= Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
e future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

_anguage changes from the
orevious edition

F.1 OVERVIEW

Stability has been the principal characteristic of Eiffel’s history since the
language was designed on 27 September 1985. The concepts behind the
language, the structure of software texts, and the principal constructs have
remained the same. There have of course been significant changes:

« ISE Eiffel 2.1 (1988) introduced constrained genericity and the
Assignment Attempt mechanism.

 Versions 2.1 to 2.3 introduced expanded types, double-precision reals,
expanded classes and types, the join mechanism for deferred features,
assignment attempt, theote clause (therindexing, infix and prefix
operators (now treated througilias clauses), theDbsoleteclause,
Unique values (removed in the present iteration), telti_branch
instruction.

« The transition from Eiffel 2 to Eiffel 3 (1990-1993) was the opportunity
for a general cleanup of the language, unification and simplification of
the concepts; in particular it made basic types full-fledged classes, to
yield a completely consistent type system, and got rid of special features
such ag~orget, so that feature call always applies to objects rather than
references. The first edition of this book officially introduced Eiffel 3;
by providing the complete reference for a full-function language, it
permitted the growth of the Eiffel industry and served as the basis for all
current commercial and non-commercial compilers.

« Eiffel 4 (in particular ISE’s Eiffel 4.2 in 1998 and 4.3 to 4.5 in 1999)
introduced thePrecursorconstruct, recursive generic constraints,
tuples, agents, creation expressions and a new creation syntax.

1054 LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.2

» The present edition describes Eiffel 5, which brings a few significant
improvements, although it remains close to previous versions. In the Eiffel
tradition, the changes are not so much extensions (we are constantly wary
of the danger of “creeping featurism”) as efforts to make the language
cleaner, simpler, more consistent, easier to learn, easier to use. This
revision alsoremovesa number of mechanismsBIT types, Strip
expressions), for which we identified better alternatives.

This appendix describes the language changes from the preceding edition
to the present one, which are also the changes from Eiffel 3 to Eiffel 5.

Since the majority of Eiffel 5 users with pre-Eiffel-5 experience started
with Eiffel 3, the pre-Eiffel-3 changes are of mostly historical interest. For
that reason they appear in a separate appendix.

The presentation of Eiffel 5 changes will successively consider:
removed mechanisms; compatibility issues; new constructs; semantic
changes to existing constructs; lexical and syntactic changes; changes to
validity constraints and conformance rules.

F.2 REMOVED MECHANISMS

It has been a general principle of Eiffel evolution that in spite of its high
expressive power the language should remain of manageable size, allowing
Eiffel programmers to masteil of Eiffel. there must be no dark holes in

the language. In particular, if we find a better way of doing something,
there is no reason to retain the previous constructs, as long as we make the
transition easy for existing programs (see the compatibility notes in the
next section). Along with its introduction of powerful new mechanisms,
Eiffel 5 removes a few that are no longer needed.

The notion of infix and prefix features are now handled by a simpler and
more general mechanism, using the existing keyvediak. The keywords
infix andprefix are, as a consequence, no longer necessary. There is no loss
of functionality — rather, a more general mechanism.

The notion oBIT type has been removed. It enabled manipulation of bit
sequences. The richer set of features in dd§&EGER— bit_and bit_not
and so on, as well as the creation procedunakethat sets the bit size to an
arbitrary value — provides a more versatile replacement.

The notion ofStrip expression has been removed. It was mainly useful
in assertions and is advantageously replaced by a combination of tuple and
agent mechanisms.

Type DOUBLE for “double-precision” reals, has been removed. The
evolution of computer hardware and the needs of numerical computation
lead to making everiREAL 64-bit long. The new sized typgREAL_32is
available to declare shorter floating-point numbers.

8F.3 BACKWARD COMPATIBILITY 1055

Theglobal inheritance structurbas been simplifiedANYno longer hasappendixa.
ancestorsGENERAL and PLATFORM GENERALIis gone, soANYs
features are declared IANY itself. PLATFORMis still there, but as a
supplier rather than ancestorARY, through a new querglatformof type
PLATFORMIn ANY providing access to platform-specific properties.

F.3 BACKWARD COMPATIBILITY

The transition from Eiffel 2 to Eiffel 3 required changing some ways of
expressing fundamental operations, such as comparisonvoid.
Accordingly, a translator was made available by ISE at the time.

