10

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Feature adaptation

10.1 OVERVIEW

Chaptert introduced inheritance as a module enrichment technique. You
inherit from a class out of sheer mercenary interest: you want its features.
But that doesn’t necessarily mean accepting all these features at face value.

A key attraction of the inheritance mechanism is that it lets you 1- Chapterl6presents
inherited features to the context of the new class. This is known as ferepeated inheritance
adaptation. The present discussion covers the principal mechanisms,
to alater one some important complements related to repeated inheriti

This chapter is the longest of this book, which should not be a surprise
since it explores in full detail some of the most fascinating aspects of object
technology: how to play mix and match with software components, taking
advantage of the best features of existing classes while refining, adapting or
overriding what is not exactly suited to your new need. Only a few basic
concepts are involved, but they interact in diverse and powerful ways.

So make sure you have a comfortable armchair and a big cup of cctiere are actually 40
and for the 50 pages of this chapter be prepared to question, implem%rﬁa%?ga?fw””g'”g
override, rename, merge or otherwise wring all those features that -
ancestors, for better or worse, bequeathed to you.

10.2 TERMINOLOGY: REDECLARATION, REDEFINITION, EFFECTING

Our major focus will be the tweedeclaration mechanisms that help adapt
inherited features to the local context of a class:

» Redefinition, which may change an inherited feature’s original
implementation, signature or specification.

« Effecting, which provides an implementation (effective version) for The t?_rm'effectin_d t
H H ’ sometimes surprises al
a fegture that Q|d not have_one in the parent. The parent’s Verg .« 't achieves con-
deprived of any implementation, but with a signature and specificasistent terminologyto
is said to bedeferred; deferred features play an important role effecta a feature is to

analysis and design, which this chapter will explain. make it effective

256

FEATURE ADAPTATION §10.3

The purpose of redefining a feature is often to extend (rather than discard)
its original implementation. We will see how tlpeecursor mechanism
enables you, in a redefinition, to reuse and extend the original version.

Two closely related facilities, which the discussion will address in
detail, are the possibility of afndefining an inherited feature, to forget its
original implementation, and of merging abstractionsjdining two or
more features inherited from different parents.

Another adjacent concept iepeated inheritance which enables ¢- Chapterlé.
class to inherit twice or more from a given ancestor, letting the desi
control what happens to the common feature heritage. This top
important enough to deserve a chapter of its own, coming latdyin this
book, after the conformance chapter, since repeated inheritance rules rely
extensively on those of type conformance.

Although with the present chapter the major language constructs inveh/ing vior.

inheritance will have been introduced, we are still missing an important piPHISM”, 22.11, pge
the picture. To grasp the full extent and practicality of the techniques introg298 "DYNAMIC BIND-
below, you will need to understangoblymorphismand dynamicbinding = =

studied in subsequent chapters. Together, these notions are responsible f

of the most powerful characteristics of the object-oriented method.

10.3 REDECLARING INHERITED FEATURES: WHY AND HOW

A class inheriting from another may add new features of its own. But v< “‘RENAMING”
about the old ones? So far the presentation has assumed that an heir 8--P@2 180

k=amsi happy enough to obtain every inherited feature “as is” from a parent. 1

sure, the heir magenamethe feature, but this does not change it; the eft
is simply to make it available to the client’'s dependents under a name that
is better suited to the local context.

Inheritance offers more. When you inherit a set of features, you may
want to adapt those whose origirsglecificatioror implementatiordid not
take advantage of the heir's specific properties.

Redefinition is the basic method for achieving such an adaptation. By
redefining an inherited feature you may give it a new implementation, a new
signature, or a new set of assertions, as long as you follow the applicable rules
to ensure that the new version remains compatible with the old one as seen
by clients. You may even redefine a function into an attribute, switching from
an algorithmic representation to one that simply stores feature values. Every
proper descendant of a class may provide its own alternative redefinition.

In some cases, the original form of a routine does not provide any
default implementation at all; this is an explicit invitation for proper
descendants to offer various implementations. Such unimplemented
features, and the classes that introduce them, are said tefeered;
proper descendants may theffect those features (make thafiective).

§10.4 FEATURE ADAPTATION CLAUSES 257

In the software construction process, classes and features may in fact
remain deferred for a long time, providing a high-level notation for system
analysis and design.

The basic terminology has already been previewed:

Redeclare, redeclaration

A classredeclaresaninheritedfeature if itredefines oeffects it.

A declaratiorfor a featurd is aredeclaration of f if it is either a
redefinition or areffecting off.

This definition relies on two others, appearing below, for the two cases:
redefinitionandeffecting

Be sure to distinguiskedeclarationfrom redefinition the first of these
cases. Redeclaration is the more general notion, redefinition one of its two
cases; the other &ffecting which provides an implementation for a feature
that was deferred in the parent. In both cases, a redeclaration does not
introduce a new feature, but simply overrides the parent’s version of an
inherited feature.

redeclaration:
In the case of a redefiniti

Getting the full power of deferred features requires two more
mechanisms:

» Sometimes a class will be able to merge two or more features that it
inherits from separate parents; in so doing the class combines several
abstractions into one. This is the join mechanism.

* In some cases, as you inherit an effective feature from a parent, you may
want to discard the inherited implementation altogether, recanting all
the sins of its earlier effective life. This is the process of undefinition,
which turns an effective feature into a born-again deferred feature.

The following sections explore redefinition, deferred features, undefintfigformal part starts
and join. The discussion will first explain these facilities and their rolwith 10.25. pae 300
software analysis, design and implementation. The second part ¢

chapter, which you may skip on first reading, gives the more formal s

corresponding syntactic rules and validity constraints, together with the

resulting semantic definitions.

10.4 FEATURE ADAPTATION CLAUSES

« Another descendant
For a start, let us just refresh our memory as to the syntactical conte?f TREE classFIXED_

. TREE served to illus-
this discussion: thénheritanceclause of a class declaration, which mtrateli_:nheritance basics

beginning of clasSWO_WAY_TREIR EiffelBase: PART", 6.2. pae 167

258

FEATURE ADAPTATION §10.4

note
... (Notes clause omitted)

classTWO_WAY_TREH] inherit
TREE[T]
redefine
higher, ...
end

BI_LINKABLE[T]
rename
... (Renamesubclause omitted)
redefine
put_between
end

TWO_WAY _LISTlike Curreni

rename
... (Renamesubclause omitted)

redefine
first_child, update_after_insertign
duplicate merge_rightmerge_left

end

feature
... Rest of class omitted.

§10.5 WHY REDEFINE? 259

EachParenfpart is relative to one of the class’s parents and may include a
Feature_adaptatiosubclause (optional, but present for all three parents
above). Here again is the corresponding syntax:

: A i : : ~ The original presen-
T Inheritance2 inherit Parent_list tation of this Syntax is

Parent_list2 "{ Parent';" ... } on pageL69

Parent2 "Class_type
[Feature_adaptatipn

Feature_adaptatiod [Renamg
[New_exportf
[Undefing
[Redefing
[Select
end

The Renameand New_exportsclauses have been discussedoigvious . “RENAMING”, 6.9

chapters. The next sections explRiadefineUndefineandSelect page 180 Adapting the
export status of inherited
featues”, , pae 200

10.5 WHY REDEFINE?

The first mechanism to study is feature redefinition, which allows yo
to change some aspects of an inherited feature.

Assume you write a clas€ that describes a specific variant of the
concepts covered by an existing cl&<C will be an heir ofB. You may
ue=il find that, for this variant, the inherited version of a certain featuienot
appropriate any more. This sets the stage for redefinmg.

Besides its name, a featurelgracterized by three properties: « “FEATURE DEC-

» The feature has aignature, defined by the number and type of iTAX". 5.10. pae 140
arguments and result, if any.

« It either is deferred or has amplementation, including the choice
between attribute or routine, external or not, and for a non-external
routine theRoutine_bodylLocal declarationandRescue

« It has aspecification defining the feature’sontract: Preconditiorand Aroutine may also have

Postconditior(for routines only). gr:'de;r(gl;gg(l)er?g?::; .

A feature redefinition may affect one or more of these three aspec1"n‘g;'lﬁa'f§:ﬁ“m°”

general, a change of specification implies a change of implementatic

There are two possible reasonsoprrectnessand efficiency for
redefining a feature:

260 FEATURE ADAPTATION §10.6

» The original version may perform actions or compute results that are
incorrect for the new class, for example because they do not update
some of the new attributes.

« If the original version is still appropriate, it may not be efficient enough,
because it fails to take advantage of specific properties of the new class.

Signature redefinition falls in the correctness category: the types of
arguments or results, as originally declared, are not appropriate for the new
class.Implementatiorredefinition may be for correctness, efficiency or
both. A change ofpecificationinvolves correctness since it means the
redefined version offers a new contract to its clients.

10.6 REDEFINITION EXAMPLES

To get a good feel for redefinition, let us look at a pair of simple examples
illustrating each of the two purposes cited.

As a case of redefinition for correctness, assume a ABCLE
inheriting fromELLIPSEand adding an attributadius

Inheritance
ELLIPSE) scale structure for
circles and

ellipses

CIRCLE) scale*

As always, it is useful to check that we are not misusing inheritance. Here
there is hardly any doubt that the structure is right: every circle may be
g hon] viewed as an ellipse that happens to have only one focus.

Let scalebe the procedure that scales a figure by a certain ratio. Since
attributeradius is not present ireLLIPSE the version okcaleinherited

from ELLIPSE does not update the value of that attribute. ClaB3CLE
must redefinescaleto make sure that it updates not just the attributes
inherited fromELLIPSE but also the specifiCIRCLE attributes such as
radius (The problem would not arise idiuswas a function, defined in
terms of attributes inherited froELLIPSE rather than an attribute.)

As illustrated by the figure, the graphical convention for a redefined
feature uses two plus signs after the feature’s name sasalé™.

§10.7 THE REDEFINITION CLAUSE 261

Now an example of redefinition for efficiency. Clag&dRCLE may
redefine as follows the functiocontainswhich determines whether a point

is inside a closed figure:

m contains(p: POINT): BOOLEAN
. -- Ispinside circle?
I require
point_existsp /= Void
do
Result=(origin.distance(p) <= radiug

ensure
... Postcondition omitted..

end

ELLIPSEhas a version ofontainstoo. Because an ellipse is a more general
figure than a circle, thELLIPSEversion is more complex than the above; it
would still be correct for circles, but less efficient since it does not take
advantage of the special properties of circles. Redefinition solves the problem.

10.7 THE REDEFINITION CLAUSE

Whether for correctness or efficiency, the redefinition of a feature must be
explicitly announced in &edefinesubclause of thEeature adaptatidor

the corresponding parent, as in

| o | classCIRCLEinherit

ELLIPSE
I rename

redefine
scale contains...
end
... Rest of class omitted

The names given in thRedefinesubclause must be tHaal names of - “Final name” was
features inherited from the given parent. (In other words, these are the r4¢ined on pagés3
after any renaming; this is easy to remember since Rismameclause

always appears beforedefineand other feature adaptation clauses.)

262

FEATURE ADAPTATION §10.8

Such aRedefinesubclause allows — and requires — cI&RCLEt0 - “NAMECLASHES”
include (in aFeature_claudenew feature declarations, such as gi19-23.03 290
above, forscale containsand others listed after the keyworddefine
These declarations will override the ones inherited from the parent, iicic
ELLIPSE Without theRedefinesubclause, such declarations would make
CIRCLE invalid, since it would now have two features calledale
containsetc., a case of invalidame clash

To discuss redefinition it will be convenient to refer to the “precursor”
of an inherited feature — its original form in the parent:

Precursor (initial definition)

If a class inherits a feature from arent, either keeping the
feature unchanged agedefining it, the parent's version of th
feature is called thprecursor of the feature.

11

With the mechanisms seen so far, every feature of a parent yields a fe-. “Precusor (joined

in the heir; so every inherited feature hase precursor. Mechanismfeaiues)”. pae 309
e . See also the more fom-

explored later — joining of deferred features, and sharing under rep;; gefinition, page465

inheritance — may result in the merging of two or more parent features

just one heir feature. This will requiextendingthe definition to account

for features having more than one precursor.

