
Draft, 21 January 2010.

The theory and calculus of aliasing
Bertrand Meyer

se.ethz.ch

Abstract. A theory, graphical notation, mathematical calculus and implementation
for finding whether two given expressions can, at execution time, denote references
attached to the same object. Intended as the basis for a comprehensive solution to the
“frame problem” and as an alternative (for the specific issue of determining aliases)
to separation logic, shape analysis, ownership types and dynamic frames.

1 Dynamic aliasing

You have, most certainly, read Homer. I have not (too much blood), but then I listen to
Offenbach a lot, so we share some knowledge: we both understand that “the beautiful
daughter of Leda and the swan”, “poor Menelaus’s spouse” and “Pâris’s lover” all denote
the same person, also known as Helen of Troy. The many modes of calling Helen are a case
of aliasing, the human ability to denote a single object by more than one name.

Aliasing is at its highest risk of causing confusion when it is dynamic, that is to say
when an object can at any moment acquire a new name, especially if that name previously
denoted another object. The statement “I found Pâris’s lover poorly dressed” does not
necessarily cast aspersion on Helen’s sartorial tastes, as Pâris might by now have found
himself a new lover; but if we do not carefully follow the lives of the rich and famous we
might believe it does.

Stories of dire consequences of dynamic aliasing abound in life, literature and drama.
There is even an opera, Smetana’s The Bride Sold1, whose plot entirely rests on a single
aliasing event. To the villagers’dismay, Jeník promises the marriage broker, in return for
good money, not to dissuade his sweetheart Mařenka from marrying the son of the farmer
Mícha. Indeed Mícha wants Mařenka for his dimwit son, Vašek, but it is suddenly revealed
that Jeník, believed until then to be a stranger to the village, is Mícha’s son from a first
marriage: he has tricked everyone.

To a programmer, this tale sounds familiar: the
equivalent in program execution is to perform an
operation on certain operands, and inadvertently to
modify a property of a target that is not named in the
operation — hence the risk of confusion — but aliased to
one of the operands. For example an operation may,
officially, modify the value of x.a; but if x denotes a
reference and y another reference which happens at the
time of execution to be aliased to x (meaning that they both point to the same object), the
operation will have an effect on y.a even though its text does not cite y. If b is aliased to a,
we might even have an operation that modifies y.b although its description in the
programming language mentions neither y nor b.

1. A title incorrectly rendered, in the standard English translation, as The Bartered Bride.

a

yx

b

http://se.inf.ethz.ch

The theory and calculus of aliasing §12
It is not hard to justify the continued search for effective verification techniques
covering aliasing. In the current state of proof technology, the aliasing problem (together
with the associated frame problem, to which it provides the key) is the principal obstacle
on the road to full proofs of correctness for sequential programs; it also plays a role in the
specific difficulties of proving concurrent programs correct.

A symptom of this situation is that industrial-grade proving tools often preclude the
use of pointers altogether. The Spark environment, which has made a remarkable
contribution towards showing that production programs can be routinely subjected to
proof requirements, provides a striking example. Spark relies on a programming language,
presented as a subset of Ada but in reality a subset of a Pascal-like language (plus
modules), without support for pointers or references. In considering how to make such
pioneering advances relevant to a larger part of the industry, it is hard to imagine masses
of programmers renouncing pointers and other programming languages advances of the
past three decades.

The absence of a generally accepted solution is not due to lack of trying. The aliasing
problem has been extensively researched, and interesting solutions proposed, in particular
shape analysis, separation logic, ownership types and dynamic frames. Few widely used
proof environments have integrated these techniques. That may still happen, but the
obstacles are significant; in particular, the first two approaches suffer (in our opinion) by
attempting to draw a a picture of the run-time pointer structure that is more precise than
needed for alias analysis; and the last three assume a supplementary annotation effort (in
addition to standard Hoare assertions) at which programmers may balk.

The theory, calculus and prototype implementation described in the present work
strive to avoid these limitations. An example of a typical problem that they directly address
is the absence of any aliasing between any elements of two linked lists created and
modified through typical object-oriented techniques. Assume a standard implementation
of lists with an operation to add elements at the end:

In class LIST:
extend (a: ELEMENT)

-- Add cell at end, with a as item.
local

new: CELL
do

if first = Void then
create first ; last := first

else
from last := first until last.right = Void loop last := last.right end

end
create new ; new.set (a); last.set_right (new)

end
With, in class CELL:

item: ELEMENT
set (v: ELEMENT) do item := v end
set_right (c: CELL) do right := c end

right

item item

right
right

item

a
new(ELEMENT)

(CELL)

lastfirst

§1 Dynamic aliasing 3
Consider references x and y denoting two such lists
built through any number of applications of extend and
similar operations. The theory, and its implementation
presented below, determine that if they are not aliased
to each other (x ≠ y) no CELL or ELEMENT reachable
from x is also reachable from y. The proof is entirely
automatic: it does not require any annotation. In the implementation, it is instantaneous.

In its present state the theory suffers from some limitations (section 9), but it makes
the following claims:
• It provides a comprehensive treatment of aliasing issues and, potentially, a solution

to the “frame problem”.
• It includes a graphical notation, alias diagrams, which helps reason about aliasing.
• Alias analysis is almost entirely automatic, requiring no assertions or other

annotations from the programmer. The only exception is the occasional need to add
a cut instruction (4.4) to inform the calculus with results obtained from other sources;
this case should arise only rarely. Outside of it, alias analysis enjoys the advantage
often invoked in favor of model checking and abstract interpretation against
annotation-based approaches to program proving: full automation.

• The loss of precision (inevitable because of the undecidability of aliasing in its
general form) is usually acceptable, and, when not, can be addressed through cut.

• The theory is at a suitably high level of abstraction, avoiding explicit references to
such implementation-oriented concepts as “stack” and “heap”.

• The theory can model the full extent of a modern object-oriented language.
• The reader will, it is hoped, agree that it is simple (about a dozen rules) and provides

insights into the nature of programming, especially object-oriented programming. An
example is the final rule /36/, for qualified calls: (a |= call x.r) = (x ((x’ a) |= call r)),
which conveys the essence of the fundamental mechanism of O-O computation,
concisely capturing the notion of current object and the principle of relativity, both
central to the O-O model.

The following ideas are believed to be new (although of course heavily influenced by previ-
ous work): the notion of alias calculus; alias diagrams (a simplification of “shape graphs”);
the canonical form of alias relations; limiting analysis to expressions occurring in the pro-
gram; using alias analysis as a preprocessing step for axiomatic-style proofs; cut; inverted
variables; the handling of arguments, loops and conditionals.

The ambition behind the present work is that it will complement the methods listed
earlier and, for the problem of determining aliases (which is only a part of their scope),
possibly provide an alternative.

