
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
F

Language changes from the
previous edition
F.1 OVERVIEW

Stability has been the principal characteristic of Eiffel’s history since the
language was designed on 27 September 1985. The concepts behind the
language, the structure of software texts, and the principal constructs have
remained the same. There have of course been significant changes:

• ISE Eiffel 2.1 (1988) introduced constrained genericity and the
Assignment Attempt mechanism.

• Versions 2.1 to 2.3 introduced expanded types, double-precision reals,
expanded classes and types, the join mechanism for deferred features,
assignment attempt, theNote clause (thenIndexing), infix and prefix
operators (now treated throughalias clauses), theObsoleteclause,
Unique values (removed in the present iteration), theMulti_branch
instruction.

• The transition from Eiffel 2 to Eiffel 3 (1990-1993) was the opportunity
for a general cleanup of the language, unification and simplification of
the concepts; in particular it made basic types full-fledged classes, to
yield a completely consistent type system, and got rid of special features
such asForget, so that feature call always applies to objects rather than
references. The first edition of this book officially introduced Eiffel 3;
by providing the complete reference for a full-function language, it
permitted the growth of the Eiffel industry and served as the basis for all
current commercial and non-commercial compilers.

• Eiffel 4 (in particular ISE’s Eiffel 4.2 in 1998 and 4.3 to 4.5 in 1999)
introduced thePrecursor construct, recursive generic constraints,
tuples, agents, creation expressions and a new creation syntax.

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.21054
• The present edition describes Eiffel 5, which brings a few significant
improvements, although it remains close to previous versions. In the Eiffel
tradition, the changes are not so much extensions (we are constantly wary
of the danger of “creeping featurism”) as efforts to make the language
cleaner, simpler, more consistent, easier to learn, easier to use. This
revision also removesa number of mechanisms (BIT types, Strip
expressions), for which we identified better alternatives.

This appendix describes the language changes from the preceding edition
to the present one, which are also the changes from Eiffel 3 to Eiffel 5.

Since the majority of Eiffel 5 users with pre-Eiffel-5 experience started
with Eiffel 3, the pre-Eiffel-3 changes are of mostly historical interest. For
that reason they appear in a separate appendix.

The presentation of Eiffel 5 changes will successively consider:
removed mechanisms; compatibility issues; new constructs; semantic
changes to existing constructs; lexical and syntactic changes; changes to
validity constraints and conformance rules.

F.2 REMOVED MECHANISMS

It has been a general principle of Eiffel evolution that in spite of its high
expressive power the language should remain of manageable size, allowing
Eiffel programmers to masterall of Eiffel: there must be no dark holes in
the language. In particular, if we find a better way of doing something,
there is no reason to retain the previous constructs, as long as we make the
transition easy for existing programs (see the compatibility notes in the
next section). Along with its introduction of powerful new mechanisms,
Eiffel 5 removes a few that are no longer needed.

The notion of infix and prefix features are now handled by a simpler and
more general mechanism, using the existing keywordalias. The keywords
infix andprefix are, as a consequence, no longer necessary. There is no loss
of functionality — rather, a more general mechanism.

The notion ofBIT type has been removed. It enabled manipulation of bit
sequences. The richer set of features in classINTEGER— bit_and, bit_not
and so on, as well as the creation proceduremakethat sets the bit size to an
arbitrary value — provides a more versatile replacement.

The notion ofStrip expression has been removed. It was mainly useful
in assertions and is advantageously replaced by a combination of tuple and
agent mechanisms.

Type DOUBLE, for “double-precision” reals, has been removed. The
evolution of computer hardware and the needs of numerical computation
lead to making everyREAL64-bit long. The new sized typeREAL_32is
available to declare shorter floating-point numbers.

§F.3 BACKWARD COMPATIBILITY 1055
Theglobal inheritance structurehas been simplified:ANYno longer has
ancestorsGENERALand PLATFORM. GENERAL is gone, soANY’s
features are declared inANY itself. PLATFORM is still there, but as a
supplier rather than ancestor ofANY, through a new queryplatformof type
PLATFORM in ANY, providing access to platform-specific properties.

F.3 BACKWARD COMPATIBILITY

The transition from Eiffel 2 to Eiffel 3 required changing some ways of
expressing fundamental operations, such as comparison toVoid.
Accordingly, a translator was made available by ISE at the time.