10.8 REDEFINITION IN THE SOFTWARE PROCESS

BEETHON]

(This section introduce no new language concept but broadens the
discussion by presenting methodological aspects.)

Before proceeding with more technical aspects of redefinition, it is
useful to reflect a little on the implications of this notion for object-oriented
software engineering. Feature redefinition is part of the answer to a major
software engineering issue: reconciling reusability with extendibility.

In software, it is seldom satisfactory to reuse an element exactly as it is;
often, you must also adapt it to a specific context. With redefinition, as
suggested by the simple examples above, you can keep those features that
are still appropriate for the new context, while overriding the
implementations of those which need to be adapted.

The ability to change the signature of an inherited routine, studied
below, is also essential to the smooth functioning of Eiffel's type system.

. , , . ~ “RENAMING”,
It is useful to compare this technique with another of the mechane.g, pae 180

for adapting an inherited featum&naming. The distinction to keep in mir
is between d&eatureand afeature name

§10.9 CHANGING THE SIGNATURE 263

« A feature of a class is a certain operation (routine or attribute) applicable
to instances of the class. The feature is normally passed on to heirs, except
for redeclaration, which allows an heir to substitute another feature.

* Every feature of a class hasimal namerelative to that class, called just
its “feature name” if there is no ambiguity. This is the name used by the
class, its clients and heirs to refer to the feature. The name is normally
passed on to heirs, except for renaming, which allows an heir to
substitute another name for the same feature.

Redefinition and renaming serve complementary purposes:

Redefinition and renaming

Redefinition changes the feature, but keeps its name.
Renaming keeps the feature, but changes its name.

You may want to apply both mechanisms to a given feature, to change both
the feature and its name:

| 4 | classB inherit
T §

rename
fasnew_f
redefine
new_f
end

feature
... Rest of class omitted.

/~, Remember that once you have renamed a feature the only name that makes
/™= sense foritin the rest of the class, pastfemamelause, is the new name,
which becomes its final name i@, herenew_nameln particular, the
Redefinesubclause — as well asndefine —only refers to the new name.
So in this example it would have been invalid to write

‘ redefinef

sincef is not the name of a feature th@tinherits fromB (unless the
Renamesubclause separately renames another inherited feafyire to

10.9 CHANGING THE SIGNATURE

The preceding example redefinitions affected the implementation, for
either correctness or efficiency reasons. Here now is an example where we
need to change the signature of an inherited feature. That feature is an
attribute, so its signature only includes the attribute’s type.

264 FEATURE ADAPTATION §10.9

Consider clastINKED_LIST[T] in EiffelBase, representing one-way
linked lists of objects of typ€& (the formal generic parameter).

One-way

List header linked list

first_elemer

List elements (cells)

Exd B [EFT

One of the attributes of cladNKED_LISTis a reference to the firsThe actual class text
element of a list: usesLINKABLE[like

first]. Thisdoesn'taffect
first_elementLINKABLE[T] \

the discussion
The type of the corresponding objedtdfNKABLE([T], represents list cells
chained to their right neighbors:

Linkable list
cell

item right +—»

Various proper descendants bfNKED_LIST support variants of the

linked list data structure. An immediate heirTi$VO_WAY _LISTwhich,

instead of linkables, uses “bi-linkables”, chained not just to their
successors but also to their predecessors:

Bi-linkable list
cell

<« left || item right +—»

§10.10 THE NEED FOR ANCHORED DECLARATIONS 265

ClassBI_LINKABLEis itself an heir fromi.INKABLE

first_element Signature
L'H*;E_D_) P LINKABLE regefinition

first_element BI
TWO_WAYY, . =
LIST LINKABLE

Clearly, thefirst_elementof a TWO_WAY_LISTshould not just be a
linkable any more, but a bi-linkable. Hence the need to redefine that
attribute, which will appear imlWO_WAY_LIS@&s

first_elementBl_LINKABLE[T] \

The redefinition ofirst_elemeninto aBl_LINKABLEIn TWO_WAY _LIST., “REDECLARA-
follows the rule (given in detalbelow) requiring that any change of type iTIlONANDTYPING”,
a redeclaration replace the original with a type that conforms to it (by p10-16.pge 274

based on a descendant clasBlas INKABLEfor LINKABLE.

In this example, the redefined feature is just an attribute. There is often
a concomitant need to change the types of routine arguments. For example,
the insertion routinput_elemenmay be declared inINKED LISTas

. e ; put_elemenis secret
put_elemen(lt: LINKABLET] ;i: INTEGER is... since dlients of the list

classes never explicitly
manipulate linkables
only objects of typ&.

Clearly, classSWO_WAY _LISheeds to adagut_elemento give it a first
argumentt of type Bl_LINKABLE[T]. A redefinition ofput_elementvill
achieve this.

10.10 THE NEED FOR ANCHORED DECLARATIONS

Cases such as the redeclaration of the argumesitput_elemenare so
frequent in inheritance hierarchies that they warrant a special mechanism,
bypassing the need for explicit redefinition. Rather than the above, the
signature oput_elemenas declared ihINKED_LISTis

\ put_elemenlt: like first_elementi: INTEGER is...

266

FEATURE ADAPTATION §10.11

meaning thatt has the same type éisst_elementtype LINKABLE[T]in _ “ANCHORED
LINKED_LISTand, in any proper descendant of this class, the new tyfIYPES", 11.10. e
any, to whichfirst_elemenhas been redefined. This mechanism, knowr3L_

anchored declaration is discussed in detail in subsequenthapter. It is

a form of implicit signature redefinition.

10.11 DEFERRED FEATURES

[T T

Feature redefinition, as just studied, lets you override the implementation,
signature or specification of a feature that already had an implementation
in a proper ancestor.

In some cases, the designer of that ancestor could not provide such a
defaultimplementation, or did not want to. It is possible to declare a feature
without choosing an implementation by makingléferred. This transfers
to proper descendants the responsibility for providing an implementation
through a new declaration, calledeffecting of the feature.

Although similar in many ways to redefinition, this case is more a
“definition” (without there) of the feature, since there was no original
implementation in the parent. Accordingly, a class that effects a feature
inherited as deferred will not list it inRedefineclause.

Some terminology:

« A feature that is not deferred — meaning it has an implementation,
either as an attribute or as a non-deferred routine effdstive

* The terms “deferred” and effective”, originally defined for features,
extend to classes: a class is deferred if it has at least one deferred
feature; otherwise (if all its features are effective) the class is effective.

Although sufficient for the time being, these definitions will be made v - “Effective deferred
rigorousbelaw. featue”, page 303

In graphical representations of system structures, both deferred fe:
and deferred classes will be marked by an astériskheir effectings, as
other forms of redeclaration, are marked with a plus sign

U] register Deferred class
VEHICLE ’ deferred

feature and

ffecti
register” / \ register errectings
CAR) TRUCK

§10.12 DEFERRED CLASSES FOR DESCRIBING ABSTRACTIONS 267

As noted above, a class designer may decide to declare a feature as
deferred because of eithemability or refusal to provide an
munid implementation. These two cases correspond to the two major uses of
deferred routines and classes:

1« You may want to write a class describing an abstract notion, covering
several possible implementations. Then you cannot write an effective
class, which would require that you provide full implementation
information. Some of the features of such a class, and hence the class
itself, will be deferred.

2 «In other cases, whether or not you have enough information to give the
implementation, you prefer to concentrate on the abstract properties of
a class and its features, postponing implementation concerns to later.

The next two sections explore these two applications.

10.12 DEFERRED CLASSES FOR DESCRIBING ABSTRACTIONS

The first application of deferred classes supports a central aspect of the
Eiffel method, resulting from the use of inheritance as a classification

Ermat! mechanism. Often, classes appearing towards the top of inheritance
hierarchies represent general categories, for which various proper
descendants will provide specific implementations. The higher-level
classes should usually be deferred.

The EiffelBase Library contains numerous such cases. A tyfOnFIXED_TREEsee
example is classTREE describing the most general notion of tre%bﬂvﬁlfgﬁ
independent of any representation. Specific implementations are dest 4 e 257
by proper descendants of that class, such RREXED_TREE and
TWO_WAY_TREMboth sketched earlier. ClaSREEcontains a number o.
deferred features describing operations that cannot be made more precise

without committing to a representation. Typical of these is the procedure

=

I

—

child_put(v: like item)is
-- Put itemv at active child position.
require
not_child_off not child_off
deferred
ensure
replaced child.item=v

end

which replaces by the value stored in the “active child” (the child at
current cursor position) of the current node.

268 FEATURE ADAPTATION §10.13

The keyworddeferred, indicating that the routine is deferred, comes in
lieu of an Effective body introduced bydo, once or external. As the
example shows, thBreconditionand Postconditionclauses may still be
present; they characterize the semantics of the routine, which all
descendantimplementations must preserve (in a manner explained below).

Here are two further examples from other ISE Libraries. See'Reusable Soft-
ware' for details about

EiffelVision contains numerous classes representing varthese examples
geometrical figures, some simple, some composite. They are
descendants of a deferred cl&&URE, usually through one of its heirs
OPEN_FIGUREandCLOSED_FIGUREstill deferred themselves.

EiffelParse provides tools for analyzing programs or other structi— “PRODUC-
texts. To build a parser for a particular language, you write classes descT'ONS". 2.5. pge 88
the abstract structure of that language’s constructs; for example, a par:

Eiffel will contain classe&IFFEL_CLASSROUTINE INSTRUCTIONetc.
All such classes are descendants of the deferredClassSTRUC Tthrough
one of three heirs dEONSTRUCescribing three kinds of construct (the
same as in thEiffel syntax descriptions of this book):

* AGGREGATHdescribes constructs with a fixed number of parts. Eqfye syntaxforoop
example, in a parser for Eiffel, a class describing the syntaxLafca is on paget87.
(where the parts are aimitialization, an Invariant a Variant and a
Loop_body would be written as an heir KGGREGATE

* CHOICE describes constructs whose specimens are chosen fr The syntaxfoinstruc-
number of possible constructs. For example an Eiffietructionis a tionis on page24
Creation or aCall, or anAssignmenttc.; the corresponding class ir
parser would be an heir GHOICE

« SEQUENCE describes constructs with a variable number — The syntax for
components of the same kind, such as an Ejreaiure_declaratids
Feature_declaration_listvhich may consist of zero or more specimeOn pagel3r
of Feature_declaration

CONSTRUCTs almost fully deferred. The three heirs listed, although still
deferred, are “less” deferred since they provide effective routines for
parsing the corresponding types of constructs.

As you will remember, it is not possible to have a feature both deferred an < “Featue Declaa-
frozen, since frozen features may never be redeclared, and deferred featution rule”, page 160
are born for the very purpose of redeclaration.

10.13 DEFERRED CLASSES FOR SYSTEM DESIGN AND ANALYSIS

In the preceding examples, deferred classes were abstracted from effective
ones, by removing implementation aspects. In other cases, deferred classes
initially exist independently of any implementation. This is the second of
the two major applications of deferred classes.

§10.13 DEFERRED CLASSES FOR SYSTEM DESIGN AND ANALYSIS 269

This situation — mentioned earlier as a case of the designevantting
to consider any implementation — arises in particular out of the use of
Eiffel as a tool fosystem analysis and design

At desigrntime, you are concerned with the architecture of a system, not
its implementation; deferred classes provide an ideal way to express the
abstract properties of an architecture, including contracts, without making
decisions about representation or algorithms

At a stage even more remote from implementation concerns, defi'Fully deferred class”
classes are aamalysistool: to model and analyze a certain category of [0 ;ngu?gsth;e
world objects, you may writkilly deferred classes that capture the abstdeferred in generaja
properties of those objects. Not only are such classes independent classisdeferredassoon
implementation; they may in fact be independent of any comput_eriza?esa'ttu?:fa\?gfifdfgx;egf
It is indeed possible through deferred classes to describe in Eiffel rits other features are
natural or artificial systems, whether or not they involve computers effective

software, as long as their structure and semantics are well understood.

