between more two or more calling processors, or two or more called proces-
sors, would require the execution of concurrent systems to rely on a global clock;
that assumption would kill performance (since processors would spend their time
resynchronizing), and is unrealistic anyway in distributed systems.

11 SEPARATE CALLS TO COMMANDS ARE BY DEFAULT ASYNCHRONOUS

Let us take a closer look at what happens in the execution of the two calls inplay3

whered andv are both separate, and attached to objects in different regions (“A”
and “B” in the last figure, both using the same client region “C” for the execution
of the respective routinesdownload_one andview_one).

Here is a possible timeline for the processors involved:

Following each of the timelines in turn:

• The player logs the call to the downloader, then the call to the viewer.

d.download_one(messages)
v.view_one(messages)

Between
different
regions, call
order not
necessarily

Region CRegion A
Separate call A1
Separate call A2
…

Region B

Separate call B1
Separate call B2
…

Processor
timelines

download_one download_one

Player

Log call
d.download_one

Log call
v.view_one

Downloader
Start End

Print

view_one if there is a message view_one

Viewer
Start EndPrint viewer line

Add
tp

td1

tv

downloader line message

td2

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1120

• The downloader, some time after the call todownload_onehas been logged,
executes the body of that routine. The execution consists of printing a control
line then adding a message to the list.

• The viewer, some time after the call toview_onehas been logged, executes the
body of that routine. The execution consists of finding out if there is a message
in the list andif so to print it, otherwise to print nothing.

In what order will the two print instructions (one of them a potential print) occur?
The preceding figure shows one possible order, but it is not the only possible one.
The only timing guarantees are the following:

• Instructions in a single processor are executed in sequence (remember, a pro-
cessor is sequential, and we get concurrency only by having several proces-
sors). This order guarantee corresponds to horizontal arrows in the figures
above and below.

• In a separate callx.r (…), the logging of the call by the originating processor
comes before the application ofr by the target processor. This is acausality
guarantee, represented in the figure below by the two red cross-processor lines.

• In addition, the order preservation rule ensures thatbetween two given regions
the order of routine body executions follows the order of the calls. We had that
behavior in the first example,play2, but it does not occur in the current one.

The figure is the same as the previous one, with all the order constraints repre-
sented. (Straightforward abbreviations: SD for Start Download, PD for Print
Downloader line, AM for Add Message, ED for End Download, SV for Start
Viewer, PPV for Potentially Print Viewer line, EV for End Viewer.) Theonly tim-
ing guarantees are the three horizontal arrows, one per processor, and the two
cross-processor red arrows. The relative timing of the two critical operations, “Add
message” in the downloader and “Print line if there is a message” in the viewer,
depends on the speed parameters, shown in the figure astp, td1, td2andtv: instruc-
tion execution times in the player, downloader and viewer.

As a consequence, all of the following scenarios are possible. If PPV occurs
after AM, we get two lines of output:

Intra- and
inter-processor
order
constraints

Player

Log call
d.download_one

Log call
v.view_one

Downloader
SD

EDAM

Viewer
SV

EVPPV

PD

tp

td1

tv

td2

§11 SEPARATE CALLS TO COMMANDS ARE BY DEFAULT ASYNCHRONOUS 21

If that timing is reversed, however, we get just the downloader’s line:

The relative order of PD and PPV does not matter, only the order of AM and PPV,
so that the following ordering yields the same result as the previous one:

You can play with the values ofd2and tv to force one of the two behaviors, by add-
ing a wait (Delay) call in the body ofdownload_one(in DOWNLOADER) or
view_one(in VIEWER), whereDelay is a time, for example1/10th of a second,
orders of magnitude greater than computer-level execution times. Try it:
• If you add the call after theprint instruction indownload, you are makingtd2

very large, and are almost sure to get the one-line output.
• If you add it instead at the beginning ofview_one, you are makingtv very large,

and are almost sure to get the two-line output.
In both cases the result is only “almost” sure: it is still in principle non-determinis-
tic, but would only change under extreme differences between the speeds of the
processors involved, more likely to occur on a network than on a single machine.