The changes from Eiffel 3 to Eiffel 5 may only cause minor
incompatibilities for existing Eiffel 3 software:

• The following new reserved words may not be used as identifiers:
assign, attached, attribute , create, Precursor, only, note, TUPLE.

The keywordscreation, indexing, infix , prefix and select have been
removed but compilers may continue to support them for a while, so you
should refrain from using them as identifiers.

• If you had a feature calleddefault_create, you should find another
name, unless you wish to use it as a redefinition of the corresponding
feature fromANY.

• If you had classes calledFUNCTION, PROCEDURE, ROUTINEor
TYPE, they will conflict with the corresponding new classes from the
Kernel Library, so you should use a different name.

• In a Note clause (previouslyIndexing) the initial colon-terminated
Note_nameterm, previously optional, is now required; you will have to
add it if missing.

• Creation is now writtencreate x rather than!! x andcreate {TYPE} x
rather than! TYPE! x. This is the most visible syntax change, but does
not raise any immediate concern since compilers should continue to
support the previous syntax for several years. (This is the case with ISE
Eiffel.) A translator does not appear necessary, although some scripts
may be made available to update creation instructions to the new form.

Incompabilities may also result from the removal ofBIT types andStrip
expressions. The new bit manipulation features of classINTEGERprovide
a superior replacement forBIT types;Strip expressions were rarely used
and their effect can be obtained in a simpler way through the agent
mechanism. Here too compilers such as ISE Eiffel will continue to support
the older mechanisms for several years.

Any compatibility problem resulting from the removal ofGENERAL
andPLATFORM should be easy to correct.

AppendixA.

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.41056
F.4 NEW CONSTRUCTS

Theagent mechanism (using tuples) is a major addition.

Tuples (anonymous classes) are new.

Thegeneric creationmechanism, making it possible to create objects of
aFormal_generic_name type, is new.

Creation expressionsare new. (Pre-Eiffel-5, only creation instructions
were available.)

Assigner procedures, allowing a procedure callx.put (v, i) to be written
in assignment-like syntax asx.item (i) := v if put has been declared as an
associated procedure for a queryitem, is new.

A related mechanism,bracket syntaxfor queries and commands,
allowing the previous instruction also to be writtenx [i] := v, is new.

A newconversion mechanismgeneralizes the ad hoc conformance rules
that allowed conformance ofINTEGERto REAL and of INTEGERand
REALto DOUBLE, as well as the “balancing rule” which permitted mixed-
mode arithmetic, as inyour_integer+ your_real. Instead, there is now a
general-purpose conversion and expression balancing mechanism, used by
the basic types in the Kernel Library but applicable to any other classes.
The notion of “compatibility”, covering both conformance and
convertibility, is a result of this addition; for assignment and argument
passing, the rule is that the source type must be compatible with the target
type, not just conforming as before.

ThePrecursorconstruct is new, replacing techniques (still applicable in
complex cases) relying on repeated inheritance.

The only postcondition clause, useful to avoid unwanted side effects
especially in assertions and concurrent computation, is new.

The use of aNoteclause (previouslyIndexing) to annotate a feature, a
control structure or the end of a class is new. Previously,Indexingclauses
were applicable at the beginning of a class only.

The ability to declare an attribute explicitly, with the keywordattribute ,
is new. This allows attaching preconditions, postconditions and note
clauses to attributes as well as routines. The previous syntax, justx: A,
remains applicable as a common abbreviation.

Verbatim strings are new.

The sized variants of basic types, such asINTEGER_8andREAL_64
are new.

The~ operator for object equality, associated withis_equal, is new.

Chapter27.

Chapter13.

Chapters12 and20.

20.14, page 550.

====

====

Chapter15.

10.24, page 293.

Chapters8 and20.

.29.8, page 784.

====

====

§38.5 SEMANTIC EXTENSIONS AND CHANGES 1057
38.5 SEMANTIC EXTENSIONS AND CHANGES

The generic mechanism now explicitly supports “recursive generic
constraints”, in which a constraint for a generic parameter may involve
another (or the same) generic parameter, as inclassC [G, H –>ARRAY[G]] .

The semantics ofcreation has been made simpler, for creation
instructions that do not explicitly list a creation procedure, by assuming
that this uses thedefault_createprocedure, introduced inANY and
redefinable in any class.