Object-oriented systems analysisnay be defined as the discipline of
describing systems of any kind through collections of fully deferred
classes, connected by client and heir relations (capturing system structure)
and characterized by preconditions, postconditions and invariants
(capturing system semantics). Although a detailed presentation of these
topics falls beyond the goal of this book, the following class sketch should
enable you to form a general idea of O-O system analysis.

Extracted from the hypothetical description of a chemical plant, it
illustrates the gist of the method, in particular its use of contracts to
characterize the known abstract properties of a set of objects. As noted,
such a specification is independent from any computer implementation —
although it will of course serve as an ideal basis for the software design and
implementation process if computerization does occur.

deferred classTANKfeature
fill

-- Fill tank with liquid
require
in_valve.open
out_valveclosed
deferred
ensure
in_valve.closed
out_valveclosed
is_full
end

270 FEATURE ADAPTATION §10.14

... Other deferred features, such as:
emptyis_full, is_emptyin_valve out_valve
gauge maximum...

invariant
is_full = ((0.97* maximunmx= gaugé and

(gauge<= 1.03* maximuny)

... Other invariant clauses.

end

10.14 EFFECTING A DEFERRED FEATURE

Unless you are using Eiffel just as a modeling language, and do not plan to
build software for the system that you first described using deferred
classes, you will eventually give these classes proper descendants that
effect (redeclare as effective) the features they inherit in deferred form.

Any classC that inherits a deferred feature from one of its parents may
provide a declaration making the feature effective Gn (This is a
possibility, not an obligation; if the designer@felects to leave some or all
of the inherited features deferregljtself will still be a deferred class.)

§10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION 271

Effecting a feature is similar to redefining an inherited feature. Here - The*Redeclaation

will not list the feature in eRedefineclause since it was not “defined” jlule”. page307, states
what exactly must

the first place. appear in thekedefine
clause

As an example of effecting, one of the many proper descendants of
TREE that effect child_put above is TWO_WAY_TREEwhere the _ Thedeferredversion
redeclaration, describing the routine’s implementation for this particof child_putwas on
representation, looks like this: Pagee’.

I‘ij child_put(v: like item)
. -- Makev the value of the node at active child position;
I -- if current node is leaf, create active child with valu
require else
is_leaf_or_not_off(not is_lea) implies (not child_of}
local
node like parent
do
if is_leafthen
create node. make(V)
put_child(node
child_start
else
child.put (v)

D

end
ensure then

set child_item=v
end

precondition of the effective version is the boolean “or” of the origiT!ON AND ASSER-

T » . L . ' TIONS”, 10.17, pge
(deferred) routine’s precondition and of the assertion given inghgire 577 <gageciamtion

Note the new form of the precondition and postcondition clauses. S "REDECLARA-

elseclause; the new postcondition is the boolean “and” of the origrule”, page 307
postcondition and of the assertion given in #@msure thenclause. This is
part of the general Redeclaration rule, as ghelow.

For an effecting, as with the redeclarationmft_childhere, you will
not list the feature in Redefineclause.

10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION

As defined above, a class is deferred as soon as it has at least one deferred
feature. But nothing requires it to ball deferred: it may contain a
combination of deferred and effective features.

272

FEATURE ADAPTATION §10.15

This yields one of the most powerful techniques of Eiffel development:
producing partially deferred classes which capture what you know for sure

Eeios| - about the behaviors and data structures characterizing a certain application

=

H

—

area, while leaving open what you do not yet know and what is open to
individual variation. You will describe the known aspects through effective

features, the variable ones through deferred routines. In particular, an
effective routine, covering a known general behavior, may call one or more
deferred features, which stand for the variable components of that behavior.

A typical application of this technique appears in many user-interface
building systems, where the application software is under the control of an
outside loop, sometimes called ament loop which controls the overall
scheduling of individual operations: detecting input events, processing
these events, updating the screen etc. The event loop is the same for all
applications, but each application will define its own version of the
individual operations. To implement this scheme elegantly, you may write
a deferred class covering the properties of all applications of a certain type,
with an effective routine that serves as event loop and calls deferred
routines representing the individual operations. Each specific application
will then effect these routines, according to its own needs, in a proper
descendant of the deferred class.

This scheme is an attractive alternative to the “call-back” mechan’s-of call-back mech-

present in lower-level programming languages. anisms see alsgil.8,
page 823 indicating
how to enable an exist-
ing call-back mecha-
nism implemented in
another languageto
call Eiffel routines

§10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION 273

Another important application of the same idea is illustrated by the
iteration classes of EiffelBase. These classes provide various iteration
mechanisms on arbitrary structures: linear iteration (forward only), two-
way iteration, tree iteration (preorder, in order, postorder). For example,
classLINEAR[G] has iteration procedures such as

until_do(action PROCEDURHANY G]; The actual implementa-
test PREDICATEANY G)) tion in the library class
. L . is slightly different as it
-- Starting at beginning of structure, appltionto takes advantage of
-- every item up to but excluding first satisfyiragt other iteration proce-
do dures
from
start
until
afteror elsetestitem([item)
loop
action.call ([iterr])
forth
end
ensure
found_if_not_afternot afterimplies testitem ([iten)

end

In this procedure,action and test are agents objects representinr. Chapter27 dis-
operations to be applied. They both take an argument of tgpecusses in detail the

. .. L . notion of agent and its
representing a list itergctionis a procedure that processes such an it,,pjication to iteration
testa boolean-valued function (predicate) that determines whether a ct
property is true of the item. A typical call, usingur_integer_lisof type
LIST[INTEGER — where EiffelBase’'d.IST is indeed a descendant of

LINEAR —is:

L4

\ your_list.until_do(~{INTEGER .print, ~ is_positivé \

using two agent arguments, one built from proceduriet as applicable to
classINTEGERand the other from a functiois_positiveassumed to be
available in the current class to determine whether an integer is positive.
This call will print the initial elements of the list, if any, up to and excluding
the first positive one.

Along with until_do, traversal classes such &$NEAR and their
descendants provide other iteratats: until do_all, while_dq do_while
do_if, existsfor_all.

274

FEATURE ADAPTATION §10.16

LINEAR is a very general deferred class, requiring its effective
descendants to provide features representing basic traversingsstefts:
start traversalforth to advance by one positioitemto yield the item at
cursor positionafterto find out if the traversal has passed the last item. All
the classes of EiffelBase and other libraries that describe traversable data
structures such as chains, lists and many others are its descendants.

start* 0 iterm * Effecting the

forth LINEAR[G] after* details of

?
i

iteration

until_do™, do_all* .

item:
after

start

LINKED _
forth *

LIST[G]

Effective procedures such ado_until define traversal patterns.
Deferred features such arartanditemdescribe the ingredients to be used
in any particular application of these patterns.

To provide an actual iteration mechanism over a certain concrete
structure — such asINKED_LISTor CIRCULAR_LIST it suffices to
inherit from LINEAR or another of the traveral classes, and to effect the
deferred features to describe the specific machinery of iteration processing
on the chosen structure: how to start an iteration, move on to the next
element, access the current element, and determine end of traversal, based
on the specific implementation retained.

10.16 REDECLARATION AND TYPING

The two redeclaration mechanisms studied so far in this chapter,
redefinition and effecting, share many properties; both are ways to refine
the original declaration of an inherited feature, and both are subject to the
same constraints.

Two important properties apply in both cases:
« The type constraint, which we will now explore informally.
 The rule on semantics of updated assertions, studied in the next section.

§10.16 REDECLARATION AND TYPING 275

The formal version of these combined properties is the Redeclaration = “Redeclamtion
given in full later. rule”, page 307

First, the type constraints. Lébe a precursor (parent’s version) of an
inherited feature. Assume that the signaturi(f the parent) is

[A B].[C] |

Recall that the first part, hefé, B], lists the arguments types for a routii—~ “THE SIGNATURE
(itis empty for an attribute), and that the second part, Retists the resultﬁg

type for an attribute or a function (it is empty for a procedure).

Then the Redeclaration rule will state that if you redecfanto a new
feature, the new signature must conform to the precursor’s signature.

Conformance, a key concept of the type system, is discussed in de - ‘See chaptet4 on
a later chapter, but the basic idea is straightforward: a type conforrrl‘;orlr;fog?anéggasr}g‘,ﬁ
another if its base class is a descendant of the other’s; a signature COrAND SIGMTURE
to another if it has the same number of arguments and results and SONFORMANCE",
. 14.4, pae 378
type in the first signature conforms to its counterpart in the other.

example, the signature.

I

X, V.12

will conform to the above if typX conforms toA, Y to B andZ to C.

This rule means in particular that a redeclaration may not changi- Chapterl3.
number of arguments and results, and may only replace types of argu
or results by conformant types. You can obtain the effect of changing the
number of arguments and results by ugunes.

The Redeclaration rule also prohibits the redeclaration of an attribute
into a function. It is permitted, however, to redeclare a function into an
attribute; in this case the preceding constraint implies that the precursor
function must have been without arguments (otherwise the new signature
could not conform). The attribute used for the redeclaration may be
variable or constant.

276

FEATURE ADAPTATION §10.16

|

BEETHON]
L i}

Redeclaring a function into an attribute is a useful and common
practice. Here is a typical case. Feataoeint present in most classes of
EiffelBase, gives the number of elements of a structure. Classes high in the
inheritance graph, such asIST, the deferred class describing lists
independently of any representation choice, dectaxentas a function,
which traverses a structure to count its elements. The implementation of
effective descendants such BENKED_LISTkeeps a record of a list's
element count in the list header; these descendants accordingly redefine
countinto an attribute.

O count Redefining a
LIST[G] -- Default implementation: function into
-- traverse list and count items. an attribute
4 = =u
| 77 count™

-- Redefined as attribute: list
-- keeps track of number of items.

This s typical of why you may want to redefine a function into an attribute.
A classB (LIST in this example) has a functiohthat computes some
information about the corresponding objects (in the example, the number of
itemsin alist). You devise a new implementation, represented by a descendant
Cof B, thatkeeps the information up to date in a field of the object, represented
by an attribute ofC. (In the exampleC is LINKED_LIST which keeps a
record of the number of items in the list header.) In most object-oriented
languages, you would have to define this attribute as a new feature of the class,
and redefind into a function that returns its value. But there is no need for

two separate features, since they represent the same information: incEiffel,
will simply redefinef into an attribute.

LINKED_
LIST[G]

This is all in line with the Uniform Reference principle, which states
that attributes and functions without arguments should be indistinguishable
from the outside, as they are just two alternative ways to provide a query,
differing in implementation technique, not relevance to clients.

In implementing such a schem&, must ensure that the value of the
qguery will always be up to date when clients access it; this means that any
procedure whose execution may have an effect on the query’s value must
be redefined irC to update the attribute. (In our exampléNKED_LIST
must redefine all the procedures that insert or remove items, to make sure
they increment or decremertunt) To make sure that you don’t forget any

§10.17 REDECLARATION AND ASSERTIONS 277

such redefinition, take a look at procedure postconditions: in well-written
classes, the postcondition of any procedure should indicate whether the
procedure has any effect on any particular query. For example the
postcondition ofremove which deletes an item from a list, will have a
clause of the forngount= old count— 1. This signals that together with any
redefinition ofcountinto an attribute there must be a redefinitiomarhove

to include the instructionount:= count+ 1 or equivalent.

Sometimes th® version off is deferred; this is the case in the above
example if instead ofISTwe consider its ancest@EQUENTIAL. where
countis deferred. (Deferred features are syntactically treated as routines,
although if they have no arguments they are just features for which we have
refused to choose yet between attribute and routine implementations.)

Why then (in spite of the Uniform Reference principle) does the type
constraint prohibit the reverse form of redefinition — changing an attribute
into a function? One of the reasons is that we would be unable, were this
permitted, to make sense of certain routines inherited from parents.
Assume clasB with features

a: INTEGER -- ais an attribute
set aisdoa:=0end -- set_aassigns t@

I

Then if C, an heir ofB, were allowed to redefin@into a function, but did
not redefineset_a there would be no way to execuset aapplied to
instances o€, since one may not assign to a function. For the same reason,
it is not permitted to redefine a variable attribute into a constant attribute.

