
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
10
Feature adaptation
10.1 OVERVIEW

Chapter6 introduced inheritance as a module enrichment technique. You
inherit from a class out of sheer mercenary interest: you want its features.
But that doesn’t necessarily mean accepting all these features at face value.

This chapter is the longest of this book, which should not be a surprise
since it explores in full detail some of the most fascinating aspects of object
technology: how to play mix and match with software components, taking
advantage of the best features of existing classes while refining, adapting or
overriding what is not exactly suited to your new need. Only a few basic
concepts are involved, but they interact in diverse and powerful ways.

So make sure you have a comfortable armchair and a big cup of coffee,
and for the 50 pages of this chapter be prepared to question, implement,
override, rename, merge or otherwise wring all those features that your
ancestors, for better or worse, bequeathed to you.

10.2 TERMINOLOGY: REDECLARATION, REDEFINITION, EFFECTING

Our major focus will be the tworedeclaration mechanisms that help adapt
inherited features to the local context of a class:

• Redefinition, which may change an inherited feature’s original
implementation, signature or specification.

• Effecting, which provides an implementation (oreffectiveversion) for
a feature that did not have one in the parent. The parent’s version,
deprived of any implementation, but with a signature and specification,
is said to bedeferred; deferred features play an important role in
analysis and design, which this chapter will explain.

A key attraction of the inheritance mechanism is that it lets you tune
inherited features to the context of the new class. This is known as feature
adaptation. The present discussion covers the principal mechanisms, leaving
to alater one some important complements related to repeated inheritance.

→ Chapter16presents
repeated inheritance.

There are actually 40
more pages of wringing
in chapter16.

The term"effecting"
sometimes surprises at
first, but achieves con-
sistent terminology: to
effect a a feature is to
make it effective.

FEATURE ADAPTATION §10.3256
The purpose of redefining a feature is often to extend (rather than discard)
its original implementation. We will see how theprecursor mechanism
enables you, in a redefinition, to reuse and extend the original version.

Two closely related facilities, which the discussion will address in
detail, are the possibility of ofundefining an inherited feature, to forget its
original implementation, and of merging abstractions byjoining two or
more features inherited from different parents.

Another adjacent concept isrepeated inheritance, which enables a
class to inherit twice or more from a given ancestor, letting the designer
control what happens to the common feature heritage. This topic is
important enough to deserve a chapter of its own, coming onlylaterin this
book, after the conformance chapter, since repeated inheritance rules rely
extensively on those of type conformance.

Although with the present chapter the major language constructs involving
inheritance will have been introduced, we are still missing an important part of
thepicture.Tograsp the full extentandpracticalityof the techniques introduced
below, you will need to understandpolymorphismand dynamicbinding,
studied insubsequentchapters.Together, thesenotionsareresponsible forsome
of the most powerful characteristics of the object-oriented method.

10.3 REDECLARING INHERITED FEATURES: WHY AND HOW

A class inheriting from another may add new features of its own. But what
about the old ones? So far the presentation has assumed that an heir will be
happy enough to obtain every inherited feature “as is” from a parent. To be
sure, the heir mayrenamethe feature, but this does not change it; the effect
is simply to make it available to the client’s dependents under a name that
is better suited to the local context.

Inheritance offers more. When you inherit a set of features, you may
want to adapt those whose originalspecificationor implementationdid not
take advantage of the heir’s specific properties.

Redefinition is the basic method for achieving such an adaptation. By
redefining an inherited feature you may give it a new implementation, a new
signature, or a new set of assertions, as long as you follow the applicable rules
to ensure that the new version remains compatible with the old one as seen
by clients. You may even redefine a function into an attribute, switching from
an algorithmic representation to one that simply stores feature values. Every
proper descendant of a class may provide its own alternative redefinition.

In some cases, the original form of a routine does not provide any
default implementation at all; this is an explicit invitation for proper
descendants to offer various implementations. Such unimplemented
features, and the classes that introduce them, are said to bedeferred;
proper descendants may theneffect those features (make themeffective).

→ Chapter16.

→ “POLYMOR-
PHISM”, 22.11, page
598; “D YNAMICBIND-
ING”, 23.12, page 630.

← “RENAMING”,
6.9, page 180.

§10.4 FEATURE ADAPTATION CLAUSES 257
In the software construction process, classes and features may in fact
remain deferred for a long time, providing a high-level notation for system
analysis and design.

The basic terminology has already been previewed:

redeclaration:

In the case of a redefiniti

Getting the full power of deferred features requires two more
mechanisms:

• Sometimes a class will be able to merge two or more features that it
inherits from separate parents; in so doing the class combines several
abstractions into one. This is the join mechanism.

• In some cases, as you inherit an effective feature from a parent, you may
want to discard the inherited implementation altogether, recanting all
the sins of its earlier effective life. This is the process of undefinition,
which turns an effective feature into a born-again deferred feature.

The following sections explore redefinition, deferred features, undefinition
and join. The discussion will first explain these facilities and their role in
software analysis, design and implementation. The second part of the
chapter, which you may skip on first reading, gives the more formal set of
corresponding syntactic rules and validity constraints, together with the
resulting semantic definitions.

10.4 FEATURE ADAPTATION CLAUSES

For a start, let us just refresh our memory as to the syntactical context of
this discussion: theInheritanceclause of a class declaration, which may
contain one or moreParentparts. Here is a simplified form of the the
beginning of classTWO_WAY_TREE in EiffelBase:

Redeclare, redeclaration
A classredeclaresaninheritedfeature if itredefines oreffects it.
A declarationfor a featuref is aredeclaration of f if it is either a
redefinition or aneffecting off.

This definition relies on two others, appearing below, for the two cases:
redefinition andeffecting.

Be sure to distinguishredeclarationfrom redefinition, the first of these
cases. Redeclaration is the more general notion, redefinition one of its two
cases; the other iseffecting, which provides an implementation for a feature
that was deferred in the parent. In both cases, a redeclaration does not
introduce a new feature, but simply overrides the parent’s version of an
inherited feature.

The formal part starts
with 10.25, page 300.

← Another descendant
ofTREE, classFIXED_
TREE, served to illus-
trate inheritance basics
in“AN INHERITANCE
PART”, 6.2, page 167

FEATURE ADAPTATION §10.4258
note
… (Notes clause omitted)…

class TWO_WAY_TREE[T] inherit
TREE[T]

redefine
higher, …

end

BI_LINKABLE[T]
rename

… (Rename subclause omitted)…
redefine

put_between
end

TWO_WAY_LIST[like Current]
rename

… (Rename subclause omitted)…
redefine

first_child, update_after_insertion,
duplicate, merge_right, merge_left

end
feature

… Rest of class omitted…

§10.5 WHY REDEFINE? 259
EachParentpart is relative to one of the class’s parents and may include a
Feature_adaptationsubclause (optional, but present for all three parents
above). Here again is the corresponding syntax:

The Renameand New_exportsclauses have been discussed inprevious
chapters. The next sections explainRedefine, Undefine andSelect.

10.5 WHY REDEFINE?

The first mechanism to study is feature redefinition, which allows you to
to change some aspects of an inherited feature.

Assume you write a classC that describes a specific variant of the
concepts covered by an existing classB. C will be an heir ofB. You may
find that, for this variant, the inherited version of a certain featuref is not
appropriate any more. This sets the stage for redefiningf in C.

Besides its name, a feature ischaracterized by three properties:

• The feature has asignature, defined by the number and type of its
arguments and result, if any.

• It either is deferred or has animplementation, including the choice
between attribute or routine, external or not, and for a non-external
routine theRoutine_body, Local_declarations andRescue.

• It has aspecification, defining the feature’scontract: Preconditionand
Postcondition (for routines only).

A feature redefinition may affect one or more of these three aspects. In
general, a change of specification implies a change of implementation.

There are two possible reasons,correctness and efficiency, for
redefining a feature:

Inheritance=∆ inherit Parent_list

Parent_list=∆ "{ Parent ";" … }

Parent=∆ "Class_type
[Feature_adaptation]

Feature_adaptation=∆ [Rename]
[New_exports]
[Undefine]
[Redefine]
[Select]
end

← The original presen-
tation of this syntax is
on page169.

← “RENAMING”, 6.9,
page 180; “Adapting the
export status of inherited
features”, , page 200.

← “FEATURE DEC-
LARATIONS: SYN-
TAX”, 5.10, page 140.

Aroutinemayalsohave
a Header_comment
andanObsoleteclause,
which a redefinition
may change.

FEATURE ADAPTATION §10.6260
• The original version may perform actions or compute results that are
incorrect for the new class, for example because they do not update
some of the new attributes.

• If the original version is still appropriate, it may not be efficient enough,
because it fails to take advantage of specific properties of the new class.

Signature redefinition falls in the correctness category: the types of
arguments or results, as originally declared, are not appropriate for the new
class.Implementationredefinition may be for correctness, efficiency or
both. A change ofspecificationinvolves correctness since it means the
redefined version offers a new contract to its clients.

10.6 REDEFINITION EXAMPLES

To get a good feel for redefinition, let us look at a pair of simple examples
illustrating each of the two purposes cited.

As a case of redefinition for correctness, assume a classCIRCLE,
inheriting fromELLIPSE and adding an attributeradius:

As always, it is useful to check that we are not misusing inheritance. Here
there is hardly any doubt that the structure is right: every circle may be
viewed as an ellipse that happens to have only one focus.

Let scalebe the procedure that scales a figure by a certain ratio. Since
attributeradius is not present inELLIPSE, the version ofscaleinherited
from ELLIPSE does not update the value of that attribute. ClassCIRCLE
must redefinescale to make sure that it updates not just the attributes
inherited fromELLIPSE, but also the specificCIRCLEattributes such as
radius. (The problem would not arise ifradiuswas a function, defined in
terms of attributes inherited fromELLIPSE, rather than an attribute.)

As illustrated by the figure, the graphical convention for a redefined
feature uses two plus signs after the feature’s name, as inscale++.

Inheritance
structure for
circles and
ellipses

scaleELLIPSE

scale++CIRCLEradius

§10.7 THE REDEFINITION CLAUSE 261
Now an example of redefinition for efficiency. ClassCIRCLE may
redefine as follows the functioncontainswhich determines whether a point
is inside a closed figure:

ELLIPSEhas a version ofcontainstoo. Because an ellipse is a more general
figure than a circle, theELLIPSEversion is more complex than the above; it
would still be correct for circles, but less efficient since it does not take
advantageof thespecialpropertiesofcircles.Redefinitionsolves theproblem.

10.7 THE REDEFINITION CLAUSE

Whether for correctness or efficiency, the redefinition of a feature must be
explicitly announced in aRedefinesubclause of theFeature_adaptationfor
the corresponding parent, as in

The names given in theRedefinesubclause must be thefinal names of
features inherited from the given parent. (In other words, these are the names
after any renaming; this is easy to remember since theRenameclause
always appears beforeredefine and other feature adaptation clauses.)

contains(p: POINT): BOOLEAN
-- Is p inside circle?

require
point_exists: p /= Void

do
Result:=(origin.distance(p) <= radius)

ensure
… Postcondition omitted…

end

class CIRCLEinherit
ELLIPSE

rename
…

redefine
scale, contains,…

end
… Rest of class omitted…

← “Final name” was
defined on page183.

FEATURE ADAPTATION §10.8262
Such aRedefinesubclause allows — and requires — classCIRCLEto
include (in a Feature_clause) new feature declarations, such as given
above, forscale, containsand others listed after the keywordredefine.
These declarations will override the ones inherited from the parent, here
ELLIPSE. Without theRedefinesubclause, such declarations would make
CIRCLE invalid, since it would now have two features calledscale,
contains etc., a case of invalidname clash.

To discuss redefinition it will be convenient to refer to the “precursor”
of an inherited feature — its original form in the parent:

With the mechanisms seen so far, every feature of a parent yields a feature
in the heir; so every inherited feature hasone precursor. Mechanisms
explored later — joining of deferred features, and sharing under repeated
inheritance — may result in the merging of two or more parent features into
just one heir feature. This will requireextendingthedefinition to account
for features having more than one precursor.