A class may now be declared as deferred even if it has no deferred
feature. This makes it non-instantiable like any other deferred class. A
consequence is that it is no longer permitted to have an empty
Creation_procedure_listin a Creation_clause; specifyingclassA create
feature ... with nothing aftercreatewas a way to prohibit instantiating the
class. It now suffices to makeA deferred, even if all its features are
effective.

The anchor of an Anchored typelike anchor may now itself be
anchored, as long as there is no cycle in the anchoring structure. In addition
it is now possible to use an expanded or formal generic anchor. With the
exception of expanded anchors this officializes possibilities that ISE Eiffel
has supported for a long time.

The Feature Identifier principleis new in its full generality. The
difference between operator and identifier features was and is intended for
feature calls only; what is new is that every feature now has an associated
identifier, with the infix, prefix or bracket alias providing only a
simplification for calls. This convention doesn’t just serve consistency, but
also allows, for example, to define agents on features of any kind.

The once routinemechanism has gained new flexibility through the
introduction of “once keys” allowing “once per thread”, “once per object”,
and manual control through the new classONCE_MANAGER.

Multi-branch instructionssupport two new forms, one discriminating
on strings (in addition to the integers and characters previously supported),
the other on the type of an object.

The arithmetic types have been developed and made more precise; this
includes new types such asINTEGER_8noted in the previous section, but
also the specification thatINTEGERmeans 32-bit integer andREALmeans
64-bit real, and also explains the removal ofDOUBLE.

Chapter20.

ClassHeader rule,page
126; creation clause
syntax, page539.

11.10, page 331.

Page153.

“ONCE ROUTINES”,
23.14, page 633.

“MUL TI-BRANCH
CHOICE”, 17.4,page
474.

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.51058
Equality semanticsnow specifies that two objects cannot be equal
unless their types are identical; previously, it was possible for an object to
be equal to one of conforming type. The main reason for this change was
to follow mathematical tradition by ensuring that equality is fully
symmetric. Correspondingly,copy semanticsrequires an argument of type
is identical — not just conforming — to the type of the target.

Non-conforming inheritancewas present in the case of inheritance from
an expanded class, but has been generalized to permit aParentclause of the
form inherit { NONE} C, hereby providing a simpler solution to the issues
of repeated inheritance and removing the need forSelect.

The possibility to declare a class — not just a routine — asfrozenis
new.

Although external featureshave always been present, they originally
supported only aLanguage_name, such as"C", and an optionalalias
specification (External_name). The inclusion of mini-sublanguages
allowing detailed C specifications comes from ISE Eiffel 3, which
provided direct support for C macros, include files and DLLs. Changes
from that version include: removing of 16-bit DLL support (technically
obsolete); replacing the keyworddll32 and the class nameDLL_16by dll
and DLL; accepting routine names as well as routine indexes indll
specifications; specifying that in the absence of analias subclause the
name to be passed to the external language is the lower name of the external
Eiffel feature ; replacing the vertical bar|, used to introduce include files,
by the keyword include. ISE Eiffel 4 introduced C++-specific
mechanisms, allowing an Eiffel class to use the member functions, static
functions, data members, constructors and destructors of a C++ class. That
version also introduced the Legacy++ class wrapper and the Java interface.
Eiffel 5 adds support forinline C functions and Cstruct specifications.
The Cecil library mechanisms have also been considerably refined and
extended based on extensive experience with the library.

F.5 KERNEL LIBRARY CHANGES

A number of changes have been brought to the Kernel Library (ELKS);
only the most important ones will be listed here.

“OBJECT EQUAL-
ITY”, 21.6, page 572,
and“COPYING AN
OBJECT”, 21.2, page
557.

“NON-CONFORMING
INHERITANCE”, 6.8,
page 178.; “THE CASE
OFREDECLAREDFEA-
TURES”, 16.5, page 434

“CLASS HEADER”,
4.9, page 124.

Chapter31.

AppendixA.

§F.5 KERNEL LIBRARY CHANGES 1059
The names of features for comparison, object duplication and copying
have been made more consistent, as shown by the following tables.
Asterisks indicate new names — for existing features or, in the case oftwin,
new ones; names in roman and in parentheses indicate previous names.

The purpose of this change is to make the names uniform and easy to remember:

• Add is_for queries applying to the target:equal (x, y) compares its
arguments,x.is_equal(y) compares the argument to the target.