10.17 REDECLARATION AND ASSERTIONS

The other fundamental property of redeclaration govern&tiseondition - See chapted about
and Postconditionclauses of a redeclared routine. Such assertionFreconditiorandpost

. L . conditionclauses and
present, may not be dhe basicforms using just require and ensure; eir semantics in the
instead they must usequire elseandensure then Consider a routineabsence of redeclaration

redeclaration. If it contains new assertion clauses, they must be of the

require elsealternative_precondition
ensure thenextra_postcondition

expressing the new assertions as a variation on the precursors’ assertions.

278

FEATURE ADAPTATION §10.17

BEETHON]
o L -

What kind of variation? Consider a routine redeclaration angref, with sharing in
... pre, be the precursors’ preconditions gmast, post, be the precursors[ﬁgfeaﬁgy'gg%rggf&zﬁor
postconditions. (R_emember t_hat in most practical cases there is onlyere precursorsout
precursor, so thatis 1; only with a join of deferred features may there this is not a case of
two or more precursors.) Assume that new assertion clauses are pres'édeciaration See the
. . . definition of“inherited
the above form. Then the redeclared routine will be considered to havieatures on pages62

precondition and postcondition.

alternative_preconditioor elsepre; or else... or elsepre,
extra_postconditiomnd thenpost and then ... and then posy,

In other words, the precondition is or-ed with the original preconditic- orelseandandthen
and the postcondition is and-ed with the original postconditions. Fo@® the"semi-strict
. . versions of plairor and
precondition, the use of operatarelserather than plair guarantees thasng. seesEMIS-
the assertion is defined, with value true, whenever one of the operan(TRICT BOOLEAN
value true, even if a subsequent one is not defined; simikanky,then for OPEF;QT&_)ORS . 28.6,
postconditions guarantees that any false operand makes the whole as™®

false even if a subsequent one is not defined.

If the assertion clauses are missing in a redeclaration, the convention is
that the redeclared routine is considered to hafalse as
alternative_preconditionfor an absentPreconditionpart and True as
extra_postconditiorior an absenPostcondition Because of the rules of
boolean algebra, this means keeping the corresponding precursor
assertions. (Or-ing a boolean value witlhse, or and-ing it withtrue, does
not change the condition.)

The use ofequire elseandensure thenin a redeclared routine reflecisee'object-Oriented
an important part of the Design by Contract method underlying Ei-z’r?(fjt){vggiicr?réstrégtru]c)h
Redeclaring a routine means subcontracting to a descendant the job - (refgrenzes in
clients originally entrusted to the precursor. A good subcontractor wilappendix) and the
as well as better for clients as agreed in the original contract (involvinggOtlon of subspecifica-

. on in, page 232
precursor). This means:

» Keeping or weakening the precondition, so as not to impose any new
requirements on the original clients.

» Keeping or strengthening the postcondition, so as to return a result that
is as good as what was originally promised to the clients.

The or-ing and and-ing automatically guarantee these rules,sovagiseq a condition is stronger
is always weaker than or equalgpandp and thenqis always stronger tharthan orequalto another

if it implies it in the
or equal t. sense of boolean impli-

Examples of strengthening the postcondition routine are very comjcation “Weakerthan or
In fact, almost any redefinition of a routine’s implementation, or effect-a Is the inverse
of a deferred routine, will do something more — such as updating new
attributes —, leading to a postcondition stronger than the original. The

added properties should appear inghsure thenclause.

§10.17 REDECLARATION AND ASSERTIONS 279

As an example of weakening the precondition, assume the inheritance
hierarchy illustrated below. Procedungite, in DEVICE, has two clauses
in its Preconditionthe device must be open, and it must not be protected.
Examples of devices are output devices, interactive devices and files.

open BOOLEAN Precondition
protected BOOLEAN\ DEVICE wntet)pen weakening
not protected
L] 0)
OUTPUT FILE INTERACTIVE

[] write™ T
PRINTER not protected TERMINA

Assume that printers, a kind of device, may not be write-protected. (The
invariant of clas$?RINTERshould include the clauseot protected) The
precondition ofwrite for PRINTERmay then be weakened to jogten

To achieve this, just include in the redefined versionvafte in
PRINTERthe Precondition

‘ require elseopen ‘

The above semantic rule gives, as actual precondition:

‘ openor else(not protectedand then open ‘

which has the same value as jogén

I FEAMLAET S I

o , , , « “SYNONYMSAND
If a declaration introduces an immediate feature — in other words,,), TipLE DECLA-

not a redeclaration — theequire else and ensure thenforms are still RATION”, 5.18, pae
permitted, having the same effect as jesjuire andensure 158

280 FEATURE ADAPTATION §10.17

Since the longer forms are normally intended for redeclarations, you
might expect a validity constraint which makes them invalid for an
Fumid immediate feature. But there is no such constraint, among other reasons
because this tolerance makes it easy to deganenynfeatuesof which
one is immediate and the other inherited. A declaration may be of the form

inherited immediate
o require else
pre

-

do

ensure then
post
end

where inherited is a feature inherited from a parent, for which this
declaration will be a redefinition or effecting, buhmediateis a new
feature. Theequire elseandensure thenform are compulsory because of
inherited But they also work formmediate being understood agquire
andensure

Remember that there is no tolerance in the reverse direction: for a
/™. redeclaration, only theequire elseandensure thenforms are permitted.

=---- UPDATE --- Assertion declaration, as we have now studied it,
complements another property involving the combination of assertions and
inheritance: thaefinition of “invariant of a class” as containing not only
the local Invariant clause, but also any others inherited from parents.
Together with the rules just seen on assertions of redeclared routines, this
ensures that inheritance and redeclaration maintain the fundamental
semantic properties of a class and its features, as expressed by the
assertions.

We need to consider one more case in the combination of redeclaration
@ and assertions. What happens, when you redefine a function without
I arguments into an attribute, to the function’s assertions if any? Since an
attribute has no precondition, we may consider that the precondition is
changed tdrue this is consistent with the preceding discussion sifrce
is weaker than any other assertion. For a postcondition, the situation is
different: the only way to express that the attribute’s possible values will

§10.18 RULES ON INHERITED ASSERTIONS

281

satisfy the corresponding condition (with the attribute’s name substituted
for Resul} is to make it part of the invariant of the class. The definition of
class invariants took care of this by stating that the redefinition of a
function into an attribute automatically adds the adapted postcondition to
the invariant of the redefining class, replacing any occurrencguofent

by the attribute name. So if a function was of the form

4 last_value INTEGER
=-I-=- do
ensure
Result>=0
end

and a descendar®® of its class of origin redefinekast_valueinto an
attribute, the invariant o€ will automatically include the clause

last_value= 0

--- ADD DISCUSSION OF EFFECT OF REDECLARATION ON
“ONLY” POSTCONDITION CLAUSES

10.18 RULES ON INHERITED ASSERTIONS

Unfolded form of an assertion

Theunfolded form of an assertioa of localunfoldedform uain

a clas<C is the followingBoolean_expression

1 «If ais theinvariantof C andC hasn parents for some = 1:
upand ... and up, and then ua, whereup,, ... up, are
(recursively) the unfolded forms of the invariants of these
parents, after application of any feature renaming specified by
C'’s correspondingrareniclauses.

2 « If ais thepreconditionof aredeclared feature thecombined
precondition fora.

3 «If ais thepostconditiorof aredeclared featufethecombined
postcondition fom.

4 «|n all other casesia.

282 FEATURE ADAPTATION §10.18

The unfolded form of an assertion is the form that will define its semantics.
It takes into account not only the assertion as written in the class, but also
any applicable property inherited from the parent. The “local unfolded
form” is the expression deduced from the assertion in the class itself; for an
invariant we “and then” it with the “and” of the parents, and for
preconditions and postconditions we use “combined forms”, defined next,
to integrate the effect akequire elseandensure thenclauses, to ensure
that things will still work as expected in the context of polymorphism and
dynamic binding.

The earlier definitions enable us to talk about the “precondition of” and
“postcondition “of” a feature and the “invariant of” even in the absence of
explicit clauses, by usingrue in such cases. This explains in particular
why casel can mention “the invariants of” the parentof

Assertion extensions
The Assertionof a Preconditionstarting withrequire elseis a
precondition extension

The Assertionof a Postconditiorstarting withensure thenis a
postcondition extension

These are the forms that routines can use to override inherited
specifications while remaining compatible with the original contracts for
polymorphism and dynamic bindingequire else makes it possible to
weaken a preconditiognsure thento strengthen a postcondition, under
the exact interpretation explained next.

Covariance-aware form of an assertion extension

The covariance-aware formof anassertion @ensiona is:
1 «If the enclosing routine has one or more arguments.. X,
redefineccovariantly to typesJ,, ... U,: the assertion
({xq: U} ypand ... and {x,: U} y,) implies &
whereyy, ... y, are fresh names and' is the result of
substitutingy; for each correspondingin a.

2 » Otherwisea.

§10.19 UNDEFINING A FEATURE 283

A covariant redefinition may make some of the new clauses inapplicable to
actual arguments of the old type (leading to “catcalls”). The covariance-
aware form avoids this by ignoring the clauses that are not applicable. The
rule on covariant redefinition avoid any bad consequences.

Combined precondition, postcondition

Consider a featuréredeclared in a class. Letfy, ... f,(n= 1)
be itsversions inparentsprey, ... pre, theprecondition®f these
versions, angost, ... post, their postconditions.

Letpre’ be thecovariance-aareform of thepreconditiorextension
of f if any, otherwiseFalse andpost 'the covariance-aware form
of thepostcondition xtension off if any, otherwisdrue.

Thecombined preconditionof f is theAssertion
(prej or... or pre,) or elsepre’

Thecombined postconditionof f is theAssertion
(old pre; implies post)
and ... and
(old pre, implies post,)
and thenpost’

The informal rule is “perform anr of the preconditions and andof the
postconditions”. This indeed the definition for “combined precondition”.
For “combined postconditions” the informal rule is sufficient in most cases,
but occasionally it may be too strong because it requires the old
postconditions even in cases thatrut satisfy the old preconditions, and
hence only need the new postcondition. The combined postcondition as
defined reflects this property.

10.19 UNDEFINING A FEATURE

You may redefine an inherited feature; you may also, if it was effective,
undefinet.

As the Redeclaration rulgvill expressprecisely, you may not us - Clauses of the
redeclaration to turn an effective feature into a deferred one, discardiRedeclaration rule
inherited implementation. In other words, redeclaration cannot decn@ggﬁ’?z
the “effectiveness level” of a feature: it can take the status of an inherited
feature from deferred to deferred (redefinition), effective to effective
(redefinition), or deferred to effective (effecting), but never from effective

to deferred.

284

FEATURE ADAPTATION §10.19

In some cases, however, this is desirable; when inheriting a feature, you
may wish to give it back its virginity, by pretending you inherited it as
deferred, even though its precursor (the parent’s version) is in fact effective.

Undefinition serves this goal. To undefine one or more effective
features inherited from a parent, just list them inthelefinesubclause of
the correspondingarentpart, as in

classC inherit
B
rename
undefine
f,g,h
redefine

... Other subclauses 6&fature_adaptation.
end
... Other parents and rest of class

In the optional subclauses offeature_adaptatiotyndefinecomes aftertorememberthis order

RenamendNew_exportsand befor&kedefine note that all subclauses
— excepRenameefer to

Heref, g, h must be features that are effectiveBnThe effect of thejvaneceetonme -

aboveUndefinesubclause is thal obtains these features franas if they should come first
had been deferred rather than effective in that class; the process doSince as seen nexan

, e . undefined feature ma
change the features’ signature and specification. then be redefined Y

. . L . Undefinemust come
It is possible to apply both undefinition and redefinition to the SepeforeRedefine

inherited feature; this is useful if you want to make an inherited feawc
deferred and also change its signhature or specification, as in

classE inherit
B
undefine
f
redefine
f
end
feature
f (x: U) is deferred end
end

where theB version off had an argument of typerather tharJ, assuming
(as required by the Redeclaration rule) thatonforms tor.

