
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of "Eiffel: The Language". Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
A

ELKS: The Eiffel Library
Kernel Standard
e
ade

in

g
rd.]

ed
y.
the
e
be
is

ll
l
as

d
ce
ith

fel

ry
he
A.1 OVERVIEW

[This Overview is not part of the Standard.]

A.1.1 Purpose
To favor the interoperability between implementations of
Eiffel, it is necessary, along with a precise definition of
the language, to have a well-defined set of libraries
covering needs that are likely to arise in most
applications. This library is known as the Kernel Library.

A.1.2 Application
The present document defines a standard for the Kernel
Library. If an Eiffel implementation satisfies this
Standard — under the precise definition ofKernel
Compatibilitygiven in sectionA.3.2— it will be able to
handle properly any Eiffel system whose use of the
Kernel Library only assumes the library properties
defined in this Standard.

A.1.3 Process
The Eiffel Library standardization process is based on a
dynamic view which, in the spirit of Eiffel’s own
“feature obsolescence” mechanism, recognizes the need
to support evolution while preserving the technology
investment of Eiffel users. One of the consequences of
this dynamic view is to definevintagescorresponding to
successive improvements of the Standard. The present
document describesVintage 2005, valid for the calendar
years 2005-2006.

A.1.4 Copyright status
This Standard is appendixA of the bookEiffel: The
Languageby Bertrand Meyer (Prentice Hall, 2002) and
the copyright belongs to the author. Electronic or paper
reproduction of this Standard is permitted provided the
reproduction includes theentire text of the Standard,
including the present copyright notice and the mention
that the latest version, up-to-date with any error
corrections, may be found athttp://eiffel.com.

A.2 CONTENTS OF THIS STANDARD

A.2.1 Definition: this Standard

The Eiffel Kernel Library Standard, denoted in th
present document by the phrase “this Standard”, is m
up of the contents of sectionsA.2 to A.6 of the present
appendix, with the exception of elements appearing
black between square brackets […] which are comments.

[SectionA.1, and elements playing a pure typesettin
role such as page headers, are not part of this Standa

A.2.2 Scope of this Standard

This Standard defines a number of library-relat
conditions that an Eiffel implementation must satisf
These conditions affect a set of classes known as
kernel library. An implementation that satisfies th
conditions described in this Standard will be said to
kernel-compatible, a phrase that is abbreviated in th
Standard as just “compatible”.

[In other contexts it may be preferable to use the fu
phrase, since the compatibility of an Eiffe
implementation also involves other aspects, such
language compatibility.]

[The terms “compatibility” and “compatible” may be
felt to be less clear than “conformance” an
“conformant”. The former are used here, however, sin
talking about conformance might cause confusions w
the Eiffel notion of a type conforming to another.]

A.2.3 Other documents

The phraseEiffel: The Languageas used in this Standard
refers to the third edition of the bookEiffel: The
Language, Prentice Hall, 2000, ISBN 0-13-xxx-xxx-x.

For the purposes of this Standard, the definition of the Eif
language is the definition given byEiffel: The Language.

In case of contradictions between the libra
specifications given in this Standard and those of t
other chapters ofEiffel: The Language, this Standard
shall take precedence.

http://eiffel.com

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.3962

e
f a
ts
r to

a
g
he
is

s

ed

ll

ion
ed

s”
at

d

d

re
A.3 COMPATIBILITY CONDITIONS

A.3.1 Definitions

A.3.1.1 Required Classes

In this Standard, the phrase “Required Classes” denotes a
set of classes whose names are those listed in sectionA.4.

A.3.1.2 Required Flatshort Form

In this Standard, the phrase “Required Flatshort Forms”
denotes the flatshort forms given for the Required
Classes in sectionA.4.

A.3.1.3 Flatshort Compatibility

In this Standard, a class is said to be Flatshort-
Compatible with one of the short forms given in this
Standard if it satisfies the conditions given in section
A.3 of this Standard.

A.3.1.4 Required Ancestry Links

In this Standard, the expression “Required Ancestry
Links” denotes the inheritance links specified in section
A.5 of this Standard.

[The term “Ancestry” is used rather than “Inheritance”
because the required links may be implemented by
indirect rather than direct inheritance.]

A.3.2 Kernel compatibility
An Eiffel implementation will be said to be kernel-
compatible if and only if it includes a set of classes
satisfying the following five conditions:

A.3.2.1 • For each of the Required Classes, the
implementation includes a class with the same name.

A.3.2.1.1 • All the Required Ancestry Links are
present between these classes.

A.3.2.1.2 •The flatshort form of each one of these
classes is Flatshort-Compatible with the
corresponding Required Flatshort Form.

A.3.2.1.3 • All the dependents of the Required
Classes in the implementation are also included in
the implementation.

A.3.2.1.4 • None of the features appearing in the
Required Flatshort Forms appears in aRenameclause
of any of the implementation’s Required Classes.

[These conditions allow a kernel-compatible
implementation to include inheritance links other than
the ones described in this Standard; conditionA.3.2.1.3
indicates that for any such link the additional proper
ancestors must also be provided by the implementors,
since the dependents of a class include its parents.]

[Condition A.3.2.1.3guarantees that if a feature nam
appears in this Standard both in the Flatshort form o
Required Class and in the flatshort form of one of i
proper ancestors, it corresponds to the same feature o
a redefinition of it.]

A.3.3 Flatshort Conventions

A.3.3.1 Definition

In the process of assessing for Flatshort Compatibility
classC from a candidate implementation, the followin
ten conventions, which have been applied to t
Required Flatshort Forms as they appear in th
Standard, shall be applied:

A.3.3.1.1 •No feature shall be included unless it i
generally available (as defined inEiffel: The Language,
page206) or is a general creation procedure (as defin
in Eiffel: The Language, page542).

A.3.3.1.2 • The Creation clause of the flatshort
specification shall include the full specification of a
general creation procedures ofC.

A.3.3.1.3 •Any feature ofC not inherited fromANY
shall be included in one of theFeature clauses.

[As a consequence of the last two rules the specificat
of a creation procedure that is also generally export
will appear twice: in theCreation clause and in a
Featureclause. Also note that the “features of a clas
include inherited as well as immediate features, so th
all features inherited from an ancestor other thanANY
must appear in the flatshort form.]

A.3.3.1.4 •A featuref from ANYshall be included if
and only ifC redeclaresf.

A.3.3.1.5 • The header comment of any inherite
feature coming from a Required ClassA and having
the same name inC as inA shall end with a line of
the form:

-- (FromA.)

A.3.3.1.6 • The header comment of any inherite
feature coming from a Required ClassA and having
a name inC different from its namex in A shall end
with a line of the form:

-- (Fromx in A.)

[The comments defined in the last two rules a
applicable whether or notC redeclares the feature.]

A.3.3.1.7 •If deferred,Cshall appear asdeferred class.

A.3.3.1.8 • Any deferred feature ofC shall be
marked asdeferred.

§A.4 REQUIRED CLASSES 963

ole
are

ke
ill
le
’

es
A.3.3.1.9 •In case of precondition redeclaration, the
successive preconditions shall appear as a single
Precondition clause, separated by semicolons.

A.3.3.1.10 •In case of postcondition redeclaration,
the successive preconditions shall appear as a single
Postcondition clause, separated byand then.

A.3.4 Flatshort Compatibility
A.3.4.1 Definition

A class appearing in an Eiffel implementation is said to
be Flatshort-Compatible with a class of the same name
listed in this Standard if and only if any difference that
may exist between its flatshort formic and the flatshort
form sc of the corresponding class as it appears in
section A.6, where both flatshort forms follow the
conventions of sectionA.3.3, belongs to one of the
following eleven categories:

A.3.4.1.1 •A feature that appears inic but not insc,
whoseHeader_commentincludes, as its last line, the
mention:

-- (Feature not in Kernel Library Standard.)

A.3.4.1.2 •An invariant clause that appears inic but
not insc.

A.3.4.1.3 •For a feature that appears in bothic andsc,
a postcondition clause that appears inic but not insc.

A.3.4.1.4 •For a feature that appears in bothic and
sc, a precondition inscthat implies the precondition
in ic, where the implication is readily provable using
rules of mathematical logic.

A.3.4.1.5 •For a feature that appears in bothic and
sc, a postcondition or invariant clause inic that
implies the corresponding clause insc, where the
implication is readily provable using rules of
mathematical logic.

A.3.4.1.6 •A difference between theTag_markof an
Assertion_clause in ic and its counterpart insc.

A.3.4.1.7 •For a feature that appears in bothic and
sc, an argument type insc that is different from the
corresponding type inic but conforms to it.

A.3.4.1.8 •For a feature that appears in bothic and
sc, a result type inic that is different from the
corresponding type insc but conforms to it.

A.3.4.1.9 •For a feature that appears in bothic and
sc, a line that appears in theHeader_commentof ic
but not in that ofsc.

A.3.4.1.10 •A Note_entrythat appears inic but not
in sc.

A.3.4.1.11 • A difference regarding the order in
which a feature appears inic and sc, the
Feature_clause to which it belongs, the
Header_commentof such aFeature_clause, or the
presence inic of a Feature_clausethat has no
counterpart insc.