• Useidentical for frozen (non-redefinable) operations, which guarantee
the original semantics of field-by-field equality or copying:equaland
copy are redefinable,identical and identical_copyare not. Note that
cloneand its target-oriented varianttwinare not directly redefinable, but
they follow the redefinitions ofcopy.

---- FIX FIX FIX "~" is a new synonym ofequal, making it a little easier
to express object equality asa }={ b. (The symbol suggests an equal sign
opening up both left and right to embrace the objects denoted by the
operands.)

In addition, as noted in the previous section, copy and equality features now use
type identity rather than type conformance between their arguments. This has led
to a stronger precondition forcopy, usingsame_type rather thanconforms_to.

OBJECT
EQUALITY

FIX FIX FIX FIX!!!!
Between arguments Between target and

argument

Redefinable equal
alias "}={" <––

is_equal

Frozen * identical <––
(standard_equal)

* is_identical <––
(standard_is_equal)

OBJECT
DUPLICATION Of argument Of target

Redefinable clone twin

Frozen * identical_clone
(standard_clone)

* identical_twin

OBJECT
COPY Of argument onto target

Redefinable copy

Frozen identical_copy <––
(standard_copy)

The previous conven-
tions were not bad, but
the new ones seem a lit-
tle better, especially
with the introduction of
twin.

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.61060
---- FIX FIX FIX Thanks to the introduction ofClass_type_reference, it
has been possible to remove classesINTEGER_REF, CHARACTER_REF
and so on; the equivalent is now provided by

F.6 LEXICAL AND SYNTACTIC CHANGES

A small change to the method of language description, rather than the
language itself: in the conventions for describing the syntax, a “zero or more”
repetitition is now marked by an asterisk, as in {Type";" …}*, for symmetry
with the convention for “one or more”, which uses a plus sign. Previously, the
asterisk was omitted.

There are eight new reserved words as already noted:agent, attribute ,
create (making a comeback from Eiffel 1 and 2),note, only, Precursor,
reference, TUPLE. Among these,createis a replacement forcreation and
note for indexing.

The wordscreation, noteandselectare no longer keywords (hence no
longer reserved), but compilers will probably treate them as reserved for a
while, the first as a synonym forcreate, the second to support previous
repeated inheritance rules.

The following words are no longer reserved:BOOLEAN, CHARACTER,
INTEGER, REAL, DOUBLE, POINTER. You should still not use them as
class names, since they would conflict with classes that an Eiffel compiler
will expect to find in the Kernel Library, and optimize. But you may now
call a featureinteger (although that’s probably not a good idea).

A Note_entry is of the form

something: a, b, c

wheresomething: is theNote_nameand one or moreNote_itemfollow the
colon. Previously theNote_namepart (including the colon) was optional.
In practice developers included it almost all of the time. It is now required.
This makes the grammar more regular, and facilitates parsing, especially as
the semicolon is optional between aNote_entry and the next.

A syntax rule required underscores, if used in manifest integer and real
numbers, to separate digits by groups of three. It has been replaced by a
mere style recommendation.

The syntax for creation instructions previously used exclamation mark
characters!. For clarity, this has now been replaced by a keyword-based
notation relying on the keywordcreate, permitted for creation expressions as
well (see new constructs below). For consistency and to avoid any confusion,
the keywordcreate is also used to introduce aCreatorspart listing the
creation procedures of a class (previously the keyword there wascreation).

“Repetition produc-
tions”, page 90.

“ANNOTATING A
CLASS”,4.8,page122.

“INTEGERS”, 32.16,
page 889, and“REAL
NUMBERS”, 32.17,
page 892.

§F.7 CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES 1061
The recommended separator between successive generic parameters,
either formal as in a class declarationclassC [G; H] … or actual as in a
generic derivationC [TYPE1; TYPE2], is now the semicolon. The comma
(the previous choice) is still supported.

ThePrecursor construct, which may include an explicit type as in

was first introduced inObject-Oriented Software Construction, 2nd edition
(Prentice Hall, 1997), where this form of the construct is written with the
type specification first:{ TYPE} Precursor(…). An early printing even had
double… braces, as in{{ TYPE}} Precursor(…), showing once again that
simple solutions sometimes come last. ISE Eiffel currently supports all
three variants, but with the publication of this book the discarded ones
should quickly disappear from practical use.