§10.20 REDEFINITION AND EFFECTING 285

This leads to a precise definition of the inherited status of a feature:

Inherited as effective, inherited as deferred

An inheritedfeature isinherited as effectiveif it has at least one
effective precursor and the correspondifgrentpart does not
undeine it.

Otherwise the feature isherited as deferred

10.20 REDEFINITION AND EFFECTING

We can now define precisely the two variants of redeclaration:

Effect, effecting

A classeffectsan inherited featuréif an only if it inheritsf as
deferred and containsdeclaration foff.

Such a declaration is then known as#facting of f

Effecting a feature (making &ffective hence the terminology) consists of
providing an implementation for a feature that was inherited as deferred.
No particular clause (such asdefine) will appear in thenheritancepart:

the new implementation will without ado subsume the deferred form

inherited from the parent. — Two feature names
are“the sameéifthey are
identical or differ only by
letter caseSed'Same
featue namesame
opemtor, same alias”
page 153

Redefine, redefinition

A classredefinesaninheritedfeaturef if and only if it contains a
declaratiorfor f that is not areffecting off.

Such a declaration is then known ags@efinition of f

Redefining a feature consists of providing a new implementation,
specification or both. The applicabffarentclause or clauses must specify
redefinef (with f's original name if the new class renamgs

Redefinition must keep the inherited status, deferred or effectifie, of

« It cannot turn a deferred feature into an effective one, as this would fall
be an effecting.

It may not turn an effective feature into a deferred one, as there is
another mechanism specifically for this purposedefinition. The
Redeclaration rule enforces this property.

As defined earlier, the two cases, effecting and redefinition, are together
calledredeclaration

286

FEATURE ADAPTATION §10.21

10.21 THE JOIN MECHANISM

BEETHON]
L i}

The notion of deferred feature yields a useful technideature join
allowing a class to merge several inherited features into just one.

The join mechanism supports an important aspect of object-oriented
architecture design: the fusion of abstractions. The abstractions that need
to be combined will come from different hierarchies of deferred classes.

The EiffelBase library, based on combinations of three such hierarcRgiainer data struc-
provides typical opportunities for such fusion. The hierarchies corresiture, such as aqueue or
to complementary classification criteria for general-purpose “contaigtgfesgggbrffﬂf;\‘l’:s to
data structures: objects Some of the

. _mostimportantkinds of
Storage characterlzmg the representation properties of a contccontainer data struc-

structure (fixed size, variable size but bounded, unbounded but fture are covered by the

potentially infinite). classes of EiffelBase
Se€'Reusable Soft-

» Access characterizing the methods through which clients store ware' for details
retrieve elements (in last-in-first-out for stacks, through a key for t
tables etc.).

* Traversal, characterizing ways of exploring the container exhaustively
(forward, backward, postorder, preorder and others.).

You can obtain a particular type of effective container by multiple
inheritance from classes of these three categories. For example, a “fixed-
size list” has fixed-size storage, access by index and other techniques, and
forward traversal.

In this process of combining abstractions, it will often be useful to
merge inherited deferred routines if they correspond to the same notion in
the descendant. For example, the deferred EiffelBase dGid$aIN
(describing sequential structures such as lists) inherits from two deferred
classes that both have éaimmfunction returning the item at cursor position:

* ACTIVE from the Access hierarchy, describe structures with a client-
controlled “cursor” position. Procedures are available to move the
cursor to various elements. In this clagsm denotes the value of the
element at cursor position.

« BIDIRECTIONAL. from the Traversal hierarchy, describe structures that
are sequentially traversable both forward and backward. In this itkss,
denotes the value of the current element at each step of a traversal operation.

,,,,,,,,,,,

functions. Normally, this would be considerechameclash, which we19-23.pae 290
would have to remove through renaming. But here the clash is harmless, in

fact desired, since for @HAIN the two concepts are compatible. If the
features were effective, we would have to choose between conflicting
implementations; but they are both deferred, so we have no such problem.

We can simply merge — “join” — them into one.

§10.21 THE JOIN MECHANISM

287

It is valid, then, to writeCHAIN as heir to bottBIDIRECTIONALand
ACTIVE even without renaming the deferré@m routines, which will
yield a single deferred routine ®HAIN:

l%l

deferred classCHAIN|[T] inherit
BIDIRECTIONAL[T]
-- BIDIRECTIONALhas a deferred routiriem

ACTIVE[T]
-- ACTIVEhas a deferred routineem

... Other parents and rest of class text omitted

Here is another interesting application. Occasionally you will need to effect
an inherited procedure to do nothing at all. For example a descendant of a
general-purpose iteration class, as studied earlier in this chapter, might not
need a particular initialization operation, provided in the ancestor by a
procedureprepare You can manually effeqirepareinto a procedure that
does nothing. But it is simpler to use a join with the procedlgenothing

from classANY whose implementation faithfully respects its name:

classSIMPLE_ITERATORherit
GENERAL_ITERATOR
rename prepareasdo_nothingend
... Other parents and rest of class text omitted

That'’s all you have to do: renamimeparecauses a join witlkdo_nothing
and the associated effecting.

To be joined, inherited features must have the same final name in the
class that performs the join. In the above case both precursors were called
itemin the parents, so no particular action was required from the designer
of classCHAIN with respect to their names.In other cases you might want
to join two deferred features that have different namesf sengdg, in the
respective parents. You should then use renaming to make sure that the
features are inherited under the same final name:

288 FEATURE ADAPTATION §10.22

-- C may be deferred or not (see below)
... classCinherit
A
rename
fasnew_name
end
B
rename
g asnew_name
end

asifit had inherited a single deferred feature. In the absence of further édeferred was defined

from C, that feature remains deferré@imay of course provide an effectiv(Page283 to mean

declaration, killing several abstract birds with one concrete stone by (Grer Soming from
eclaration, g several abstrac S one concrete stone by eterred precursoror

a single redeclaration to effect several featimberited as deferred. explicitly undefined

If Cinherits and joins two or more deferred features, the net resut Ir _ | \herited as

More generallyC may treat the result of the join as it would any other
inherited deferred featur€.may in particular redefine the feature to change
its signature while leaving it deferred. In that caSemust list all the
inherited features in theedefinessubclauses of their respectivarenparts.

be joined in this way: they must be deferred (after possible undefinitioS0%
detailed in the next section), inherited under the same name (after possible
renaming), and equipped with the same signature (after possible
redeclaration). The formal rule expressing these requirements is the Join
rule, describedhter in this chapter.

The join mechanism imposes easily justifiable conditions on featurc “Join rule”, page.

10.22 MERGING EFFECTIVE FEATURES

4%, Asintroduced so far, the join mechanism applies only to deferred routines.
E""' m The reason is obvious: an attempt by a clags join two effective features
inherited from parents d® may yield an ambiguous result in the absence
of a clear universal criterion for choosing one of the two inherited
implementations over the other.

What happens, however, if when you desigiyou do know which of
the versions you want to override the othebit Then the merging should
not raise any particular problem.

_ _ ~ “UNDEFINING A
Theundefinitionmechanism makes this possible. Here is an illustraFEATURE”, 10.19,

of the scheme, used in this case to join three features: page 283

§10.22 MERGING EFFECTIVE FEATURES 289

Merging and
g A h* B it < overriding

renameg asf
undefinef

renamei asf
undefinef

We want to merge the three inherited features by renaming all of them into
a single namef. But the originals were all effective, yielding three
implementations of which we may retain only onelinTo discard theA
and C implementationsP undefines them, leaving th& version as the
undisputed victor.

In the simplest case, there are only two competing features in p&ents
andC, and they already had the same ndrirethese parents. If you want
theB version to take over iD all you need is to undefine tkaversion:

|

classD inherit
B
-- B has an effective featufe
C
undefinef end
feature
end

Although f’s precursor inB was effective, the undefinition cause® be
“inherited as deferred” fror@. TheB version provides an effecting.

An application of this technique will appear iepeatednheritance when a - See the beginning of
class inherits conflicting versions of the same feature, and the class desigrl6-5- P@e 434
wants to retain only one of these versions.

The general rule is the natural one (although we must wait until a - The next section dis-
definition of repeated inheritance to express it rigorously): inheriting cusses name clashes
or more features under the same name may only be invalid — a case of

name clash— if more than one is inherited as effective. If, after possible

undefinition, they are all deferred, or all deferred except for one effective

version, then we have a valid case of join, since there is no conflict of
implementations: we have either no implementation or one. In the latter

case the effective version will serve as common implementation for all the

features inherited as deferred.

290 FEATURE ADAPTATION §10.23

The examples have illustrated one way to reconcile conflicting effective
versions from parents: undefine all but one of them. This is like a
competition where one of the rivals win. There is another way — as in
business or in war — to resolve a competition: a new entrant overcomes
everyone else. The technique here will be to tesefinition rather than
undefinition: redefine all the conflicting inherited versions into a new one.
The last example becomes:

classD inherit

=
i

B
redefinef end

C
redefinef end

feature

f

do
... "Redefined algorithm’...

end

end

As you may have noted, it actually doesn’t make any difference here if we
replace either or even both of thedefine keywords byundefine If we
undefine one of the features, the other takes over, but gets redefined. If we
undefine both, they are inherited as deferred, and hence joined; but then the
declaration of effects both.

10.23 NAME CLASHES

Now that we have seen the join mechanism we are in a position to define
precisely the notion oiame clashof features under multiple inheritance,
and see what kinds of name clashes are permitted. From the previous
section we know the rough form of the rule: a name clash in a dass
between two or more inherited features will be OK, leading to a join of all
of them, if they all have compatible signatures (so that we may indeed join
them into a common version) and, taking any undefinitions into account:

« Either the resulting features, except possibly one, are all deferred.

« Or if this is not the case, meaning that two or more versions remain
effective inD, thenD redefines all of them into a common version, as in
the example class text above.

The discussion of repeated inheritance will also add a permissible case: the
“false alarm” resulting from features that come from different parents but
are really thesame featurdnherited from a common ancestor. In the
absence of conflicting redefinitions this can cause no trouble.

§10.23 NAME CLASHES 291

Let’s see the precise form of the rule. The general guideline isithe
overloading principle, dictated (although it may at first sound like an
advertisement for a mutual fund) by criteria of clarity and simplicity.

Overloading — the possibility for a single name to denote several features within
the context of a given class — defeats the principles of object technology, running
into conflict with the more powerful forms afynamicoverloading provided by
polymorphism and dynamic binding. Introducing in-class overloading is probably
the biggest mistake that one can make in the design of an O-O language.

In the absence of inheritance, the no-overloading principle is easy to
enforce: all the features declared in a class must have different names. With
single inheritance, we add the rule that no inherited feature may have the
same final name as a feature of the class; renaming provides an easy way
to correct any such potential conflict. With multiple inheritance, this last
rule must still apply between the class and each of its parents, but in
addition we have to take into account the case of conflicts between names
of features in the parents themselves. This is what we call a name clash:

Name clash

A class has aame clashif it inherits two or more features from
differentparents under the sarfieal name.

Since final names include the identifier part only, aliases if any play no role
in this definition.

Name clashes would usually render the class invalid. Only three cases
may — as detailed by the validity rules — make a name clash permissible:

» At most one of the clashing features is effective.
* The class redefines all the clashing features into a common version.

» The clashing features are really the same feature, inherited without
redeclaration from a common ancestor.

This property is not expressed as a separate validity constraint since it follows
from the Join rule given at the end of this chapter, and the complementary
mechanisms discussed in the repeated inheritance chapter.

In the first permissible case, the clash involves only one implementation, or
none; if the signatures are compatible, we may join all the features into a single
one, with no particular difficulty (and without departing from the no-
overloading principle). The second case is similar: joining through redefinition.