[As a consequence of sectionA.3.4.1.11, the division of
classes into oneFeature_clauseor more, and the labels
of these clauses, appear in this document for the s
purpose of readability and ease of of reference, but
not part of this Standard.]
[The goal pursued by the preceding definition is to ma
sure that an Eiffel system that follows this Standard w
be correctly processed by any compatib
implementation, without limiting the implementors
freedom to provide more ambitious facilities.]

A.4 REQUIRED CLASSES

The Required Classes are the following thirty class
[ordered from the general to the specific, as in sectionA.6]:

A.4.1 •ANY [flatshort form in sectionA.6.1].

A.4.2 •TYPE[flatshort form in sectionA.6.2].

A.4.3•PART_COMPARABLE[flatshort form in section
A.6.3].

A.4.4•COMPARABLE[flatshort form in sectionA.6.4].

A.4.5 •HASHABLE[flatshort form in sectionA.6.5].

A.4.6 •NUMERIC[flatshort form in sectionA.6.6].

A.4.7 • INTERVAL[flatshort form in sectionA.6.7].

A.4.8 •BOOLEAN [flatshort form in section].

A.4.9 •CHARACTER[flat short form in sectionA.6.9].

A.4.10 • INTEGER_GENERAL[flatshort form in
A.6.10].

A.4.11 •INTEGER[flatshort form in sectionA.6.11].

A.4.12•INTEGER_8[flatshort forminsectionA.6.12].

A.4.13•INTEGER_16[flatshort forminsectionA.6.13].

A.4.14•INTEGER_64[flatshort forminsectionA.6.14].

A.4.15 •REAL_GENERAL[flatshort form inA.6.15].

A.4.16 •REAL [flatshort form in sectionA.6.16].

A.4.17 •POINTER[flatshort form in sectionA.6.18].

A.4.18 •ARRAY [flatshort form in sectionA.6.19].

A.4.19•ANONYMOUS[flatshort forminsectionA.6.20].

A.4.20 •STRING[flatshort form in sectionA.6.21).

A.4.21 •STD_FILES[flatshort form in sectionA.6.22].

A.4.22 •FILE [flatshort form in sectionA.6.23].

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.5964

f

f

f

f

f

f

or

in
A.4.23 •STORABLE[flatshort form in sectionA.6.24].

A.4.24 •MEMORY[flatshort form insectionA.6.25].

A.4.25•EXCEPTIONS[flatshort forminsectionA.6.26].

A.4.26•ARGUMENTS[flatshort forminsectionA.6.27].

A.4.27 •PLATFORM[flatshort form in sectionA.6.28]

A.4.28•ONCE_MANAGER[flatshortforminsectionA.6.29].

A.4.29 •ROUTINE[flatshort form in sectionA.6.30].

A.4.30•PROCEDURE[flatshort forminsectionA.6.31].

A.4.31 •FUNCTION[flatshort form insectionA.6.32].

A.4.32 •PREDICATE[flatshort form in sectionA.6.33].

[The classes appear in this section and sectionA.6 in the
following order: universal classes; deferred classes for
basic classes; basic types; arrays and strings; agent and
introspection.]

A.5 REQUIRED ANCESTRY LINKS

The following constitute the required ancestry links
[ordered alphabetically, after the first rule, by the name
of the applicable descendant class]:

A.5.1 •Every Required Class is a descendant ofANY.

A.5.2 • COMPARABLEis a proper descendant of
PART_COMPARABLE.

A .5 .3 • TYPE i s a proper descendan t o f
PART_COMPARABLE.

A.5.4 • BOOLEAN is a proper descendant of
HASHABLE.

A.5.5 • CHARACTERis a proper descendant of
COMPARABLE.

A.5.6 • CHARACTERis a proper descendant of
HASHABLE.

A.5.7 •FILE is a proper descendant ofMEMORY.

A.5.8 • FUNCTION [BASE, OPEN_ARGS,
RESULT_TYPE] is a proper descendant of
ROUTINE[BASE, OPEN_ARGS].

A.5.9 • INTEGER is a proper descendant of
INTEGER_GENERAL.

A.5.10 • INTEGER_8is a proper descendant of
INTEGER_GENERAL.

A.5.11 • INTEGER_16is a proper descendant of
INTEGER_GENERAL.

A.5.12 • INTEGER_64is a proper descendant of
INTEGER_GENERAL.

A.5.13 • INTEGER_GENERALis a proper
descendant ofCOMPARABLE.

A.5.14 • INTEGER_GENERALis a proper
descendant ofHASHABLE.

A.5.15 • INTEGER_GENERALis a proper
descendant ofNUMERIC.

A.5.16 • POINTER is a proper descendant o
HASHABLE.

A.5.17 • PREDICATE[BASE, OPEN_ARGS] is a
proper descendant ofFUNCTION [BASE,
OPEN_ARGS, BOOLEAN].

A.5.18 • PROCEDURE[BASE, OPEN_ARGS] is a
proper descendant ofROUTINE[BASE,OPEN_ARGS].

A.5.19 •REAL_GENERALis a proper descendant o
COMPARABLE.

A.5.20 •REAL_GENERALis a proper descendant o
HASHABLE.

A.5.21 •REAL_GENERALis a proper descendant o
COMPARABLE.

A.5.22 • REAL i s a proper descendant o
REAL_GENERAL.

A.5.23•STRINGisaproperdescendantofCOMPARABLE.

A.5.24•STRINGisaproperdescendantofHASHABLE.

A.5.25 • STRING is a proper descendant o
HASHABLE.

A.5.26 •STRINGis a proper descendant ofHASHABLE.

["Proper descendant" is a transitive relation, so that f
example INTEGER_8 is a descendant of
COMPARABLE as a result ofA.5.10 andA.5.13.]

A.6 SHORT FORMS OF REQUIRED
CLASSES

The following pages (sectionsA.6.1 to A.6.33)contain
the short forms of the required classes as defined
preceding sections.

§A.6.1 CLASSANY 965

t

A.6.1 CLASSANY

note

description: "[
Platform-independent universal properties. This
class is an ancestor to all developer-written classes.
]"

class interface

ANY

feature -- Access

type: TYPE[like Current]
-- Generating type of current object
-- (type of which it is a direct instance)

onces: ONCE_MANAGER
-- Handle on the state of the system’s once routines

feature -- Comparison

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object considered equal
-- to current object?
--Theobjectcomparisonoperator~reliesonthisfunction.

ensure
same_type:Resultimplies same_type(other)
symmetric:Result= other.is_equal (Current)
consistent:default_is_equal(other) implies Result

frozen default_is_equal(other: ? like Current):
BOOLEAN

-- Is other attached to an object of the same type as
-- current object, and field-by-field identical to it?

ensure
only_if_same_type:Resultimplies same_type(other)
symmetric:Resultimplies other.default_is_equal

(Current)
consistent:Resultimplies is_equal(other)

frozen is_deep_equal(other: ANY): BOOLEAN
-- Are some andother attached to isomorphic
-- structures made of objects considered equal?

ensure
shallow_implies_deep:is_equal (other) implies

Result
same_type: Resultimplies some.same_type

(other)
symmetric:Resultimplies deep_equal(other,

some)

frozen default_is_deep_equal (other: ? ANY):
BOOLEAN

-- Are some andotherattached to isomorphic
-- structures made of field-by-field equal objects?

ensure
shallow_implies_deep:default_is_equal(other)

implies Result
only_if_same_type:Resultimplies same_type(other)
symmetric:Resultimplies other.is_deep_equal

(Current)
feature {NONE} -- Duplication

frozen cloned: like Current
-- New object equal to current one.

ensure
equal: Result~ Current)

copy(other: like Current)
-- Update current object using fields of object
-- attached toother, so as to yield equal objects.

ensure
equal: Current~ other

frozen default_cloned: like Current
--Newobjec field-by-field identical tocurrentobjec

ensure
identical_result: default_is_equal(Result)

frozen default_copy(other: like Current)
-- Copy every field ofotheronto corresponding field
-- of current object.

require
type_identity: same_type(other)

ensure
made_identical: default_is_equal(other)

frozen deep_cloned: like Current
-- New object structure recursively duplicated from
-- current object

ensure
deep_equal: deep_is_equal(Result)

feature -- Basic operations
default_rescue

-- Handle exception if no Rescue clause.
-- (Default: do nothing.)

frozen do_nothing
-- Execute a null action.

feature -- Output
io: STD_FILES

-- Handle to standard file setup
out: STRING

-- New string containing terse printable
-- representation of current object

invariant
reflexive_default_equality: default_is_equal(Current)
reflexive_equality: Current~ Current

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.2966
A.6.2 CLASS TYPE

note

description: "[
Objects describing types conforming toG.
]"

class interface

TYPE[G]

feature -- Access

adaptedalias "[]" (x: G) : G
-- Value ofx, adapted if necessary to typeG
-- through conformance or conversion

ensure
consistent:Result = x

class_name: STRING
-- Human-readable form of name of base class
-- (newly created result for every call)

default: G
-- Default value of this type

ensure
consistent:Result.type ~ Current

hash_code: INTEGER
-- Hash code value

ensure
good_hash_value: Result>= 0

name: STRING
-- Human-readable form of this type’s name
-- (newly created result for every call)

up_toalias ".." (other: TYPE[ANY]) :
INTERVAL[TYPE[ANY]]