These examples of execution timeline highlight the asynchronous nature, by
default, of procedure calls in SCOOP. In sequential programming, calls are always
synchronous, in the sense that when you execute

you know thatother_instructionwill not start until the body ofsome_routinehas
run all the way to the end. This behavior is known as synchronous. No other is pos-
sible since in sequential programming there is only one processor, and it is busy
executingsome_routine. But in a concurrent setting ifsome_objectresides in
another region, which may have its own processor, the original processor — the

some_object.some_routine(some_arguments)
other_instruction

A two-line
scenarioDownloader

Viewer
PPV

PD AM

tv

td2

SV

A one-line
scenarioDownloader

Viewer
PPV

PD AM

tv

td2

SV

Another
one-line
scenario

Downloader

Viewer
PPV

PD AM

tv

td2

SV

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1222

one executing the code above — can proceed on its own withother_instructions,
independently of the other processor’s handling ofsome_routine’sbody. The
behavior in this case is said to be asynchronous.

Asynchrony is what makes a program concurrent. The rule is thata procedure
call on a separate target are by default executed asynchronously. (“By default”
because we will see a way to change that policy, but the behavior just described is
the normal one and except for some advanced uses you should rely on it.)

A practical consequence, visible in the above timelines, is that for a separate call
we need to distinguish betweenfeature call andfeature application:
• For the calling processor, executing an asynchronous call, such as

d.download_one(messages) or v.view_one(messages) above, simply means
“logging” the call: registering the information, so that the target processor will
be notified. This operation is the featurecall.

• The target processor must eventually execute the body of the routine, such as
download_onefor the downloader andview_onefor the viewer. That execution
can occur any time later, depending on processor speed and requests from other
processors. It is the feature’sapplication.

The distinction is irrelevant in sequential programming, and in SCOOP with
non-separate calls, since feature application always follows feature call directly.
But with concurrency the two are decoupled.

This concept also gives us a simpler and more precise version of the fundamen-
tal ordering rule of the previous section:within one region or between two given
regions, the order of feature applications is the order of feature calls.

12 SEPARATE CALLS TO QUERIES ARE SYNCHRONOUS

For the next example remember thatcountin DOWNLOADERgives the number of
downloaded messages; every application ofdownload_oneincreases it by one.
Add this routine toPLAYER:

play4
-- Download two messages, find out how many were downloaded.

local
n: INTEGER

do
separate downloaderas d do

d.download_one(messages)
d.download_one(messages)

end
end

n := d.count
print (n)

§12 SEPARATE CALLS TO QUERIES ARE SYNCHRONOUS 23

We can dispense with the local variablen if we replace the last two instructions by
just one,print (d.count), but using the variable makes the details of the computa-
tion more visible. If you run this code you will get the output 2, as expected since
every call todownload_oneincreasescountby one and the order preservation rule
implies that the calls todownload_oneare applied before the evaluation ofcount.
The rule is applicable here since the two processors involved are the same in all
three cases.

With asynchrony, however, we might wonder whether we are guaranteed to get
any result at all: if the calld.countwere asynchronous, there would be no way to
be sure that it will be finished when we assign its result ton. So we might be trying
to print an undefined value.

You need not fear such a scenario: the calld.count, unlike the calls to
download_one, is synchronous, meaning that the execution of the code inplay4, in
particular the assignment ton, will not continue untildownload_onehas completed
its application. The rule is thatseparate calls to a query are executed synchro-
nously. Remember that a callx.f (…) is separate if its targetx is separate. A feature
f is aquery if returns a result, meaning that it is either:
• An attribute, such ascounthere, describing a field present in every instance of

the class.
• A function, computing the result through some algorithm.
As always in Eiffel, attributes and functions have the same effect when viewed
from outside of their class. Try out this property by adding toDOWNLOADER
the function

and to PLAYERa routineplay5 identical to play4 except for the call
d.computed_countreplacingd.count. In other words, instead of relying on the
downloader object’scountfield, incremented on each download, we compute the
number of messages each time from scratch, as the length of the message list. The
result does not change: the assignment ton cannot proceed until the execution of
computed_countfinishes. You can also experiment by adding delays toplay4 or
computed_count and see that the result does not change.