10.8 REDEFINITION IN THE SOFTWARE PROCESS

(This section introduce no new language concept but broadens the
discussion by presenting methodological aspects.)

Before proceeding with more technical aspects of redefinition, it is
useful to reflect a little on the implications of this notion for object-oriented
software engineering. Feature redefinition is part of the answer to a major
software engineering issue: reconciling reusability with extendibility.

In software, it is seldom satisfactory to reuse an element exactly as it is;
often, you must also adapt it to a specific context. With redefinition, as
suggested by the simple examples above, you can keep those features that
are still appropriate for the new context, while overriding the
implementations of those which need to be adapted.

The ability to change the signature of an inherited routine, studied
below, is also essential to the smooth functioning of Eiffel’s type system.

It is useful to compare this technique with another of the mechanisms
for adapting an inherited feature:renaming. The distinction to keep in mind
is between afeature and afeature name:

Precursor (initial definition)

If a class inherits a feature from aparent, either keeping the
feature unchanged orredefining it, the parent’s version of the
feature is called theprecursor of the feature.

→“NAMECLASHES”,
10.23, page 290

→ “Pr ecursor (joined
features)”, page 309.
See also the more fom-
ral definition, page465.

← “RENAMING”,
6.9, page 180.

§10.9 CHANGING THE SIGNATURE 263
• A feature of a class is a certain operation (routine or attribute) applicable
to instances of the class. The feature is normally passed on to heirs, except
for redeclaration, which allows an heir to substitute another feature.

• Every feature of a class has afinal namerelative to that class, called just
its “feature name” if there is no ambiguity. This is the name used by the
class, its clients and heirs to refer to the feature. The name is normally
passed on to heirs, except for renaming, which allows an heir to
substitute another name for the same feature.

Redefinition and renaming serve complementary purposes:

You may want to apply both mechanisms to a given feature, to change both
the feature and its name:

Remember that once you have renamed a feature the only name that makes
sense for it in the rest of the class, past theRenameclause, is the new name,
which becomes its final name inC, herenew_name. In particular, the
Redefinesubclause — as well asUndefine —only refers to the new name.
So in this example it would have been invalid to write

since f is not the name of a feature thatC inherits fromB (unless the
Rename subclause separately renames another inherited feature tof).

10.9 CHANGING THE SIGNATURE

The preceding example redefinitions affected the implementation, for
either correctness or efficiency reasons. Here now is an example where we
need to change the signature of an inherited feature. That feature is an
attribute, so its signature only includes the attribute’s type.

Redefinition and renaming

Redefinition changes the feature, but keeps its name.
Renaming keeps the feature, but changes its name.

class B inherit
A

rename
f asnew_f

redefine
new_f

end
feature

… Rest of class omitted…

redefine f

FEATURE ADAPTATION §10.9264
Consider classLINKED_LIST[T] in EiffelBase, representing one-way
linked lists of objects of typeT (the formal generic parameter).

One of the attributes of classLINKED_LIST is a reference to the first
element of a list:

The type of the corresponding objects,LINKABLE[T], represents list cells,
chained to their right neighbors:

Various proper descendants ofLINKED_LIST support variants of the
linked list data structure. An immediate heir isTWO_WAY_LIST, which,
instead of linkables, uses “bi-linkables”, chained not just to their
successors but also to their predecessors:

first_element: LINKABLE[T]

One-way
linked list

first_element

List header

List elements (cells)

The actual class text
usesLINKABLE[like
first].Thisdoesn’taffect
the discussion.

Linkable list
cell

item right

item rightleft

Bi-linkable list
cell

§10.10 THE NEED FOR ANCHORED DECLARATIONS 265
ClassBI_LINKABLE is itself an heir fromLINKABLE:

Clearly, the first_elementof a TWO_WAY_LISTshould not just be a
linkable any more, but a bi-linkable. Hence the need to redefine that
attribute, which will appear inTWO_WAY_LIST as

The redefinition offirst_elementinto aBI_LINKABLEin TWO_WAY_LIST
follows the rule (given in detailbelow) requiring that any change of type in
a redeclaration replace the original with a type that conforms to it (by being
based on a descendant class, asBI_LINKABLE for LINKABLE).

In this example, the redefined feature is just an attribute. There is often
a concomitant need to change the types of routine arguments. For example,
the insertion routineput_element may be declared inLINKED_LIST as

Clearly, classTWO_WAY_LISTneeds to adaptput_elementto give it a first
argumentlt of typeBI_LINKABLE[T]. A redefinition ofput_elementwill
achieve this.

10.10 THE NEED FOR ANCHORED DECLARATIONS

Cases such as the redeclaration of the argumentlt of put_elementare so
frequent in inheritance hierarchies that they warrant a special mechanism,
bypassing the need for explicit redefinition. Rather than the above, the
signature ofput_element as declared inLINKED_LIST is

first_element: BI_LINKABLE[T]

put_element(lt: ; i: INTEGER) is…

put_element(lt: like first_element; i: INTEGER) is…

Signature
redefinitionLINKED_

LIST

TWO_WAY_
LIST

LINKABLE

BI_
LINKABLE

first_element

first_element++

→ “REDECLARA-
TIONANDTYPING”,
10.16, page 274

put_elementis secret
since clients of the list
classes never explicitly
manipulate linkables,
only objects of typeT.

LINKABLE[T]

FEATURE ADAPTATION §10.11266
meaning thatlt has the same type asfirst_element: typeLINKABLE [T] in
LINKED_LISTand, in any proper descendant of this class, the new type, if
any, to whichfirst_elementhas been redefined. This mechanism, known as
anchored declaration, is discussed in detail in asubsequentchapter. It is
a form of implicit signature redefinition.

10.11 DEFERRED FEATURES

Feature redefinition, as just studied, lets you override the implementation,
signature or specification of a feature that already had an implementation
in a proper ancestor.

In some cases, the designer of that ancestor could not provide such a
default implementation, or did not want to. It is possible to declare a feature
without choosing an implementation by making itdeferred. This transfers
to proper descendants the responsibility for providing an implementation
through a new declaration, called aneffectingof the feature.

Although similar in many ways to redefinition, this case is more a
“definition” (without the re) of the feature, since there was no original
implementation in the parent. Accordingly, a class that effects a feature
inherited as deferred will not list it in aRedefine clause.

Some terminology:

• A feature that is not deferred — meaning it has an implementation,
either as an attribute or as a non-deferred routine — iseffective.

• The terms “deferred” and effective”, originally defined for features,
extend to classes: a class is deferred if it has at least one deferred
feature; otherwise (if all its features are effective) the class is effective.

Although sufficient for the time being, these definitions will be made more
rigorousbelow.

In graphical representations of system structures, both deferred features
and deferred classes will be marked by an asterisk* . Their effectings, as
other forms of redeclaration, are marked with a plus sign+.

→ “ANCHORED
TYPES”, 11.10, page
331

→ “E ffective, deferred
feature”, page 303

Deferred class,
deferred
feature, and
effectings

CAR TRUCK
register

register

register

∗

+ +

VEHICLE
∗

§10.12 DEFERRED CLASSES FOR DESCRIBING ABSTRACTIONS 267
As noted above, a class designer may decide to declare a feature as
deferred because of eitherinability or refusal to provide an
implementation. These two cases correspond to the two major uses of
deferred routines and classes:

1 • You may want to write a class describing an abstract notion, covering
several possible implementations. Then you cannot write an effective
class, which would require that you provide full implementation
information. Some of the features of such a class, and hence the class
itself, will be deferred.

2 • In other cases, whether or not you have enough information to give the
implementation, you prefer to concentrate on the abstract properties of
a class and its features, postponing implementation concerns to later.

The next two sections explore these two applications.

10.12 DEFERRED CLASSES FOR DESCRIBING ABSTRACTIONS

The first application of deferred classes supports a central aspect of the
Eiffel method, resulting from the use of inheritance as a classification
mechanism. Often, classes appearing towards the top of inheritance
hierarchies represent general categories, for which various proper
descendants will provide specific implementations. The higher-level
classes should usually be deferred.

The EiffelBase Library contains numerous such cases. A typical
example is classTREE, describing the most general notion of tree,
independent of any representation. Specific implementations are described
by proper descendants of that class, such asFIXED_TREE and
TWO_WAY_TREE, both sketched earlier. ClassTREEcontains a number of
deferred features describing operations that cannot be made more precise
without committing to a representation. Typical of these is the procedure

which replaces byv the value stored in the “active child” (the child at
current cursor position) of the current node.

child_put(v: like item)is
-- Put itemv at active child position.

require
not_child_off: not child_off

deferred
ensure

replaced: child.item= v
end

OnFIXED_TREE see
6.2, page 167; on
TWO_WAY_TREE,
10.4, page 257.

FEATURE ADAPTATION §10.13268
The keyworddeferred, indicating that the routine is deferred, comes in
lieu of an Effective body introduced bydo, once or external. As the
example shows, thePreconditionandPostconditionclauses may still be
present; they characterize the semantics of the routine, which all
descendant implementations must preserve (in a manner explained below).

Here are two further examples from other ISE Libraries.

EiffelVision contains numerous classes representing various
geometrical figures, some simple, some composite. They are all
descendants of a deferred classFIGURE, usually through one of its heirs
OPEN_FIGURE andCLOSED_FIGURE, still deferred themselves.

EiffelParse provides tools for analyzing programs or other structured
texts. To build a parser for a particular language, you write classes describing
the abstract structure of that language’s constructs; for example, a parser for
Eiffel will contain classesEIFFEL_CLASS, ROUTINE, INSTRUCTIONetc.
All such classes are descendants of the deferred classCONSTRUCT, through
one of three heirs ofCONSTRUCTdescribing three kinds of construct (the
same as in theEiffel syntax descriptions of this book):

• AGGREGATEdescribes constructs with a fixed number of parts. For
example, in a parser for Eiffel, a class describing the syntax of aLoop
(where the parts are anInitialization, an Invariant, a Variant and a
Loop_body) would be written as an heir toAGGREGATE.

• CHOICE describes constructs whose specimens are chosen from a
number of possible constructs. For example an EiffelInstructionis a
Creation, or aCall, or anAssignmentetc.; the corresponding class in a
parser would be an heir ofCHOICE.

• SEQUENCE describes constructs with a variable number of
components of the same kind, such as an Eiffel
Feature_declaration_list, which may consist of zero or more specimens
of Feature_declaration.

CONSTRUCTis almost fully deferred. The three heirs listed, although still
deferred, are “less” deferred since they provide effective routines for
parsing the corresponding types of constructs.

As you will remember, it is not possible to have a feature both deferred and
frozen, since frozen features may never be redeclared, and deferred features
are born for the very purpose of redeclaration.

10.13 DEFERRED CLASSES FOR SYSTEM DESIGN AND ANALYSIS

In the preceding examples, deferred classes were abstracted from effective
ones, by removing implementation aspects. In other cases, deferred classes
initially exist independently of any implementation. This is the second of
the two major applications of deferred classes.

See"Reusable Soft-
ware" for details about
these examples.

← “PRODUC-
TIONS”, 2.5, page 88.

→ The syntax forLoop
is on page487.

←Thesyntax forInstruc-
tion is on page224.

← The syntax for
Feature_declarationis
on page137.

← “Feature Declara-
tion rule”, page 160

§10.13 DEFERRED CLASSES FOR SYSTEM DESIGN AND ANALYSIS 269
This situation — mentioned earlier as a case of the designer notwanting
to consider any implementation — arises in particular out of the use of
Eiffel as a tool forsystem analysis and design.

At designtime, you are concerned with the architecture of a system, not
its implementation; deferred classes provide an ideal way to express the
abstract properties of an architecture, including contracts, without making
decisions about representation or algorithms

At a stage even more remote from implementation concerns, deferred
classes are ananalysistool: to model and analyze a certain category of real
world objects, you may writefully deferred classes that capture the abstract
properties of those objects. Not only are such classes independent of any
implementation; they may in fact be independent of any computerization.
It is indeed possible through deferred classes to describe in Eiffel many
natural or artificial systems, whether or not they involve computers and
software, as long as their structure and semantics are well understood.