-- Interval containing all typest in system such that
-- Current<= t and t <= other

feature -- Comparison

conforms_toalias "<" (other: TYPE[ANY]):
BOOLEAN

-- Does current type conform toother?

is_equal(other: TYPE[ANY]): BOOLEAN
-- Is current type identical toother?
--Theobjectcomparisonoperator~reliesonthisfunction.

ensure
conformance_both_ways:

Result= conforms_to(other) and
other.conforms_to(Current)

yes_if_both_empty_regardless_of_bounds:
is_emptyand other.is_emptyimply Result

end

§A.6.3 CLASSPART_COMPARABLE 967

l

A.6.3 CLASSPART_COMPARABLE

note

description: "[
Objects that may be compared according to a partial
order relation
]"

math: "The model is a partial order relation."

comment: [
"The basic operation is"<" (less than); others are
defined in terms of this operation andis_equal.
]"

deferred class interface

PART_COMPARABLE

feature -- Access

up_toalias ".." (other: PART_COMPARABLE) :
INTERVAL[PART_COMPARABLE]

-- Interval containing all valuest, if any, such that
-- Current<= t and t <= other

feature -- Comparison

is_comparable" (other: like Current): BOOLEAN
-- Do current object andotherfigure in the relation?

deferred
ensure

definition:Result= (Current< other) or
(Current~ other) or (Current> other))

symmetric:Result= other.is_comparable(Current)

is_lessalias "<" (other: like Current): BOOLEAN
-- Is current object less thanother?

deferred
ensure

asymmetric:Resultimplies not (other< Current)
only_if_comparable:Resultimplies is_comparable

(other)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
ensure

definition: Result= (Current< other) or
(Current~ other)

only_if_comparable:Resultimplies is_comparable
(other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
ensure

definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?

ensure
definition: Result= (other< Current)
only_if_comparable:Resultimplies is_comparable

(other)

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object considered equa
-- to current object?
--Theobjectcomparisonoperator~reliesonthisfunction.

ensure
symmetric:Resultimpliesother.is_equal (Current)
consistent:default_is_equal(other) implies Result

max(other: like Current): like Current
-- The greater of current object andother

require
comparable: is_comparable(other)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother

require
comparable: is_comparable(other)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current): INTEGER
-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.

require
comparable: is_comparable(other)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller_negative: (Result= –1) = (Current< other)
greater_positive: (Result= 1) = (Current> other)

invariant

irreflexive_comparison:not (Current< Current)

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.4968
A.6.4 CLASS COMPARABLE

note

description: "[
Objects such that any two can be compared through
to a total order relation
]"

math: "The model is a total order relation."

comment: [
"The basic operation is"<" (less than); others are
defined in terms of this operation andis_equal.
]"

deferred class interface

COMPARABLE

eature-- Access

up_toalias ".." (other: COMPARABLE) :
INTERVAL[COMPARABLE]

-- Interval containing all valuest, if any, such that
-- Current<= t and t <= other
-- Empty ifCurrent> other

feature -- Comparison

is_comparable" (other: like Current): BOOLEAN
-- Do current object andotherfigure in the relation?
-- (FromPART_COMPARABLE); here lways true
-- for a total order)

ensure
total_order:Result= True

is_lessalias "<" (other: like Current): BOOLEAN
-- Is current object less thanother?

deferred
ensure

asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
ensure

definition: Result= ((Current< other) or
(Current~ other))

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
ensure

definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?

ensure
definition: Result= (other< Current)

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object considered equal
-- to current object?
--Theobjectcomparisonoperator~reliesonthisfunction.

ensure
symmetric:Resultimplies other. is_equal(Current)
consistent:default_is_equal(other) implies Result
trichotomy:Result= (not (Current< other) and not

(other< Current))

max(other: like Current): like Current
-- The greater of current object andother

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current): INTEGER
-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller_negative: (Result= –1) = (Current< other)
greater_positive: (Result= 1) = (Current> other)

invariant

irreflexive_comparison:not (Current< Current)

end

§A.6.5 CLASSHASHABLE 969
A.6.5 CLASSHASHABLE

note

description: "[
Values that may be hashed into an integer index, for
use as keys in hash tables
]"

deferred class interface

HASHABLE

feature -- Access

hash_code: INTEGER
-- Hash code value

deferred
ensure

good_hash_value: Result>= 0

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.6970
A.6.6 CLASSNUMERIC

note

description: "[
Objects to which numerical operations are applicable
]"

math: "The model is a commutative ring."

deferred class interface

NUMERIC

feature -- Access

one:like Current
-- Neutral element for"∗" and"/"

deferred

zero:like Current
-- Neutral element for"+" and"–"

deferred

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?

deferred

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the powerother?

deferred

feature -- Basic operations

plusalias "+" (other: like Current): like Current
-- Sum withother(commutative).

deferred
ensure

commutative:equal(Result, other+ Current)

minusalias "–" (other: like Current): like Current
-- Result of subtractingother

deferred
ensure

consistent: Result+ other = Current

productalias "∗" (other: like Current): like Current
-- Product byother

deferred

dividedalias "/" (other: like Current): like Current
-- Division byother

require
good_divisor:divisible(other)

deferred

poweralias " "̂ (other: NUMERIC): NUMERIC
-- Current object to the powerother

require
good_exponent:exponentiable(other)

deferred

identityalias "+": like Current
-- Unary plus

deferred

negatedalias "–": like Current
-- Unary minus

deferred
invariant

neutral_addition:equal(Current+ zero, Current)

self_subtraction:equal(Current– Current, zero)

neutral_multiplication:equal(Current∗ one, Current)

self_division:divisible(Current) implies equal
(Current/ Current, one)

end

§A.6.7 CLASSINTERVAL 971
A.6.7 CLASS INTERVAL

note

description: "[
Sets of values, from a partially or totally
ordered setG, all between two given bounds
]"

class interface

INTERVAL[G –> PART_COMPARABLE]

create

make(l, u: G)
-- Set bounds tol andu;make interval empty ifl > u.

require
comparable:l.is_comparable(u)

ensure
lower_set: lower= l
lower_set: upper= u

feature -- Initialization

make(l, u: G)
-- Set bounds tol andu; make interval empty ifl > u.

require
comparable:l.is_comparable(u)

ensure
lower_set: lower= l
lower_set: upper= u

feature -- Access

lower: G
-- Lower bound

upper: G
-- Upper bound

feature -- Comparison

is_comparable" (other: like Current): BOOLEAN
-- Is either one of current interval andother
-- strictly contained in the other?

ensure
definition:Result= (Current< other) or

((Current~ other)) or (Current> other)

is_subintervalalias "<" (other: like Current):
BOOLEAN

-- Is current interval strictly included inother?
deferred
ensure

definition:Result= lower> other.lowerand upper
< other.upper

is_superintervalalias ">" (other: like Current):
BOOLEAN

-- Does current interval strictly includeother?
ensure

definition: Result= (other< Current)

… OTHER COMPARISON FEATURES
AS IN CLASS PART_COMPARABLE …

feature -- Status report

is_empty: BOOLEAN
-- Does interval contain no values?

invariant

consistent:lower.is_comparable(upper)

empty_if_no_values: is_empty= (lower> upper)

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.8972
A.6.8 CLASS BOOLEAN

note

description: "Truth values with boolean operations"

expanded class interface

BOOLEAN

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Basic operations

conjunctedalias "and" (other: BOOLEAN):
BOOLEAN

-- Boolean conjunction withother

ensure
de_morgan: Result= not (not Currentor (not

other))
commutative:Result= (otherand Current)
consistent_with_semi_strict:Resultimplies

(Currentand thenother)

conjuncted_semistrictalias "and then" (other:
BOOLEAN): BOOLEAN

-- Boolean semi-strict conjunction withother

ensure
de_morgan:Result= not (not Currentor else(not

other))

implicationalias "implies" (other: BOOLEAN):
BOOLEAN

-- Boolean implication ofother
-- (semi-strict)

ensure
definition: Result= (not Currentor elseother)

negatedalias "not": BOOLEAN
-- Negation.

disjunctedalias "or" (other: BOOLEAN): BOOLEAN
-- Boolean disjunction withother

ensure
de_morgan: Result= not (not Currentand (not

other))
commutative:Result= (otheror Current)
consistent_with_semi_strict:Resultimplies

(Currentor elseother)

disjuncted_semistrictalias "or else" (other:
BOOLEAN): BOOLEAN

-- Boolean semi-strict disjunction withother
ensure

de_morgan: Result= not (not Currentand then
(not other))

disjuncted_exclusivealias "xor" (other: BOOLEAN):
BOOLEAN

-- Boolean exclusive or withother
ensure

definition: Result= ((Currentor other) and not
(Currentand other))

feature -- Output

out: STRING
-- Printable representation of boolean

invariant

involutive_negation:Current~ (not (not Current))

non_contradiction:not (Currentand (not Current))

excluded_middle:Currentor (not Current)

end

§A.6.9 CLASSCHARACTER 973
A.6.9 CLASSCHARACTER

note

description: "[
Characters, with comparison operations and an
ASCII code
]"

expanded class interface

CHARACTER

feature -- Access

code: INTEGER
-- Associated integer value

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

up_toalias ".." (other: CHARACTER) :
INTERVAL[CHARACTER]