The changes from Eiffel 3 to Eiffel 5 may only cause minor
incompatibilities for existing Eiffel 3 software:

» The following new reserved words may not be used as identifiers:
assign attached, attribute , create, Precursor only, note, TUPLE

The keywordscreation, indexing, infix, prefix and select have been
removed but compilers may continue to support them for a while, so you
should refrain from using them as identifiers.

« If you had a feature calledefault_creatg you should find another
name, unless you wish to use it as a redefinition of the corresponding
feature fromANY

« If you had classes calleHBUNCTION PROCEDURE ROUTINE or
TYPE they will conflict with the corresponding new classes from the
Kernel Library, so you should use a different name.

*In a Note clause (previouslyindexing the initial colon-terminated
Note_nameerm, previously optional, is now required; you will have to
add it if missing.

« Creation is now writtercreate x rather tharl! x andcreate {TYPE x
rather thar TYPE! x. This is the most visible syntax change, but does
not raise any immediate concern since compilers should continue to
support the previous syntax for several years. (This is the case with ISE
Eiffel.) A translator does not appear necessary, although some scripts
may be made available to update creation instructions to the new form.

Incompabilities may also result from the removalRIfT types andStrip
expressions. The new bit manipulation features of dids3&GERprovide

a superior replacement f@&IT types; Strip expressions were rarely used
and their effect can be obtained in a simpler way through the agent
mechanism. Here too compilers such as ISE Eiffel will continue to support
the older mechanisms for several years.

Any compatibility problem resulting from the removal GENERAL
andPLATFORMshould be easy to correct.

1056 LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.4

F.4 NEW CONSTRUCTS

Theagentmechanism (using tuples) is a major addition. Chapter27.
Tuples(anonymous classes) are new. Chapterl3.

Thegeneric creatiomechanism, making it possible to create objecteRaptersi2 and20.
aFormal_generic_nantype, is new.

Creation expressionare new. (Pre-Eiffel-5, only creation instructiong.14, pae 550
were available.)

Assigner proceduresllowing a procedure cad.put (v, i) to be written ==--
in assignment-like syntax asitem (i) := v if puthas been declared as :
associated procedure for a quéem, is new.

allowing the previous instruction also to be writigi] := v, is new.

A new conversion mechanisgeneralizes the ad hoc conformance ruthapter1s.
that allowed conformance dNTEGERto REAL and of INTEGERand
REALto DOUBLE, as well as the “balancing rule” which permitted mixe
mode arithmetic, as igour_integer+ your_real Instead, there is now .
general-purpose conversion and expression balancing mechanism, u
the basic types in the Kernel Library but applicable to any other classceo.
The notion of ‘tompatibility, covering both conformance and
convertibility, is a result of this addition; for assignment and argument
passing, the rule is that the source type must be compatible with the target
type, not just conforming as before.

ThePrecursoconstruct is new, replacing techniques (still applicabl@§a, pae 293
complex cases) relying on repeated inheritance.

The only postcondition clause, useful to avoid unwanted side effChapterss and20.
especially in assertions and concurrent computation, is new.

The use of d\ote clause (previouslyndexing to annotate a feature, a
control structure or the end of a class is new. Previouistigxingclauses
were applicable at the beginning of a class only.

The ability to declare an attribute explicitly, with the keywatttribute ,
is new. This allows attaching preconditions, postconditions and note
clauses to attributes as well as routines. The previous syntaxx:jést
remains applicable as a common abbreviation.

Verbatim stringsare new. 29.8, pme 784
The sized variants of basic types, suUCHM$EGER_8andREAL_64 ----
are new.

The~ operator for object equality, associated visthequa) is new.

§38.5 SEMANTIC EXTENSIONS AND CHANGES 1057

38.5 SEMANTIC EXTENSIONS AND CHANGES

The generic mechanism now explicitly supports “recursive generic
constraints”, in which a constraint for a generic parameter may involve
another (or the same) generic parameter, alssC [G, H —> ARRAYG]].

The semantics ofcreation has been made simpler, for creati¢hapterzo.
instructions that do not explicitly list a creation procedure, by assunnny
that this uses thelefault_createprocedure, introduced irANY and
redefinable in any class.