Object-oriented systems analysismay be defined as the discipline of
describing systems of any kind through collections of fully deferred
classes, connected by client and heir relations (capturing system structure)
and characterized by preconditions, postconditions and invariants
(capturing system semantics). Although a detailed presentation of these
topics falls beyond the goal of this book, the following class sketch should
enable you to form a general idea of O-O system analysis.

Extracted from the hypothetical description of a chemical plant, it
illustrates the gist of the method, in particular its use of contracts to
characterize the known abstract properties of a set of objects. As noted,
such a specification is independent from any computer implementation —
although it will of course serve as an ideal basis for the software design and
implementation process if computerization does occur.

deferred class TANKfeature
fill

-- Fill tank with liquid
require

in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end

"Fully deferred class”
means that all the
class’s features are
deferred. In general, a
classisdeferredassoon
as it has one deferred
feature, even if some of
its other features are
effective.

FEATURE ADAPTATION §10.14270
10.14 EFFECTING A DEFERRED FEATURE

Unless you are using Eiffel just as a modeling language, and do not plan to
build software for the system that you first described using deferred
classes, you will eventually give these classes proper descendants that
effect (redeclare as effective) the features they inherit in deferred form.

Any classC that inherits a deferred feature from one of its parents may
provide a declaration making the feature effective inC. (This is a
possibility, not an obligation; if the designer ofC elects to leave some or all
of the inherited features deferred,C itself will still be a deferred class.)

… Other deferred features, such as:
empty, is_full, is_empty, in_valve, out_valve
gauge, maximum, …

invariant
is_full = ((0.97 * maximum<= gauge) and

(gauge<= 1.03 * maximum))
… Other invariant clauses…

end

§10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION 271
Effecting a feature is similar to redefining an inherited feature. Here you
will not list the feature in aRedefineclause since it was not “defined” in
the first place.

As an example of effecting, one of the many proper descendants of
TREE that effect child_put above is TWO_WAY_TREE, where the
redeclaration, describing the routine’s implementation for this particular
representation, looks like this:

Note the new form of the precondition and postcondition clauses. The
precondition of the effective version is the boolean “or” of the original
(deferred) routine’s precondition and of the assertion given in therequire
elseclause; the new postcondition is the boolean “and” of the original
postcondition and of the assertion given in theensure thenclause. This is
part of the general Redeclaration rule, as givenbelow.

For an effecting, as with the redeclaration ofput_childhere, you will
not list the feature in aRedefine clause.

10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION

As defined above, a class is deferred as soon as it has at least one deferred
feature. But nothing requires it to beall deferred: it may contain a
combination of deferred and effective features.

child_put(v: like item)
-- Makev the value of the node at active child position;
-- if current node is leaf, create active child with valuev.

require else
is_leaf_or_not_off: (not is_leaf) implies (not child_off)

local
node: like parent

do
if is_leafthen

createnode.make(v)
put_child(node)
child_start

else
child.put (v)

end
ensure then

set: child_item= v
end

→ The“Redeclaration
rule”, page307, states
what exactly must
appear in theRedefine
clause.

←Thedeferredversion
of child_putwas on
page267.

→ “REDECLARA-
TION AND ASSER-
TIONS”, 10.17, page
277; “Redeclaration
rule”, page 307.

FEATURE ADAPTATION §10.15272
This yields one of the most powerful techniques of Eiffel development:
producing partially deferred classes which capture what you know for sure
about the behaviors and data structures characterizing a certain application
area, while leaving open what you do not yet know and what is open to
individual variation. You will describe the known aspects through effective
features, the variable ones through deferred routines. In particular, an
effective routine, covering a known general behavior, may call one or more
deferred features, which stand for the variable components of that behavior.

A typical application of this technique appears in many user-interface
building systems, where the application software is under the control of an
outside loop, sometimes called anevent loop, which controls the overall
scheduling of individual operations: detecting input events, processing
these events, updating the screen etc. The event loop is the same for all
applications, but each application will define its own version of the
individual operations. To implement this scheme elegantly, you may write
a deferred class covering the properties of all applications of a certain type,
with an effective routine that serves as event loop and calls deferred
routines representing the individual operations. Each specific application
will then effect these routines, according to its own needs, in a proper
descendant of the deferred class.

This scheme is an attractive alternative to the “call-back” mechanisms
present in lower-level programming languages.

→ On call-back mech-
anisms see also31.8,
page 823, indicating
how to enable an exist-
ing call-back mecha-
nism, implemented in
another language, to
call Eiffel routines.

§10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION 273
Another important application of the same idea is illustrated by the
iteration classes of EiffelBase. These classes provide various iteration
mechanisms on arbitrary structures: linear iteration (forward only), two-
way iteration, tree iteration (preorder, in order, postorder). For example,
classLINEAR[G] has iteration procedures such as

In this procedure,action and test are agents: objects representing
operations to be applied. They both take an argument of typeG,
representing a list item;action is a procedure that processes such an item,
testa boolean-valued function (predicate) that determines whether a certain
property is true of the item. A typical call, usingyour_integer_listof type
LIST [INTEGER] — where EiffelBase’sLIST is indeed a descendant of
LINEAR —is:

using two agent arguments, one built from procedureprint as applicable to
classINTEGERand the other from a functionis_positiveassumed to be
available in the current class to determine whether an integer is positive.
This call will print the initial elements of the list, if any, up to and excluding
the first positive one.

Along with until_do, traversal classes such asLINEAR and their
descendants provide other iterators:do_until, do_all, while_do, do_while,
do_if, exists, for_all.

until_do(action: PROCEDURE[ANY, G];
test: PREDICATE[ANY, G])
-- Starting at beginning of structure, applyaction to
-- every item up to but excluding first satisfyingtest.

do
from

start
until

afteror else test.item([item])
loop

action.call ([item])
forth

end
ensure

found_if_not_after: not after implies test.item([item])
end

your_list.until_do(~ { INTEGER} .print, ~ is_positive)

The actual implementa-
tion in the library class
is slightly different as it
takes advantage of
other iteration proce-
dures.

→ Chapter27 dis-
cusses in detail the
notion of agent and its
application to iteration.

FEATURE ADAPTATION §10.16274
LINEAR is a very general deferred class, requiring its effective
descendants to provide features representing basic traversing steps:start to
start traversal,forth to advance by one position,item to yield the item at
cursor position,after to find out if the traversal has passed the last item. All
the classes of EiffelBase and other libraries that describe traversable data
structures such as chains, lists and many others are its descendants.

Effective procedures such asdo_until define traversal patterns.
Deferred features such asstartanditemdescribe the ingredients to be used
in any particular application of these patterns.

To provide an actual iteration mechanism over a certain concrete
structure — such asLINKED_LISTor CIRCULAR_LIST— it suffices to
inherit from LINEARor another of the traveral classes, and to effect the
deferred features to describe the specific machinery of iteration processing
on the chosen structure: how to start an iteration, move on to the next
element, access the current element, and determine end of traversal, based
on the specific implementation retained.

10.16 REDECLARATION AND TYPING

The two redeclaration mechanisms studied so far in this chapter,
redefinition and effecting, share many properties; both are ways to refine
the original declaration of an inherited feature, and both are subject to the
same constraints.

Two important properties apply in both cases:

• The type constraint, which we will now explore informally.

• The rule on semantics of updated assertions, studied in the next section.

Effecting the
details of
iteration

∗

LINKED_
LIST [G]

start *
forth * after *

item *

start+

forth + after+
item+

until_do+, do_all+, …

LINEAR[G]

§10.16 REDECLARATION AND TYPING 275
The formal version of these combined properties is the Redeclaration rule,
given in full later.

First, the type constraints. Letf be a precursor (parent’s version) of an
inherited feature. Assume that the signature off (in the parent) is

Recall that the first part, here[A, B], lists the arguments types for a routine
(it is empty for an attribute), and that the second part, hereC, lists the result
type for an attribute or a function (it is empty for a procedure).

Then the Redeclaration rule will state that if you redeclaref into a new
feature, the new signature must conform to the precursor’s signature.

Conformance, a key concept of the type system, is discussed in detail in
a later chapter, but the basic idea is straightforward: a type conforms to
another if its base class is a descendant of the other’s; a signature conforms
to another if it has the same number of arguments and results and every
type in the first signature conforms to its counterpart in the other. For
example, the signature.

will conform to the above if typeX conforms toA, Y to B andZ to C.

This rule means in particular that a redeclaration may not change the
number of arguments and results, and may only replace types of arguments
or results by conformant types. You can obtain the effect of changing the
number of arguments and results by usingtuples.

The Redeclaration rule also prohibits the redeclaration of an attribute
into a function. It is permitted, however, to redeclare a function into an
attribute; in this case the preceding constraint implies that the precursor
function must have been without arguments (otherwise the new signature
could not conform). The attribute used for the redeclaration may be
variable or constant.

[A, B], [C]

[X , Y], [Z]

→ “Redeclaration
rule”, page 307.

← “THE SIGNATURE
OF A FEATURE”,
5.13, page 148.

→ See chapter14 on
conformance, particu-
larly “EXPRESSION
AND SIGNATURE
CONFORMANCE”,
14.4, page 378.

→ Chapter13.

FEATURE ADAPTATION §10.16276
Redeclaring a function into an attribute is a useful and common
practice. Here is a typical case. Featurecount, present in most classes of
EiffelBase, gives the number of elements of a structure. Classes high in the
inheritance graph, such asLIST, the deferred class describing lists
independently of any representation choice, declarecountas a function,
which traverses a structure to count its elements. The implementation of
effective descendants such asLINKED_LISTkeeps a record of a list’s
element count in the list header; these descendants accordingly redefine
count into an attribute.

This is typical of why you may want to redefine a function into an attribute.
A class B (LIST in this example) has a functionf that computes some
information about the corresponding objects (in the example, the number of
items in a list). You devise a new implementation, represented by a descendant
Cof B, that keeps the information up to date in a field of the object, represented
by an attribute ofC. (In the example,C is LINKED_LIST, which keeps a
record of the number of items in the list header.) In most object-oriented
languages, you would have to define this attribute as a new feature of the class,
and redefinef into a function that returns its value. But there is no need for
two separate features, since they represent the same information: in Eiffel,C
will simply redefinef into an attribute.

This is all in line with the Uniform Reference principle, which states
that attributes and functions without arguments should be indistinguishable
from the outside, as they are just two alternative ways to provide a query,
differing in implementation technique, not relevance to clients.

In implementing such a scheme,C must ensure that the value of the
query will always be up to date when clients access it; this means that any
procedure whose execution may have an effect on the query’s value must
be redefined inC to update the attribute. (In our example,LINKED_LIST
must redefine all the procedures that insert or remove items, to make sure
they increment or decrementcount.) To make sure that you don’t forget any

Redefining a
function into
an attribute

LIST [G]

LINKED_
LIST [G]

count∗
-- Default implementation:
-- traverse list and count items.

count++
4

-- Redefined as attribute: list
-- keeps track of number of items.

§10.17 REDECLARATION AND ASSERTIONS 277
such redefinition, take a look at procedure postconditions: in well-written
classes, the postcondition of any procedure should indicate whether the
procedure has any effect on any particular query. For example the
postcondition ofremove, which deletes an item from a list, will have a
clause of the formcount= old count– 1. This signals that together with any
redefinition ofcountinto an attribute there must be a redefinition ofremove
to include the instructioncount:= count+ 1 or equivalent.

Sometimes theB version off is deferred; this is the case in the above
example if instead ofLISTwe consider its ancestorSEQUENTIAL, where
count is deferred. (Deferred features are syntactically treated as routines,
although if they have no arguments they are just features for which we have
refused to choose yet between attribute and routine implementations.)

Why then (in spite of the Uniform Reference principle) does the type
constraint prohibit the reverse form of redefinition – changing an attribute
into a function? One of the reasons is that we would be unable, were this
permitted, to make sense of certain routines inherited from parents.
Assume classB with features

Then if C, an heir ofB, were allowed to redefinea into a function, but did
not redefineset_a, there would be no way to executeset_aapplied to
instances ofC, since one may not assign to a function. For the same reason,
it is not permitted to redefine a variable attribute into a constant attribute.