Section 2 sets the context. Section 3 describes the properties of alias relations. Section
4 introduces the calculus for a simple language without remote object access, which section
5 extends with procedures. Section 6 generalizes the language and the calculus to the target
domain of interest: object-oriented programming. Section 7 presents the prototype
implementation. Section 8 summarizes how to apply the calculus to an actual object-
oriented programming language. Section 9 lists the remaining problems.

All the examples of this article can be tried out in the implementation, which the
reader can download (as a Windows executable) from se.ethz.ch/~meyer/down/alias.zip.

x

y

http://se.ethz.ch/~meyer/down/alias.zip

The theory and calculus of aliasing §24
2 General observations

The goal of the calculus is to allow deciding whether two reference expressions appearing
in a program might, during some execution, have the same value, meaning that the asso-
ciated references are attached to the same object.

2.1 Adding the alias calculus to an axiomatic framework

The key to the simplicity of the calculus is the expectation that cases of aliasing are, in
practice, the exception: most of the time, two expressions are not aliased to each other. As
a consequence, the intended approach to program proving is an incremental modification
of standard axiomatic (Hoare-style) techniques:
1 • A first step uses the alias calculus to determine the possible aliases of expressions that

appear in assertions.
2 • The second step applies standard axiomatic reasoning to the program equipped with

the resulting set of assertions — the original enriched with alias variants.
The techniques used in these two steps are independent. Step 2 uses ordinary axiomatic
semantics (including backward reasoning because of the assignment axiom); step 1 uses
the calculus (which happens to work in a forward style).

The following example illustrates the process. Assume
we are asked to prove

We are dealing with objects having a boolean attribute a, which the procedure set_a sets
to True. Assume that we have at our disposal a proof framework (not detailed here, but
relying on standard techniques) that applies axiomatic semantics, enabling us to prove

The proof of /2/ will involve the assignment axiom, as set_a performs a := True, and a
procedure rule. (If we informally understand the call as x.a := True, the proof is a trivial
application of the assignment axiom.)

If we naïvely applied similar techniques to prove /1/, the proof would proceed
smoothly: since the instruction does not name y, the postcondition sails through that
instruction unchanged. Such reasoning, however, is not sound if y can be aliased to x. The
alias calculus will allow us, through its own techniques distinct from axiomatic semantics,
to determine possible aliasings. If it finds that some computations might alias y to x, it will
inform the axiomatic reasoning by automatically enriching the postcondition of /1/ to read
not y.a and not x.a. Then /1/ is no longer a correct Hoare triple since application of the
assignment axiom to not x.a yields the weakest precondition False.

{not y.a} /1/
x.set_a
{not y.a}

{True} /2/
x.set_a
{x.a}

a

yx
?

a

§2 General observations 5
2.2 Handling imprecision

The theory and calculus will be defined in terms of successive programming languages of
increasing ambition, each a superset of the previous one: E0 introduces variables and basic
instructions; E1 introduces procedures; E2 introduces object-oriented mechanisms. To
apply the calculus in practice, it will be necessary to translate the programming language
of interest (such as a modern O-O language) into E2. Elements of the following discussion,
and the summary in section 8, describe how to perform the translation and, as a conse-
quence, how to apply the calculus to practical programs.

Until then, we will concentrate on the calculus itself. We must, however, note the
principal property of the translation: it must be sound, meaning that if two expressions in
the original language may become aliased in some execution the calculus must reflect that
property. In the reverse direction, there is no such exigency: the calculus might infer
possible aliasing between two translated expressions where no aliasing can occur between
the original expressions, a case we may call imprecision. We will, as we go, keep on the
alert for cases where the translation may introduce imprecision.

Imprecision is an inevitable risk of any practical approach to alias analysis, but might
prevent some program proofs because of the possible loss of information. The alias theory
introduces a special solution to this problem in the form of the cut instruction (section 4.4).
A cut corrects any undesired imprecision resulting from the simplifications of the alias
calculus by stating that two expressions are not aliased at a particular point of the program.
The alias calculus itself is not, in such cases, able to prove this property; the proof falls
back on its partner in the proof duo — axiomatic semantics. As an example, consider

The alias theory correctly determines that at the start of the conditional instruction /4/ x
may be aliased to y as a result of the earlier conditional assignment /3/. It will also deter-
mine, as a consequence, that the assignment /5/ may alias z, through x, to y. Such aliasing
cannot occur in practice because of the role of the condition cond. The alias calculus, how-
ever, has no way of establishing that no run-time execution path can include both /3/ and
/5/; such a property is beyond its scope. If the imprecision is unacceptable — in other
words, if the spurious aliasing of z to x precludes proving the properties of interest — the
prover must add a cut instruction to the second conditional, which becomes

if not cond then
x := y /3/

end
Other_instructions -- Not affecting any of cond, x and y.
if cond then /4/

z := x /5/
end

if cond then
cut x, y
z := x

end

The theory and calculus of aliasing §36
For the alias calculus, the cut instruction is a guarantee from the environment (as provided
by require in Eiffel and assume in JML and Spec#) that x /= y. For the axiomatic proof
framework, it is a proof obligation (check in Eiffel, assert in JML and Spec#).

2.3 Scope of the theory

The purpose of the alias theory and calculus is to answer a specific question:

In line with the preceding observations, the calculus looks for a sound but possibly imprecise
answer: it may — as rarely as possible — answer “yes” even if e and f could never become
aliased in actual executions; but if they can, the calculus is required to answer “yes”.

The most important word of the above definition is the first one: “Given”. What
makes the calculus possible is that it takes the pragmatic view of an existing program,
possibly equipped with assertions. Then program proofs do not need to know all aliasing
properties of all possible expressions; they only need the properties of expressions actually
appearing in the program and its assertions. Expressions not named in the program are no
more interesting to the prover than (except to the philosopher) the tree that falls unheard
and unseen in the forest.

This observation allows us, in addition, to consider finite sets only. Without it, the
analysis of a typical data structure traversal loop such as

would have to reflect that x can become aliased to first, first.right, first.right.right and so
on, an infinite list of expressions. It might even lead us to extend the assertion language
with a regular-expression-like notation (such as first.right*) to cover the possible values.
While the alias calculus could be extended to handle such extensions, it does not need them
for the fundamental applications discussed here.

3 Alias relations

The theory relies on a notion of “alias relation”, describing the possible aliasings between
variables and expressions of a program.

The aliasing question
Given two expressions of a program, e and f, of reference type, and a
program point p, can e and f ever be attached to the same object during an
execution of the program?

from
x := first

until some_condition loop
x := x.right

end

§3 Alias relations 7
3.1 Definition

E ↔ E, defined as P (E × E), is the set of binary relations on E. For our needs E will be a
set of variables and expressions in a program. The presence of a pair [x, y] in an alias rela-
tion associated with a program point expresses that x and y may be attached to the same
object at that program point during some execution.