A class may now be declared as deferred even if it has no defiClassHeaderrulgpage
A26 creation clause

feature. This makes it non-instantiable like any other deferred clasg ,ay pagessa
consequence is that it is no longer permitted to have an er
Creation_procedure_lish a Creation_clausespecifyingclassA create
feature ... with nothing aftercreatewas a way to prohibit instantiating the
class. It now suffices to maka deferred, even if all its features are
effective.

The anchor of an Anchored typkke anchor may now itself bei1.10, pae 331
anchored, as long as there is no cycle in the anchoring structure. In ad
it is now possible to use an expanded or formal generic anchor. With the
exception of expanded anchors this officializes possibilities that ISE Eiffel
has supported for a long time.

The Feature Identifier principleis new in its full generality. ThePagel53
difference between operator and identifier features was and is intended tor
feature calls only; what is new is that every feature now has an associated
identifier, with the infix, prefix or bracket alias providing only a
simplification for calls. This convention doesn't just serve consistency, but
also allows, for example, to define agents on features of any kind.

The once routinemechanism has gained new flexibility through t'ONCE ROUTINES”,
introduction of “once keys” allowing “once per thread”, “once per objeé3-14. pae 633
and manual control through the new cl@8¢CE_MANAGER

Multi-branch instructionssupport two new forms, one discriminatir‘MUL TI-BRANCH
on strings (in addition to the integers and characters previously suppog;'f'CE 17.4.pa0e
the other on the type of an object.

The arithmetic types have been developed and made more precise; this
includes new types such 88TEGER_¬ed in the previous section, but
also the specification thitI TEGERmeans 32-bit integer arREALmeans
64-bit real, and also explains the removaDG@UBLE

1058

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.5

Equality semanticsow specifies that two objects cannot be eq'¢HiEcT EQUAL-

unless their types are identical; previously, it was possible for an objeg]\gzgcélﬁlﬁ%eﬂz
be equal to one of conforming type. The main reason for this changeoBJECT", 21.2, pge
to follow mathematical tradition by ensuring that equality is fuﬁif'

symmetric. Correspondinglgopy semanticeequires an argument of type

is identical — not just conforming — to the type of the target.

Non-conforming inheritanceras present in the case of inheritance fragoON-cONFORMING

i i aINHERITANCE”, 6.8,

an ex_pand_ed class, but has been ge_ngrallzeq to peﬂal‘e@tlause of.thc 178 “THE CASE
forminherit {NONB C, hereby providing a simpler solution to the iSSLOFREDECLAREFEA-

of repeated inheritance and removing the nee&détect TURES'. 165, pge 434

The possibility to declare a class — not just a routine —frasenis ‘CLASS HEADER”,
new 4.9, pae 124

Although external featurehave always been present, they originally
supported only danguage_namesuch as'C", and an optionahlias Chapter3l
specification External_nampe The inclusion of mini-sublanguages
allowing detailed C specifications comes from ISE Eiffel 3, which
provided direct support for C macros, include files and DLLs. Changes
from that version include: removing of 16-bit DLL support (technically
obsolete); replacing the keywodii32 and the class nanieLL_16by dll
and DLL; accepting routine names as well as routine indexesllin
specifications; specifying that in the absence ofatias subclause the
name to be passed to the external language is the lower name of the external
Eiffel feature ; replacing the vertical bfrused to introduce include files,
by the keyword include. ISE Eiffel 4 introduced C++-specific
mechanisms, allowing an Eiffel class to use the member functions, static
functions, data members, constructors and destructors of a C++ class. That
version also introduced the Legacy++ class wrapper and the Java interface.
Eiffel 5 adds support foinline C functions and Gstruct specifications.

The Cecil library mechanisms have also been considerably refined and
extended based on extensive experience with the library.

F.5 KERNEL LIBRARY CHANGES

A number of changes have been brought to the Kernel Library (ELIASpéndixa.
only the most important ones will be listed here.

8F.5 KERNEL LIBRARY CHANGES 1059

The names of features for comparison, object duplication and copying
have been made more consistent, as shown by the following tables.
Asterisks indicate new names — for existing features or, in the caserpf
new ones; names in roman and in parentheses indicate previous names.