The converse notion of “query” is “command”, a synonym for “procedure”: a
feature that does not return a result. So the SCOOP synchrony policy is that, after
logging of a call to a feature on a target handled by a different processor:

computed_count: INTEGER
-- Number of messages in client’s message list.

do
separate messagesas mdo

Result :=
end

end

m.count

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1324

• If the feature is a command, its application, by default, proceeds asynchro-
nously. This means that the calling processor can continue with the execution
of instructions following the call; the target processor will execute the body of
the command some time later.

• If the feature is a query, its application proceeds synchronously. This means
that the calling processor will not continue with the execution of other instruc-
tions until the target processor has executed the body of the query, and returned
the corresponding result.

13 THIRD -PARTY CONTROL

Instances of classesDOWNLOADER, VIEWERandMOVERare “active” objects in
the sense that they have their own scenario, represented by the loop in their respec-
tive live procedures. The exit condition in all cases is calledis_over.

How can another object, such as the email client, tell one of these objects to stop
its live? The declarations given above suggested thatis_overis a boolean attribute.
An initial idea for allowing clients to request termination is to include in the corre-
sponding class, for exampleDOWNLOADER, a procedure to set that attribute:

This approach does not work, however: while the downloader is busy executinglive
its processor can do nothing else: whatever frantic attempts the client makes to call
downloader.stop will have no effect.

A correct solution, using a SCOOP pattern known asThird-Party Control, relies
on a third “controller” processor serving as intermediary:

stop
-- Stop operation.

do is_over:= True end

live procedures:
pages7, 8 and14.

(CLIENT)

Region 3

Sending signals
through a
third-party
controllerRegion 1

(DOWNLOADER)

Region 4

is_downloader_over

(CONTROLLER)

stop_downloader

queryis_downloader_over

§13 THIRD-PARTY CONTROL 25

In bothCLIENT andDOWNLOADER, we declare

Thenis_over in DOWNLOADERshould no longer be an attribute but a function:

CONTROLLER, for its part, has the corresponding attribute and procedure:

The names explicitly refer to the downloader, so that a single controller can let the
client stop other objects (with featuresis_viewer_over, stop_viewer and so on).

With this technique the client requests downloader termination through a call
controller.stop_downloader; the next iteration of the downloader’slive will query
is_downloader_overand find out that it is now true. (Remember that all boolean
attributes are initialized toFalse by default.)

The Third-Party Control pattern takes advantage of asynchrony to allow objects
to pursue their own scenarios — to be “active” — while opening themselves up to
interaction with other processors at defined times.

Another example where the pattern provides an elegant solution is a situation
where a certain client user interface, for example in a browser, has started down-
loading a file and wants to display a progress bar, but not be stuck waiting for the
download to proceed. Once the download has started, the client can engage in
whatever other operations it wishes; every once in a while, it queries a third-party
controller, and as a result updates the progress bar in the UI. For its part, the down-
loading operation notifies the controller whenever it has progressed by some preset
amount such as 1%.

controller: separate CONTROLLER

is_over: BOOLEAN
-- Has operation termination been requested?

do
separate controlleras c do

Result := c.is_downloader_over
end

end

is_downloader_over: BOOLEAN -- Should downloader stop operation?
stop_downloader

-- Record request to stop downloader operation
do is_downloader_over:= True end

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1426

14 PASSIVE REGIONS

Every object is in a region. Every processor has its own region, where it handles all
x.f (…) calls wherex denotes an object in the region.

The reverse property does not have to hold: not every region has its own proces-
sor. Most do, but it is possible to definepassiveregions, in which calls will be han-
dled by the calling processors.