10.17 REDECLARATION AND ASSERTIONS

The other fundamental property of redeclaration governs thePrecondition
and Postconditionclauses of a redeclared routine. Such assertions, if
present, may not be ofthe basic forms using just require and ensure;
instead they must userequire elseandensure then. Consider a routine
redeclaration. If it contains new assertion clauses, they must be of the form

expressing the new assertions as a variation on the precursors’ assertions.

a: INTEGER;
set_ais do a := 0 end

-- a is an attribute
-- set_a assigns toa

require else alternative_precondition
ensure then extra_postcondition

← See chapter9about
Precondition andPost-
condition clauses and
their semantics in the
absenceof redeclaration.

FEATURE ADAPTATION §10.17278
What kind of variation? Consider a routine redeclaration and letpre1,
… pren be the precursors’ preconditions andpost1, postn be the precursors’
postconditions. (Remember that in most practical cases there is only one
precursor, so thatn is 1; only with a join of deferred features may there be
two or more precursors.) Assume that new assertion clauses are present, of
the above form. Then the redeclared routine will be considered to have the
precondition and postcondition.

In other words, the precondition is or-ed with the original preconditions,
and the postcondition is and-ed with the original postconditions. For the
precondition, the use of operatoror elserather than plainor guarantees that
the assertion is defined, with value true, whenever one of the operands has
value true, even if a subsequent one is not defined; similarly,and then for
postconditions guarantees that any false operand makes the whole assertion
false even if a subsequent one is not defined.

If the assertion clauses are missing in a redeclaration, the convention is
that the redeclared routine is considered to haveFalse as
alternative_preconditionfor an absentPreconditionpart and True as
extra_postconditionfor an absentPostcondition. Because of the rules of
boolean algebra, this means keeping the corresponding precursor
assertions. (Or-ing a boolean value withfalse, or and-ing it withtrue, does
not change the condition.)

The use ofrequire elseandensure thenin a redeclared routine reflects
an important part of the Design by Contract method underlying Eiffel.
Redeclaring a routine means subcontracting to a descendant the job which
clients originally entrusted to the precursor. A good subcontractor will do
as well as better for clients as agreed in the original contract (involving the
precursor). This means:

• Keeping or weakening the precondition, so as not to impose any new
requirements on the original clients.

• Keeping or strengthening the postcondition, so as to return a result that
is as good as what was originally promised to the clients.

The or-ing and and-ing automatically guarantee these rules, sincep or elseq
is always weaker than or equal top, andp and thenq is always stronger than
or equal top.

Examples of strengthening the postcondition routine are very common.
In fact, almost any redefinition of a routine’s implementation, or effecting
of a deferred routine, will do something more — such as updating new
attributes —, leading to a postcondition stronger than the original. The
added properties should appear in theensure then clause.

alternative_preconditionor else pre1 or else… or else pren
extra_postcondition and then post1 and then… and then postn

With sharing in
repeated inheritance,
theremayalsobetwoor
more precursors, but
this is not a case of
redeclaration. See the
definition of“ inherited
features” on page462.

→orelseandandthen
are the“semi-strict”
versions of plainor and
and. See“SEMIS-
TRICT BOOLEAN
OPERATORS”, 28.6,
page 765.

See"Object-Oriented
SoftwareConstruction"
and"Design by Con-
tract" (references in
appendixH) and the
notion of subspecifica-
tion in , page 232.

A condition is stronger
thanorequal toanother
if it implies it, in the
sense of boolean impli-
cation. “Weaker thanor
equal” is the inverse
relation.

§10.17 REDECLARATION AND ASSERTIONS 279
As an example of weakening the precondition, assume the inheritance
hierarchy illustrated below. Procedurewrite, in DEVICE, has two clauses
in its Precondition: the device must be open, and it must not be protected.
Examples of devices are output devices, interactive devices and files.

Assume that printers, a kind of device, may not be write-protected. (The
invariant of classPRINTERshould include the clausenot protected.) The
precondition ofwrite for PRINTER may then be weakened to justopen.

To achieve this, just include in the redefined version ofwrite in
PRINTER thePrecondition

The above semantic rule gives, as actual precondition:

which has the same value as justopen.

If a declaration introduces an immediate feature — in other words, it’s
not a redeclaration — therequire else and ensure then forms are still
permitted, having the same effect as justrequire andensure.

require else open

openor else(not protectedand then open)

Precondition
weakeningDEVICE

FILEOUTPUT INTERACTIVE

PRINTER TERMINAL

write+

*
open: BOOLEAN
write

 not protected
openprotected: BOOLEAN

∗

∗

∗

∗

∗

∗
 not protected

← “SYNONYMSAND
MULTIPLE DECLA-
RATION”, 5.18, page
158

FEATURE ADAPTATION §10.17280
Since the longer forms are normally intended for redeclarations, you
might expect a validity constraint which makes them invalid for an
immediate feature. But there is no such constraint, among other reasons
because this tolerance makes it easy to declaresynonymfeaturesof which
one is immediate and the other inherited. A declaration may be of the form

where inherited is a feature inherited from a parent, for which this
declaration will be a redefinition or effecting, butimmediateis a new
feature. Therequire elseandensure thenform are compulsory because of
inherited. But they also work forimmediate, being understood asrequire
andensure.

Remember that there is no tolerance in the reverse direction: for a
redeclaration, only therequire elseandensure thenforms are permitted.

=---- UPDATE --- Assertion declaration, as we have now studied it,
complements another property involving the combination of assertions and
inheritance: thedefinition of “invariant of a class” as containing not only
the local Invariant clause, but also any others inherited from parents.
Together with the rules just seen on assertions of redeclared routines, this
ensures that inheritance and redeclaration maintain the fundamental
semantic properties of a class and its features, as expressed by the
assertions.

We need to consider one more case in the combination of redeclaration
and assertions. What happens, when you redefine a function without
arguments into an attribute, to the function’s assertions if any? Since an
attribute has no precondition, we may consider that the precondition is
changed toTrue; this is consistent with the preceding discussion sinceTrue
is weaker than any other assertion. For a postcondition, the situation is
different: the only way to express that the attribute’s possible values will

inherited, immediate
require else

pre
do

…
ensure then

post
end

§10.18 RULES ON INHERITED ASSERTIONS 281
satisfy the corresponding condition (with the attribute’s name substituted
for Result) is to make it part of the invariant of the class. The definition of
class invariants took care of this by stating that the redefinition of a
function into an attribute automatically adds the adapted postcondition to
the invariant of the redefining class, replacing any occurrence ofCurrent
by the attribute name. So if a function was of the form

and a descendantC of its class of origin redefineslast_valueinto an
attribute, the invariant ofC will automatically include the clause

--- ADD DISCUSSION OF EFFECT OF REDECLARATION ON
“ONLY” POSTCONDITION CLAUSES

10.18 RULES ON INHERITED ASSERTIONS

last_value: INTEGER
do

…
ensure

Result>= 0
end

last_value= 0

Unfolded form of an assertion
Theunfolded form of an assertiona of localunfoldedform ua in
a classC is the followingBoolean_expression:
1 • If a is theinvariantof C andC hasn parents for somen ≥ 1:

up1 and … and upn and then ua, where up1, … upn are
(recursively) the unfolded forms of the invariants of these
parents, after application of any feature renaming specified by
C’s correspondingParent clauses.

2 • If a is thepreconditionof aredeclared featuref: thecombined
precondition fora.

3 • If a is thepostconditionof aredeclared featuref: thecombined
postcondition fora.

4 • In all other cases:ua.

FEATURE ADAPTATION §10.18282
The unfolded form of an assertion is the form that will define its semantics.
It takes into account not only the assertion as written in the class, but also
any applicable property inherited from the parent. The “local unfolded
form” is the expression deduced from the assertion in the class itself; for an
invariant we “and then” it with the “and” of the parents, and for
preconditions and postconditions we use “combined forms”, defined next,
to integrate the effect ofrequire elseandensure thenclauses, to ensure
that things will still work as expected in the context of polymorphism and
dynamic binding.

The earlier definitions enable us to talk about the “precondition of” and
“postcondition “of” a feature and the “invariant of” even in the absence of
explicit clauses, by usingTrue in such cases. This explains in particular
why case1 can mention “the invariants of” the parents ofC.

Assertion extensions
The Assertionof a Preconditionstarting withrequire else is a
precondition extension.
TheAssertionof a Postconditionstarting withensure thenis a
postcondition extension.

These are the forms that routines can use to override inherited
specifications while remaining compatible with the original contracts for
polymorphism and dynamic binding.require else makes it possible to
weaken a precondition,ensure thento strengthen a postcondition, under
the exact interpretation explained next.

Covariance-aware form of an assertion extension
Thecovariance-aware form of anassertion extensiona is:
1 • If the enclosing routine has one or more argumentsx1, … xn

redefinedcovariantly to typesU1, … Un: the assertion
({ x1: U1} y1 and … and { xn: Un} yn) implies a’

where y1, … yn are fresh names anda’ is the result of
substitutingyi for each correspondingxi in a.

2 • Otherwise:a.

§10.19 UNDEFINING A FEATURE 283
10.19 UNDEFINING A FEATURE

You may redefine an inherited feature; you may also, if it was effective,
undefine it.

As the Redeclaration rulewill expressprecisely, you may not use
redeclaration to turn an effective feature into a deferred one, discarding its
inherited implementation. In other words, redeclaration cannot decrease
the “effectiveness level” of a feature: it can take the status of an inherited
feature from deferred to deferred (redefinition), effective to effective
(redefinition), or deferred to effective (effecting), but never from effective
to deferred.

A covariant redefinition may make some of the new clauses inapplicable to
actual arguments of the old type (leading to “catcalls”). The covariance-
aware form avoids this by ignoring the clauses that are not applicable. The
rule on covariant redefinition avoid any bad consequences.

Combined precondition, postcondition
Consider a featuref redeclared in a classC. Let f1, … fn (n ≥ 1)
be itsversions inparents,pre1, … pren thepreconditionsof these
versions, andpost1, … postn their postconditions.
Letpre’ be thecovariance-awareform of thepreconditionextension
of f if any, otherwiseFalse, andpost ’ the covariance-aware form
of thepostcondition extension off if any, otherwiseTrue.
Thecombined preconditionof f is theAssertion

(pre1 or… or pren) or elsepre’
Thecombined postconditionof f is theAssertion

(old pre1 implies post1)
and … and
(old pren implies postn)
and thenpost’

The informal rule is “perform anor of the preconditions and anandof the
postconditions”. This indeed the definition for “combined precondition”.
For “combined postconditions” the informal rule is sufficient in most cases,
but occasionally it may be too strong because it requires the old
postconditions even in cases that donot satisfy the old preconditions, and
hence only need the new postcondition. The combined postcondition as
defined reflects this property.

→ Clause5 of the
Redeclaration rule,
page307.

FEATURE ADAPTATION §10.19284
In some cases, however, this is desirable; when inheriting a feature, you
may wish to give it back its virginity, by pretending you inherited it as
deferred, even though its precursor (the parent’s version) is in fact effective.

Undefinition serves this goal. To undefine one or more effective
features inherited from a parent, just list them in theUndefinesubclause of
the correspondingParent part, as in

In the optional subclauses of aFeature_adaptation, Undefinecomes after
Rename andNew_exports, and beforeRedefine.

Here f, g, h must be features that are effective inB. The effect of the
aboveUndefinesubclause is thatC obtains these features fromB as if they
had been deferred rather than effective in that class; the process does not
change the features’ signature and specification.