OBJECT FIX FIX FIX FIXtn J
EQUALITY Between arguments Between target nd
argument
Redefinable equal is_equal
alias"}={" <—
Frozen *identical <— *is_identical <—
(standard_equpl (standard_is_equpl
OBJECT
DUPLICATION | Of argument Of target
Redefinable clone twin
Frozen *identical_clone *identical_twin
(standard_clone
OBJECT
COPY Of argument onto target
Redefinable copy
Frozen identical_copy <—
(standard_copy

The purpose of this change is to make the names uniform and easy to remember:

* Add is_for queries applying to the targetqual (X, y) compares itSthe previous conven-

argumentsx.is_equal(y) compares the argument to the target. tions were not bacdut
the new ones seem a lit-

« Useidenticalfor frozen (non-redefinable) operations, which guararf,'v‘?tﬁfﬁeeirnetfgj&%% o
the original semantics of field-by-field equality or copyimgiualand yin
copy are redefinableidentical and identical_copyare not. Note thai
cloneand its target-oriented variaiwin are not directly redefinable, bu.

they follow the redefinitions afopy

---- FIX FIX FIX "~"is a new synonym oéqual making it a little easier

to express object equality asi={ b. (The symbol suggests an equal sign
opening up both left and right to embrace the objects denoted by the
operands.)

In addition, as noted in the previous section, copy and equality features now use
type identity rather than type conformance between their arguments. This has led
to a stronger precondition foopy usingsame_typeather tharconforms_to

1060 LANGUAGE CHANGES FROM THE PREVIOUS EDITION §&F.6

-—-- FIX FIX FIX Thanks to the introduction aflass_type referenc#
has been possible to remove clase¢EEGER_REFCHARACTER_REF
and so on; the equivalent is now provided by

F.6 LEXICAL AND SYNTACTIC CHANGES

A small change to the method of language description, rather than th®epetition poduc-
language itself: in the conventions for describing the syntax, a “zero or moretions”, page 90
repetitition is now marked by an asterisk, asiype";" ...}*, for symmetry

with the convention for “one or more”, which uses a plus sign. Previously, the

asterisk was omitted.

There are eight new reserved words as already natgent, attribute,
create (making a comeback from Eiffel 1 and 2)ote, only, Precursor
reference TUPLE Among thesegreateis a replacement farreation and
note for indexing.

The wordscreation, note andselectare no longer keywords (hence no
longer reserved), but compilers will probably treate them as reserved for a
while, the first as a synonym fareate, the second to support previous
repeated inheritance rules.

The following words are no longer reserv&DOLEAN CHARACTER
INTEGER REAL DOUBLE POINTER You should still not use them as
class names, since they would conflict with classes that an Eiffel compiler
will expect to find in the Kernel Library, and optimize. But you may now
call a featurenteger(although that's probably not a good idea).

A Note_entryis of the form “ANNOTATING A
CLASS",4.8.page122.

somethinga, b, ¢

wheresomethingis theNote _namend one or morélote_itemfollow the

colon. Previously thélote_namepart (including the colon) was optional.

In practice developers included it almost all of the time. It is now required.
This makes the grammar more regular, and facilitates parsing, especially as
the semicolon is optional betweeilNate entryand the next.

A syntax rule required underscores, if used in manifest integer ancKAtGeERs”. 32.16,
numbers, to separate digits by groups of three. It has been replacepage 8389 and"REAL

: NUMBERS”, 32.17,
mere style recommendation. o 892

The syntax for creation instructions previously used exclamation mark
characterd. For clarity, this has now been replaced by a keyword-based
notation relying on the keywortteate permitted for creation expressions as
well (see new constructs below). For consistency and to avoid any confusion,
the keywordcreate is also used to introduce @reatorspart listing the
creation procedures of a class (previously the keyword thereraatgon).

8F.7 CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES 1061

either formal as in a class declaratiolassC [G; H] ... or actual as in &
generic derivatiorC [TYPEZ1 TYPEZ, is now the semicolon. The comnm...
(the previous choice) is still supported.

ThePrecursoiconstruct, which may include an explicit type as in

Precursor{ TYPE -- Or the version with arguments:
Precursor{ TYPE (argument}¥

was firstintroduced i©bject-Oriented Software Constructidind edition
(Prentice Hall, 1997), where this form of the construct is written with the
type specification firs TYPEB Precursor(...). An early printing even had
double... braces, asif{f TYPB} Precursor(...), showing once again that
simple solutions sometimes come last. ISE Eiffel currently supports all
three variants, but with the publication of this book the discarded ones
should quickly disappear from practical use.