You specify that a region is passive in the creation of the region’s first object.
Remember that regions get created through creation instructions of the form

where the targetsepis separate. (p is the optional creation procedure, which in all
examples of this tutorial has the namemake.) This instruction putssepin the newly
created region and starts the associated processor. The region in this case is
“active”: it has its own processor. You can, however, use

to get only a new region, and no new processor. In that case the new region is pas-
sive: any processor executing a separate callx.f (…) on an object in the region will
carry out itself the execution off.

Syntax note: if you specify an explicit type for the new object, it comes after the
<NONE> mark, as increate<NONE> sep.p (…).

Using a passive region does not change the access rules: a separate feature appli-
cation always has exclusive access to all separate arguments, and if there are any
separate preconditions it will wait until they hold.

What does change is the possibility of asynchrony. When the target of a call is
in a passive region, only one processor is in charge of both the call and the appli-
cation, so the call is synchronous. The default policy of asynchronous calls for
commands no longer applies (that is why it was only the “default” policy): all calls,
whether to queries or commands, are now synchronous.

With passive regions we have the final picture of which calls are synchronous
and asynchronous (empty entries indicate an irrelevant criterion):

create sep.p (…)

create sep.p (…)<NONE>

{ SOME_TYPE}

§14 PASSIVE REGIONS 27

Calls are synchronous except in the bottom-right case, qualified command call to a
target in an active region.

When should you use passive regions? The first part of the answer is: usually
you should not! Most regions should be active, since the very aim of concurrent
programming is to take advantage of the availability of several processors, each of
which can proceed on its own. For that you need asynchrony.

Passive regions are anoptimization mechanism. You should not bother with
them until you have a running system and want to increase its performance.

Asynchrony is generally good for performance (as well as correctness). But
there can be too much of it. An asynchronous call implies communication and
other overhead: the target processor must register calls and manage the call queue.
Making a region passive can help if all objects in it satisfy two properties:

• They representshared resources, providing services to clients, but do not them-
selves have their own agenda (their own process). For example if in a class you
find the need for a procedure such aslive in DOWNLOADERor VIEWER, rep-
resenting an object’s independent lifecyle, instances of the class should be in
active (non-passive) regions.

• A passive region makes sense if clients only need to reserve the corresponding
resources forshort periods. Otherwise it will hurt performance rather than help
it, since it will prevent the client processors from proceeding asynchronously
with other tasks.

In the running example of this tutorial:

• It would be a mistake to use passive regions for the downloader, viewer and
mover. These objects and the associated data structures need their own proces-
sors to give us the concurrency expected of an email system.

• The client, on the other hand, makes a data structure, the message list, accessi-
ble to other processors. It does not need a thread of control of its own and can
be hosted in a passive region. We accordingly specified<NONE> in the corre-
sponding object creation.

Kind of call Kind of feature Target region Behavior

Unqualified
f (…)

Synchronous

Qualified
x.f (…)

Query
(attribute or function)

Synchronous

Command
(procedure)

Passive Synchronous

Active Asynchronous

live procedures:
pages7 and8.

The passive
creation was on
page8.

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1528

15 TYPE RULES AND ARGUMENT PASSING

The final step to mastering SCOOP is to understand a few rules that govern how
you can combine separate and non-separate elements in the program text.

Add the following to classPLAYER:

Remember thatclient, a reference to the email client object, is declared of type
separateCLIENT. Compile and run the resulting system. Rather, try to: you will
not get to execute anything but will receive a compile-time error message:

The reason should be clear. You are trying to use a local variable declared as
non-separate,c, to represent a reference to an object in a different region:

If such a reference must cross region boundaries, you must declare the correspond-
ing variable asseparate. Otherwise uses of that variable would violate concurrency
rules and create havoc. For example, the body of the routineplay6could include
(where the comment above says “operations onc”):

which tries to add a string at the end of the message list, but without any of the
exclusive access properties that SCOOP guarantees for shared resources. Data
races would follow, in the form of conflicting modifications to the list structure.
Fortunately, SCOOP forbids such games.

A correct declaration forc, instead of justCLIENT, is separateCLIENT.