The syntax forNew_export_item, in theNew_exportsclause that allows
a class to change the export status of some inherited features, now supports
an optionalHeader_commentto indicate the status of the corresponding
features, such as-- Implementation. This is consistent with the
corresponding convention for labeling feature clauses.

F.7 CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES

Some changes, most of them simplifications, have been brought to validity
constraints (including conformance rules, treated in the same style as
validity constraints in chapter14). The changes are summarized in the
following table.

Some of these changes involve a constraint that has beenremoved, for
one of three reasons:

• The constraint was found to be too restrictive, and its removal not to
have any negative effect on software quality.

• The constraint was really a style rule, and users felt it should not be
enforced by compilers.

• Other language changes made the constraint unnecessary.

A few constraints have beenadded to reflect the rules associated with the
new constructs of Eiffel 5.

In addition, the table includes entries for some constraints having
undergone changes affecting only their presentation:

• The order of clauses may have been changed for clearer exposition.

• Every constraint has a name; for consistency, some names have been
changed (or added, in a few cases of originally nameless constraints).

Precursor {TYPE} -- Or the version with arguments:
Precursor {TYPE} (arguments)

Sections12.2 and12.3.

Examples in, page 200;
syntax on page205.

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.71062

s

n

o

• Every constraint has aCxyzcode (previouslyVxyz); in a few cases this
has been changed for better mnemonic value and consistency. (The
table, as noted, only lists a constraint if thexyz part has changed.)

Page numbers insmall italicsin the second column refer to the first edition
of this book and determine the order of entries in the table.

Constraint name Old code,page New
code

Page Explanation

Root Class rule VSRC 36 VSRT 112 Clause3 added to preclude root class of a system
from being deferred, necessary condition omitted
in first edition. Removes limitation to one creation
procedure. Previous clause 2 is now clause2 of new
constraintVSRP (next entry).

Root Procedure rule
(previously covered by
Root Class rule, see
previous entry)

VSRC 36 VSRP 112 New rule covering what was clause 2 of VSRC
(previous entry). Previous phrasing, applying toall
creation procedures of root class, was too
restrictive. Clause2 of new rule governs root
procedure only. Clause1 states that root procedure
must be creation procedure of root class. Clause3
is a new condition, prohibiting preconditions.

Cluster Class Namerule
(previously: no name)

VSCN 51 Removed ---- COMPLETE ----

Class Headerrule VCCH 51 VCCH 126 Loosened to permit the declaration of a class a
deferred even if it has no deferred feature.

(No name) VCRN 53 Removed Required ending comment of class, if present, to
repeat class name. Ending comment has bee
removed, even as a style rule.

Feature Declaration ruleVFFD 69 VFFD 160 Replacement of clauses 5 and 6 by reference t
Alias Validity (see next entry).

Alias validity VFFD
(Clauses
5 and 6))

69 VFAV 162 Revision of part of VFFD accounting for new of
alias clauses replacingprefix and infix and
introducing bracket features.

Parentrule VHPR 81 VHPR 176 The rule now refers to theUnfolded Inheritance
Clauseof a class to account for implicit inheritance
from ANY. Clause2 is new, to take into account the
new notion of frozen class. Clause4 is new, to
ensureVHUC (see next entry). Clause5 should
have been there all along but is new.

Universal Conformance
rule

(NEW) 81 VHUC 173 Theorem, follows from other validity rules. Was
essentially satisfied before, but not stated.

Rename Clauserule VHRC 81 VHRC 182 Two new clauses:3 requires Feature Name rule
(VMFN, page 466) to apply (previously only
expressed as margin comment);4 covers renaming
into feature with operator or bracket alias.

§F.7 CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES 1063

it

or

d

.)
t

.)
t

l

by

.

d

ClassANYrule VHAY 88 VHCA 173 Code change for clarity.

Expanded Client rule VLEC 94 Removed New semantics of expanded variables makes
possible to accommodate expanded client cycles.

(No name) VLCP 101 Removed Required identifiers listed in aClients part to be
names of classes in the universe. See rationale f
the removal in the paragraphs starting with “There
isno validity constraintonClientsparts”, page204.

Entity Declaration rule VREG 110 VRED 217 Code change for clarity.

Local Variable rule VRLE 115 VRLV 222 Code change for clarity (previous terminology was
“Local Entity”).