The syntax foNew_export_itemin theNew_export€lause that allowsExamples in page 200
a class to change the export status of some inherited features, now susyntax on pageos
an optionalHeader_commerto indicate the status of the correspondi..
features, such as- Implementation This is consistent with the
corresponding convention for labeling feature clauses.

F.7 CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES

Some changes, most of them simplifications, have been brought to validity
constraints (including conformance rules, treated in the same style as
validity constraints in chaptet4). The changes are summarized in the
following table.

Some of these changes involve a constraint that hasteesoved, for
one of three reasons:

* The constraint was found to be too restrictive, and its removal not to
have any negative effect on software quality.

» The constraint was really a style rule, and users felt it should not be
enforced by compilers.

« Other language changes made the constraint unnecessary.

A few constraints have beexddedto reflect the rules associated with the
new constructs of Eiffel 5.

In addition, the table includes entries for some constraints having
undergone changes affecting only their presentation:

» The order of clauses may have been changed for clearer exposition.

 Every constraint has a name; for consistency, some names have been
changed (or added, in a few cases of originally nameless constraints).

1062

LANGUAGE CHANGES FROM THE PREVIOUS EDITION §&F.7

 Every constraint has @xyzcode (previously/xy3?; in a few cases this
has been changed for better mnemonic value and consistency. (The
table, as noted, only lists a constraint if tigepart has changed.)

Page numbers ismall italicsin the second column refer to the first edition
of this book and determine the order of entries in the table.

Constraint name Old codepage |[New Page | Explanation

code

Root Class rule VSRC 36 |VSRT 112 |Clause3 added to preclude root class of a system
from being deferred, necessary condition omitted
in first edition. Removes limitation to one creation
procedure. Previous clause 2 is now cla2sénew
constrainVSRP (next entry).

Root Procedure rule |VSRC 36 |VSRP 112 |New rule covering what was clause 2 of VSRC

(previously covered by (previous entry). Previous phrasing, applyingtb

Root Class rule, see creation procedures of root class, was too

previous entry) restrictive. Clause2 of new rule governs roo
procedure only. Clauskstates that root procedure
must be creation procedure of root class. ClaRige
is a new condition, prohibiting preconditions.

Cluster Class Namelle |VSCN 51 |Removed ---- COMPLETE ----

(previously: no name)

Class Headeule VCCH 51 |VCCH 126 |Loosened to permit the declaration of a class|as
deferred even if it has no deferred feature.

(No name) VCRN 53 Removed Required ending comment of class, if present, to
repeat class name. Ending comment has been
removed, even as a style rule.

Feature Declaration ruleVFFD 69 |VEED 160 |Replacement of clauses 5 and 6 by reference to
Alias Validity (see next entry).

Alias validity VFED 69 VFAV 162 |Revision of part of VFFD accounting for new of
(Clauses alias clauses replacingprefix and infix and
5and 6) introducing bracket features.

Parentule VHPR 81 |VHPR 176 |The rule now refers to th&nfolded Inheritance
Clauseof a class to account for implicit inheritange
from ANY Clause2 is new, to take into account the
new notion of frozen class. Claugkis new, to
ensureVHUC (see next entry). Clausgé should
have been there all along but is new.

Universal Conformance|(NEW) 81 VHUC 173 |Theorem, follows from other validity rules. Was

rule essentially satisfied before, but not stated.

Rename Clauseille VHRC 81 VHRC 182 |Two new clauses3 requires Feature Name rule

(VMEN, page 466) to apply (previously only
expressed as margin commemrt;overs renaming
into feature with operator or bracket alias.

8F.7 CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES 1063
Constraint name Old code page |New Page | Explanation
code

ClassANYrule VHAY 88 |VHCA 173 |Code change for clarity.

Expanded Clientrule |VLEC 94 Removed New semantics of expanded variables makes it
possible to accommodate expanded client cycles.

(No name) VLCP 101 |Removed Required identifiers listed in &lients part to be
names of classes in the universe. See rationale for
the removal in the paragraphs starting witthére
isno validity constraintonClientsparts’, page204.

Entity Declaration rule |VREG 110 |VRED 217 |Code change for clarity.

Local Variable rule VRLE 115 |VRLVY 222 |Code change for clarity (previous terminology was
“Local Entity”).

Feature Body rule VRRR 113 |VFEB 144 |New rule is generalization of old one: covers all

(replacing Routine rule) features, not just routines. It follows from the
introduction of theattribute keyword, making
some clauses (in particulaPrecondition and
Postconditiopapplicable to all features.