Without this requirement, assignments such asc := client would, at run-time,
create “traitors ”. A traitor is a reference — in this case,c— that denotes a separate
object but is not declared accordingly.

play6
local

c:
do

-- Operations onc to be added (see below)
end

VJAR: Source of assignment is not compatible with target.

c.messages.extend("ABC")

Invalid code, see
explanation below.

CLIENT

c := client

Client regionPlayer region

(CLIENT)

c

(LIST)

Non-separate
references
should not cross
region
boundaries

messages

(PLAYER)

client

?

§15 TYPE RULES AND ARGUMENT PASSING 29

The SCOOP type rules guarantee that no execution will produce traitors. There
are three key rules. We have just seen the first one:if the source of an assignment
is of a separate type, the target must be of a separate type too.

The second rule is similar, but for argument passing rather than assignment. Add
a routine

as well as

The compiler will rejectplay8 because it passes a separate expression,client, as
actual argument to a routine which has a non-separate formal argumentc. Were the
call permitted, the body ofplay7(empty above) could include a non-protected call
on a separate object, for example the same one as in the assignment example:
c.messages.extend("ABC") , creating the potential of race conditions.

The second type rule, then, is thatif a formal argument of a routine is of a sep-
arate type, the corresponding actual in any call should be of a separate type too.

The third type rule reflects the third principal way one could try (sneakily) to
create a traitor. To play, a player can have “friends”, separate or not:

Now try this:

The feature call, if we ever got to execute it, would create a traitor: we are passing
ourselves (Current denotes the current object, likethis in some other object-ori-
ented languages) to an object in another region, which wants forclose_friendan
object in its own region. But, as illustrated below,Current is not in that region!

play7(c:)
do end -- Empty body OK, the signature is enough

play8
do play7 end

close_friend: PLAYER
remote_friend:separate PLAYER
set_close_friend(p: PLAYER)

-- Makep this player’s local (that is, non-separate) friend.
do

end

play9
do

create remote_friend.make

end

CLIENT

(client)

close_friend:= p

remote_friend.set_close_friend(Current)

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1530

UsingCurrent is not critical to the example; any other object in the first player’s
region would cause the same problem, as if you replace the call inplay9 by:

trying to make our remote friend use our own close friend as its close friend too.
This is just as bad:

These obvious cases of traitor creation are, however, not covered by the previous
rules: the routineset_close_friend(p:) has a non-separate formal argu-
ment, of typePLAYER, notseparatePLAYER. That is how it should be since every
player want a non-separate object as its “close” friend. The actual argument in the
call toset_close_friend, whetherCurrent or local_player, is also non-separate, so
rule 2 lets it pass. The problem is that the call,remote_friend.set_close_friend(…),
has a separatetarget, remote_friend(we say that it is a “separate call”), causing the
actual argument to be separaterelatively to the target region— “second player’s
region” in the figures — although the routine expects a non-separate reference.

The third rule addresses this case:in a separate call, it is permitted to pass a
reference as actual argument only if the corresponding formal argument is of
a separate type.

remote_friend.set_close_friend

Second player’s regionFirst player’s region Should not pass
oneself off as a
separate object

(PLAYER)

close_friend
remote_friend

(PLAYER)

close_friend?
Current

(close_friend)

Second player’s regionFirst player’s region Should not pass
off a local object
as a separate
object

(PLAYER)

close_friend
remote_friend

(PLAYER)

close_friend?

PLAYER

§15 TYPE RULES AND ARGUMENT PASSING 31

In the present example, the rule prohibitsany separate call whatsoever to
set_close_friend: calls must be either unqualified, as inset_close_friend(a), or
qualified but with a non-separate target, as innonsep.set_close_friend(a). In both
cases, of course,a should be of a non-separate type. To support separate calls,
set_close_friendshould be changed to have a separate formal argument, although
in this example the change does not make sense.

This third rule only applies to reference arguments. The overall behavior is the
general one in Eiffel: the type of an expression is either a reference type or an
expanded type. Expanded types (known in some other languages as value types)
cover in particular basic typesBOOLEAN, CHARACTER, INTEGERandREAL,
and have copy semantics. So:

• If a is a reference to an object, what will be copied into the routine’s formal
argument in a callf (a) is that reference to that object; in SCOOP it may
become a separate reference if the object belongs to a different region.