Feature Body rule
(replacing Routine rule)

VRRR 113 VFFB 144 New rule is generalization of old one: covers all
features, not just routines. It follows from the
introduction of theattribute keyword, making
some clauses (in particularPrecondition and
Postcondition) applicable to all features.

Old Expressionrule VAOL 124 VAOX 235 Code change for clarity.

Old Expressionrule (NEW) VAON 240 Validity rule for newonly construct.

Precursor rule (NEW) VDPR 298 New rule , covering new construct.

Definition of deferred
and effective class

161 127 (Not validity constraint, but definition used by other
constraints.) Moved to earlier chapter; updated to
permit class to be deferred even without deferre
features. See entry onVCCH above.

Deferred class property (161) 304 (Not separate constraint, but consequence of others
Clarifies that a class can be deferred even withou
deferred features. See previous and next entries.

Effective class property (161) 305 (Not separate constraint, but consequence of others
Clarifies that a class can be deferred even withou
deferred features. See previous two entries.

Redeclaration rule VDRD 163 VDRD 307 Last clause removed; prohibited redefining an externa
feature into an Internal one. This was an
implementation constraint, no longer justified.

Join rule VDJR 165 VDJR 309 Rephrased to take into account two cases missed
original: joining of one effective feature with one or
more deferred ones; redefinition of all. Not language
change but clarification of rule that was always there

Join semantics rule
(not validity constraint
but semantic rule)

166 312 Beginning of rule updated to include cases mentione
in previous entry. Clause6 added to cover case of
effecting one or more deferred features.

Constraint name Old code,page New
code

Page Explanation

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.71064

o
g

,

al

f

s

g

;

.

Name Clash rule
(previously: no name)

VNCN 189 VMNC 467 Name change for consistency. Slight rephrasing, but n
change of substance. This is a redundant rule, followin
fromVMFN/VMFN (Feature Name, unchanged).

Select Subclause rule VMSS 192 Removed Governed a clause,Select, that no longer exists thanks
to simplification of repeated inheritance mechanism.

Unconstrained
Genericity rule

VTUG 201 Removed Now merged withVTGD of which it was a special
case (repeated in its clause1).

Generic Constraint rule (NEW) VTGC 349 New rule taking into account generic creation and
multiple generic constraints.

Genericity Derivation
rule (previously: Cons-
trained Genericity rule)

VTCG 203 VTGD 351 Clause2 amended to permit recursive constraints
as inclassC [G, H –> ARRAY[G]] .

Expanded Type rule VTEC 209 VCCH 126 Rule no longer needed as type rule thanks to remov
of expandedT types (all expanded types are now
based on an expanded class) and removal o
requirement ofdefault_create for expanded types.

Anchored Type rule VTAT 214 VTAT 337 Considerably loosened conditions: anchor chain
now possible (a declaredlike b with b declaredlike
c) if there’s no cycle; anchoring now permitted on
expanded and formal generic. No more anchorin
on arguments. Properties of anchored type now
completely defined by those of its unfolded form.

General conformance VNCC 219 VNCC 380 Clause 3 integrates attached type requirements
new clause6 handles anchored types and allows
removal ofVNCG (see below).

Direct conformance:
class types

VNCN 221 VNCN 382 Simplified thanks to the notion of generic
substitution; also subsumesVNCG (next entry).

Direct conformance:
generic substitution

VNCG 222 Removed Covered by new formulation ofVNCN (see
previous entry).

Direct conformance:
formal generic

VNCF 224 VNCF 385 Simplified thanks to a more general notion of
constraint. Also, addresses multiple constraints.

Direct conformance:
anchored types

VNCH 225 Removed Anchored types are now treated more simply like
“macros”. See clause of

Direct conformance:
expanded types

VNCE 229 VNCE 388 ---- FIX --- Previous clauses 2 and 3 removed as
they are now covered by convertibility rather than
conformance (in a more general form including
new explicitly sized arithmetic types such as
INTEGER_16).

Direct conformance:
Bit types

VNCB 229 Removed No longer applicable since Bit types were removed

Constraint name Old code,page New
code

Page Explanation

§F.7 CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES 1065

,

,

,

:

”

e

Direct conformance:
tuple types

(NEW) VNCT 389 New rule, covering conformance for new kind of type.

Conversion Procedure
rule

(NEW) VYCP 403 Convertibility is new.