In the third case, we don't have a real clash at all, only the appear- Chapterl6explores
of one, as if being scared in an empty house by a moving figure that fepeated inheritance
out to be our own reflection in the mirror. This case arises out of repe
inheritance (as studied inlater chapter) in the situation represented
the figure:

292 FEATURE ADAPTATION §10.23

; A name clash
A thatisn'treally

/\ one
N
© ®©

"
)

D seems to inherit two featuré&rom both its parent8 andC, but they are

not really different features, simply the same feature inherited from a
common ancestof, and not redeclared anywhere in the process. As we
may expect, and the rules of repeated inheritance will state precizely,
inherits a single featurk so this case causes no difficulty.Outside of these
three cases, however, a name clash is always prohibited. In the typical
situation

classCinherit
A
B
... Rest of class omitted.

where bothA andB have a feature with the same nafmame classC will
be invalid. It's quite easy to get rid of the name clash:

« Often you will want the features to remain distinct@) because they
indeed correspond to different operations; their sharing of a common
name is just an unfortunate coincidence, a kind of pun. Then you will
simply rename one, or both.

« Sometimes, however, it's not just a pun@iyou really want the clashing
features to be merged into one. Then, if the signatures are compatible,
you can rely on the join mechanism by undefining either one; the other’s
implementation will take over. You may also undefine both, lea@ag
one of its own proper descendants in charge of effecting the joined result.

§10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR 293

10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR

The last mechanism of this chaptérecursarsimplifies writing a routine’s
redefinition when the new implementation relies on the original one.

The need for a precursor mechanism

In studying redefinition we have seen that you can overrigeuéine’s You may redefine fea-
inherited implementation (as well as its signature and contract). Thetures of all kindsbut

. . . . _thissection only applies
implementation may be completely different from the original one; g routines

fairly often it just extends it, performing the same actions as the oric

plus some others, with a redefinition of the form

your_routine
do
“Something else”
“Whatever the original version did”
“Yet something else”
end

If you need new actions only after the original processing there is no
“Something else’if only before, there is nret something else”

A typical example would be the redefinition, in a proper descendant
TAXABLE_INVESTMENG®f a clasdNVESTMENTof the procedursell,
where the new version performs what the original version did but must also
compute the tax penalty associated with the sale of a stock.

The Precursomechanism provides you, when writing redefinitions of
this kind, with a simple way to includ&Vhatever the original version did”
in the actions of the new routine body. Withdutecursgryou would have
two ways of achieving the intended effect:

* You could simply repeat the original algorithm in the body of the new
version, in lieu of the line that read#/hatever the original version did”
above. This works but has the usual effects of code duplication: making
the software bigger and less readable (since the reader doesn’t
immediately realize that a certain element is not original but the
verbatim replication of something else); tediousness for the developer;
and, most damaging, the need to remember, if the original changes, that
you must update all duplicates as well, with the risk of forgetting some.

As you will have noted, one of the recurring fetures of the Eiffel method is its
phobia of unnecessary replication. Genericity, inheritance and other reuse
mechanism are all intended to make sure that what needs to be said is said
well, and said once.

294 FEATURE ADAPTATION 810.24

* You can also use the replication mechanisms of repeated inherit - “KEEPING THE
studied in therelevant chapter, to keep a duplicate of the origirgﬁ'ﬂ’?\‘égl\zﬁﬁzg'\‘
feature, along with the redefined version. This approach avoidscearure” 168,
drawbacks of the preceding technique; it was indeed the recommepage 443
method in early versions of Eiffel, and remains appropriate in st _
cases. For most common applications, however, it is overkill, and

Precursoprovides a simpler solution.

Precursor basics and examples

That solution is in fact disarmingly easy: in a routine redefinition,
Precursorstands for what was written above ‘a&hatever the original

version did” The form of the construct is simply the reserved word
Precursor followed by a list of actual arguments if any. So you can write
the first example sketch above, for a routine with no arguments, as just

your_routine
do
“Something else”
Precursor
“Yet something else”
end

For a routine with arguments, the redefinition might look like

sell (share_countREAL selling_price PRICBH
-- Record sale adhare_counshares aselling_price

=
I

do
Precursor(share_countselling_pricg
compute_tax

end

These examples illustrate how to use Brecursorreserved word: exactly

like you would use the feature namee{v_versionand sell in these
examples) for a new call to the corresponding routine, such as the calls
new_versiorandsell (share_countselling_pricg. Appearing in the body

of the routine, these calls would be recursive — leading in fact, as written,
to infinite recursion —, but instead of the feature name weRreeursor
which yields the desired effect, calling the original version.

In the sell example the arguments frecursorare the same as the
formal arguments to the procedurehare_countand selling_price
meaning that you call the precursor with the same arguments that were
passed to you. This is not a general requirement; in other circumstances
you may pass tBrecursorany arguments of the appropriate types.

§10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR 295

These two examples use procedures. The mechanism works just as well
with functions:

| 4 | profit (share_countREAL selling_price PRICH: AMOUNT

-- Profit from sale ofhare_counshares atelling_price
do
Result= Precursor(share_countselling_price
— tax_penaltyshare_countselling_price
end

The result of thé’recursorcall is the result returned by a call to the original
version of the routine, with the given arguments.

The Precursorcontruct is valid only in the case illustrated by these
examples: the body of the redefinition of a routine, in which it denotes the
original implementation in the parent.

Outside of this case a class may not refer to ancestor versions of its features
(as provided by the “super” variables of some object-oriented languages,
parThnn notably Smalltalk) because this would impair the consistency of the notion of
b class. A class is entirely defined by its features; how these features were
arrived at through inheritance is internal information, and the original
versions are not part of the information associated with the class. (They will
often violate the contracts associated with the class, in particular by failing to
maintain its invariant, typically stronger than the ancestors’ invariants.) The
only justification for accessing a parent version is that we may need the old
implementation to define a new one, throughRhecursoiconstruct.

The precursor of a redefined featuraata feature of the current class. If you - “KEEPING THE
do want to keep both the original and the redefinition as features of the clasORIGINAL VERSION

: . ; ; OF A REDEFINED
you can, but you have to use a different mechanism: repeated mherm_amce,FEATURE,, 16.8

explained in a later chapter. page 443

Choosing between multiple precursors

In ordinary cases, as illustrated by the examples, a redefined routine has
only one effective precursor. In studying the join of routines, however, we
have seen that it is possible for a routine declaration to be the redefinition
of two or more parent versions (precursors). If you us@racursor
construct in such a case you will need to specify which precursor you want,
by listing its name. Instead of juBtrecursor(argumentythe syntax in that

case will bePrecursor{ PARENT (argumenty where PARENTIs the
name of one of the parent classes from which we are redefining the feature.

296 FEATURE ADAPTATION §10.24

Theeatrlier join example illustrates the case of multiple precursors — Page290

| 4 | classD inherit
T B

redefinef end

C
redefinef end
feature
f
do
... "Redefined algorithm’...
end

end

In the “Redefined algorithm” a precursor call of the form
Precursor(argument} is invalid, because it leaves open the obvious
guestion Whichprecursor do you mean: the version frapor fromB?”.

The qualified form removes the ambiguity: you should write either one of

Precursor{B} (argument}
Precursor{C} (argument}

You may, in fact, include both of these in the redefinition’s body if you need
to reuse both parents’ original implementations to define the new one.

The form with explicit qualificationPrecursor{ PARENT_NAME is
@ valid even in the absence of ambiguity. It is usually preferable to use this
prroons form in all cases since it clarifies the context and helps identify errors if you
change parents. This is part of the style guidelines.

.y With these observations we have enough to introduce the formal
i ‘in properties of thé’recursoconstruct. (They will mark the beginning of the
m‘rﬁ formal part of this chapter; since it will introduce no new construct or
technique, but only provide precise definitions of the concepts seen
informally so far, you may on first reading skip to the next chapter.)

Precursor specification

The syntax of thePrecursorconstruct covers the variants seen in {7 The definition of
Parent_qualification

preceding examples: repeated here for clar-
ity, originally appeared

with Clientson page
e | Precursor| 204
Precursor® Precursor [Parent_qualificatigff Actualg

§10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR 297

Parent_qualificatio® "{" Class_namé&}"

For the validity and semantics, we avoid introducing special rules — which
would repeat many of the properties of calls — by relying on our usual
unfolding language definition technique: we just pretend that we were
clever enough, in the parent class, to keep a duplicate of the original
feature, by relying on gynorym feature:

Relative unfolded form of aPrecursor

In a classC, consider aPrecursoispecimernp appearing in the
redefinition of a routing inherited from aparent clasS. Its
unfolded form relative to B is anUnqualified_calbf the formr’

if p has noActuals orr’ (args) if p has actual argumentsgs,
wherer’ is a fictitious feature name added, witlirazen mark,
assynorym forr in B.

In other words, we will talk about therecursocall as if the declaration of
r in B, instead of just

‘r(a:T;...)...do...Body...end ‘

had been written with a frozen synonym

r, frozenr’ (a:T;...)...do... Body... end ‘

. « “Unfoldedformofa
Therule on multiple declarations implies that this is equivalent to ha\possibmultimedec,a_

declared independent features with an identdy. Because’ is frozen, ration”, page 158
it retains the original semantics ofin the context of the new cla€3 this
is exactly what we want to describe the validity and semanti&edursar

298 FEATURE ADAPTATION 810.24
Here indeed is the validity:
Precursor rule VDPR
LI T A Precursoris valid if and only if it satisfies the following
conditions:
1«1t appears in thé-eature_bodpf a Feature declaratioof a
routiner.

2 «If the Parent_qualificatiompart is present, it€lass _namds
the name of @arent clas® of C.

3 * Among the routines of’s parents, limited to routines & if
condition 2 applies, exactly one is aeffective routine
redefined byC intor. (The class to which this routine belong
is called theapplicable parentof thePrecursa)

4 « The unfoldedform relative to the applicable parent is, as an
Unqualified_callagument-alid.
In addition:

5eltis valid as arinstructionif and only ifr is a procedure, an
as arexpressiorif and only ifr is a function.

[72)

This constraint also serves, in conditi®ras a definition of the “applicable
parent”: the parent from which we reuse the implementation. Condition
relies on this notion.

Condition1 states that th@recursorconstruct is only valid in a routine

redefinition. In general the language definition treats functions and

attributes equallyWniform Accesgrinciple), but here an attribute would

not be permissible, even with aAttribute body.
Because of oumterpretation of a multiple declaration as a set of separate.— “SYNONYMS AND
declarations, this means thatHfecursomlappears in the body of a multiple MULTIPLEDECLARA-
declaration it applies separately to every feature being redeclared. This is TION". 5.18, pae 158
unlikely case, and this rule makes it unlikely to be valid.
Condition2 states that if you include a class name, aBriecursor{ B},

thenB must be the name of one of the parents of the current class. The

following condition makes this qualified form compulsory in case of

potential ambiguity, but even in the absence of ambiguity you may use it to

state the parent explicitly if you think this improves readability.

Condition3 specifies when this explicit parent qualification is required.
This is whenever an ambiguity could arise because the redefinition applies
to more than one effective parent version. The phrasing takes care of all the
cases in which this could happen, for example as a result of a join.

§10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR

299

I FEAMLAET S I

Here is a more verbose form of clau8eobtained from a mathematical
specification. LetPAR be the set of classes defined as follows: if the
Parent_qualificatiopart is presenf?ARis the single-element set containing
the class whose name is listed in tiatrent_qualificatiorotherwisePARis

the set of all parents af. Let REDEFbe the set of all the effective routines,
from classes belonging AR of whichr is a redefinition. TheREDEFhas
exactly one element.

Condition4 simply expresses that we understand Rinecursoispecimen

as a call to a frozen version of the original routine; we must make sure that
such a call would be valid, more precisely “argument-valid”, the
requirement applicable to such ldnqualified_call

A Precursowill be used as either dnstructionor anExpressionin the
same way as a call to (respectively) a procedure or a function; indeed
Precursoappears as one of the syntax variantdjoth of these constructPages24and753
So in addition to being valid on its own, it must be valid in the appropr
role. Conditions takes care of this.