Such a relation must be symmetric. As to irreflexivity, we might take the reverse
convention (reflexivity on E), considering that every expression is aliased to itself; such
trivial aliasing obscures the interesting cases, however, and choosing irreflexivity yields
simpler rules.

If r1 and r2 are alias relations, so are r1 ∪ r2 and r1 ∩ r2.

If r is relation, but not necessarily an alias relation, r will denote the alias relation
obtained from r by removing all reflexive pairs and symmetrizing all pairs; for
example {[x, x], [x, y], [y, z]} is the alias relation {[x, y], [y, x], [y, z], [z, y]}. Formally,

r is (r ∪ r-1) — Id [E] where “—” is set difference and Id [E] is the identity relation on
E. If r is an alias relation, then r = r. It is useful to extend the notation to a subset A of
E, defining A as A × A. (A × A is the “universal” relation involving all pairs in A.) So
{x, y, z} is {[x, y], [y, x], [x, z], [z, x], [y, z], [z, y]}.

For a set A described by extension, as in this example, we may omit the braces, writing
just x, y, z. We may express any alias relation in a union form T, U, V, …, meaning T ∪ U ∪ V
…, where every operand is a universal relation with reflexive pairs removed. With this notation,
we may write the first example, {[x, y], [y, x], [y, z], [z, y]}, as x, y, y, z.

An alias relation need not be transitive, as illustrated by the program extract

which (as the alias calculus will determine) yields the alias relation x, y, x, u, z but does
not cause aliasing between y and z.

Definition: alias relation
A relation in E ↔ E for some set E is an alias relation if it is symmetric
and irreflexive.

if cond then
x := y

else
x := z
u := x

end

The theory and calculus of aliasing §38
3.2 Canonical form and alias diagrams

An alias relation may have several union forms; for example the union forms x, y, x, u, z
and x, y, x, u, x, u, z denote the same relation. The first of these variants, like the other
examples given previously, is a canonical form:

Canonical form theorem: For any alias relation a, the canonical form exists and is unique.

Proof: consider all subsets of E. Retain only those whose elements are all aliased to
each other in a. Then remove any that is a subset of another. The resulting subset of P (E)
gives the canonical form.

Although this is a constructive proof, an algorithm applying it directly to display the
canonical form of a relation would be exponential in the size of E; the implementation uses
a more efficient algorithm.

Corollary: each one of the sets T, U, V, … involved in a canonical form has at least
two elements (since an alias reflection is irreflexive).

The reverse theorem also holds: a canonical form defines an alias relation uniquely.
All alias relations for the examples that follow will be given in canonical form.

Alias diagrams are useful to visualize the theory and in particular the canonical form
theorem. An alias diagram is a labeled directed graph with one special source node
representing a program point and any number of value nodes each representing a set of
possible values (not explicitly specified) in associated program states. At this stage of the
theory, the graph is acyclic, the start node of any edge is the source node, and the end node
is a value node; when we extend the theory to object-oriented programming in section 6,
there will also be edges connecting value nodes.

An edge is labeled by a non-empty set of expressions, for example e, f. The presence
of an expression e in an edge leading to a value node n expresses that e may at the given
program point have one of the values associated with n. An example alias diagram is:

The alias relation associated with such a graph is simply the set of pairs [e, f] such that e
and f both appear in the label for some edge. So the above graph represents the earlier
example x, y, x, u, z.

Canonical form of an alias relation
The canonical form of an alias relation a is a union form T, U, V, … where:

• None of the sets T, U, V, … is a subset (proper or improper) of any of
the others.

• Adding or removing any element to or from any of them would
invalidate the property T ∪ U ∪ V … = a.

x, y

x, u, z Value node
Source node

§3 Alias relations 9
A value node carries no information other than its existence and the label of the edge
(a single one at this stage of the theory) that leads to it. In the following discussion, as a
consequence, “removing an edge” also implies removing the target node.

A diagram is in canonical form if no label is a subset of another. The canonical form
theorem is easy to visualize on alias diagrams: a non-canonical diagram such as

represents the same alias relation as the previous one, so the edge labeled x, u is useless.
To turn an arbitrary diagram into canonical form, remove any edge whose label is a subset
of another edge’s label (and, per the general convention, remove the edge’s end node).

As a consequence of the corollary of the canonical form theorem, the label of every

edge includes at least two expressions. One-expression labels , expressing
that x may have a value at the current program point, may be interesting for other
applications but are irrelevant for the theory of aliasing, at least until it gets extended for
object-oriented programming.

3.3 The semantics of an alias relation

If a is an alias relation on the set E of reference variables and expressions appearing in a
program p, we may associate with a the assertion written a– and defined as

In words: a– is the assertion stating that no two references may be equal unless their pair
appears in a. This notation reflects the conservative nature of the calculus: while the pres-
ence of a pair [x, y] in a states that x might become aliased to y but does not imply that it
will, its absence from a implies, for soundness, that x will not become aliased to y.

We also define the “quotient” a / x of an alias relation a in E ↔ E by an element x of
E (similar to the equivalence class of x in an equivalence relation) as the set containing all
elements aliased to x plus x itself:

a– =Δ ∧ x ≠ y
 [x, y] ∉ a

a / x =Δ {y: E | (y = x) ∨ [x, y] ∈ a} /6/

x, y

x, u, z

x, u

x

The theory and calculus of aliasing §410
3.4 Basic operation

Aliasing is not compositional, in the naïve sense of allowing the definition of a function
aliases such that aliases (p) would determine the alias relation induced by the program p
in terms of aliases (pi) for components pi of p. Consider

then aliases (p1) would be x, y, aliases (p2) would be x, u, and aliases (p1; p2) would be
y, z, x, u, which cannot be obtained by combination of the previous two since neither of
them mentions z. Instead, the calculus works on formulae of the form

where a is an alias relation and p is a program component. /7/ denotes the alias relation that
holds at the end of an execution of p started in a state where a held.

More precisely, both a and a |= p are possibly conservative approximations of the
actual alias relation. The semantics of the |= notation is captured by the following
fundamental soundness requirement, expressed as a Hoare triple:

This states that if we use a as a guarantee about pairs that will not be aliased on entry to p,
the calculus yields a guarantee about pairs that will not be aliased on exit.

The rules of the calculus, as presented next, define a |= p for every kind of instruction
p. To be acceptable, any such definition must guarantee that if a is an alias relation so is
a |= p. In addition, the soundness of the calculus requires a proof that every rule satisfies
the fundamental soundness condition /8/. The present discussion does not include a
complete proof but gives an example, for one of the rules, in section 4.12.

4 The basic calculus

The first level of the calculus relies on a simple programming language, E0. The following
subsections introduce the constructs of E0, their informal semantics, and the correspond-
ing alias calculus rules.