-- Interval containing all charactersc, if any, such that
-- Current<= c and c <= other
-- Empty ifCurrent> other

feature -- Comparison

is_lessalias "<" (other: like Current): BOOLEAN
-- Is other greater than current character?
-- (FromCOMPARABLE.)

ensure
asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other:like Current):
BOOLEAN

-- Is current character less than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (Current< other) or

(Current~ other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other< Current)

max(other: like Current): like Current
-- The greater of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current):
INTEGER

-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller: (Result= –1) = Current< other
greater_positive: (Result= 1) = Current> other

feature -- Output

out: STRING
-- Printable representation of character
-- (FromANY.)

invariant

irreflexive_comparison:not (Current< Current)

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.10974
A.6.10 CLASS INTEGER_GENERAL

note

description: "Integer values of set size"

class interface

INTEGER_GENERAL

create

make(b: INTEGER)
-- Initialize with bit sizeb.
-- (No effect on expanded targets.)

require
positive:b > 0

ensure
bit_size_set: bit_size= b

default_create
-- Initialize with default bit size: 32.

ensure
bit_size_set: bit_size= Default_bit_size

from_integerconvert (other: INTEGER_GENERAL)
-- Initialize fromother; do not lose any precision.

ensure
bit_size_set: bit_size= Default_bit_size

feature -- Access

bit_size: INTEGER
-- Number of bits in representation

Default_bit_size: INTEGER
-- Number of bits in representation

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

one: like Current
-- Neutral element for"∗" and"/"
-- (FromNUMERIC.)

ensure
value:Result= 1

sign: INTEGER
-- Sign value (0, –1 or 1)

ensure
three_way:Result= three_way_comparison(zero)

up_toalias ".." (other: INTEGER_GENERAL) :
INTERVAL[INTEGER_GENERAL]

-- Interval containing all integersi, if any, such that
-- Current<= i and i <= other
-- Empty ifCurrent> other

zero: like Current
-- Neutral element for"+" and"–"
-- (FromNUMERIC.)

ensure
value:Result= 0

feature -- Comparison

is_lessalias "<" (other: like Current): BOOLEAN
-- Is other greater than current integer?
-- (FromCOMPARABLE.)

ensure
asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (Current< other) or

(Current~ other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other< Current)

max(other: like Current): like Current
-- The greater of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

§A.6.10 CLASSINTEGER_GENERAL 975
three_way_comparison(other: like Current):
INTEGER

-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller: (Result= 1) = Current< other
greater_positive: (Result= –1) = Current> other

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?
-- (FromNUMERIC.)

ensure
value:Result= (other/= 0)

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the powerother?
-- (FromNUMERIC.)

ensure
safe_values: (other.conforms_to(Current) or

(other.conforms_to(0.0) and (Current>= 0)))
implies Result

bit_one(n: INTEGER): BOOLEAN
-- Is n-th bit (from left, in binary representation)
-- a one?

require
at_most_size:n <= bit_size
at_least_one:n >= 1

feature --Element change

bit_shift(n: INTEGER): like Current
-- Bit-shift n positions, to right if positive,
-- left otherwise.

require
at_most_size:n <= bit_size
at_least_minus_size:n >= –size

bit_shift_left(n: INTEGER): like Current
-- Bit-shift n positions to left.

require
non_negative:n >= 0
at_most_size:n <= bit_size

bit_shift_right(n: INTEGER): like Current
-- Bit-shift n positions to right.

require
non_negative:n >= 0
at_most_size:n <= bit_size

feature -- Basic operations

abs:like Current
-- Absolute value

ensure
non_negative:Result>= 0
same_absolute_value: (Result= Current) or (Result

= –Current)

productalias "∗" (other: like Current): like Current
-- Product byother
-- (FromNUMERIC.)

plusalias "+" (other: like Current): like Current
-- Sum withother
-- (FromNUMERIC.)

ensure
commutative:equal(Result, other+ Current)

minusalias "–" (other: like Current): like Current
-- Result of subtractingother
-- (FromNUMERIC.)

ensure
consistent: Result+ other = Current

dividedalias "/" (other: like Current): REAL
-- Division byother

require
good_divisor:divisible(other)

quotientalias "//" (other: like Current): like Current
-- Integer division of Current byother
-- (From"/" in NUMERIC.)

require
good_divisor:divisible(other)

ensure
result_exists: divisible(other)

remainderalias "\\" (other: like Current): like Current
-- Remainder of integer division of Current byother

require
good_divisor:divisible(other)

poweralias " "̂ (other: NUMERIC): REAL
-- Integer power of Current byother
-- (FromNUMERIC.)

require
good_exponent:exponentiable(other)

identityalias "+": like Current
-- Unary plus
-- (FromNUMERIC.)

negatedalias "–": like Current
-- Unary minus
-- (FromNUMERIC.)

bit_and(i: like Current): like Current
-- Bitwise and withi.

bit_or (i: like Current): like Current
-- Bitwise or withi.

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.10976
bit_xor (i: like Current): like Current
-- Bitwise exclusive or withi.

bit_not:like Current
-- One’s complement.

feature -- Output

out: STRING
-- Printable representation of current object
-- (FromANY.)

invariant

bit_size_positive: bit_size> 0

default_bit_size_positive: default_bit_size> 0

irreflexive_comparison:not (Current< Current)

neutral_addition:equal(Current+ zero, Current)

self_subtraction:equal(Current– Current, zero)

neutral_multiplication:equal(Current∗ one, Current)

self_division:divisible(Current) implies equal
(Current/ Current, one)

sign_times_abs:equal (sign∗ abs, Current)

end

§A.6.11 CLASSINTEGER 977
A.6.11 CLASSINTEGER

note

description: "32-bit integer values"

expanded class interface

INTEGER

create

default_create
-- Initialize with default bit size: 32.

ensure
bit_size_set: bit_size= 32

from_integerconvert (b: INTEGER_GENERAL)
-- Initialize fromother, losing leftmost part if
-- other is of smaller bit size.

ensure
bit_size_set: bit_size= Default_bit_size

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSINTEGER_GENERAL…

invariant
… SAME INVARIANT CLAUSES
AS CLASSINTEGER_GENERAL, PLUS:

bit_size_definition: bit_size= 32

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.12978
A.6.12 CLASS INTEGER_8

note

description: "8-bit integer values"

expanded class interface

INTEGER_8

create

default_create
-- Initialize with default bit size: 8.

ensure
bit_size_set: bit_size= 8

from_integer(other: INTEGER_GENERAL)
-- Initialize fromother, losing leftmost part if
-- other is of smaller bit size.

ensure
bit_size_set: bit_size= Default_bit_size

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSINTEGER_GENERAL…

invariant
… SAME INVARIANT CLAUSES
AS CLASSINTEGER_GENERAL, PLUS:

bit_size_definition: bit_size= 8

end

§A.6.13 CLASSINTEGER_16 979
A.6.13 CLASS INTEGER_16

note

description: "16-bit integer values"

expanded class interface

INTEGER_16

create

default_create
-- Initialize with default bit size: 16.

ensure
bit_size_set: bit_size= 16

from_integerconvert (other: INTEGER_GENERAL)
-- Initialize fromother, losing leftmost part if
-- other is of smaller bit size.

ensure
bit_size_set: bit_size= Default_bit_size

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSINTEGER_GENERAL…

invariant
… SAME INVARIANT CLAUSES
AS CLASSINTEGER_GENERAL, PLUS:

bit_size_definition: bit_size= 16

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.14980
A.6.14 CLASS INTEGER_64

note

description: "64-bit integer values"

expanded class interface

INTEGER_64

create

default_create
-- Initialize with default bit size: 64.

ensure
bit_size_set: bit_size= 64

from_integerconvert (other: INTEGER_GENERAL)
-- Initialize fromother, losing leftmost part if
-- other is of smaller bit size.

ensure
bit_size_set: bit_size= Default_bit_size

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSINTEGER_GENERAL…

invariant
… SAME INVARIANT CLAUSES
AS CLASSINTEGER_GENERAL, PLUS:

bit_size_definition: bit_size= 64

end

§A.6.15 CLASSREAL_GENERAL 981
A.6.15 CLASS REAL_GENERAL

note

description: "Real values, single precision"

expanded class interface

REAL

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

one: like Current
-- Neutral element for"∗" and"/"
-- (FromNUMERIC.)

ensure
value:Result= 1.0

sign: INTEGER
-- Sign value (0,–1 or 1)

ensure
three_way:Result= three_way_comparison(zero)

up_toalias ".." (other: REAL_GENERAL) :
INTERVAL[IREAL_GENERAL]

-- Interval containing all realsr, if any, such that
-- Current<= r and r <= other
Empty if Current> other

zero: like Current
-- Neutral element for"+" and"–"
-- (FromNUMERIC.)

ensure
value:Result= 0.0

feature -- Comparison

is_lessalias "<" (other: like Current): BOOLEAN
-- Is other greater than current real?
-- (FromCOMPARABLE.)