It is possible to apply both undefinition and redefinition to the same
inherited feature; this is useful if you want to make an inherited feature
deferred and also change its signature or specification, as in

where theB version off had an argument of typeT rather thanU, assuming
(as required by the Redeclaration rule) thatU conforms toT.

class C inherit
B

rename
…

undefine
f, g, h

redefine
…

… Other subclauses ofFeature_adaptation…
end

… Other parents and rest of class…

class E inherit
B

undefine
f

redefine
f

end
feature

f (x: U) is deferred end
end

Toremember thisorder,
note that all subclauses
exceptRenamerefer to
features by their final
names, soRename
should come first.
Since, as seen next, an
undefined feature may
then be redefined,
Undefine must come
beforeRedefine.

§10.20 REDEFINITION AND EFFECTING 285
This leads to a precise definition of the inherited status of a feature:

10.20 REDEFINITION AND EFFECTING

We can now define precisely the two variants of redeclaration:

Inherited as effective, inherited as deferred
An inheritedfeature isinherited as effectiveif it has at least one
effective precursor and the correspondingParentpart does not
undefine it.
Otherwise the feature isinherited as deferred.

Effect, effecting
A classeffectsan inherited featuref if an only if it inheritsf as
deferred and contains adeclaration forf.

Such a declaration is then known as aneffectingof f

Effecting a feature (making iteffective, hence the terminology) consists of
providing an implementation for a feature that was inherited as deferred.
No particular clause (such asredefine) will appear in theInheritancepart:
the new implementation will without ado subsume the deferred form
inherited from the parent.

Redefine, redefinition
A classredefinesaninheritedfeaturef if and only if it contains a
declarationfor f that is not aneffecting off.

Such a declaration is then known as aredefinition of f

Redefining a feature consists of providing a new implementation,
specification or both. The applicableParentclause or clauses must specify
redefinef (with f’s original name if the new class renamesf.)

Redefinition must keep the inherited status, deferred or effective, off:

• It cannot turn a deferred feature into an effective one, as this would fall
be an effecting.

• It may not turn an effective feature into a deferred one, as there is
another mechanism specifically for this purpose,undefinition. The
Redeclaration rule enforces this property.

As defined earlier, the two cases, effecting and redefinition, are together
calledredeclaration.

← Two feature names
are“thesame” if theyare
identicalordifferonlyby
letter case. See“Same
feature name, same
operator, same alias”,
page 153.

FEATURE ADAPTATION §10.21286
10.21 THE JOIN MECHANISM

The notion of deferred feature yields a useful technique:feature join,
allowing a class to merge several inherited features into just one.

The join mechanism supports an important aspect of object-oriented
architecture design: the fusion of abstractions. The abstractions that need
to be combined will come from different hierarchies of deferred classes.

The EiffelBase library, based on combinations of three such hierarchies,
provides typical opportunities for such fusion. The hierarchies correspond
to complementary classification criteria for general-purpose “container”
data structures:

• Storage, characterizing the representation properties of a container
structure (fixed size, variable size but bounded, unbounded but finite,
potentially infinite).

• Access, characterizing the methods through which clients store and
retrieve elements (in last-in-first-out for stacks, through a key for hash
tables etc.).

• Traversal, characterizing ways of exploring the container exhaustively
(forward, backward, postorder, preorder and others.).

You can obtain a particular type of effective container by multiple
inheritance from classes of these three categories. For example, a “fixed-
size list” has fixed-size storage, access by index and other techniques, and
forward traversal.

In this process of combining abstractions, it will often be useful to
merge inherited deferred routines if they correspond to the same notion in
the descendant. For example, the deferred EiffelBase classCHAIN
(describing sequential structures such as lists) inherits from two deferred
classes that both have anitemfunction returning the item at cursor position:

• ACTIVE, from the Access hierarchy, describe structures with a client-
controlled “cursor” position. Procedures are available to move the
cursor to various elements. In this class,item denotes the value of the
element at cursor position.

• BIDIRECTIONAL, from the Traversal hierarchy, describe structures that
are sequentially traversable both forward and backward. In this class,item
denotes the value of the current element at each step of a traversal operation.

Class CHAIN combines these two concepts and inherits bothitem
functions. Normally, this would be considered anameclash, which we
would have to remove through renaming. But here the clash is harmless, in
fact desired, since for aCHAIN the two concepts are compatible. If the
features were effective, we would have to choose between conflicting
implementations; but they are both deferred, so we have no such problem.
We can simply merge — “join” — them into one.

A container data struc-
ture, such as a queue or
a hash table, serves to
store and retrieve
objects. Some of the
most important kinds of
container data struc-
ture are covered by the
classes of EiffelBase.
See"Reusable Soft-
ware" for details.

→“NAMECLASHES”,
10.23, page 290.

§10.21 THE JOIN MECHANISM 287
It is valid, then, to writeCHAIN as heir to bothBIDIRECTIONALand

ACTIVE even without renaming the deferreditem routines, which will

yield a single deferred routine inCHAIN:

Here is another interesting application. Occasionally you will need to effect

an inherited procedure to do nothing at all. For example a descendant of a

general-purpose iteration class, as studied earlier in this chapter, might not

need a particular initialization operation, provided in the ancestor by a

procedureprepare. You can manually effectprepareinto a procedure that

does nothing. But it is simpler to use a join with the proceduredo_nothing

from classANY, whose implementation faithfully respects its name:

That’s all you have to do: renamingpreparecauses a join withdo_nothing

and the associated effecting.

To be joined, inherited features must have the same final name in the

class that performs the join. In the above case both precursors were called

item in the parents, so no particular action was required from the designer

of classCHAIN with respect to their names.In other cases you might want

to join two deferred features that have different names, sayf andg, in the

respective parents. You should then use renaming to make sure that the

features are inherited under the same final name:

deferred class CHAIN [T] inherit
BIDIRECTIONAL[T]

-- BIDIRECTIONAL has a deferred routineitem
…

ACTIVE[T]
-- ACTIVE has a deferred routineitem

…
… Other parents and rest of class text omitted…

class SIMPLE_ITERATORinherit
GENERAL_ITERATOR

rename prepareasdo_nothingend
… Other parents and rest of class text omitted…

FEATURE ADAPTATION §10.22288
If C inherits and joins two or more deferred features, the net result forC is
as if it had inherited a single deferred feature. In the absence of further action
from C, that feature remains deferred.C may of course provide an effective
declaration, killing several abstract birds with one concrete stone by using
a single redeclaration to effect several featuresinherited as deferred.

More generally,C may treat the result of the join as it would any other
inherited deferred feature.Cmay in particular redefine the feature to change
its signature while leaving it deferred. In that caseC must list all the
inherited features in theRedefinesubclauses of their respectiveParentparts.

The join mechanism imposes easily justifiable conditions on features to
be joined in this way: they must be deferred (after possible undefinition, as
detailed in the next section), inherited under the same name (after possible
renaming), and equipped with the same signature (after possible
redeclaration). The formal rule expressing these requirements is the Join
rule, describedlater in this chapter.

10.22 MERGING EFFECTIVE FEATURES

As introduced so far, the join mechanism applies only to deferred routines.
The reason is obvious: an attempt by a classD to join two effective features
inherited from parents ofD may yield an ambiguous result in the absence
of a clear universal criterion for choosing one of the two inherited
implementations over the other.

What happens, however, if when you designD you do know which of
the versions you want to override the other inD? Then the merging should
not raise any particular problem.

Theundefinitionmechanism makes this possible. Here is an illustration
of the scheme, used in this case to join three features:

-- C may be deferred or not (see below)
… class C inherit

A
rename

f as new_name
…
end

B
rename

g as new_name
…
end

← “Inherited as
deferred” was defined
(page285) to mean:
either coming from
deferred precursors, or
explicitly undefined.

→ “Join rule”, page
309.

← “UNDEFINING A
FEATURE”, 10.19,
page 283.

§10.22 MERGING EFFECTIVE FEATURES 289
We want to merge the three inherited features by renaming all of them into
a single name,f. But the originals were all effective, yielding three
implementations of which we may retain only one inD. To discard theA
and C implementations,D undefines them, leaving theB version as the
undisputed victor.

In the simplest case, there are only two competing features in parentsB
andC, and they already had the same namef in these parents. If you want
theB version to take over inD all you need is to undefine theC version:

Although f’s precursor inB was effective, the undefinition causesf to be
“inherited as deferred” fromC. TheB version provides an effecting.

An application of this technique will appear inrepeatedinheritance when a
class inherits conflicting versions of the same feature, and the class designer
wants to retain only one of these versions.

The general rule is the natural one (although we must wait until a full
definition of repeated inheritance to express it rigorously): inheriting two
or more features under the same name may only be invalid — a case of
nameclash— if more than one is inherited as effective. If, after possible
undefinition, they are all deferred, or all deferred except for one effective
version, then we have a valid case of join, since there is no conflict of
implementations: we have either no implementation or one. In the latter
case the effective version will serve as common implementation for all the
features inherited as deferred.

class D inherit
B

-- B has an effective featuref
C

undefinef end
feature

…
end

g

f

renameg asf
undefinef

rename h asf renamei asf
undefinef

+

+

A B C

D

h+ i +
Merging and
overriding

→ See the beginning of
16.5, page 434.

→ The next section dis-
cusses name clashes.

FEATURE ADAPTATION §10.23290
The examples have illustrated one way to reconcile conflicting effective
versions from parents: undefine all but one of them. This is like a
competition where one of the rivals win. There is another way — as in
business or in war — to resolve a competition: a new entrant overcomes
everyone else. The technique here will be to useredefinition rather than
undefinition: redefine all the conflicting inherited versions into a new one.
The last example becomes:

As you may have noted, it actually doesn’t make any difference here if we
replace either or even both of theredefine keywords byundefine. If we
undefine one of the features, the other takes over, but gets redefined. If we
undefine both, they are inherited as deferred, and hence joined; but then the
declaration off effects both.

10.23 NAME CLASHES

Now that we have seen the join mechanism we are in a position to define
precisely the notion ofname clashof features under multiple inheritance,
and see what kinds of name clashes are permitted. From the previous
section we know the rough form of the rule: a name clash in a classD
between two or more inherited features will be OK, leading to a join of all
of them, if they all have compatible signatures (so that we may indeed join
them into a common version) and, taking any undefinitions into account:

• Either the resulting features, except possibly one, are all deferred.

• Or if this is not the case, meaning that two or more versions remain
effective inD, thenD redefines all of them into a common version, as in
the example class text above.

The discussion of repeated inheritance will also add a permissible case: the
“false alarm” resulting from features that come from different parents but
are really thesame featureinherited from a common ancestor. In the
absence of conflicting redefinitions this can cause no trouble.

class D inherit
B

redefinef end
C

redefinef end
feature

f
do

… “Redefined algorithm”…
end

…
end

§10.23 NAME CLASHES 291
Let’s see the precise form of the rule. The general guideline is theno
overloading principle, dictated (although it may at first sound like an
advertisement for a mutual fund) by criteria of clarity and simplicity.

Overloading — the possibility for a single name to denote several features within
the context of a given class — defeats the principles of object technology, running
into conflict with the more powerful forms ofdynamicoverloading provided by
polymorphismanddynamicbinding. Introducing in-classoverloading isprobably
the biggest mistake that one can make in the design of an O-O language.

In the absence of inheritance, the no-overloading principle is easy to
enforce: all the features declared in a class must have different names. With
single inheritance, we add the rule that no inherited feature may have the
same final name as a feature of the class; renaming provides an easy way
to correct any such potential conflict. With multiple inheritance, this last
rule must still apply between the class and each of its parents, but in
addition we have to take into account the case of conflicts between names
of features in the parents themselves. This is what we call a name clash:

This property is not expressed as a separate validity constraint since it follows
from the Join rule given at the end of this chapter, and the complementary
mechanisms discussed in the repeated inheritance chapter.

In the first permissible case, the clash involves only one implementation, or
none; if the signatures are compatible, we may join all the features into a single
one, with no particular difficulty (and without departing from the no-
overloading principle). The second case is similar: joining through redefinition.

In the third case, we don’t have a real clash at all, only the appearance
of one, as if being scared in an empty house by a moving figure that turns
out to be our own reflection in the mirror. This case arises out of repeated
inheritance (as studied in alaterchapter) in the situation represented on
the figure:

Name clash
A class has aname clashif it inherits two or more features from
differentparents under the samefinal name.