In E0, all variables denote references; the value of a reference is an object identifier.
A formal definition of E0 appears below (4.12), but we will for the basic presentation rely
on an intuitive understanding of the instructions.

p1: x := y
p2: z := x ; x := u
p1 ; p2: x := y ; z := x ; x := u

a |= p /7/

The alias calculus soundness condition
For any relation a and any construct p:

{a–} p {(a |= p)–} /8/

§4 The basic calculus 11
4.1 Skip

It is convenient to include a null instruction skip with the rule

(will signal rules of the alias calculus.)

4.2 Forget

If x is a variable, the notation forget x denotes an instruction that removes any association
of x with any object. Corresponding programming language notations are:

(The reason for the special E0 syntax forget x is that experience has shown that using an
assignment syntax, such that x := Void, causes confusion with the regular form of assign-
ment seen in 4.5 below.)

The rule is:

The operator \– is defined as follows: r \– A, where r is a relation in E ↔ E and A is a subset
of E, is r deprived of any pair that involves a member of A as first or second element. For-
mally: r \– A is r — (A × E). If r is an alias relation, so is r \– A. (The operator’s definition
will be extended in 6.5 to cover dot expressions.)

Imprecision: this rule introduces no imprecision.

Alias diagram: to carry out forget x on a diagram, remove x from all edge labels that
included it; to maintain the canonical form, we must also remove any edge that as a result
goes down to a one-element label, as in this example:

a |= skip = a /9/

x := Void -- Eiffel
x = null; -- C, Java etc.

a |= (forget x) = a \– {x} /10/

Shaded lines

x, y

x, u, z u, z

Initial state State after forget x

The theory and calculus of aliasing §412
4.3 Creation

If x is a variable, the notation create x denotes an instruction that allocates a new object at
a previously unused address. Corresponding programming language notation are:

The effect on an alias diagram is the same as for forget x, and so is the rule:

Imprecision: this rule introduces no imprecision.

The forget and create instructions have different semantics — one removes all
associations of a given variable with any objects, the other associates it with a new object
— but in the alias calculus they are governed by identical rules.

4.4 Cut

If x and y are variables, the notation cut x, y denotes an instruction that removes any alias-
ing between x and y. It does not correspond to any common instructions of programming
languages but, as noted in 2.2, will serve as an essential escape mechanism to remove
undesired cases of imprecision in the calculus. The constructs

will be translated into cut x, y. (The semantics of check p end in Eiffel is that the program
is only valid with a proof that p will always hold at the given program point; it is also pos-
sible for compilers that cannot perform such proofs to generate a run-time check that will
stop the program if p does not hold. The rules for assert in Spec# and JML are similar.)

The alias calculus rule is:

Imprecision: this rule introduces no imprecision.

Alias diagram: to carry out cut x, y, remove any edge with label x, y; replace any edge
whose label includes x, y and a non-empty set A of other expressions by two edges, labeled
x, A and y, A, to two separate nodes.

create x -- Eiffel
x = new Type_of_x (); -- C, Java etc.

a |= (create x) = a \– {x} /11/

check x /= y end -- Eiffel
assert x != y; -- JML, Spec#

a |= (cut x, y) = a — x, y /12/

§4 The basic calculus 13
The need, in the second case, to replace an edge (and node) by two reflects the suggested
practical use of cut: the operator lets us take advantage of finer-grain information, possibly
coming from other sources, to improve the precision of the information provided by alias
analysis. In the second case of the diagram above, the initial state conflated all of x, u, z
into a single alias class; as we find out that x and u are not related after all, we separate
these into two classes x, z and u, z listing z’s aliasing associations separately. The formal rule
/12/ covers this semantics succinctly; it does not need to distinguish between the two cases
illustrated by the diagram.

4.5 Assignment

The basic operation that creates alias pairs is assignment, written x := y. The rule is:

The intuition behind this operator is that the assignment causes:

• Removal of any previous aliasing of x.

• Then, aliasing of x to y and to any other expression previously aliased to y.

Rule /13/ expresses this property. The relation b is a deprived of any pair involving x. The
right side yields all the aliases not involving x, then adds the pairs [x, u] where u is in b / y,
that is to say (/6/) either is y or was aliased to y in b, and applies the overline operator to
symmetrize the relation.

Example 1: the value of a |= (z := f), where a is

is (this example and all the following ones are as computed by the prototype implementa-
tion at se.ethz.ch/~meyer/down/alias.zip, on which the reader may try them):

a |= (x := y) = given b =Δ a \– {x} then /13/
b ∪ ({x} × (b / y))

end

b, c, x, f, g, x, y, z /14/

b, c, x, f, g, x, z

x, y

x, u, z

Initial state
x, y

u, z

x, z

State after cut x, y

u, z

x, z

State after cut x, u

http://se.ethz.ch/~meyer/down/alias.zip

The theory and calculus of aliasing §414
where z has been removed from its previous association with y, then added to the associa-
tions of f.

Alias diagram: to carry out an assignment x := y on an alias diagram, remove x from
all edge labels (removing the edge if the label goes down to zero or one element); if y does
not appear in any edge label, add a value node and an edge to it, labeled y; then add x to
any edge label containing y. Some examples:

4.6 Compound

If p and q are E0 instructions, the notation p ; q denotes an instruction that executes p then
q. The alias calculus rule is:

If the other rules of the calculus guarantee that a |= p is an alias relation whenever a is, this
one also recursively yields an alias relation on the right side.

Imprecision: this rule introduces no imprecision.

Alias diagram: to carry out p ; q, apply the transformations associated with p, then
apply to the resulting graph those associated with q.

4.7 Conditional

E0 has a conditional instruction of the form

where p and q are instructions. The informal semantics of this instruction is that it executes
either p or q.

The rule is:

a |= (p ; q) = (a |= p) |= q /15/

then p else q end

a |= then p else q end = (a |= p) ∪ (a |= q) /16/

x, y

x, u, z

Initial state

State after t := x

x, t, y

x, t, u, z

State after x := u

x, u, z

State after x := t

u, z

x, t

§4 The basic calculus 15
The ∪ operator is here applied to two relations viewed as sets of pairs. As noted, r1 ∪ r2
is an alias relation if both r1 and r2 are.

Imprecision: the conditional rule does not by itself introduce any imprecision, if we
take the semantics of then p else q end to be that an execution can carry out either p or q.
In the translation of an ordinary programming language to E0, the source instruction would
be if cond then p else q end for some condition cond. The condition is lost in translation;
this may cause imprecision as in the earlier example (/3/).

Example 2: the program

yields, when applied to b, c, f, g, the alias relation a = b, c, x, f, g, x, y, z used as starting
relation for the assignment example /14/.

Note on the example: the reader may wonder whether the assignment z := y makes
any sense without a prior assignment of a meaningful value to y. Such cases already arose
in previous examples. For the alias calculus, however, this question need not alarm us, as
it is a matter of convention for the underlying programming language. Some languages,
such as the current void-safe version of Eiffel, guarantee that in any valid program y will
automatically be initialized on first use to a legal address, denoting an object.
Alternatively, we may take the convention that every example program in this article
implicitly starts with a sequence of create x instruction, one for every variable x appearing
in the program. Or we could pass on the requirement to the programmer by including a
static rule that disallows access before creation, in which case /17/ is invalid.