Old Expressiomule VAOL 124 |VAOX 235 |Code change for clarity.

Old Expressiomule NEW) VAON 240 |Validity rule for newonly construct.

Precursor rule NEW) VDPR 298 |New rule, covering new construct.

Definition of deferred 161 127 |(Notvalidity constraint, but definition used by other

and effective class constraints.) Moved to earlier chapter; updated to
permit class to be deferred even without deferred
features. See entry CCH above.

Deferred class property 167 304 |(Not separate constraint, but consequence of others.)
Clarifies that a class can be deferred even without
deferred features. See previous and next entries

Effective class property 167 305 |(Not separate constraint, but consequence of others.)
Clarifies that a class can be deferred even without
deferred features. See previous two entries.

Redeclaration rule VDRD 163 |VDRD 307 [Lastclauseremoved;prohibited redefining an external
feature into an Internal one. This was arn
implementation constraint, no longer justified.

Join rule VDJR 165 |VDJR 309 |Rephrased to take into account two cases missed by
original: joining of one effective feature with one or
more deferred ones; redefinition of all. Not language
change but clarification of rule that was always there.

Join semantics rule 166 312 |[Beginning of rule updated to include cases mentioned

(not validity constraint
but semantic rule)

in previous entry. Clausé added to cover case of

effecting one or more deferred features.

[

[¢)

1064 LANGUAGE CHANGES FROM THE PREVIOUS EDITION §F.7
Constraint name Old codepage |New Page | Explanation
code

Name Clash rule VNCN 189 |VMNC |467 |Name change for consistency. Slight rephrasing, but no

(previously: no name) change of substance. This is a redundant rule, following
from VMFN'VMEN (Feature Name, unchanged)

Select Subclause rule [VMSS 192 |Removed Governed a claus€glectthat no longer exists thank
to simplification of repeated inheritance mechanism.

Unconstrained VTUG 201 |Removed Now merged withivTGD of which it was a specia

Genericity rule case (repeated in its claube

Generic Constraint rule| NEW) VTGC 349 |New rule taking into account generic creation and
multiple generic constraints.

Genericity Derivation |VTCG 203 |VTGD 351 |[Clause2 amended to permit recursive constraints,

rule (previously: Cons- as inclassC [G, H —> ARRAY[G]].

trained Genericity rule)

Expanded Typerule |VTEC 209 |VCCH 126 |[Ruleno longerneeded as type rule thanks to removal
of expanded T types (all expanded types are naw
based on an expanded class) and removall of
requirement oflefault_creatdor expanded types.

Anchored Type rule VTAT 214 |VTAT 337 |Considerably loosened conditions: anchor chains
now possibled declaredike b with b declaredike
¢) if there’s no cycle; anchoring now permitted on
expanded and formal generic. No more anchoring
on arguments. Properties of anchored type now
completely defined by those of its unfolded form.

General conformance [VNCC 219 |VNCC 380 |Clause3 integrates attached type requirements;
new clauses handles anchored types and allows
removal ofVNCG(see below).

Direct conformance: |VNCN 221 |VNCN 382 |[Simplified thanks to the notion of generic

class types substitution; also subsumgslCG (next entry).

Direct conformance: |VNCG 222 |Removed Covered by new formulation &fNCN (see

generic substitution previous entry).

Direct conformance: |VNCF 224 |VNCF 385 |[Simplified thanks to a more general notion of

formal generic constraint. Also, addresses multiple constraints

Direct conformance: |VNCH 225 |Removed Anchored types are now treated more simply lik

anchored types “macros”. See clause of

Direct conformance: |[VNCE 229 |VNCE 388 |---- FIX --- Previous clauses 2 and 3 removed |as

expanded types they are now covered by convertibility rather than
conformance (in a more general form including
new explicitly sized arithmetic types such as
INTEGER_1%

Direct conformance: |VNCB 229 |Removed No longer applicable since Bit types were removed.

Bit types

8F.7 CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES

1065

es

th

Constraint name Old code page |New Page | Explanation
code

Direct conformance: (NEW VNCT 389 |Newrule,covering conformance for new kind of typ

tuple types

Conversion Procedure |(NEW) VYCP 403 |Convertibility is new.

rule

Conversion Query rule | NEW) VYCQ 405 |Convertibility is new.