Since final names include the identifier part only, aliases if any play no role
in this definition.

Name clashes would usually render the class invalid. Only three cases
may — as detailed by the validity rules — make a name clash permissible:

• At most one of the clashing features is effective.

• The class redefines all the clashing features into a common version.

• The clashing features are really the same feature, inherited without
redeclaration from a common ancestor.

→ Chapter16explores
repeated inheritance.

FEATURE ADAPTATION §10.23292
D seems to inherit two featuresf from both its parentsB andC, but they are
not really different features, simply the same feature inherited from a
common ancestorA, and not redeclared anywhere in the process. As we
may expect, and the rules of repeated inheritance will state precisely,D
inherits a single featuref, so this case causes no difficulty.Outside of these
three cases, however, a name clash is always prohibited. In the typical
situation

where bothA andB have a feature with the same namefname, classC will
be invalid. It’s quite easy to get rid of the name clash:

• Often you will want the features to remain distinct inC, because they
indeed correspond to different operations; their sharing of a common
name is just an unfortunate coincidence, a kind of pun. Then you will
simply rename one, or both.

• Sometimes, however, it’s not just a pun: inCyou really want the clashing
features to be merged into one. Then, if the signatures are compatible,
you can rely on the join mechanism by undefining either one; the other’s
implementation will take over. You may also undefine both, leavingCor
one of its own proper descendants in charge of effecting the joined result.

class C inherit
A
B

… Rest of class omitted…

f A

CB

D

f f

A name clash
that isn’t really
one.

§10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR 293
10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR

The last mechanism of this chapter,Precursor, simplifies writing a routine’s
redefinition when the new implementation relies on the original one.

The need for a precursor mechanism

In studying redefinition we have seen that you can override aroutine’s
inherited implementation (as well as its signature and contract). The new
implementation may be completely different from the original one; but
fairly often it just extends it, performing the same actions as the original
plus some others, with a redefinition of the form

If you need new actions only after the original processing there is no
“Something else”; if only before, there is no“Yet something else”.

A typical example would be the redefinition, in a proper descendant
TAXABLE_INVESTMENTof a classINVESTMENT, of the proceduresell,
where the new version performs what the original version did but must also
compute the tax penalty associated with the sale of a stock.

ThePrecursormechanism provides you, when writing redefinitions of
this kind, with a simple way to include“Whatever the original version did”
in the actions of the new routine body. WithoutPrecursor, you would have
two ways of achieving the intended effect:

• You could simply repeat the original algorithm in the body of the new
version, in lieu of the line that reads“Whatever the original version did”
above. This works but has the usual effects of code duplication: making
the software bigger and less readable (since the reader doesn’t
immediately realize that a certain element is not original but the
verbatim replication of something else); tediousness for the developer;
and, most damaging, the need to remember, if the original changes, that
you must update all duplicates as well, with the risk of forgetting some.

As you will have noted, one of the recurring fetures of the Eiffel method is its
phobia of unnecessary replication. Genericity, inheritance and other reuse
mechanism are all intended to make sure that what needs to be said is said
well, and said once.

your_routine
do

“Something else”

“Yet something else”
end

You may redefine fea-
tures of all kinds, but
thissectiononlyapplies
to routines.

“Whatever the original version did”

FEATURE ADAPTATION §10.24294
• You can also use the replication mechanisms of repeated inheritance,
studied in therelevant chapter, to keep a duplicate of the original
feature, along with the redefined version. This approach avoids the
drawbacks of the preceding technique; it was indeed the recommended
method in early versions of Eiffel, and remains appropriate in some
cases. For most common applications, however, it is overkill, and
Precursor provides a simpler solution.

Precursor basics and examples

That solution is in fact disarmingly easy: in a routine redefinition,
Precursorstands for what was written above as“Whatever the original
version did”. The form of the construct is simply the reserved word
Precursor, followed by a list of actual arguments if any. So you can write
the first example sketch above, for a routine with no arguments, as just

For a routine with arguments, the redefinition might look like

These examples illustrate how to use thePrecursorreserved word: exactly
like you would use the feature name (new_versionand sell in these
examples) for a new call to the corresponding routine, such as the calls
new_versionandsell (share_count, selling_price). Appearing in the body
of the routine, these calls would be recursive — leading in fact, as written,
to infinite recursion —, but instead of the feature name we usePrecursor
which yields the desired effect, calling the original version.

In the sell example the arguments toPrecursorare the same as the
formal arguments to the procedure,share_countand selling_price,
meaning that you call the precursor with the same arguments that were
passed to you. This is not a general requirement; in other circumstances
you may pass toPrecursor any arguments of the appropriate types.

your_routine
do

“Something else”

“Yet something else”
end

sell (share_count: REAL; selling_price: PRICE)
-- Record sale ofshare_count shares atselling_price.

do

compute_tax
end

→ “KEEPING THE
ORIGINAL VERSION
OF A REDEFINED
FEATURE”, 16.8,
page 443

Precursor

Precursor(share_count, selling_price)

§10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR 295
These two examples use procedures. The mechanism works just as well
with functions:

The result of thePrecursorcall is the result returned by a call to the original
version of the routine, with the given arguments.

The Precursorcontruct is valid only in the case illustrated by these
examples: the body of the redefinition of a routine, in which it denotes the
original implementation in the parent.

Outside of this case a class may not refer to ancestor versions of its features
(as provided by the “super” variables of some object-oriented languages,
notably Smalltalk) because this would impair the consistency of the notion of
class. A class is entirely defined by its features; how these features were
arrived at through inheritance is internal information, and the original
versions are not part of the information associated with the class. (They will
often violate the contracts associated with the class, in particular by failing to
maintain its invariant, typically stronger than the ancestors’ invariants.) The
only justification for accessing a parent version is that we may need the old
implementation to define a new one, through thePrecursor construct.

The precursor of a redefined feature isnota feature of the current class. If you
do want to keep both the original and the redefinition as features of the class,
you can, but you have to use a different mechanism: repeated inheritance,as
explained in a later chapter.

Choosing between multiple precursors

In ordinary cases, as illustrated by the examples, a redefined routine has
only one effective precursor. In studying the join of routines, however, we
have seen that it is possible for a routine declaration to be the redefinition
of two or more parent versions (precursors). If you use aPrecursor
construct in such a case you will need to specify which precursor you want,
by listing its name. Instead of justPrecursor(arguments) the syntax in that
case will bePrecursor { PARENT} (arguments), wherePARENTis the
name of one of the parent classes from which we are redefining the feature.

profit (share_count: REAL; selling_price: PRICE): AMOUNT
-- Profit from sale ofshare_count shares atselling_price.

do
Result:= Precursor(share_count, selling_price)

– tax_penalty(share_count, selling_price)
end

→ “KEEPING THE
ORIGINAL VERSION
OF A REDEFINED
FEATURE”, 16.8,
page 443

FEATURE ADAPTATION §10.24296
Theearlier join example illustrates the case of multiple precursors:

In the “Redefined algorithm” a precursor call of the form
Precursor(arguments) is invalid, because it leaves open the obvious
question “Which precursor do you mean: the version fromA, or fromB?”.

The qualified form removes the ambiguity: you should write either one of

You may, in fact, include both of these in the redefinition’s body if you need
to reuse both parents’ original implementations to define the new one.

The form with explicit qualification,Precursor{ PARENT_NAME}, is
valid even in the absence of ambiguity. It is usually preferable to use this
form in all cases since it clarifies the context and helps identify errors if you
change parents. This is part of the style guidelines.

With these observations we have enough to introduce the formal
properties of thePrecursorconstruct. (They will mark the beginning of the
formal part of this chapter; since it will introduce no new construct or
technique, but only provide precise definitions of the concepts seen
informally so far, you may on first reading skip to the next chapter.)

Precursor specification

The syntax of thePrecursorconstruct covers the variants seen in the
preceding examples:

class D inherit
B

redefinef end
C

redefinef end
feature

f
do

… “Redefined algorithm”…
end

…
end

(arguments)
(arguments)

Precursor
Precursor=∆ Precursor [Parent_qualification] [Actuals]

← Page290.

Precursor{ B}
Precursor{ C}

← The definition of
Parent_qualification,
repeated here for clar-
ity,originally appeared
with Clients on page
204.

§10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR 297
For the validity and semantics, we avoid introducing special rules — which
would repeat many of the properties of calls — by relying on our usual
unfolding language definition technique: we just pretend that we were
clever enough, in the parent class, to keep a duplicate of the original
feature, by relying on asynonym feature:

In other words, we will talk about thePrecursorcall as if the declaration of
r in B, instead of just

had been written with a frozen synonym

Therule on multiple declarations implies that this is equivalent to having
declared independent features with an identicalBody. Becauser’ is frozen,
it retains the original semantics ofr, in the context of the new classC; this
is exactly what we want to describe the validity and semantics ofPrecursor.

Parent_qualification=∆ "{" Class_name "}"

Relative unfolded form of aPrecursor

In a classC, consider aPrecursorspecimenp appearing in the
redefinition of a routiner inherited from aparent classB. Its
unfolded form relative to B is anUnqualified_callof the formr’
if p has noActuals, or r’ (args) if p has actual argumentsargs,
wherer’ is a fictitious feature name added, with afrozen mark,
assynonym for r in B.

r (a: T; …) … do … Body …end

r, (a: T; …) … do … Body … endfrozen r’

← “Unfoldedformofa
possiblymultipledecla-
ration”, page 158.

FEATURE ADAPTATION §10.24298
Here indeed is the validity:

Precursor rule VDPR

A Precursoris valid if and only if it satisfies the following
conditions:
1 • It appears in theFeature_bodyof a Feature_declarationof a

routiner.

2 • If the Parent_qualificationpart is present, itsClass_nameis
the name of aparent classP of C.

3 • Among the routines ofC’s parents, limited to routines ofP if
condition 2 applies, exactly one is aneffective routine
redefined byC into r. (The class to which this routine belongs
is called theapplicable parent of thePrecursor.)

4 • Theunfoldedform relative to the applicable parent is, as an
Unqualified_call, argument-valid.

In addition:
5 • It is valid as anInstructionif and only if r is a procedure, and

as anExpression if and only ifr is a function.

This constraint also serves, in condition3, as a definition of the “applicable
parent”: the parent from which we reuse the implementation. Condition4
relies on this notion.

Condition1 states that thePrecursorconstruct is only valid in a routine
redefinition. In general the language definition treats functions and
attributes equally (Uniform Accessprinciple), but here an attribute would
not be permissible, even with anAttribute body.

Because of ourinterpretation of a multiple declaration as a set of separate
declarations, this means that ifPrecursorappears in the body of a multiple
declaration it applies separately to every feature being redeclared. This is an
unlikely case, and this rule makes it unlikely to be valid.

Condition2 states that if you include a class name, as inPrecursor{ B} ,
thenB must be the name of one of the parents of the current class. The
following condition makes this qualified form compulsory in case of
potential ambiguity, but even in the absence of ambiguity you may use it to
state the parent explicitly if you think this improves readability.

Condition3 specifies when this explicit parent qualification is required.
This is whenever an ambiguity could arise because the redefinition applies
to more than one effective parent version. The phrasing takes care of all the
cases in which this could happen, for example as a result of a join.

← “SYNONYMS AND
MULTIPLEDECLARA-
TION”, 5.18, page 158.

§10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR 299
Here is a more verbose form of clause3, obtained from a mathematical
specification. LetPAR be the set of classes defined as follows: if the
Parent_qualificationpart is present,PARis the single-element set containing
the class whose name is listed in thatParent_qualification; otherwisePARis
the set of all parents ofC. Let REDEFbe the set of all the effective routines,
from classes belonging toPAR, of whichr is a redefinition. ThenREDEFhas
exactly one element.

This property really belongs to the validity of instructions and expressions,
but having a single clause here saves two full-fledged validity rules in the
respective chapters: “It is valid to use aPrecursoras anInstructionif and only
if its unfolded form is a call to a procedure”, and “It is valid to use aPrecursor
as anExpressionif and only if its unfolded form is a call to a function”.