Alias diagram: to carry out then p else q end, produce two diagrams by separately
applying p and q to the original diagram. Then combine the diagrams by retaining all their
value nodes and all their edges. The result correctly represents the effect of the conditional
but may not be in canonical form; make it canonical following the procedure seen in 3.2.

4.8 Repetition

E0 has an instruction

where n is a natural integer. The semantics is that of Skip if n = 0 and otherwise, recur-
sively, to execute pn-1 ; p. Informally, this means n executions of p.

The instruction is not important by itself (as only a few programming languages
support it, such as Fortran with its DO loop) but as a stepstone to the next construct, the
loop instruction.

The rule is:

then x := b else x := f ; z := y end /17/

pn

a |= p0 = a /18/
a |= pn = (a |= pn-1) |= p -- For n > 0 /19/

The theory and calculus of aliasing §416
and is a direct consequence of the compound rule /15/.

Imprecision: the rule does not introduce any imprecision.

Examples 3 to 8: take x := y ; y := z ; z := x for p and c, y, d, z for a. Then:

The sequence oscillates indefinitely, for odd and even n, between the values of a |= p1 and
a |= p2. This is as intuitively expected since p swaps the values of y and z.

4.9 Loop

The E0 instruction

has the informal semantics of executing p repeatedly any number of times, including 0.
Formally, if an instruction is defined as a relation between input and input states (see 4.12
below), then loop p end is simply .

A first form of the loop rule follows from this definition:

Imprecision: the rule by itself does not introduce any imprecision. Imprecision may follow,
however, from translating loop constructs as found in actual programming languages into
the E0 form, since the translation will lose any information that the programmer or prover
may have about the actual number of iterations, as might be deduced for example from the
loop exit condition.

Theorem: the alias relation induced by a loop per /20/ is finite.

Proof: trivial since our alias relations are members of P (E × E) for a finite set E (of
variables and expressions appearing in a program), so they can only be finite.

This theorem, and the loop rule in its first form /20/, are not directly useful since they
do not yield a practical way of computing a |= loop p end. A more interesting version of
the theorem, the loop aliasing theorem, follows from the discussion of continuity
appearing next, and yields the practical version of the loop rule, given as /25/ below.

a |= p0 = a = c, y, d, z

a |= p1 = c, x, z, d, y

a |= p2 = a |= p0 = c, y, d, x, z

a |= p3 = a |= p1 = c, x, z, d, y

a |= p4 = a |= p2 = c, y, d, x, z
etc.

loop p end

a |= loop p end = ∪ (a |= pn)
n: N

/20/

 ∪ pn
n: N

§4 The basic calculus 17
4.10 Monotonicity and the loop aliasing theorem

To deal effectively with loops, and procedures as introduced next, we need structural prop-
erties. For any instruction p, we define monotonicity of the |= operator, with respect to the
partial order relation ⊆ (here over relations, that is to say, subsets of E × E), as the follow-
ing property for any alias relations a and a’:

Alias monotonicity theorem: all rules given so far satisfy monotonicity.

Proof: the rules for the control structures — compound, conditional, repetition and
loop — clearly preserve monotonicity if the constituent instructions satisfy it; so we must
establish monotonicity for basic instructions. Since a |= p is deduced from a, and a’ |= p
similarly from a’, by some set of additions and removals of pairs, the proof must show that
any pair added to a is also added to a’ and that any pair removed from a’ either was not in
a or is also removed from a. The only direct source of additions is the assignment rule /13/;
added pairs for the assignment x := y include [x, y], which will also be added to a’, and
[x, z] where a pair [y, z] was in a, and hence in a’, so that the same pair will be added to a’.
Removal of pairs occurs through the rules for forget, create, cut and assignment. In the
first three cases the pairs marked for removal depend entirely on the instruction and not on
a or a’: removing any of them from a’ will remove it from a if it was there. In the
assignment case, the pairs removed are of the form [u, v] where either u or v is x; if any
such pair in a’ is also in a, it will be removed from a. The rule also removes all reflexive
pairs, but none of those comes from the original a or a’ as they are alias relations.

The following properties are also of interest:

In each case the left side is a subset of the right side as a consequence of the alias mono-
tonicity theorem. The proof of the reverse inclusions follows, as for that theorem, from
considering additions and removals for each kind of instruction.

The next theorem yields a practical way to compute the alias relation induced by a loop:

Proof: the first two properties are immediate:

• The sequence tn is non-decreasing over a finite set, and hence has a fixpoint.

a ⊆ a’  (a |= p) ⊆ (a’ |= p) /21/

((a |= p) ∪ (a’ |= p)) = (a ∪ a’) |= p /22/
(a ∩ a’) |= p = ((a |= p) ∩ (a’ |= p)) /23/

Loop aliasing theorem
For given p, let the sequence t be defined by t0 = a and tn+1 = tn ∪ (tn |= p).
There exists an integer N such that
1 For any i < N, ti ≠ ti+1.
2 For any i > N, ti= tN.
3 tN = (a |= loop p end).

The theory and calculus of aliasing §418
• A non-decreasing sequence might encounter two or more equal consecutive elements
(a plateau) before it reaches its fixpoint. This, however, cannot happen for a sequence
defined in the form tn+1 = f (tn) (here tn+1 = tn ∪ (tn |= p)): if tN = tN+1, then tN+2 = f (tN+1),
also equal to f (tN) and hence to tN+1 and tN; all subsequent elements are equal as well.
So the fixpoint is reached at the first N such that tN = tN+1; this is the N of the theorem.

To prove property 3, we will prove that tn is the same sequence as the sequence sn defined as

This will give us the desired result since a |= loop p end, defined in /20/ as , is

also as a consequence ; since sn ⊆ sn+1 for all n, the fixpoint of the sequence (the

first N such that sN = sN+1) will, if the sequences sn and tn are the same, yield a |= loop p end.

The proof that the sequences are the same uses induction. First, s0 = t0 = a and
s1 = t1 = (a ∪ (a |= p)). (The second part of the proof needs both base steps.) For the
induction step, we prove separately that sn+1 ⊆ tn+1 and tn+1 ⊆ sn+1. For the first property
we expand the definition:

Since sn = tn by the induction hypothesis and tn ⊆ tn+1 by the definition of t, it suffices to

prove that a |= pn+1 ⊆ tn+1. By the definition of repetition, a |= pn+1 = (a |= pn) |= p. We

note that a |= pn ⊆ sn by the definition of sn /24/, so a |= pn ⊆ tn by the induction hypothesis.

This implies by monotonicity that ((a |= pn) |= p) ⊆ (tn |= p) and hence (by the definition of

the sequence tn) that ((a |= pn) |= p) ⊆ tn+1. This completes the proof that sn+1 ⊆ tn+1.