This property really belongs to the validity of instructions and expressions,
but having a single clause here saves two full-fledged validity rules in the
respective chapters: “Itis valid to us@eecursoas arinstructionif and only

if its unfolded form is a call to a procedure”, and “Itis valid to uséracursor

as arkExpressiorif and only if its unfolded form is a call to a function”.

The definition of the “relative” unfolded form didn’t necessarily yield a
valid call; in fact it serves, in clausg to determine validity. If as a result
we know we have a valiBrecursagrwe can define an unfolded form that is
not relative any more:

Unfolded form of a Precursor

Theunfolded form (absolute) of a validPrecursois its unfolded
form relative to itsapplicable parent.

The semantics follows immediately:

Precursor semantics

The effect of &recursois the effect of itsinfolded form.

As usual, semantics is only defined for valid specimens, so it may
legitimately use the “absolute” unfolded form.

300 FEATURE ADAPTATION 810.25

10.25 REDEFINITION AND UNDEFINITION RULES

% The agenda for the remainder of this chapter is to provide the precise rules
/=" for syntax, validity and semantics of the mechanisms seen so far — all
“ETE‘ feature adaptation mechanisms except for those involving repeated
inheritance. As already noted, this will introduce no new techniques, so

you may prefer on first reading to skip the rest of this chapter.

Let us begin with the straightforward syntax and validitylbfdefine
and Redefinesubclauses. It will do no harm to repeat here (again) the
general structure ohheritanceclauses:

METEC Inheritance parts _
Inheritance? "inherit Parent_list ;gksoiyggi:efggeared

Parent_list2 "{ Parent";" ...}
Parent2 "Class_typdFeature_adaptatipn

Feature adaptatiod [Renamg
[New_exportf
[Undefing
[Redefing
end

The clauses involved in the present discussioriargéefineandRedefine ~ See pag&80for
. . Renamend205for
Here is the syntax dRedefine New_exports

o] Redefinition
Redefine? redefineFeature_list

§10.25 REDEFINITION AND UNDEFINITION RULES 301

The following constraint applies ®edefinesubclauses:

Redefine Subclause rule VDRS

LTI, A Redefinesubclause appearing irFarentpartfor a clas8 in a
classC is valid if and only if everyFeature_nam&amethat it
lists (in itsFeature_ligtsatisfies the following conditions:

1 «fnameis thefinal name of a featurieof B.
2 «f was not frozen i, and was not aonstant attribte.

3 «fnameappears only once in theature_list

4 « TheFeaturegart of C contains oné-eature_declaratiotiat
is aredeclaration but not aaffecting off.

5 «If that redeclaration specifiegiaferredeature C inheritsf as
deferred.

In this definition:

 Thefinal name of an inherited feature (claugéds its name as it results

from possible renaming (thesature_nampart only, not including any; =t HRES ATD

Alias). page 182

* Afeature is'frozen” (clause?) if it has been declared with the keywol- “FEATURE DEC-
frozen in its class of origin. The purpose of such a declaration ARATIONS: SYN-
TAX", 5.10, pae 140
precisely to forbid any redefinition of the feature in descenda.
guaranteeing that the exact original implementation remains in place.

* A feature is econstangttribute (clause) if it is declared with a clause~ "‘HOWTORECOG

of the formis v, wherev is Manifest_constant 5 '1ZZE FEfllj';ES
5.12, pge 14¢

 The condition for a redeclaration to be valid (clad3@ppeardaterin - “REDECLARA-
this chapter; in particular, the new signature must conform to LONBULES". 10.28,
= X ' : . : page 306
original’s, and you may not redeclare an attribute into a function.

« If C provides an effective version of a feature that it inherits as defel- Effectingis defined pre
this is a case of effecting, and hence of redeclaration, but nccisely inthe nextsection
redefinition; as a consequence, cladsedicates that the feature mus.

not appear in th&edefinesubclause.

As to the semantics:

] Redefinition semantics
‘ The effect in a clas€ of redefining a featur&in a Parentpartfor
A is that theversion off in C is, rather than its version iA, the
feature described by the applicable declaratiad. in

302 FEATURE ADAPTATION 810.25

This new version will serve for any use of the feature in the class, its clients,
its proper descendants (barring further redeclarations), and even ancestors
and their clients under dynamic binding.

The syntax of atundefineclause is similar to that offRedefine

TN Undefine clauses
Undefine2 undefine Feature_list
The constraint is also similar:
; Undefine Subclause rule VDUS

[iaLiniey An Undefinesubclause appearing inParentpartfor a classB in
a clasC s valid if and only if everyFeature _namfnamethat it
lists (in itsFeature_ligtsatisfies the following conditions:

1 «fnameis thefinal name of a featurfeof B.

2 «f was notfrozen inB, and was not aattribute.

3 «f waseffective inB.

4 «fnameappears only once in theature_list

5 ¢« Any redeclaration of in C specifies aeferred feature.

--- EXPLAIN LAST CLAUSE ---
and the semantics:

jEEE| Undefinition semantics
The effect in a clas€ of undefining a featuréin anlnheritance - Thisalsoappliestocli-

partfor Ais to causeC to inherit fromA, rather than theersion ’jﬂtdsefr’fdzrﬁgﬂ fg;edsi;%rs
of f in A, adeferred form of that version. “D YNAMICBINDING".

23.12, pae 630

§10.26 DEFERRED AND EFFECTIVE FEATURES AND CLASSES 303

10.26 DEFERRED AND EFFECTIVE FEATURES AND CLASSES

The discussion has already referred informally to features being “deferred”
or “effective” in a class. We can now make these notions precise, and use
the opportunity to define what it means to “effect” a feature

Effective, deferred feature
A featuref of a clas<C is aneffective featureof C if and only if
it satisfies either of the following conditions:
1 «C contains a declaration fdt specifying it as either as an
attribute or as aroutine whoseRoutine_bodyis of the

Effectiveform (not the keywordleferred but beginning with
do, onceor external).

2 f is aninheritedfeature, coming from parentB of C where it
is (recursively) effective, an@ does not undefine it.

f isdeferred if and only if it is not effective.

As a result of this definition, a feature is deferreddmot only if it iS _ “nherited as efec-
introduced or redefined i€ as deferred, but also if its precursor wtive inherited as
deferred andC does not redeclare it effectively. In the latter case, defered”. page 285
feature is'inherited as deferred”.

The definition captures the semantics of deferred features and of £ “UNDEFINING A
effecting. In casel it's clear that the feature is effective, sin€eitself %M’
declares it as either an attribute of a non-deferred routine. In Zdse page 2=
feature is inherited; it was already effective in the parent, @rdbesn’t
change that status.

In casel the declaration may be for a neinfmediatéfeature, or it may
be a redeclaration of an inherited feature, deferred in the parent but made
effective inC. This is known as aeffecting

[Effecting
A redeclaration into aeffective feature of a featuramheritedas

deferred is said teffectthat feature.

Some validity constraints, seen below, apply to this case: the effective
feature must satisfy the Redeclaration rule, and if there are two or more
deferred features among the lot, this jeia, governed by the Join rule.

304 FEATURE ADAPTATION 810.26

Itis possible under this definition for a redeclaration to effectiegeral
inherited features. Thenly other case in which we permit inheritini- “Repeated Inherit-
several features with the same name without renaming is sharing @2nce consistency con-
. . , straint”, page 458
repeated inheritance. Here too we don’t have a real name clash, as I
at most one of the features is effective and they satisfy the two applic
rules (Redeclaration and Join).

Effecting may follow one three schemes:

1 « You may writeC as heir to a clasB wheref is deferred, and provide a- Asilustrated in

; i . “EFFECTING A
effecting off in the form of aFeature_declaratian the Featurepart of DEFERRED FEA-

C. This is themost common use of deferred features and effecting Ture’. 10.14pae270

2 +You may want to inherit a specification from one parénand the _ asilustratedbythefig-
corresponding implementation from anothgr In this case A will ure“Merging and ger-
provide a deferred feature amlan effective feature with compatibding". page 289
signature; if they have the same final nam€jnheB version will serve
as effecting of theA version. In this case there is no new feature
declaration irC.

3 +C may also undefine a parent's effective feature, and use an effertye. (o0e0s9
feature (inherited from a parent, or introduced or redefined iself) o
to provide an implementation. This is less common, but provides
mechanism for merging effective features, with one of the
implementations overriding the others, as in one odierexamples.

The above defines the meaning of “deferred” and “effective” for features.
These qualifiers carry over to the classes that contain these features:

Deferred class property

A class that has at least orgeferredfeature must have 4
Class_headestarting with the keywordleferred. The class is
then said to bdeferred.

This includes a validity requirement and a definition, both of which follow
from the the original discussion of classes:

» The requirement to declare the classdeferred as soon as it haw “Class Header
deferred feature is not a new validity constraint, but just repeats wheule”. page 126
ClassHeaderrule said — except that now, as a result of the definitit
in this chapter, we have a precise definition of “deferred feature”
(introduced as deferred, or inherited as deferred and not effected).

* As to the definition, it follows from the Class Header rule combir= ®eferredclassefec-
with theoriginal definitionof “deferredclass”, which stated that a cladive class”. pae 127
is deferred if itsClass_headestarts withdeferred. That was a purely
syntactic criterion; now we have a more meaningful one, reminding us
that a class is deferred whenever it has a deferred feature.

§10.27 ORIGIN AND SEED 305

Foy

-y

.i'!.'."l‘.'.m

The reverse — that a class is effective if all its features are effective — is
usually true, but not always since you have the option of declaring it
explicitly asdeferred, to specify that it remains abstract and not directly
instantiatable. Hence the precise phrasing of the complementary property:

Effective class property

A class whose features, if any, are all effective, is effective unless
its Class_headestarts with the keywordeferred.

As a summary, remember that yowst declare a class as This is not necessarily
the beginning of the
class text itself since
there may be &lotes
clause first

‘ deferred classC ...

as soon as it has a deferred featis#e not only if f is introduced inC as
deferred, but also i€ inherits it as deferred and does not effect it.

For an effective class, you will just use one of

classC...
expanded clas<C...
reference clas<C...

10.27 ORIGIN AND SEED

Two useful definitions follow from the discussion of redeclaratiwf Ehis is é}aeﬁﬁner_nent
. : of the initial definition

Chapter6 defined theorigin of a feature introduced in clagsasC itself. of"origin” on pagel 33

which only covered

N : — 1 of th
We can now generalize this to arbitrary features, inherited as wegasoro, P ooo

immediate. The associated notion is a featuse'sd its original version.
These notions, which will be especially useful in the discussion of repeated
inheritance, are defined as follows.

Origin, seed
Every featurd of a classC has one or more features known as its
seedsand one or more classes known agiitgins, as follows:
1« If f isimmediate inC: f itself as seedC as a origin. . “SHARING AND

2 «If f is inherited: (recursively) all the seeds and origins pf REPLICATION", 16.4,
its precursors. page 428

306 FEATURE ADAPTATION §10.28

The origin, a class, is “where the feature comes from”, and the seed is the
version of the feature from that origin. In the vast majority of cases this is
all there is to know. With repeated inheritance and “join”, a feature may
result from the merging of two or more features, and hence may have more
than one seed and more than one origin. That's whaRdasgbout.

—————————— If this is your first reading, do not let yourself be troubled by case — Chapterl6.
2, which refers to repeated inheritance. As soon as you have read the fii
three sections of theepeatednheritancechapter, the context in which case

I 2 occurs should be quite clear.

The origin of a feature is the most remote ancestor from which the feature
comes, and its seed is its original form in that ancestor.

None of the reincarnations that the feature may have gone through along
the inheritance part as a result of redefinition, effecting or renaming may
affect its seed and its origin.

10.28 REDECLARATION RULES

_ (The rest of this chapter gives the formal rules applying to feature
/™= redeclaration. The essential concepts have already been seen, so you may

‘ETE safely skip to the next chapter on first reading.)