ensure
asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (Current< other) or

(Current~ other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other< Current)

max(other: like Current): like Current
-- The greater of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current):
INTEGER

-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller: (Result= –1) = Current< other
greater_positive: (Result= 1) = Current> other

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?
-- (FromNUMERIC.)

ensure
not_exact_zero:Resultimplies (other/= 0.0)

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the powerother?
-- (FromNUMERIC.)

ensure
safe_values: (other.conforms_to(0) or

(other.conforms_to(Current) and (Current>=
0.0))) implies Result

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.15982
feature -- Conversion

ceiling: INTEGER
-- Smallest integral value no smaller than
-- current object

ensure
result_no_smaller:Result>= Current
close_enough:Result– Current < one

floor: INTEGER
-- Greatest integral value no greater than
-- current object

ensure
result_no_greater:Result<= Current
close_enough:Current– Result< one

rounded: INTEGER
-- Rounded integral value

ensure
definition:Result= sign∗ ((abs+ 0.5).floor)

truncated_to_integer: INTEGER
-- Integer part (same sign, largest absolute
-- value no greater than current object’s)

feature -- Basic operations

abs: like Current
-- Absolute value

ensure
non_negative:Result>= 0
same_absolute_value: (Result= Current) or (Result

= –Current)

productalias "∗" (other: like Current): like Current
-- Product byother
-- (FromNUMERIC.)

plusalias "+" (other: like Current): like Current
-- Sum withother
-- (FromNUMERIC.)

ensure
commutative:equal(Result, other+ Current)

minusalias "–" (other: like Current): like Current
-- Result of subtractingother
-- (FromNUMERIC.)

ensure
consistent: Result + other= Current

dividedalias "/" (other: like Current): like Current
-- Division byother
-- (FromNUMERIC.)

require
good_divisor:divisible(other)

poweralias " "̂ (other: NUMERIC): REAL
-- Current real to the powerother
-- (FromNUMERIC.)

require
good_exponent:exponentiable(other)

identityalias "+": like Current
-- Unary plus
-- (FromNUMERIC.)

negatedalias "–": like Current
-- Unary minus
-- (FromNUMERIC.)

feature -- Output

out: STRING
-- Printable representation of real value
-- (FromANY.)

invariant

irreflexive_comparison:not (Current< Current)

neutral_addition:equal(Current+ zero, Current)

self_subtraction:equal(Current– Current, zero)

neutral_multiplication:equal(Current∗ one, Current)

self_division:divisible(Current) implies equal
(Current/ Current, one)

sign_times_abs:equal (sign∗abs, Current)

end

§A.6.16 CLASSREAL 983
A.6.16 CLASSREAL

note

description: "32-bit real values"

expanded class interface

REAL

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSREAL_GENERAL…

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.17984
A.6.17 CLASS TYPED_POINTER

§A.6.18 CLASSPOINTER 985
A.6.18 CLASSPOINTER

note

description: "[
References to objects meant to be exchanged with
non-Eiffel software
]"

expanded class interface

POINTER

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Basid operations

plusalias "+" (offset: INTEGER): POINTER
-- Pointer to address at current position plus
-- offset bytes

feature -- Output

out: STRING
-- Printable representation of pointer value
-- (FromANY.)

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.19986

s.
A.6.19 CLASS ARRAY

note

description: "[
Sequences of values, all of the same type or of a
conforming one, accessible through integer indices
in a contiguous interval
]"

class interface

ARRAY[G]

create

make(minindex, maxindex: INTEGER)
-- Allocate array; set index interval to
-- minindex.. maxindex; set all values to default.
-- (Make array empty ifminindex> maxindex.)

ensure
empty_if_bounds_dont_fit: (minindex> maxindex)

implies (count= 0)
bounds_set: (minindex<= maxindex) implies

((lower = minindex)and (upper = maxindex))

from_interval(int: INTERVAL [INTEGER])
-- Allocate array; set index interval toint;
-- set all values to default.
-- (Make array empty if interval is empty.)

ensure
empty_if_bounds_dont_fit: (int.is_empty) implies

(count= 0)
bounds_set:not (int.is_empty) implies

((lower = int.lower)and (upper = int.upper))

feature -- Access

itemalias "[]" assign "put" (i : INTEGER): G
-- Entry at indexi

require
good_key: valid_index(i)

feature -- Measurement

bounds: INTERVAL [INTEGER]
-- Integer interval for indices

count: INTEGER
-- Number of available indices

lower: INTEGER
-- Minimum index

upper: INTEGER
-- Maximum index

feature -- Status report

valid_index(i : INTEGER): BOOLEAN
-- Is i within the bounds of the array?

feature -- Element change

force(v: like item; i : INTEGER)
-- Assign itemv to i-th entry.
-- Always applicable: resize the array ifi falls out of
-- currently defined bounds; preserve existing item

ensure
inserted: item(i) = v
higher_count: count>= old count

put (v: like item; i : INTEGER)
-- Replacei-th entry, if in index interval, byv.

require
good_key: valid_index(i)

ensure
inserted: item(i) = v

feature -- Resizing

resize(minindex, maxindex: INTEGER)
-- Rearrange array so that it can accommodate
-- indices down tominindex and up tomaxindex.
-- Do not lose any previously entered item.

require
good_indices: minindex<= maxindex

invariant

consistent_size: count= upper– lower+ 1

non_negative_count: count>= 0

interval_consistent: bounds~ lower..upper

end

§A.6.20 CLASSANONYMOUS 987
A.6.20 CLASSANONYMOUS

note

description: "[
Tuples: finite sequences of values, each of a specified
type
]"

class interface

ANONYMOUS

feature -- Access

item: ANY

-- i-th element of tuple

require

good_key: valid_index(i)

hash_code: INTEGER

-- Hash code value

-- (FromHASHABLE.)

ensure

good_hash_value: Result>= 0

feature -- Measurement

count: INTEGER

-- Minimum member of items in tuple

feature -- Status report

valid_index(i : INTEGER): BOOLEAN

-- Is i within the bounds of the array?

ensure

ok_if_between_one_and_count:
((i >= 1) and (i <= count)) impliesResult

feature -- Element change

put (v: ANY; i : INTEGER)

-- Replacei-th item byv.

require

good_key: valid_index(i)

ensure

replaced: item(i) = v

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.21988

g

A.6.21 CLASSSTRING

note

description: "[
Sequences of characters, accessible through integer
indices in a contiguous range.
]"

class interface

STRING

create

frozen make(n: INTEGER)
-- Allocate space for at leastn characters.

require
non_negative_size: n >= 0

ensure
empty_string: count= 0

from_string(s: STRING)
-- Initialize from the characters ofs.
-- (Useful in proper descendants of classSTRING,
-- to initializeastring-likeobject fromamanifest string.)

feature -- Initialization

from_c(c_string: POINTER)
-- Reset contents of string from contents ofc_string,
-- a string created by some external C function.

frozen remake(n: INTEGER)
-- Allocate space for at leastn characters.

require
non_negative_size: n >= 0

ensure
empty_string: count= 0

from_string(s: STRING)
-- Initialize from the characters ofs.
-- (Useful in proper descendants of classSTRING,
-- to initializeastring-likeobject fromamanifest string.)

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

index_of(c: CHARACTER; start: INTEGER):
INTEGER

-- Position of first occurrence ofc at or afterstart;
-- 0 if none.

require
start_large_enough: start>= 1
start_small_enough:start<= count

ensure
non_negative_result:Result>= 0
at_this_position:Result> 0 implies item(Result) = c
--none_before:Foreveryi instart..Result, item(i) /=c
-- zero_iff_absent:
-- (Result= 0)= Foreveryi in1..count, item(i) /=c

itemalias "[]" (i : INTEGER): CHARACTER
-- Character at positioni

require
good_key: valid_index(i)

substring_index(other: STRING; start: INTEGER):
INTEGER

--Positionof firstoccurrenceofotheratorafterstart;
-- 0 if none.

up_toalias ".." (other: STRING) :
INTERVAL[STRING]

-- Interval containing all stringss, if any, such that
-- Current<= sand s<= other
-- Empty ifCurrent> other

feature -- Measurement

count: INTEGER
-- Actual number of characters making up the strin

occurrences(c: CHARACTER): INTEGER
-- Number of timesc appears in the string

ensure
non_negative_occurrences: Result>= 0

feature -- Comparison

is_equal(other: like Current): BOOLEAN
-- Is string made of same character sequence asother?
--Theobjectcomparisonoperator~reliesonthisfunction.

is_lessalias "<" (other: STRING): BOOLEAN
-- Is string lexicographically lower thanother?
-- (FromCOMPARABLE.)

ensure
asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition:Result= (Current< other) or (Current~

other)

§A.6.21 CLASSSTRING 989
is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other< Current)

max(other: like Current): like Current)
-- The greater of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current)
-- The smaller of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current):
INTEGER)

-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller: (Result= –1) = Current< other
greater_positive: (Result= 1) = Current> other

feature -- Status report

is_empty: BOOLEAN
-- Does string contain no characters?

valid_index(i : INTEGER): BOOLEAN
-- Is i within the bounds of the string?