For the induction step in the reverse direction, we expand the other definition :

Since sn ⊆ sn+1 it suffices to prove that (sn |= p) ⊆ sn+1. Since we have two base steps (n = 0
and n = 1), we may assume n > 1 and expand sn as sn–1 ∪ (a |= pn), so that by /22/ sn |= p
is (sn–1 |= p) ∪ (a |= pn+1); since the first operand is tn–1 |= p by the induction hypothesis
and hence a subset of tn (which is also sn), both terms are subsets of sn+1.

As a consequence of this theorem we will use the following version of the loop rule:

sn
Δ
= ∪ (a |= pi)

i: 0.. n /24/

sn+1 = sn ∪ a |= pn+1

tn+1 = tn ∪ (tn |= p) -- By the definition of tn
= sn ∪ (sn |= p) -- By the induction hypothesis

a |= loop p end = tN /25/
-- For the first N such that tN = tN+1,
-- with t0 = a and tn+1 = tn ∪ (tn |= p).

∪ a |= pn
n: N

∪ snn: N

§4 The basic calculus 19
Example 9: a loop with the same body as in the repetition example

and started with the same initial alias relation a = c, y, d, z reaches its fixpoint at t2:

In this example, the sequence a |= pn did not converge, as we saw in 4.8. But the loop alias-
ing theorem tells us that the sequence tn always reaches a fixpoint finitely.

4.11 A more intricate example

Example 10: as a more extensive application of the E0 calculus, involving instructions of
all the kinds encountered so far, consider the following program p (semicolons omitted at
end of lines):

The value of ∅ |= p is: a, c, h, c, e, f, c, f, g, y, c, g, h.

4.12 Formalizing E0 and soundness

This subsection does not introduce any new properties of the alias calculus but shows how
the calculus can be proved in reference to a formal definition of the E0 language. Readers
interested mostly in the rules of the alias calculus can skip to section 5.

An E0 program may be defined as a relation in State ↔ State. A deterministic
language would use functions, possibly partial, rather than relations; non-determinism
keeps the language definition simple, in particular for the loop construct.

A state s is characterized by:

• A set of variables that have a value in that state: s.def (a member of P (Variable)).

• A set of addresses allocated in that state: s.addr (a member of P (Address), assuming
a suitable set Address).

loop x := y ; y := z ; z := x end

t0 = a = c, y, d, z
t1 = c, x, z, c, y, d, y, d, z
t2 = c, x, z, c, y, d, x, z, d, y
t3 = t2 -- etc. (all subsequent values equal to t2).

then x := y else x := a end
then cut x, y ; z := x else end
g := h ; x := y ; z := a; b := x
loop e := f ; a := e end
loop

then c := b ; a := f ; g := x else c := a ; a := g end
f := x

end
b := z ; forget b ; a := e ; create z ; a := h ; cut a, g ; create x

The theory and calculus of aliasing §420
• The values of the variables in the state, as represented by a function s.value, a
member of Variable Address (using for the set of possibly partial functions),
where domain (s.value) = {v: Variable | v ∈ s.def}.

To define a state s, it suffices to give s.def, s.addr and s.value.

To define E0 formally we specify each instruction as a relation in State ↔ State, by
considering in each case an arbitrary state σ and stating the properties of states σ’ that may
result from applying p. For example, in the case of skip (the identity relation on State), σ’ = σ.

For the instruction forget x, the definition is: σ’.def = σ.def – {x}; σ’.addr = σ.addr;
σ’.value (y) = σ.value for y ≠ x.

For create x, for some na in Addresses such that na ∉ s.addr: σ’.def = σ.def ∪ {x};
σ’.addr = σ.addr ∪ {na}; σ’.value (y) = na; σ’.value (y) = σ.value (y) for y ≠ x.

For x := y: if y ∉ s.addr, as for forget x; otherwise: σ’.def = σ.def ∪ {x}; σ’.addr =
σ.addr; σ’.value (x) = σ.value (y) ; σ’.value (z) = σ.value (z) for z ≠ x.

For the compound p ; q: what this notation means as a mathematical convention,
taken to denote composition of relations in the order given (the same as q o p).

All the elementary constructs defined so far are functions (deterministic). Non-
function relations (representing possible non-determinism) may arise with:

• Conditional: then p else q end is defined simply as another notation for p ∪ q.

• Loop: loop p end is defined as . The term pn (corresponding to the E0

repetition construct) retains its definition from mathematics: p0 = skip, pn+1 = (pn ; p).

In this framework, every state induces an alias relation defined as

An earlier formula /8/ defined soundness in an axiomatic semantics style. For a language
such as E0, where instructions and programs are defined directly as relations, we may use
the following definition of the soundness property, for any instruction p:

As an example of soundness proof, consider forget x. For a given σ, the above definition of
the forget instruction tells us that there is only one σ’ and that a pair [y, z] is in aliases (σ’)
if and only if y ≠ x, z ≠ x and σ.value (y) = σ.value (z). The pair is also in aliases (σ) |= forget x
since the forget rule /10/ defines aliases (σ) |= forget x as aliases (σ) \– {x}}.

In this example the ⊆ relationship of the soundness requirement /26/ is actually an
equality. This is also the case with other constructs seen so far since, as noted, they do not
introduce imprecision.

Soundness proofs should similarly be provided for every instruction, although they
do not appear in the present article.

aliases (σ) =Δ {[x, y] | x ∈ σ.def ∧ y ∈ σ.def ∧ σ.value (x) = σ.value (y)}

[σ, σ’] ∈ p  aliases (σ’) ⊆ (aliases (σ) |= p) /26/

→| →|

∪ pn
n: N

§5 Introducing procedures 21
5 Introducing procedures

Our next language, E1, simply adds to E0 the notion of procedure, without arguments. A
procedure p is defined by a program name, written p.name, and an instruction, written
p.body. E1 has a new instruction, call p, where p is a procedure; the effect is to execute
p.body. (In a directly usable programming language the concrete syntax would use call pn
where pn is p.name.) A program is defined by a non-empty set of procedures and the name
of one of them, designating it as the main procedure.

The rule for the call instruction is:

and for a program pr with main procedure Main:

which will be used in practice with ∅ for a, assuming every program starts with an empty
alias relation.