The definition of the “relative” unfolded form didn’t necessarily yield a
valid call; in fact it serves, in clause4, to determine validity. If as a result
we know we have a validPrecursor, we can define an unfolded form that is
not relative any more:

The semantics follows immediately:

As usual, semantics is only defined for valid specimens, so it may
legitimately use the “absolute” unfolded form.

Condition4 simply expresses that we understand thePrecursorspecimen
as a call to a frozen version of the original routine; we must make sure that
such a call would be valid, more precisely “argument-valid”, the
requirement applicable to such anUnqualified_call.

A Precursorwill be used as either anInstructionor anExpression, in the
same way as a call to (respectively) a procedure or a function; indeed
Precursorappears as one of the syntax variants forboth of these constructs.
So in addition to being valid on its own, it must be valid in the appropriate
role. Condition5 takes care of this.

Unfolded form of a Precursor

Theunfolded form (absolute) of a validPrecursoris itsunfolded
form relative to itsapplicable parent.

Precursor semantics

The effect of aPrecursor is the effect of itsunfolded form.

Pages224 and753.

FEATURE ADAPTATION §10.25300
10.25 REDEFINITION AND UNDEFINITION RULES

The agenda for the remainder of this chapter is to provide the precise rules
for syntax, validity and semantics of the mechanisms seen so far — all
feature adaptation mechanisms except for those involving repeated
inheritance. As already noted, this will introduce no new techniques, so
you may prefer on first reading to skip the rest of this chapter.

Let us begin with the straightforward syntax and validity ofUndefine
and Redefinesubclauses. It will do no harm to repeat here (again) the
general structure ofInheritance clauses:

The clauses involved in the present discussion areUndefineandRedefine.

Here is the syntax ofRedefine:

Inheritance parts
Inheritance=∆ "inherit Parent_list

Parent_list=∆ "{ Parent ";" … }

Parent=∆ "Class_type [Feature_adaptation]

Feature_adaptation=∆ [Rename]
[New_exports]
[Undefine]
[Redefine]
end

Redefinition
Redefine=∆ redefineFeature_list

This syntax appeared
first on page169.

← See page180for
Renameand205 for
New_exports.

§10.25 REDEFINITION AND UNDEFINITION RULES 301
The following constraint applies toRedefine subclauses:

In this definition:

• Thefinal name of an inherited feature (clause1) is its name as it results
from possible renaming (theFeature_namepart only, not including any
Alias).

• A feature is“frozen” (clause2) if it has been declared with the keyword
frozen in its class of origin. The purpose of such a declaration is
precisely to forbid any redefinition of the feature in descendants,
guaranteeing that the exact original implementation remains in place.

• A feature is aconstantattribute (clause2) if it is declared with a clause
of the formis v, wherev is Manifest_constant.

• The condition for a redeclaration to be valid (clause4) appearslater in
this chapter; in particular, the new signature must conform to the
original’s, and you may not redeclare an attribute into a function.

• If C provides an effective version of a feature that it inherits as deferred,
this is a case of effecting, and hence of redeclaration, but not of
redefinition; as a consequence, clause4 indicates that the feature must
not appear in theRedefine subclause.

As to the semantics:

Redefine Subclause rule VDRS

A Redefinesubclause appearing in aParentpartfor a classB in a
classC is valid if and only if everyFeature_namefnamethat it
lists (in itsFeature_list) satisfies the following conditions:
1 • fname is thefinal name of a featuref of B.

2 • f was not frozen inB, and was not aconstant attribute.

3 • fname appears only once in theFeature_list.

4 • TheFeaturespart ofC contains oneFeature_declarationthat
is aredeclaration but not aneffecting off.

5 • If that redeclaration specifies adeferredfeature,C inheritsf as
deferred.

Redefinition semantics

The effect in a classC of redefining a featuref in aParentpartfor
A is that theversion off in C is, rather than its version inA, the
feature described by the applicable declaration inC.

← “FEATURES AND
THEIRNAMES”, 6.10,
page 182.

← “FEATURE DEC-
LARATIONS: SYN-
TAX”, 5.10, page 140.

← “HOWTORECOG-
NIZE FEATURES”,
5.12, page 145.

→ “REDECLARA-
TIONRULES”, 10.28,
page 306.

→Effectingisdefinedpre-
cisely in the next section.

FEATURE ADAPTATION §10.25302
The syntax of anUndefine clause is similar to that of aRedefine:

The constraint is also similar:

--- EXPLAIN LAST CLAUSE ---

and the semantics:

This new version will serve for any use of the feature in the class, its clients,
its proper descendants (barring further redeclarations), and even ancestors
and their clients under dynamic binding.

Undefine clauses
Undefine=∆ undefineFeature_list

Undefine Subclause rule VDUS

An Undefinesubclause appearing in aParentpartfor a classB in
a classC is valid if and only if everyFeature_namefnamethat it
lists (in itsFeature_list) satisfies the following conditions:
1 • fname is thefinal name of a featuref of B.

2 • f was notfrozen inB, and was not anattribute.

3 • f waseffective inB.

4 • fname appears only once in theFeature_list.

5 • Any redeclaration off in C specifies adeferred feature.

Undefinition semantics

The effect in a classC of undefining a featuref in anInheritance
part for A is to causeC to inherit fromA, rather than theversion
of f in A, adeferred form of that version.

→Thisalsoappliestocli-
ents of proper ancestors,
under dynamic binding.
“D YNAMICBINDING”,
23.12, page 630

§10.26 DEFERRED AND EFFECTIVE FEATURES AND CLASSES 303
10.26 DEFERRED AND EFFECTIVE FEATURES AND CLASSES

The discussion has already referred informally to features being “deferred”
or “effective” in a class. We can now make these notions precise, and use
the opportunity to define what it means to “effect” a feature

In case1 the declaration may be for a new (immediate) feature, or it may
be a redeclaration of an inherited feature, deferred in the parent but made
effective inC. This is known as aneffecting:

Some validity constraints, seen below, apply to this case: the effective
feature must satisfy the Redeclaration rule, and if there are two or more
deferred features among the lot, this is ajoin, governed by the Join rule.

Effective, deferred feature
A featuref of a classC is aneffective featureof C if and only if
it satisfies either of the following conditions:
1 •C contains a declaration forf, specifying it as either as an

attribute or as aroutine whoseRoutine_bodyis of the
Effectiveform (not the keyworddeferred but beginning with
do, onceor external).

2 • f is aninheritedfeature, coming from aparentB of C where it
is (recursively) effective, andC does not undefine it.

f is deferred if and only if it is not effective.

As a result of this definition, a feature is deferred inC not only if it is
introduced or redefined inC as deferred, but also if its precursor was
deferred andC does not redeclare it effectively. In the latter case, the
feature is“inherited as deferred”.

The definition captures the semantics of deferred features and of their
effecting. In case1 it’s clear that the feature is effective, sinceC itself
declares it as either an attribute of a non-deferred routine. In case2 the
feature is inherited; it was already effective in the parent, andC doesn’t
change that status.

Effecting
A redeclaration into aneffective feature of a featureinheritedas
deferred is said toeffect that feature.

← “Inherited as effec-
tive, inherited as
deferred”, page 285.

← “UNDEFINING A
FEATURE”, 10.19,
page 283.

FEATURE ADAPTATION §10.26304
It is possible under this definition for a redeclaration to effectingseveral
inherited features. Theonly other case in which we permit inheriting
several features with the same name without renaming is sharing under
repeated inheritance. Here too we don’t have a real name clash, as long as
at most one of the features is effective and they satisfy the two applicable
rules (Redeclaration and Join).

Effecting may follow one three schemes:

1 • You may writeC as heir to a classB wheref is deferred, and provide an
effecting off in the form of aFeature_declarationin theFeaturespart of
C. This is themost common use of deferred features and effecting.

2 • You may want to inherit a specification from one parentA and the
corresponding implementation from anotherB. In this caseA will
provide a deferred feature andB an effective feature with compatible
signature; if they have the same final name inC, theB version will serve
as effecting of theA version. In this case there is no new feature
declaration inC.

3 •C may also undefine a parent’s effective feature, and use an effective
feature (inherited from a parent, or introduced or redefined inC itself)
to provide an implementation. This is less common, but provides the
mechanism for merging effective features, with one of the
implementations overriding the others, as in one of theearlierexamples.

The above defines the meaning of “deferred” and “effective” for features.
These qualifiers carry over to the classes that contain these features:

This includes a validity requirement and a definition, both of which follow
from the the original discussion of classes:

• The requirement to declare the class asdeferred as soon as it has
deferred feature is not a new validity constraint, but just repeats what the
ClassHeaderrule said — except that now, as a result of the definitions
in this chapter, we have a precise definition of “deferred feature”
(introduced as deferred, or inherited as deferred and not effected).

• As to the definition, it follows from the Class Header rule combined
with theoriginaldefinitionof “deferredclass”, which stated that a class
is deferred if itsClass_headerstarts withdeferred. That was a purely
syntactic criterion; now we have a more meaningful one, reminding us
that a class is deferred whenever it has a deferred feature.

Deferred class property

A class that has at least onedeferred feature must have a
Class_headerstarting with the keyworddeferred. The class is
then said to bedeferred.

→ “Repeated Inherit-
ance Consistency con-
straint”, page 458.

← As illustrated in
“EFFECTING A
DEFERRED FEA-
TURE”, 10.14,page270.

←Asillustratedbythefig-
ure“Merging and over-
riding”, page 289.

← ClassD, page289.

← “Class Header
rule”, page 126.

← “Deferredclass,effec-
tive class”, page 127.

§10.27 ORIGIN AND SEED 305
The reverse — that a class is effective if all its features are effective — is
usually true, but not always since you have the option of declaring it
explicitly asdeferred, to specify that it remains abstract and not directly
instantiatable. Hence the precise phrasing of the complementary property:

As a summary, remember that youmust declare a class as

as soon as it has a deferred featuref — not only if f is introduced inC as
deferred, but also ifC inherits it as deferred and does not effect it.

For an effective class, you will just use one of

10.27 ORIGIN AND SEED

Two useful definitions follow from the discussion of redeclaration.
Chapter6 defined theorigin of a feature introduced in classC asC itself.

We can now generalize this to arbitrary features, inherited as well as
immediate. The associated notion is a feature’sseed, its original version.
These notions, which will be especially useful in the discussion of repeated
inheritance, are defined as follows.

Effective class property

A class whose features, if any, are all effective, is effective unless
its Class_header starts with the keyworddeferred.

deferred class C …

class C…
expanded class C…
reference class C…

Origin, seed

Every featuref of a classC has one or more features known as its
seedsand one or more classes known as itsorigins, as follows:
1 • If f is immediate inC: f itself as seed;C as a origin.

2 • If f is inherited: (recursively) all the seeds and origins of
its precursors.

This is not necessarily
the beginning of the
class text itself since
there may be aNotes
clause first.

← This is a refinement
of the initial definition
of"origin" onpage133,
which only covered
case1 of the present
definition.

→ “SHARING AND
REPLICATION”, 16.4,
page 428.

FEATURE ADAPTATION §10.28306
----------If this is your first reading, do not let yourself be troubled by case
2, which refers to repeated inheritance. As soon as you have read the first
three sections of therepeatedinheritancechapter, the context in which case
2 occurs should be quite clear.

The origin of a feature is the most remote ancestor from which the feature
comes, and its seed is its original form in that ancestor.

None of the reincarnations that the feature may have gone through along
the inheritance part as a result of redefinition, effecting or renaming may
affect its seed and its origin.

10.28 REDECLARATION RULES

(The rest of this chapter gives the formal rules applying to feature
redeclaration. The essential concepts have already been seen, so you may
safely skip to the next chapter on first reading.)

---- REMOVE ALL THIS!!! According to theearlierdefinitions, case ----
-- is an effecting. Case ------ is an effecting for deferredf and effectiveg, a
redefinition if they are both deferred or both effective. Clause5 of the
constraint below will preclude the other apparent possibility:f effective,g
deferred.