feature -- Element change

append_boolean(b: BOOLEAN)
-- Append the string representation ofb at end.

append_character(c: CHARACTER)
-- Appendc at end.

ensure
item_inserted: item(count) = c
one_more_occurrence: occurrences(c) = old

(occurrences(c)) + 1
item_inserted: has(c)

append_integer(i : INTEGER)
-- Append the string representation ofi at end.

append_real(r : REAL)
-- Append the string representation ofr at end.

append_string(s: STRING)
-- Append a copy ofs at end.

ensure
new_count: count= old count+ s.count
-- appended: For everyi in 1..s.count,
-- item (old count+ i) = s. item (i)

fill (c: CHARACTER)
-- Replace every character withc.

ensure
-- allblank: For everyi in 1..count, item(i) = Blank

head(n: INTEGER)
-- Remove all characters except for the firstn;
-- do nothing ifn >= count.

require
non_negative_argument: n >= 0

ensure
new_count: count= n.min (old count)
-- first_kept: Foreveryi in 1..n, item(i) =old item(i)

insert(s: like Current; i : INTEGER)
-- Add s to the left of positioni.

require
index_small_enough: i <= count
index_large_enough: i > 0

ensure
new_count: count= old count+ s.count

insert_character(c: CHARACTER; i : INTEGER)
-- Add c to the left of positioni.

ensure
new_count: count= old count+ 1

left_adjust
-- Remove leading white space.

ensure
new_count: (count/= 0) implies (item(1) /= ’ ’)

put (c: CHARACTER; i : INTEGER)
-- Replace character at positioni by c.

require
good_key: valid_index(i)

ensure

insertion_done: item(i) = c

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.21990

es
put_substring(s: like Current; start_pos, end_pos:
INTEGER)

-- Copy the characters ofs to positions
-- start_pos.. end_pos.

require
index_small_enough: end_pos<= count
order_respected: start_pos<= end_pos
index_large_enough: start_pos> 0

ensure
new_count:count= old count+ s.count–end_pos

+ start_pos– 1

right_adjust
-- Remove trailing white space.

ensure
new_count: (count/= 0) implies (item(count) /= ’ ’)

tail (n: INTEGER)
-- Remove all characters except for the lastn;
-- do nothing ifn >= count.

require
non_negative_argument: n >= 0

ensure
new_count: count= n.min (old count)

feature -- Removal

remove(i : INTEGER)
-- Removei-th character.

require
index_small_enough: i <= count
index_large_enough: i > 0

ensure
new_count: count= old count– 1

wipe_out
-- Remove all characters.

ensure
empty_string: count= 0
wiped_out: is_empty

feature -- Resizing

resize(newsize: INTEGER)
-- Rearrange string so that it can accommodate
-- at leastnewsize characters.
-- Do not lose any previously entered character.

require
new_size_non_negative: newsize>= 0

feature -- Conversion

to_boolean: BOOLEAN
-- Boolean value;
-- "true" yieldstrue, "false" yieldsfalse
-- (case-insensitive)

to_integer: INTEGER
-- Integer value;
-- for example, when applied to"123", will yield 123

to_lower
-- Convert to lower case.

to_real: REAL
-- Real value;
-- forexample,whenapplied to"123.0",will yield123.0

to_upper
-- Convert to upper case.

feature -- Duplication

copy(other: like Current)
-- Reinitialize by copying the characters ofother.
-- (This is also used byclone.)
-- (FromANY.)

ensure
new_result_count: count= other.count
-- same_characters: For everyi in 1..count,
-- item(i) = other. item(i)

substring(n1, n2: INTEGER): like Current
-- Copy of substring containing all characters at indic
-- betweenn1 andn2

require
meaningful_origin: 1 <= n1

meaningful_interval: n1<= n2

meaningful_end: n2<= count

ensure
new_result_count: Result.count= n2– n1+ 1
-- original_characters: For everyi in 1..n2–n1,
-- Result. item (i) = item (n1+i–1)

feature -- Output

out: STRING
-- Printable representation
-- (FromANY.)

invariant

irreflexive_comparison:not (Current< Current)

empty_definition: is_empty= (count= 0)

non_negative_count: count>= 0

end

§A.6.22 CLASSSTD_FILES 991
A.6.22 CLASSSTD_FILES

note

description: "[
Commonly used input and output mechanisms. This
class may be used as either ancestor or supplier by
classes needing its facilities.
]"

class interface

STD_FILES

feature -- Access

default_output: ? FILE
-- Default output.

error: FILE
-- Standard error file

input: FILE
-- Standard input file

output: FILE
-- Standard output file

standard_default: FILE
-- default_output if not void,
-- otherwiseoutput.

feature -- Status report

last_character: CHARACTER
-- Last character read by read_character

last_integer: INTEGER
-- Last integer read by read_integer

last_real: REAL
-- Last real read by read_real

last_string: STRING
-- Last string read by read_line,
-- read_stream, or read_word

feature -- Element change

put_boolean(b: BOOLEAN)
-- Write b at end of default output.

put_character(c: CHARACTER)
-- Write c at end of default output.

put_integer(i : INTEGER)
-- Write i at end of default output.

put_new_line
-- Write line feed at end of default output.

put_real(r : REAL)
-- Write r at end of default output.

put_string(s: STRING)
-- Write s at end of default output.

set_error_default
-- Use standard error as default output.

set_output_default
-- Use standard output as default output.

feature -- Input

read_character
-- Read a new character from standard input.
-- Make result available inlast_character.

read_integer
-- Read a new integer from standard input.
-- Make result available inlast_integer.

read_line
-- Read a line from standard input.
-- Make result available inlast_string.
-- New line will be consumed but not part of
last_string.

read_real
-- Read a new real from standard input.
-- Make result available inlast_real.

read_stream(nb_char: INTEGER)
-- Read a string of at mostnb_charbound characters
-- from standard input.
-- Make result available inlast_string.

to_next_line
-- Move to next input line on standard input.

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.23992
A.6.23 CLASSFILE

note

description: "[
Files viewed as persistent sequences of characters
]"

class interface

FILE

create

make(fn: STRING)
-- Create file object withfn as file name.

require
string_not_empty:not fn. is_empty

ensure
file_named: name~ n
file_closed: is_closed

create_read_write(fn: STRING)
-- Create file object withfn as file name
-- and open file for both reading and writing;
-- create it if it does not exist.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_read: is_open_read
open_write: is_open_write

open_append(fn: STRING)
-- Create file object withfn as file name
-- and open file in append-only mode.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_append: is_open_append

open_read(fn: STRING)
-- Create file object withfn as file name
-- and open file in read mode.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_read: is_open_read

open_read_write(fn: STRING)
-- Create file object withfn as file name
-- and open file for both reading and writing.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_read: is_open_read
open_write: is_open_write

open_write(fn: STRING)
-- Create file object withfn as file name
-- and open file for writing;
-- create it if it does not exist.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_write: is_open_write

feature -- Access

name: STRING
-- File name

feature -- Measurement

count: INTEGER
-- Size in bytes (0 if no associated physical file)

feature -- Status report

is_empty: BOOLEAN
-- Is structure empty?

end_of_file: BOOLEAN
-- Has an EOF been detected?

require
opened:not is_closed

exists: BOOLEAN
-- Does physical file exist?

is_closed: BOOLEAN
-- Is file closed?

is_open_read: BOOLEAN
-- Is file open for reading?

is_open_write: BOOLEAN
-- Is file open for writing?

is_plain_text: BOOLEAN
-- Is file reserved for text (character sequences)?

is_readable: BOOLEAN
-- Is file readable?

require
handle_exists: exists

§A.6.23 CLASSFILE 993

r

is_writable: BOOLEAN
-- Is file writable?

require
handle_exists: exists

last_character: CHARACTER
-- Last character read byread_character

last_integer: INTEGER
-- Last integer read byread_integer

last_real: REAL
-- Last real read byread_real

last_string: STRING
-- Last string read by read_line,
-- read_stream, or read_word

feature -- Status setting

close
-- Close file.

require
medium_is_open:not is_closed

ensure
is_closed: is_closed

open_read
-- Open file in read-only mode.

require
is_closed: is_closed

ensure
exists:exists
open_read: is_open_read

open_read_append
-- Open file in read and write-at-end mode;
-- create it if it does not exist.

require
is_closed: is_closed

ensure
exists: exists
open_read: is_open_read
open_append: is_open_append

open_read_write
-- Open file in read and write mode.

require
is_closed: is_closed

ensure
exists: exists
open_read: is_open_read
open_write: is_open_write

open_write
-- Open file in write-only mode;
-- create it if it does not exist.

ensure
exists: exists
open_write: is_open_write

feature -- Cursor movement

to_next_line
-- Move to next input line.

require
readable: is_readable

feature -- Element change

change_name(new_name: STRING)
-- Change file name tonew_name

require
file_exists: exists

ensure
name_changed: name ~new_name

feature -- Removal

delete
-- Remove link with physical file; delete physical
-- file if no more link.

require
exists: exists

dispose
-- Ensure this medium is closed when
-- garbage-collected.

feature -- Input

read_character
-- Read a new character.
-- Make result available inlast_character.