Expression convertibility] NEW) VYEC 415 |Convertibility is new.

Precondition-free NEW) VYPEF 417 |New concept closely connected with convertibilit

Multi-Branch rule VOMB 239 |VOMB 480 |Removed all constraints relating to Unique values,
no longer present in the language.

Unique declaration rule 266 |Removed Removed all constraints relating to Unique values,
no longer present in the language.

Unique Declaration rule| VQUI 266 |Removed Removed all constraints relating to Unique values,

(previously: no name) no longer present in the language.

Entity rule VEEN 276 |VEEN 505 |Clearer clause numbering; new clausémitated
from clauseb) to cover new notion of inline agent.

Variable rule NEW) VEVA 506 |New rule made necessary by inline agents.

Creation Precondition |(NEW) VGCP 539 |New rule restricting what's permissible in th

rule precondition of a creation procedure.

Creation Clause rule |VGCP 285 |VGCC 540 |Code change for clarity. Previous clause 4 remov
made unnecessary kgefault_createconvention;
VCCH takes care of the rest. New clausadded to
preclude using once routines. New clagge rule
out unsound precondition clauses. Do nohfuse
with newVGCP(previous entry) or ol GCC(next
entry).

Creation Instruction ruleVGCC 286 |VGCI 545 |Code change for clarityDrastic simplification. Note
that some of the old clauses reappear as “corollar
of VGCI in the newV GCP, page547. New clauset
takes into account generic creation. Do not confuse
with newVGCC (previous entry).

(No name) VGCI 288 |Removed System validity part removed. Do not confuse w
clause now calle GCI (previous entry).

Creation Instruction (Partsof 288 |VGCP 547 |New rule, corollary of VGCI (next-to-previous

Properties VGCQ entry) and hence redundant, but providing extra
error messages for compilers.

Creation Expression rule NEW) VGCE 553 |Creation expressions are new.

Creation Expression (NEW) VGCX 554 |Same relation to/GCE as VGCPto VGCI (see

properties

previous entries).

1066 LANGUAGE CHANGES FROM THE PREVIOUS EDITION §&F.7

Constraint name Old codepage |New Page | Explanation
code

Assigner Call rule NEW) VBAC 602 |Assigner calls are new.

Assignment Attempt rule\VVJRV 332 |Removed No more assignment attempt (replaced by
Object_test

Non-Obiject Call rule NEW) VUNO 623 |Non-object calls are new.

Call Use rule VKCN 368 |VUCN 615 |Code change for consistency.

(previously: no name)

Export rule VUEX 368 |VUEX 624 |Simplification (the former case 2 wasn't necessary)
and addition ofNon_object_caltase.

Argument rule VUAR 369 |VUAR 626 |Rule simplified thanks to the addition &fUDA
(see below) for the more complex case. Clausg 3
(redundant) removed. Clause 4 moved to constraint
on Addressexpression.

Class-Level Call rule NEW) VUCC 628 |Separating class validity from more complex rules.

Object Test rule NEW) VUOT 651 |New rule, covering new construct.

Descendant Argument |(VUAR, 367 (VUDA 659 |Rule split away fromVUAR to separate more
rule p. 367) advanced cases from simple ones.

Single-Level Callrule |[VUCS 367 |[VUSC 660 |Code change; name added.
(previously: no name)

General Call rule VUGV 367 |[VUGC 673 |Name change for consistency.
(previously: Call rule)

(No name) VWEQ Removed No more conformance constraint on equality.
Call Agent rule NEW) VPCA 746 |Agents are new.
Inline Agent rule NEW) VPIA 747 |Inline agents are new.
Inline Agent requirements NEW) VPIR 748 |[Inline agents are new.
Bracket Expression rule. NEW) VWBE 772 |Bracket expressions are new..
Manifest Type rule NEW) VWM 781 |Manifest types for expressions are new..
Q
(No name) VWMS 390 |Removed Now handled through syntax and definition pf

Line_wrapping_part

Manifest Array rule VWMA 393 |Removed No longer necessary thanks to manifest tuples.
Backward compatibility enforced through rule that
manifest tuples conform to manifest arrays.

Identifier rule VIRW 418 11D 881 |Code and name change.
(previously: no name)

	F F Language changes from the previous edition
	38.5 SEMANTIC EXTENSIONS AND CHANGES