In case -------, the text ofC does not contain any declaration forf, but
some other inherited featureg (which must come from a different parent)
effectsf. It is convenient to treat this implicit and somewhat special case as
a redeclaration, along with the explicit and more common case -------.

The above definition says nothing about validity: case ---- simply states
that if a declaration uses the name of an inherited feature, we must treat it
as a redeclaration (valid or not) of that feature, not as the declaration of a
new, or immediate, feature. Here is the rule that determines when a
redeclaration (explicit or implicit) is valid:

The origin, a class, is “where the feature comes from”, and the seed is the
version of the feature from that origin. In the vast majority of cases this is
all there is to know. With repeated inheritance and “join”, a feature may
result from the merging of two or more features, and hence may have more
than one seed and more than one origin. That’s what case2 is about.

→ Chapter16.

← “Ef fective, deferred
feature”, page303and
“Ef fecting”, page 303.

§10.28 REDECLARATION RULES 307
Redeclaration rule VDRD

Let C be a class andg a feature ofC. It is valid for g to be a
redeclaration of a featuref inherited from aparentB of C if and
only if the following conditions are satisfied.

1 •No effective feature ofC other thanf andg has thesame
final name.

2 • Thesignature ofg conforms to the signature off.

3 • ThePreconditionof g, if any, begins withrequire else (not
justrequire), and itsPostcondition, if any, begins withensure
then (not justensure).

4 • If the redeclaration is aredefinition (rather than aneffecting)
the Redefinesubclause of theParentpart for B lists in its
Feature_list thefinal name off in B.

5 • If f is inherited as effective, theng is also effective.

6 • If f is anattribute,g is an attribute,f andg are bothvariable, and
their types are either both expanded or both non-expanded.

7 • f andg have either both no alias or thesame alias.

8 • If both features are queries with associatedassigner
commandsfp andgp, thengp is theversion offp in C.

FEATURE ADAPTATION §10.28308
Condition1 prohibits name clashes between effective features. Forg to be
a redeclaration off, both features must have the same final name; but no
other feature of the class may share that name. This is the fundamental rule
of no overloading.

No invalidity results, however, iff is deferred. Then ifg is also deferred,
the redeclaration is simply a redefinition of a deferred feature by another
(to change the signature or specification). Ifg is effective, the redeclaration
is an effecting off. If g plays this role for more than one inheritedf, it both
joins and effects these features: this is thecase in whichC kills several
deferred birds with one effective stone.

Condition 2 is the fundamental type compatibility rule: signature
conformance. In the case of a join,g may be the redeclaration of more than
onef; theng’s signature must conform to all of the precursors’ signatures.

Signature conformance permitscovariant redefinition of both query
results and routine arguments, but for arguments you must make the new
type detachable —?U rather than justU — to prevent “catcalls”.

Condition3 requires adapting the assertions of a redeclared feature, as
governed by rules givenearlier.

Condition4 requires listingf in the appropriateRedefinesubclause, but
only for a redefinition, not for an effecting. (We have a redefinitiononly if
g and the inherited form off are both deferred or both effective.) If two or
more features inherited as deferred are joined and then redefined together,
every one of them must appear in theRedefinesubclause for the
corresponding parent.

Condition5 bars the use of redeclaration for turning an effective feature
into a deferred one. This is because a specific mechanism is available for
that purpose: undefinition. It ispossible to apply both undefinition and
redefinition to the same feature to make it deferred and at the same time
change its signature.

Condition6 prohibits redeclaring a constant attribute, or redeclaring a
variable attribute into a function or constant attribute. It also precludes
redeclaring a (variable) attribute of an expanded type into one of reference
type or conversely. You may, however, redeclare a function into an attribute
— variable or constant.

Condition7 requires the features, if they have aliases, to have the same
ones. If you want to introduce an alias for an inherited feature, change an
inherited alias, or remove it, redeclaration is not the appropriate technique:
you must rename the feature. Of course you can still redeclare it as well.

Condition8 applies to assigner commands. It is valid for a redeclaration
to include an assigner command if the precursor did not include one, or
conversely; but if both versions of the query have assigner commands, they
must, for obvious reasons of consistency, be the same procedure inC.

← The bird-shooting
was on page288.

→ See details below:
“RULESONJOINING
FEATURES”, 10.29,
page 309.

←“REDECLARATION
AND ASSERTIONS”,
10.17, page 277.
← “Redefine, redefini-
tion”, page 285.

← As noted: see classE,
page284.

§10.29 RULES ON JOINING FEATURES 309
In earlier versions of the language, there was an extra condition, prohibiting
a redeclaration from changing anExternal feature into anInternal one or
conversely. Although initially justified by the original conventions on
external features, this had become just an implementation constraint with no
remaining conceptual justification.

Note, however, that redefining an external routine into a non-external one will
usually cause a small performance penalty for theoriginal (non-redefined)
version, as the Eiffel compiler will probably have to call the external routine
through an Eiffel wrapper.

10.29 RULES ON JOINING FEATURES

The last constraint that we need to examine governs the validity and
semantics of the join mechanism, used to merge two or more features, of
which at most one is effective, by inheriting them under the same name.

It is useful first to extend the notion of precursor:

Without the join mechanism there was just one precursor; but a feature
resulting from the join of two or more deferred features will have all of
them as precursors.

Here now is the validity constraint for joining features:

Precursor (joined features)
A precursor of an inherited feature is aversion of the feature in
theparent from which it is inherited.

Join rule VDJR

It is valid for a classC to inherit two different features under the
samefinal name under and only under the following conditions:
1 • After possibleredeclaration inC, theirsignatures are identical.

2 • They either have both no aliases or have thesame alias.

3 • If they both have assigner commands, the associated
procedures have the same final name inC.

4 • If both are inherited as effective, C redefines both into a
common version.

→OnExternalroutines,
see chapter31, espe-
cially “BASICS OF
EXTERNAL ROU-
TINES”,31.5,page818.

← The definition for in
the non-join case was
on page262. A final,
more formal definition
coveringbothcaseswill
appear on page465 at
the end of the repeated
inheritance chapter.

FEATURE ADAPTATION §10.29310
The Join rule indicates that joined features must have exactly the same
signature — argument and result types.

What matters is the signature after possible redefinition or effecting. So
in practice you may join precursor features with different signatures: it
suffices to redeclare them using a feature which (as required bypoint 2 of
the Redeclarationrule) must have a signatureconforming to all of the
precursors’ signatures.

If the redeclaration describes an effective feature, this is the case of both
joining and effecting a set of inherited features. If the redeclaration
describes a feature that is still deferred, it is a redefinition, used to adapt the
signature and possibly the specification. In this case, point4 of the
Redeclaration rule requires every one of the precursors to appear in the
Redefine subclause for the corresponding parent.

In either case, nothing requires the precursors’ signatures to conform to
each other, as long as the signature of the redeclared version conforms to
all of them. This means you may write a class inheriting two deferred
features of the form

f (p: P): T …
f (t: Q): U …

and redeclare them with

f (x: ? R): V …

→ “Repeated Inherit-
ance rule”, page 430;
“Repeated Inheritance
Consistency con-
straint”, page 458.
← “Redeclaration
rule”, page 307.

→Asignatureconforms
toanother ifeverytypein
it conforms to the corre-
sponding type in the
other. See“EXPRES-
SION AND SIGNA-
TURE
CONFORMANCE”,
←Join-cum-effectingwas
described on page288.

§10.29 RULES ON JOINING FEATURES 311
The following figure illustrates a valid case, in which all types involved
are non-generic classes (so that conformance is just inheritance).U is an
heir ofP, but for the second argument the relation is in the other direction:
Q is an heir ofV. Then a redeclaration into a feature of signature [U, Q], [R]
will be valid.

provided R conforms to bothP and Q and V to both T and U. No
conformance is required between the types appearing in the precursors’
signatures (P andQ, T andU).

The assumption that the features are “different” is important: they could
in fact be the same feature, appearing in two parents ofC that have
inherited it from a common ancestor, without any intervening
redeclaration. This would be a valid case of repeated inheritance; here the
rule that determines validity is theRepeatedInheritanceConsistency
constraint. The semantic specification (sharing under theRepeated
Inheritance rule) indicates thatC will have just one version of the feature.

Conditions2 and 3 of the Join rule are consistency requirements on
aliases and on assigner commands. The condition on aliases is consistent
with condition7 of the Redeclaration rule, which requires a redeclaration
to keep the alias if any; it was noted in the comment to that rule that
redeclaration is not the appropriate way to add, change or remove an alias
(you should use renaming for that purpose); neither is join. The condition
on assigner commands ensures that anyAssigner_callhas the expected
effect, even under dynamic binding on a target declared of a parent type.

FEATURE ADAPTATION §10.29312
This takes care of the validity of the join mechanism. The last rule gives
the precise properties of the resulting feature:

Join Semantics rule

Joining two or more inherited features with the same final name,
under the terms of theJoinrule, yields the feature resulting from
their redeclaration if any, and otherwise defined as follows:
1 • Its name is thefinal name of all its precursors.

2 • Itssignature is theprecursors’ signature, which the Join rule requires
to be the same for all precursors after possible redeclaration.

3 • Its precondition is the or of all the precursors’
combinedpreconditions.

4 • Its postcondition is theand of all the precursors’
combinedpostconditions.

5 • Its Header_commentis the concatenation of those of all
precursors.

6 • Its body is deferred if all the precursors areinherited as
deferred, otherwise is the body of the singleeffective precursor.

7 • It is notobsolete (even if some of the precursors are obsolete).

P V R

U Q R

U Q R

f g
two incompati-
ble signatures

Inheritance

Signature
conformance

Same
class

§10.29 RULES ON JOINING FEATURES 313
Point5 leaves the concatenation order unspecified.

In point 7 (corresponding to arare case) language processing tools
should produce an obsolescence message for the class performing the join,
but the resulting feature is not itself obsolete.

← “OBSOLETE FEA-
TURES”,5.21,page163.

FEATURE ADAPTATION §10.29314

	10 10 Feature adaptation
	10.1 OVERVIEW
	10.2 TERMINOLOGY: REDECLARATION, REDEFINITION, EFFECTING
	10.3 REDECLARING INHERITED FEATURES: WHY AND HOW
	Redeclare, redeclaration

	10.4 FEATURE ADAPTATION CLAUSES
	10.5 WHY REDEFINE?
	10.6 REDEFINITION EXAMPLES
	10.7 THE REDEFINITION CLAUSE
	10.8 REDEFINITION IN THE SOFTWARE PROCESS
	10.9 CHANGING THE SIGNATURE
	10.10 THE NEED FOR ANCHORED DECLARATIONS
	10.11 DEFERRED FEATURES
	10.12 DEFERRED CLASSES FOR DESCRIBING ABSTRACTIONS
	10.13 DEFERRED CLASSES FOR SYSTEM DESIGN AND ANALYSIS
	10.14 EFFECTING A DEFERRED FEATURE
	10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION
	10.16 REDECLARATION AND TYPING
	10.17 REDECLARATION AND ASSERTIONS
	10.18 RULES ON INHERITED ASSERTIONS
	Unfolded form of an assertion
	Assertion extensions
	Covariance-aware form of an assertion extension
	Combined precondition, postcondition

	10.19 UNDEFINING A FEATURE
	Inherited as effective, inherited as deferred

	10.20 REDEFINITION AND EFFECTING
	Effect, effecting
	Redefine, redefinition

	10.21 THE JOIN MECHANISM
	10.22 MERGING EFFECTIVE FEATURES
	10.23 NAME CLASHES
	Name clash

	10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR
	The need for a precursor mechanism
	Precursor basics and examples
	Choosing between multiple precursors
	Precursor specification
	Relative unfolded form of a Precursor
	Unfolded form of a Precursor

	10.25 REDEFINITION AND UNDEFINITION RULES
	10.26 DEFERRED AND EFFECTIVE FEATURES AND CLASSES
	Effective, deferred feature
	Effecting
	Deferred class property
	Effective class property

	10.27 ORIGIN AND SEED
	Origin, seed

	10.28 REDECLARATION RULES
	10.29 RULES ON JOINING FEATURES
	Precursor (joined features)