require
readable: is_readable
--

require
readable: is_readable

read_integer
-- Read the ASCII representation of a new intege
-- from file. Make result available inlast_integer.

require
readable: is_readable

read_line
-- Read a string until new line or end of file.
-- Make result available inlaststring.
-- New line will be consumed but not part of
last_string.

require
readable: is_readable

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.23994
read_real
-- Read the ASCII representation of a new real
-- from file. Make result available inlast_real.

require
readable: is_readable

read_stream(nb_char: INTEGER)
-- Read a string of at mostnb_charbound characters
-- or until end of file.
-- Make result available inlast_string.

require
readable: is_readable

read_word
-- Read a new word from standard input.
-- Make result available inlast_string.

feature -- Output

put_boolean(b: BOOLEAN)
-- Write ASCII value ofb at current position.

require
extendible: extendible

put_character(c: CHARACTER)
-- Write c at current position.

require
extendible: extendible

put_integer(i : INTEGER)
-- Write ASCII value ofi at current position.

require
extendible: extendible

put_real(r : REAL)
-- Write ASCII value ofr at current position.

require
extendible: extendible

put_string(s: STRING)
-- Write s at current position.

require
extendible: extendible

invariant

name_not_empty:not name. is_empty

writable_if_extendible: extendibleimplies is_writable

end

§A.6.24 CLASSSTORABLE 995

r

A.6.24 CLASSSTORABLE

note

description: "[
Objects that may be stored and retrieved along with
all their dependents
]"

usage: "[
This class may be used as ancestor by classes needing
its facilities.
]"

class interface

STORABLE

feature -- Access

retrieved(file: FILE): STORABLE
-- Retrieved object structure, from external
-- representation previously stored infile.
-- To access resulting object under correct type,
-- use assignment attempt.
-- Will raise an exception (codeRetrieve_exception)
-- if file content is not aSTORABLE structure.

require
file_exists: file.exists
file_is_open_read: file. is_open_read
file_not_plain_text:not file. is_plain_text

feature -- Element change

basic_store(file: FILE)
-- Produce onfile an external representation of entire
-- object structure reachable from current object.
-- Retrievable within current system only.

require
file_exists: file.exists
file_is_open_write: file. is_open_write
file_not_plain_text:not file. is_plain_text

general_store(file: FILE)
-- Produce onfile an external representation of the
-- entire object structure reachable from current
object.
-- Retrievable from other systems for same platform
-- (machine architecture).

require
file_exists: file.exists
file_is_open_write: file. is_open_write
file_not_plain_text:not file. is_plain_text

independent_store(file: FILE)
-- Produce onfile an external representation of the
-- entire object structure reachable from current
object.
-- Retrievable from other systems for the same o
other
-- platforms (machine architectures).

require
file_exists: file.exists
file_is_open_write: file. is_open_write
file_not_plain_text:not file. is_plain_text

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.25996
A.6.25 CLASSMEMORY

note

description: "[
Facilities for tuning up the garbage collection
mechanism
]"

usage: "[
This class may be used as ancestor by classes needing
its facilities.
]"

class interface

MEMORY

feature -- Status report

collecting: BOOLEAN
-- Is garbage collection enabled?

feature -- Status setting

collection_off
-- Disable garbage collection.

collection_on
-- Enable garbage collection.

feature -- Removal

dispose
--Action tobeexecuted justbeforegarbagecollection
-- reclaims an object.
-- Default version does nothing; redefine in descendants
-- to perform specific dispose actions. Those actions
-- should only take care of freeing external resources
-- theyshouldnotperformremotecallsonotherobjects
-- since these may also be dead and reclaimed.

full_collect
-- Force a full collection cycle if garbage
-- collection is enabled; do nothing otherwise.

end

§A.6.26 CLASSEXCEPTIONS 997
A.6.26 CLASSEXCEPTIONS

note

description: "[
Facilities for adapting the exception handling
mechanism
]"

usage: "[
Thisclass may be used as ancestor by classes needing
its facilities.
]"

class interface

EXCEPTIONS

feature -- Access

developer_exception_name: STRING
-- Name of last developer-raised exception

require
applicable: is_developer_exception

feature -- Access

Check_instruction: INTEGER
-- Exception code for violated check

Class_invariant: INTEGER
-- Exception code for violated class invariant

Incorrect_inspect_value: INTEGER
-- Exception code for inspect value which is not one
-- of the inspect constants, if there is no Else_part

Loop_invariant: INTEGER
-- Exception code for violated loop invariant

Loop_variant: INTEGER
-- Exception code for non-decreased loop variant

No_more_memory: INTEGER
-- Exception code for failed memory allocation

Postcondition: INTEGER
-- Exception code for violated postcondition

Precondition: INTEGER
-- Exception code for violated precondition

Routine_failure: INTEGER
-- Exception code for failed routine

Void_attached_to_expanded: INTEGER
-- Exception code for attachment of void value
-- to expanded entity

Void_call_target: INTEGER
-- Exception code for feature call on void reference

feature -- Status report

assertion_violation: BOOLEAN
-- Is last exception originally due to a violated
-- assertion or non-decreasing variant?

exception: INTEGER
-- Code of last exception that occurred

is_developer_exception: BOOLEAN
-- Is the last exception originally due to
-- a developer exception?

is_signal: BOOLEAN
-- Is last exception originally due to an external
-- event (operating system signal)?

feature -- Basic operations

die (code: INTEGER)
-- Terminate execution with exit statuscode,
-- without triggering an exception.

raise(name: STRING)
-- Raise a developer exception of namename.

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.27998
A.6.27 CLASSARGUMENTS

note

description: "Access to command-line arguments"

usage: "[
This class may be used as ancestor by classes needing
its facilities.
]"

class interface

ARGUMENTS

feature -- Access

argument(i : INTEGER): STRING
-- i-th argument of command that started system
execution
-- (the command name ifi = 0)

require
index_large_enough: i >= 0
index_small_enough: i <= argument_count

command_name: STRING
-- Name of command that started system execution

ensure
definition: Result= argument(0)

feature -- Measurement

argument_count: INTEGER
--Number ofargumentsgiven tocommand that started
-- system execution (command name does not count)

ensure
non_negative: Result>= 0

end

§A.6.28 CLASSPLATFORM 999
A.6.28 CLASSPLATFORM

note

description: "Platform-dependent properties"

usage: "[
This class may be used as ancestor by classes needing
its facilities.
]"

class interface

PLATFORM

feature -- Access

Boolean_bits: INTEGER
-- Number of bits in a value of typeBOOLEAN

ensure
meaningful: Result>= 1

Character_bits: INTEGER
-- Number of bits in a value of typeCHARACTER

ensure
meaningful: Result>= 1
large_enough: 2 ^ Result>=

Maximum_character_code

Integer_bits: INTEGER
-- Number of bits in a value of typeINTEGER

ensure
meaningful: Result>= 1
large_enough:2 ^ Result>= Maximum_integer
large_enough_for_negative:2 ^ Result>= –

Minimum_integer

Maximum_character_code: INTEGER
-- Largest supported code forCHARACTER values

ensure
meaningful: Result>= 127

Maximum_integer: INTEGER
-- Largest supported value of typeINTEGER.

ensure
meaningful: Result>= 0

Minimum_character_code: INTEGER
-- Smallest supported code forCHARACTERvalues

ensure
meaningful: Result<= 0

Minimum_integer: INTEGER
-- Smallest supported value of typeINTEGER

ensure
meaningful: Result<= 0

Pointer_bits: INTEGER
-- Number of bits in a value of typePOINTER

ensure
meaningful: Result>= 1

Real_bits: INTEGER
-- Number of bits in a value of typeREAL

ensure
meaningful: Result>= 1

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.291000
A.6.29 CLASS ONCE_MANAGER

note

description: "[
Controller of keyed once routines
]"

usage: "[
See featureoncesin classANY.
]"

class interface

ONCE_MANAGER

feature -- Status report

fresh(key: STRING): BOOLEAN
-- Will the presence ofkey among a once routine’s
-- once keys cause execution of the routine’s body?

feature -- Element change

refresh(key: STRING)
-- Reset all once routines that usekey as once key.

ensure
refreshed: fresh(key)

refresh_all
-- Reset all once routines.

refresh_all_except(keys: ARRAY[STRING)]
-- Reset all once routines except those using
-- any of the items ofkeys as once keys.

refresh_some(keys: ARRAY[STRING)]
-- Reset all once routines that use any
-- of the items ofkeys as once keys.

end

§A.6.30 CLASSROUTINE 1001
A.6.30 CLASSROUTINE

note

description: "[
Objects representing delayed calls to a routine,
with some operands possibly still open
]"

deferred class interface

ROUTINE[BASE_TYPE, OPEN_ARGS –>TUPLE]

feature -- Initialization

adapt(other: ROUTINE[ANY, OPEN_ARGS])
-- Initialize fromother.
-- Useful in descendants.

feature -- Access

operands: OPEN_ARGS
-- Open operands

target: ANY
-- Target of call

open_operand_type(i: INTEGER): INTEGER
-- Type ofi-th open operand.