In the absence of mutually recursive procedures, computing the alias relation of a
program can simply proceed as in the previous examples: for every program element p,
starting with the entire program, apply the corresponding alias calculus rule, which
expresses a |= p in terms of a’ |= p’ for sub-elements p’ of p; the process terminates when
applied to atomic elements such as assignments. This scheme no longer directly works for
a program that includes mutually recursive procedures, since the computation of
a |= r.body through the call rule /27/ may lead to a new evaluation of a |= call r. To obtain
a directly applicable process, we note that if a program consists of a number of procedures
r1, r2, … rn, and use the notation bi (a) for a |= ri.body, we may write the application of
the call rule to any one of them, expanding a |= ri.body, as

where all the functions involved, ALi and fj, i, deduced from applying the rules of the cal-
culus to the text of bi, are monotone. If ri is the main procedure, defining the alias relation
induced by the whole program, computing b1 (∅) will give us, in the resulting b vector, the
alias relation at the exit point of every procedure (which is where we need it to apply axi-
omatic semantics, for example in weakest-precondition style). Since all functions involved
are monotone and the set of relations is finite, standard reasoning shows that starting with
empty relations for all the bi and iterating will reach a fixpoint finitely, yielding the desired
result. The prototype implementation directly applies these ideas, as illustrated by the fol-
lowing example.

a |= call r = (a |= r.body) /27/

a |= pr = (a |= Main.body) /28/

bi (a) = ALi (b1 (f1, i (a)), b2 (f2, i (a)), … bn (fn, i (a)))

The theory and calculus of aliasing §522
Imprecision: by itself this rule introduces no imprecision. Translations from
programming languages will, however, cause imprecision because the procedure
mechanism does directly not support arguments, local variables and return values. For a
typical procedure

the translation will replace a by a variable, and understand a call p (x) as the E1 instructions

The same scheme applies to local variables, and (since the language only supports proce-
dures) to the result value of a function. As a consequence, the translation will lump
together, for the computation of aliases, the values of local variables, results and formal
arguments that belong to different recursive incarnations of a given recursive routine (or
to concurrent executions of that routine in different threads).

Example 11 (in this example and the following ones the starting alias relation is
empty): we consider the recursive procedure

The resulting alias relation is just x, y: the second branch of the conditional can never con-
tribute anything.

Example 12: If we reverse the order of the instructions in the else clause of the
previous example (giving call p ; x := a), we get a, x, x, y.

Example 13: the following are mutually recursive procedures (still simple, to enable
intuitive manual verification of the result):

The result, with Main as the main procedure, is a, c, b, x, x, y. In particular, x can get
aliased to a and a to c, but not x to c.

p (a: SOME_TYPE) do … end

a := x
call p

procedure Main
then

x := y
else

x := a ; call Main
end

end

procedure Main
then x := y else x := a ; call q end

end
procedure q

x := b ; then call Main else a := c end
end

§6 The object-oriented calculus 23
Example 14: another case of mutually recursive procedures:

The result is a, h, m, c, e, f, g, y, m, n. This example is not representative of any actual
program but illustrates the application of the calculus to procedures with a complex recur-
sion and control structure.

6 The object-oriented calculus

The next and last language level, E2, introduces object-oriented mechanisms. E2 is suffi-
cient powerful to support applying the calculus to a modern object-oriented language such
as Eiffel, Java or C#. The relevant part of object technology here is the dynamic object
model: dynamic object creation, pointers or references (we will consider the two terms
synonymous), and the possibility for objects to contain pointers to other objects. This last
facility is the only novelty of E2’s dynamic model, since E0 and E1 already offered the
first two.

Other object-oriented mechanisms such as inheritance and genericity have only
marginal influence on aliasing.

6.1 New language concepts

Making E2 support object-oriented programming means adding three language concepts:

• Qualified expressions, such as x.y.z, which can be used as sources of assignments, as
in u := x.y.z.

• Qualified calls, such as x.f (v); as before we will limit ourselves to argument-less
procedures and take care of argument passing through assignments.

procedure Main
thenx := y else x := a end
then cut x, y ; z := x else end
then call q else g := h end
x := y ; z := a ; b := x
loop

e := f
then a := e else end

end
then c := b ; a := f ; g := x else

loop c := a ; a := g end
call Main

end
f := x ; b := z; forget b ; a := e ; create z; a := h
cut a, g ; create x

end
procedure q

then m := n else m := h ; call Main end
end

The theory and calculus of aliasing §624
• The notion of current object (Current in Eiffel, this in C++ and Java, self in
Smalltalk). This is the central concept of object technology, giving rise to the
“general relativity” principle of O-O programming: every operation is relative to a
current object; starting a qualified call x.f (v) makes a new object (the object attached
to x) current; ending such a call restores the previous current object as current.

We will not directly consider qualified assignments of the form x.a := v permitted by pro-
gramming languages such as Java, C# and C++. It may be possible to include qualified
assignments directly into the theory, a task that the present article does not undertake (as a
matter of principle, since qualified assignments fly in the face of all principles of software
engineering, and even the designers of languages that include this mechanism advise
against using it); it happily leaves it for other authors to solve. The omission of this mech-
anism in the theory and calculus as described here has no practical consequence on the
application to the relevant programming languages, since it suffices to assume a pre-pro-
cessing step that translates all qualified assignments x.a := v into qualified calls to setting
procedures, such as x.set_a (v).

6.2 Object-oriented alias diagrams

E2 alias diagrams still have a source node, which now represents the current object, but
that node no longer has any special property; edges can exist between value nodes (from
now on called object nodes):

As the example suggests, cycles are now possible (between objects nodes only). As we
will see, cycles arise as a result of passing arguments to qualified calls. The new forms of
expressions appearing in the figure, Current and “inverted variables” such as x’, will be
explained shortly.

An object node represents a set of possible objects, all of the same type (class); the
interpretation of an edge with labels x, y… between two object nodes, representing sets of
objects OS1 and OS2, is that every object in OS1 may have reference fields to an object in
OS2; since in typed object-oriented programming every field of an object corresponds to
an attribute (also called “member variable” or “data member” in various O-O languages)
in the relevant class, the fields involved are those corresponding to attribute names x, y…

One-expression edge labels , previously discarded, are useful for O-O
alias diagrams. Also, we no longer systematically remove the end node when we remove
an edge, but only do so if no other edge leads to that node. (This property reflects the need
for garbage collection in an object-oriented model.)

x, y

x, z

Object node
Source node

a, b

m, x’

Current, t
e

f, g, h

x’
z

x

§6 The object-oriented calculus 25
The variables appearing in labels represent attributes from the corresponding class.
In the figure, x, y and z are attributes of the class of the current object; e, f, g and h are
attributes corresponding to the class covering the object in the middle-bottom node. The
calculus does not need information about the classes; we assume that it is applied to a type
O-O language after type checking, so that every attribute name refers unambiguously to a
class. This convention is particularly important in Eiffel where style rules suggest the
systematic use, for consistency, of a small set of feature names such as first and item. In
the application of the calculus to a specific programming language, a good convention
might be to identify the class as part of the attribute name, as in itemLIST, itemCELL etc. We
will need no such convention here; note in particular that the leftmost and middle-bottom
nodes in the last figure might correspond to objects of the same type or different types.