---- REMOVE ALL THIS!!! According to theearlierdefinitions, case ---- - “Effective defered
-- is an effecting. Case ------ is an effecting for deferfeahd effectiveg, a %%g
redefinition if they are both deferred or both effective. Claisef the ’
constraint below will preclude the other apparent possibifigffective,g

deferred.

In case ------- , the text o€ does not contain any declaration foibut
some other inherited featuge(which must come from a different parent)
effectsf. It is convenient to treat this implicit and somewhat special case as
a redeclaration, along with the explicit and more common case ------- .

The above definition says nothing about validity: case ---- simply states
that if a declaration uses the name of an inherited feature, we must treat it
as a redeclaration (valid or not) of that feature, not as the declaration of a
new, or immediate feature. Here is the rule that determines when a
redeclaration (explicit or implicit) is valid:

§10.28 REDECLARATION RULES

307

ALY

redeclaration of a featurfieinherited from gparentB of C if and
only if the following conditions are satisfied.

Redeclaration rule VDRD
Let C be a class and a feature ofC. It is valid for g to be a

1 <No effective feature ofC other thanf andg has thesame
final name.

2 * Thesignature ofy conforms to the signature bf

3« The Preconditionof g, if any, begins withrequire else (not
justrequire), and itsPostconditionif any, begins witrensure
then (not justensure).

4 « If the redeclaration is eedefinition (rather than agffecting)
the Redefinesubclause of thé’arentpart for B lists in its
Feature_listhefinal name of in B.

5 «If f isinherited as déctive, theng is also effective.
6 « If fis anattribute,g is an attributef andg are bothvariable, and

their types are either both expanded or both non-expanded.

7 «f andg have either both no alias or th@me alias.

8 «If both features are queries with associatedsigner
commanddgp andgp, thengp is theversion offp in C.

308 FEATURE ADAPTATION §10.28

Condition1 prohibits name clashes between effective featuresgkobe
@ a redeclaration of, both features must have the same final name; but no
I other feature of the class may share that name. This is the fundamental rule
of no overloading

No invalidity results, however, ffis deferred. Then ifjis also deferred. - The bird-shooting
the redeclaration is simply a redefinition of a deferred feature by anwas on pagesg
(to change the signature or specification}y i effective, the redeclaratio. .
is an effecting of. If g plays this role for more than one inheritgdt both
joins and effects these features: this is tase in whichC Kills several
deferred birds with one effective stone.

Condition 2 is the fundamental type compatibility rule: signatL- See details below:
conformance. In the case of a joaqunay be the redeclaration of more thiRULESONJOINING

f theng's signat t conform to all of th signatlgesos
oner, engs sighature must contorm 1o all 0 € precursors’ signatu e 309

Signature conformance permit®variant redefinition of both query
results and routine arguments, but for arguments you must make the new
type detachable —2U rather than just) — to prevent “catcalls”.

Condition3 requires adapting the assertions of a redeclared featur - “REDECLARAION

vern rul ivesarlier. AND ASSERTIONS”,
gove e<.1|-by uesg eea -e . - | o oot
Condition4 requires listing in the appropriat®edefinesubclause, bu - “Redefne, redeini-

only for a redefinition, not for an effecting. (We have a redefinitioty if 10" Page 285
g and the inherited form dfare both deferred or both effective.) If two «

more features inherited as deferred are joined and then redefined tog

every one of them must appear in theRedefine subclause for the
corresponding parent.

Condition5 bars the use of redeclaration for turning an effective feature
into a deferred one. This is because a specific mechanism is available for
that purpose: undefinition. It ipossible to apply both undefinition ar - Asnoted: see clags
redefinition to the same feature to make it deferred and at the sameP296284
change its signature.

Condition6 prohibits redeclaring a constant attribute, or redeclarir,y «
variable attribute into a function or constant attribute. It also precludes
redeclaring a (variable) attribute of an expanded type into one of reference
type or conversely. You may, however, redeclare a function into an attribute
— variable or constant.

Condition7 requires the features, if they have aliases, to have the same
ones. If you want to introduce an alias for an inherited feature, change an
inherited alias, or remove it, redeclaration is not the appropriate technique:
you must rename the feature. Of course you can still redeclare it as well.

Condition8 applies to assigner commands. It is valid for a redeclaration
to include an assigner command if the precursor did not include one, or
conversely; but if both versions of the query have assigner commands, they
must, for obvious reasons of consistency, be the same procedire in

§10.29 RULES ON JOINING FEATURES 309

In earlier versions of the language, there was an extra condition, prohibitin_. OnExternaroutines
a redeclaration from changing dxternalfeature into aninternalone or see Ctlapte& espe-
conversely. Although initially justified by the original conventions on cially ‘BASICS OF

e mikid g EXTERML ROU-
I external features, this had become just an implementation constraint with I\ £5 31 5 paes18
remaining conceptual justification.
Note, however, that redefining an external routine into a non-external one will
T usually cause a small performance penalty fordhginal (non-redefined)

version, as the Eiffel compiler will probably have to call the external routine
through an Eiffel wrapper.

10.29 RULES ON JOINING FEATURES

The last constraint that we need to examine governs the validity and
semantics of the join mechanism, used to merge two or more features, of
which at most one is effective, by inheriting them under the same name.

It is useful first to extend the notion of precursor:

Precursor (joined features) « The definition for in

the non-join case was
A precursor of an inherited feature isersion of the feature in| ~ on page262 A final

more formal definition
covering both caseswill
appear on pagé65at
the end of the repeated
inheritance chapter
Without the join mechanism there was just one precursor; but a fei

resulting from the join of two or more deferred features will have all of
them as precursors.

the parent from which it is inherited.

Here now is the validity constraint for joining features:

Join rule VDJR

VAL It is valid for a classC to inherit two different features under the
samefinal name under and only under the following conditions
1 - After possibleedeclaration i€, theirsignatures are identical
2 * They either have both no aliases or havestilee alias.

3+If they both have assigner commands, the associated
procedures have the same final nam@.in

4 «|f both areinherited as effective, C redefines both into a
common version.

310

FEATURE ADAPTATION §10.29

F Y

The Join rule indicates that joined features must have exactly the .~ “Repeated Inherit-

. le’, pae 43
signature — argument and result types. e e

What matters is the signature after possible redefinition or effectin¢-"Redectktion
in practice you may join precursor features with different signaturerule”’. page 307
suffices to redeclare them using a feature which (as requirguiny2 of _ A signature conforms
the Redeclaratiorrule) must have a signatui@nforming to all of thetoanotherifeverytypein

precursors’ signatures it conforms to the corre-
) sponding type in the

If the redeclaration describes an effective feature, this is the case ofother Se¢ EXPRES-
P i i i SION AND SIGK-
joining and effecting a set of inherited features. If the redeclarat>’3) -\ Sfectingwas
describes a feature that is still deferred, it is a redefinition, used to adadescribed on pagess
signature and possibly the specification. In this case, péiatf the
Redeclaration rule requires every one of the precursors to appear in the

Redefinesubclause for the corresponding parent.

In either case, nothing requires the precursors’ signatures to conform to
each other, as long as the signature of the redeclared version conforms to
all of them. This means you may write a class inheriting two deferred
features of the form

f(p: P): T...
f(t: Q):U...

and redeclare them with

‘f(x:?R):V...

§10.29 RULES ON JOINING FEATURES 311

provided R conforms to bothP and Q and V to both T and U. No
conformance is required between the types appearing in the precursors’
signatures® andQ, T andU).

The assumption that the features are “different” is important: they could
in fact be the same feature, appearing in two parent€ dhat have
inherited it from a common ancestor, without any intervening
redeclaration. This would be a valid case of repeated inheritance; here the
rule that determines validity is thepeatedinheritance Consisteng
constraint The semantic specification (sharing under tRepeated
Inheritance rulpindicates tha€ will have just one version of the feature.

Conditions2 and 3 of the Join rule are consistency requirements on
aliases and on assigner commands. The condition on aliases is consistent
with condition? of the Redeclaration rule, which requires a redeclaration
to keep the alias if any; it was noted in the comment to that rule that
redeclaration is not the appropriate way to add, change or remove an alias
(you should use renaming for that purpose); neither is join. The condition
on assigner commands ensures that asyigner_callhas the expected
effect, even under dynamic binding on a target declared of a parent type.

The following figure illustrates a valid case, in which all types involved
are non-generic classes (so that conformance is just inheritdshég)an
heir of P, but for the second argument the relation is in the other direction:
Qis an heir ofv. Then a redeclaration into a feature of signatweQ], [R]
will be valid.

312 FEATURE ADAPTATION §10.29

two incomf)ati-

ble signatures
‘ R

¥

\

\

_H

Inheritance
‘ U \ Q (T
N _> \j W)
E E E fSignature
conformance
= class

This takes care of the validity of the join mechanism. The last rule gives
the precise properties of the resulting feature:

Join Semantics rule
Joining two or more inherited features with the same final name,

under the terms of thdoinrule, yields the feature resulting from
theirredeclaration if any, and otherwise defined as follows:

1 - Its name is thénal name of all its precursors.

2 » Itssignature is thprecursors’ signature, which the Join rule requires
to be the same for all precursors after possible redeclaration.

3elts precondition is theor of all the precursors’
combinedpreconditions.

4 «|ts postcondition is theand of all the precursors’
combinedpostconditions.

5e|ts Header commenis the concatenation of those of all
precursors.

6 ¢Its body is deferred if all the precursors aréerited as
deferred, otherwise is the body of the singffective precursor.

7 Itis notobsolete (even if some of the precursors are obsolete).

§10.29 RULES ON JOINING FEATURES 313

Point5 leaves the concatenation order unspecified.

In point 7 (corresponding to aare case) language processing to¢. “OBSOLETE FEA-
should produce an obsolescence message for the class performing trTURES".5.21page163
but the resulting feature is not itself obsolete.

314 FEATURE ADAPTATION §10.29

	10 10 Feature adaptation
	10.1 OVERVIEW
	10.2 TERMINOLOGY: REDECLARATION, REDEFINITION, EFFECTING
	10.3 REDECLARING INHERITED FEATURES: WHY AND HOW
	Redeclare, redeclaration

	10.4 FEATURE ADAPTATION CLAUSES
	10.5 WHY REDEFINE?
	10.6 REDEFINITION EXAMPLES
	10.7 THE REDEFINITION CLAUSE
	10.8 REDEFINITION IN THE SOFTWARE PROCESS
	10.9 CHANGING THE SIGNATURE
	10.10 THE NEED FOR ANCHORED DECLARATIONS
	10.11 DEFERRED FEATURES
	10.12 DEFERRED CLASSES FOR DESCRIBING ABSTRACTIONS
	10.13 DEFERRED CLASSES FOR SYSTEM DESIGN AND ANALYSIS
	10.14 EFFECTING A DEFERRED FEATURE
	10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION
	10.16 REDECLARATION AND TYPING
	10.17 REDECLARATION AND ASSERTIONS
	10.18 RULES ON INHERITED ASSERTIONS
	Unfolded form of an assertion
	Assertion extensions
	Covariance-aware form of an assertion extension
	Combined precondition, postcondition

	10.19 UNDEFINING A FEATURE
	Inherited as effective, inherited as deferred

	10.20 REDEFINITION AND EFFECTING
	Effect, effecting
	Redefine, redefinition

	10.21 THE JOIN MECHANISM
	10.22 MERGING EFFECTIVE FEATURES
	10.23 NAME CLASHES
	Name clash

	10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR
	The need for a precursor mechanism
	Precursor basics and examples
	Choosing between multiple precursors
	Precursor specification
	Relative unfolded form of a Precursor
	Unfolded form of a Precursor

	10.25 REDEFINITION AND UNDEFINITION RULES
	10.26 DEFERRED AND EFFECTIVE FEATURES AND CLASSES
	Effective, deferred feature
	Effecting
	Deferred class property
	Effective class property

	10.27 ORIGIN AND SEED
	Origin, seed

	10.28 REDECLARATION RULES
	10.29 RULES ON JOINING FEATURES
	Precursor (joined features)