Conversion Query rule (NEW) VYCQ 405 Convertibility is new.

Expression convertibility (NEW) VYEC 415 Convertibility is new.

Precondition-free (NEW) VYPF 417 New concept closely connected with convertibility.

Multi-Branch rule VOMB 239 VOMB 480 Removed all constraints relating to Unique values
no longer present in the language.

Unique declaration rule 266 Removed Removed all constraints relating to Unique values
no longer present in the language.

Unique Declaration rule
(previously: no name)

VQUI 266 Removed Removed all constraints relating to Unique values
no longer present in the language.

Entity rule VEEN 276 VEEN 505 Clearer clause numbering; new clause7 (imitated
from clause6) to cover new notion of inline agent.

Variable rule (NEW) VEVA 506 New rule made necessary by inline agents.

Creation Precondition
rule

(NEW) VGCP 539 New rule restricting what’s permissible in the
precondition of a creation procedure.

Creation Clause rule VGCP 285 VGCC 540 Code change for clarity. Previous clause 4 removed
made unnecessary bydefault_createconvention;
VCCH takes care of the rest. New clause4 added to
preclude using once routines. New clause5 to rule
out unsound precondition clauses. Do notconfuse
with newVGCP(previous entry) or oldVGCC(next
entry).

Creation Instruction ruleVGCC 286 VGCI 545 Code change for clarity. Drastic simplification. Note
that some of the old clauses reappear as “corollaries
of VGCI in the newVGCP, page547. New clause4
takes into account generic creation. Do not confus
with newVGCC (previous entry).

(No name) VGCI 288 Removed System validity part removed. Do not confuse with
clause now calledVGCI (previous entry).

Creation Instruction
Properties

(Partsof
VGCC)

288 VGCP 547 New rule, corollary of VGCI (next-to-previous
entry) and hence redundant, but providing extra
error messages for compilers.

Creation Expression rule (NEW) VGCE 553 Creation expressions are new.

Creation Expression
properties

(NEW) VGCX 554 Same relation toVGCE as VGCP to VGCI (see
previous entries).

Constraint name Old code,page New
code

Page Explanation

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.71066

)

3
t

.

.

Assigner Call rule (NEW) VBAC 602 Assigner calls are new.

Assignment Attempt ruleVJRV 332 Removed No more assignment attempt (replaced by
Object_test)

Non-Object Call rule (NEW) VUNO 623 Non-object calls are new.

Call Use rule
(previously: no name)

VKCN 368 VUCN 615 Code change for consistency.

Export rule VUEX 368 VUEX 624 Simplification (the former case 2 wasn’t necessary
and addition ofNon_object_callcase.

Argument rule VUAR 369 VUAR 626 Rule simplified thanks to the addition ofVUDA
(see below) for the more complex case. Clause
(redundant) removed. Clause 4 moved to constrain
on Address expression.

Class-Level Call rule (NEW) VUCC 628 Separating class validity from more complex rules

Object Test rule (NEW) VUOT 651 New rule, covering new construct.

Descendant Argument
rule

(VUAR,
p. 367)

367 VUDA 659 Rule split away fromVUAR to separate more
advanced cases from simple ones.

Single-Level Call rule
(previously: no name)

VUCS 367 VUSC 660 Code change; name added.

General Call rule
(previously: Call rule)

VUGV 367 VUGC 673 Name change for consistency.

(No name) VWEQ Removed No more conformance constraint on equality.

Call Agent rule (NEW) VPCA 746 Agents are new.

Inline Agent rule (NEW) VPIA 747 Inline agents are new.

Inline Agent requirements (NEW) VPIR 748 Inline agents are new.

Bracket Expression rule (NEW) VWBE 772 Bracket expressions are new..

Manifest Type rule (NEW) VWM
Q

781 Manifest types for expressions are new..

(No name) VWMS 390 Removed Now handled through syntax and definition of
Line_wrapping_part.

Manifest Array rule VWMA 393 Removed No longer necessary thanks to manifest tuples
Backward compatibility enforced through rule that
manifest tuples conform to manifest arrays.

Identifier rule
(previously: no name)

VIRW 418 VIID 881 Code and name change.

Constraint name Old code,page New
code

Page Explanation

	F F Language changes from the previous edition
	38.5 SEMANTIC EXTENSIONS AND CHANGES