• If a is of an expanded type, its value is an object (possibly a very small object,
such as a single word, for basic types such asINTEGER), and that object will
be copied as part of the call. In SCOOP, the copy can take place across region
boundaries.

As our last example, let us add toCLIENTa query returning the first message if any

and toPLAYER a procedure to print that first message from the client’s list

Try compiling the system with this routine. Indeed it compiles (and runs). With the
rules seen above, it should not!STRINGis a reference type, since the value of a
variable of typeSTRINGis a reference to an object representing a string; the argu-
mentc.first is of typeseparateSTRING, but the library routineput_new_line
expects a plainSTRING, so we are violating the second type rule.

first: STRING
-- First message if any, otherwise empty.

do
Result := ""
if not messages.is_emptythen Result:= messages[1] end

end

play10
-- Print first client message if any.

do
separateclientas c do

io.put_new_line()
end

end

c.first

CONCURRENT PROGRAMMING IN SCOOP: A TUTORIAL §1632

In fact the routineview_oneof VIEWERhad the same problem, since it also
prints a separate string.

One approach would be to make all routines that expect strings, such as
put_new_line, work on potentially separate strings instead, but it would be heavy
and inconvenient.

Sticking toput_new_lineas it is, we can use an explicit solution by relying on
the built-in string creation procedureimport which, from a separateSTRING,
yields a non-separate string. Instead ofc.first, the code ofplay10can pass to
put_new_line, as actual argument,create{ STRING} .import (c.first).

Because strings are so frequently used across region lines, classSTRING
declaresimportas a conversion procedure, taking advantage of Eiffel’s conversion
mechanism. As a consequence, you can use aseparateSTRINGin any context that
expects a plainSTRING. A conversion will occur, importing a copy of the string to
the desired region. This convention explains whyplay10as shown above, and
view_one in VIEWER, are valid and run with the expected effect.

16 FURTHER READING

With this tutorial you have seen all of the key SCOOP concepts. There is consider-
able more information available, some of it comprehensive, some of it up to date.
At the time of writing no document is both comprehensive and up to date, but we
are working hard to fill this gap.

For the exact reference to the texts cited below see the documentation page of
the SCOOP-based Concurrency Made Easy project at ETH Zurich:
cme.ethz.ch/publications/.

The basic concepts and motivation behind SCOOP appear in Meyer’s book
Object-Oriented Software Construction (2nd edition).

For an informal but fairly detailed survey, see the SCOOP slides of the ETH
“Concepts of Concurrent Computation” course.

Three ETH PhD theses have made major contributions to the SCOOP technol-
ogy. Nienatltowski’s 2007 thesis remains a prime reference on the concepts and
many details, although some aspects of the model have changed since then. It con-
tains in particular a more complete and systematic presentation of the type rules.
Morandi’s more recent thesis introduced the notion of passive regions (called “pas-
sive processors”) and contains a detailed formal semantics. West’s thesis, also from
2014, provides many insights and critical performance improvements.

SCOOP is part of the current implementation of EiffelStudio, which can be
downloaded ateiffel.com. The SCOOP mechanisms are embedded in those of the
Eiffel language, on which extensive information is available ateiffel.org.

view_onewas on
page8.

http://cme.ethz.ch/publications/
http://eiffel.com
http://eiffel.org

	Concurrent programming in SCOOP: a tutorial
	1 Here and there
	2 Processors
	3 Starting a processor
	4 Keeping references to separate objects
	5 Building a concurrent program
	6 Controlling multiple access to shared resources
	7 Simultaneous reservation
	8 Conditional wait
	9 The bum wrap?
	10 The order preservation rule
	11 Separate calls to commands are by default asynchronous
	12 Separate calls to queries are synchronous
	13 Third-party control
	14 Passive regions
	15 Type rules and argument passing
	16 Further reading