require
positive : i >= 1
within_bounds:i <= open_count

hash_code: INTEGER
-- Hash code value

precondition(args: like operands) BOOLEAN
-- Do args satisfy routine’s precondition
-- in present state?

postcondition(args: like operands) BOOLEAN
-- Does current state satisfy routine’s
-- postconditionfor args?

feature -- Status report

callable: BOOLEAN
-- Can routine be called on current object?

is_equal (other: like Current): BOOLEAN
-- Is associated routine the same as the one
-- associated withother?
--Theobjectcomparisonoperator~reliesonthisfunction.

valid_operands(args: OPEN_ARGS): BOOLEAN
-- Are args valid operands for this routine?

feature -- Measurement

open_count: INTEGER
-- Number of open parameters.

feature -- Element change

set_operands(args: OPEN_ARGS)
-- Useargs as operands for next call.

require
valid_operands:valid_operands(args)

feature -- Duplication

copy(other: like Current)
-- Use same routine asother.

feature -- Basic operations

call (args: OPEN_ARGS)
-- Call routine with operandsargs.

require
valid_operands:valid_operands(args)
callable:callable

apply is
-- Call routine withoperands as last set.

require
valid_operands:valid_operands(operands)
callable:callable

deferred
end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.311002
A.6.31 CLASS PROCEDURE

note

description: "[
Objects representing delayed calls to a procedure,
with some operands possibly still open
]"

comment: "[
Features are the same as those ofROUTINE,
with applymade effective, and no further
redefinition ofis_equalandcopy.
]"

class interface

PROCEDURE[BASE_TYPE, OPEN_ARGS –>
TUPLE]

feature -- Access

operands: OPEN_ARGS
-- Open operands

target: ANY
-- Target of call

open_operand_type(i: INTEGER): INTEGER
-- Type ofi-th open operand.

require
positive : i >= 1
within_bounds:i <= open_count

hash_code: INTEGER
-- Hash code value

feature -- Status report

callable: BOOLEAN
-- Can procedure be called on current object?

is_equal (other: like Current): BOOLEAN
-- Is associated procedure the same as the one
-- associated withother?
--Theobjectcomparisonoperator~reliesonthisfunction.

valid_operands(args: OPEN_ARGS): BOOLEAN
-- Are args valid operands for this procedure?

precondition(args: like operands) BOOLEAN
-- Do args satisfy procedure’s precondition
-- in present state?

postcondition(args: like operands) BOOLEAN
-- Does current state satisfy procedure’s
-- postconditionfor args?

feature -- Measurement

open_count: INTEGER
-- Number of open parameters.

feature -- Element change

set_operands(args: OPEN_ARGS)
-- Useargs as operands for next call.

require
valid_operands:valid_operands(args)

feature -- Duplication

copy(other: like Current)
-- Use same procedure asother.

feature -- Basic operations

call (args: OPEN_ARGS)
-- Call procedure with operandsargs.

require
valid_operands:valid_operands(args)
callable:callable

apply is
-- Call procedure withoperands as last set.

require
valid_operands:valid_operands(operands)
callable:callable

end

§A.6.32 CLASSFUNCTION 1003
A.6.32 CLASSFUNCTION

note

description: "[
Objects representing delayed calls to a function,
with some operands possibly still open
]"

comment: "[
Features are the same as those ofROUTINE,
with applymade effective, and the addition
of last_result anditem.
]"

class interface

FUNCTION[BASE_TYPE,
OPEN_ARGS –>TUPLE, RESULT_TYPE]

feature -- Access

last_result: RESULT_TYPE
-- Result of last call, if any.

require
valid_operands:valid_operands(args)
callable:callable

operands: OPEN_ARGS
-- Open operands

target: ANY
-- Target of call

open_operand_type(i: INTEGER): INTEGER
-- Type ofi-th open operand.

require
positive : i >= 1
within_bounds:i <= open_count

hash_code: INTEGER
-- Hash code value

precondition(args: like operands) BOOLEAN
-- Do args satisfy function’s precondition
-- in present state?

postcondition(args: like operands) BOOLEAN
-- Does current state satisfy function’s
-- postconditionfor args?

feature -- Status report

callable: BOOLEAN
-- Can function be called on current object?

is_equal (other: like Current): BOOLEAN
-- Is associated function the same as the one
-- associated withother?
--Theobjectcomparisonoperator~reliesonthisfunction.

valid_operands(args: OPEN_ARGS): BOOLEAN
-- Are args valid operands for this function?

feature -- Measurement

open_count: INTEGER
-- Number of open parameters.

feature -- Element change

set_operands(args: OPEN_ARGS)
-- Useargs as operands for next call.

require
valid_operands:valid_operands(args)

feature -- Duplication

copy(other: like Current)
-- Use same function asother.

feature -- Basic operations

call (args: OPEN_ARGS)
-- Call function with operandsargs.

require
valid_operands:valid_operands(args)
callable:callable

apply is
-- Call function withoperands as last set.

require
valid_operands:valid_operands(operands)
callable:callable

item(args: like operands)
-- Result of calling function withargs as operands

require
valid_operands:valid_operands(operands)
callable:callable

ensure
set_by_call:Result= last_result

end

ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.331004
A.6.33 CLASS PREDICATE

note

description: "[
Objects representing delayed calls to boolean-valued
function, with some operands possibly still open
]"

inheritance: "[
This class inherits (see sectionA.5.17) from

FUNCTION[BASE_TYPE, OPEN_ARGS,
BOOLEAN]

]"

comment: "[
Features are the same as those ofFUNCTION,
with RESULT_TYPEreplaced byBOOLEAN,
and no further redefinition ofis_equalandcopy.
]"

class interface

PREDICATE[BASE_TYPE, OPEN_ARGS –>TUPLE]

feature -- Access

last_result: RESULT_TYPE
-- Result of last call, if any.

require
valid_operands:valid_operands(args)
callable:callable

operands: OPEN_ARGS
-- Open operands

target: ANY
-- Target of call

open_operand_type(i: INTEGER): INTEGER
-- Type ofi-th open operand.

require
positive : i >= 1
within_bounds:i <= open_count

hash_code: INTEGER
-- Hash code value

precondition(args: like operands) BOOLEAN
-- Do args satisfy function’s precondition
-- in present state?

postcondition(args: like operands) BOOLEAN
-- Does current state satisfy function’s
-- postconditionfor args?

feature -- Status report

callable: BOOLEAN
-- Can function be called on current object?

is_equal (other: like Current): BOOLEAN
-- Is associated function the same as the one
-- associated withother?
--Theobjectcomparisonoperator~reliesonthisfunction.

valid_operands(args: OPEN_ARGS): BOOLEAN
-- Are args valid operands for this function?

feature -- Measurement

open_count: INTEGER
-- Number of open parameters.

feature -- Element change

set_operands(args: OPEN_ARGS)
-- Useargs as operands for next call.

require
valid_operands:valid_operands(args)

feature -- Duplication

copy(other: like Current)
-- Use same function asother.

feature -- Basic operations

call (args: OPEN_ARGS)
-- Call function with operandsargs.

require
valid_operands:valid_operands(args)

callable:callable

apply is
-- Call function withoperands as last set.

require
valid_operands:valid_operands(operands)

callable:callable

item(args: like operands)
-- Result of calling function withargs as operands

require
valid_operands:valid_operands(operands)

callable:callable

ensure
set_by_call:Result= last_result

end

	A A ELKS: The Eiffel Library Kernel Standard
	A.1�� OVERVIEW
	A.2�� CONTENTS OF THIS STANDARD
	A.3�� COMPATIBILITY CONDITIONS
	A.4�� REQUIRED CLASSES
	A.5�� REQUIRED ANCESTRY LINKS
	A.6�� SHORT FORMS OF REQUIRED CLASSES
	A.6.1 CLASS ANY
	A.6.2 CLASS TYPE
	A.6.3 CLASS PART_COMPARABLE
	A.6.4 CLASS COMPARABLE
	A.6.5 CLASS HASHABLE
	A.6.6 CLASS NUMERIC
	A.6.7 CLASS INTERVAL
	A.6.8 CLASS BOOLEAN
	A.6.9 CLASS CHARACTER
	A.6.10 CLASS INTEGER_GENERAL
	A.6.11 CLASS INTEGER
	A.6.12 CLASS INTEGER_8
	A.6.13 CLASS INTEGER_16
	A.6.14 CLASS INTEGER_64
	A.6.15 CLASS REAL_GENERAL
	A.6.16 CLASS REAL
	A.6.17 CLASS TYPED_POINTER
	A.6.18 CLASS POINTER
	A.6.19 CLASS ARRAY
	A.6.20 CLASS ANONYMOUS
	A.6.21 CLASS STRING
	A.6.22 CLASS STD_FILES
	A.6.23 CLASS FILE
	A.6.24 CLASS STORABLE
	A.6.25 CLASS MEMORY
	A.6.26 CLASS EXCEPTIONS
	A.6.27 CLASS ARGUMENTS
	A.6.28 CLASS PLATFORM
	A.6.29 CLASS ONCE_MANAGER
	A.6.30 CLASS ROUTINE
	A.6.31 CLASS PROCEDURE
	A.6.32 CLASS FUNCTION
	A.6.33 CLASS PREDICATE