The other major innovation of the E2 calculus is the kind of possibly aliased
expressions (the set E of earlier discussions) under consideration. In addition to single
variables as before, expressions now include three more variants:

• The special expression Current represents the current object (relative to any node).
Informally, Current denotes a link from a node to itself, as in the bottom-right node
of the last figure.

• For any variable x, the inverse of x is written x’. Informally, consider a call x.r,
executed on behalf of a certain client object, which applies r to a supplier object
referenced by x; then x’ represents a reference back from the supplier to the client. It
will appear in edges between the corresponding nodes, as in the preceding figures.
Together with Current, the inversion operator is the reason why E2 graphs, unlike
E0 and E1 graphs, may be cyclic.

• Finally, E2 supports dot expressions of the form x.y.z…

The presence of dot expressions gives an alias diagram a richer meaning: aliases arise not
only from edges but also from paths in the diagram. The rule is that if two paths have the
same starting node and the same ending node, the corresponding dot expressions are
aliased. Consider for example, in the last diagram, the edge labeled z from the source node
to the top-right node; it implies that z is aliased to x.a, x.b, y.a, y.b (paths through top
nodes) as well as x.e and z.e (bottom paths).

6.3 Formal model

Adapting the previous formal model (4.12) for E3 involves changing the representation of
states and the signature of instructions. The state now involves a set of objects, where each
object may contain references to other objects. An instruction, previously a relation in
State ↔ State, now has the signature Object → State ↔ State; the use of an Object as the
first argument reflects the notion of current object and the principle of general relativity.

The full refinement of the formal model, and the corresponding proofs of soundness
for the remaining rules given below, belong in another article.

The theory and calculus of aliasing §626
6.4 Dot expression properties

For simplicity it is convenient to add the dot to the calculus as an operator on variables and
expressions representing paths: if v is a variable and e an expression x.y.z…, we write v.e
to denote the path v.x.y.z… and extend this notation to two expressions, writing e.f for the
concatenation of e and f.

The following fundamental property, reflecting the preceding observation on alias
diagrams, characterizes the semantics of aliasing with dot expressions:

This requirement is added to the basic definition of alias relations as symmetric and irre-
flexive (3.1). If a is a symmetric and irreflexive relation, a. will denote the smallest sym-
metric and irreflexive relation that includes a and satisfies dot completeness. For example
if a is x, y, x.u, v.y, then a.adds the pairs [y.u, v.y], [x.u, v.x] (symmetrized).

In the dot calculus, Current plays the role of zero element and variable inversion the
role of the inverse operation. For any expression e (including a single variable) and any
variable x:

and as a consequence, for non-empty e:

/30/ and /31/ express that Current always represent a link to the current node. Note that
the interpretation of Current, like everything else in the general relativity of object-ori-
ented programming, pertains to an object and the corresponding class; /31/ describes a sit-
uation such as

where the various nodes involved might correspond to different classes. Current is really
CurrentC for some class C. Clearly, e.CurrentC makes sense only if C is the class of the
objects reached by e (the rightmost node in the figure); the alias calculus need not concern
itself with this question, since we assume it is applied to type-checked programs.

In this framework, the alias calculus needs only two more rules to account for object-
oriented programming: an adaptation of the assignment rule to account for multidot
sources; and a rule for qualified calls call x.r.

Dot completeness
An alias relation a involving dot expressions must satisfy, for any
expression e1, e2, f1 and f2:

[e1, e2] ∈ a ∧ [f1, f2] ∈ a  [e1.f1, e2.f2] ∈ a /29/

Current.e = e /30/
e.Current = e /31/
x.x’ = Current /32/
x’.x = Current /33/

x.x’.e = e /34/
x’.x.e = e /35/

Currente

§6 The object-oriented calculus 27
6.5 Dot expressions as sources of assignments

In an assignment x := y, the source expression y may now be a multidot expression, such
as u.v.w. An illustration with an example alias diagram (in this case with no aliasing) is:

Only a small adaptation is needed to the original assignment rule /13/. In fact the rule itself
does not change:

but the operator \– must account for dot operators. The original definition (4.2) was that
r \– A is r deprived of any pair that involves a member of A. The revised definition (which
covers the previous one for non-dot expressions) also removes from r any multidot expres-
sion whose first component (in the sense of u in u.v.w) is in A.

As a consequence, the set b / y (as used in the last set of pairs, {x} × (b / y), added to
the relation on the second line above) may be empty, in which case {x} × (b / y) is itself
empty. This reflects an important practical property: while in the non-O-O calculus an
assignment x := y always adds the pair [x, y] to the alias relation, this is not necessarily the
case with dot expressions. In the assignment

we should not alias x to x.a! This assignment removes all aliases of x, and creates no new
aliasing unless x was previously aliased to some other expressions; then for every such
expression y, it aliases x to y.a.

These observations do not rule out the possibility for x
to become aliased to x.a; although such a situation cannot be
the result of the assignment above, it will happen if a is aliased to Current.

The rule captures all these cases.
Imprecision: the rule introduces no imprecision.
Example 15: the following program uses dot expressions as assignment sources:

The result (if we only include pairs that involve at least
one non-dot expression) is a, b, x, y.a, z, x, y.b, z.

a |= (x := y) = given b =Δ a \– {x} then -- Same as /13/

b ∪ ({x} × (b / y))
end

x := x.a

x := y ; a := b
z := x.a ; x := x.a

u v w

x

ax


y

x a, Current

ax


y

x, z

b

The theory and calculus of aliasing §628
6.6 Qualified call

The last remaining construct is the qualified procedure call call x.r. To handle it in the alias
calculus, we need the following notation: if a is a relation (in our examples, an alias rela-
tion), x a denotes the relation containing all pairs [x.e, x.f] such that a contains [e, f].

In a naïve approach to handling x.r, we would note that if a call to r (unqualified)
aliases e to f then a call to x.r aliases x.e to x.f. Then a |= x.r would be x (a |= r). This
does not, however, capture the possible changes to aliasing on the side of the client (the
object on whose behalf the call x.r is made). Consider for example, in an object-oriented
programming language, the instructions

with

As usual, the alias calculus sees a call x.r without arguments, whose execution starts with
an assignment u := f of the actual argument to the attribute representing the formal argu-
ment. The tentative rule would give us the (symmetrized) pairs [c, d], [f, u] and [x.f, x.u],
which are correct, as well as [u, c] and as a result [f, d] which are meaningless since they
involve attributes applicable to different objects (and possibly classes). It misses, on the
other hand, the aliasing of x.f to c and d. It is unsound.

Obtaining a sound rule requires the inversion operator. The translation into E2 from
an actual object-oriented programming language where procedures may have arguments
will use the following convention (not part of the alias calculus, but necessary for an
understanding of the rule): translate x.r (c), where the corresponding formal argument in
r is u as above, into call x.r, and add at the beginning of r’s body the assignment

This convention explains the role of inverted variables such as x’: in a qualified call, pro-

vide a link back to the client, to enable the supplier, if needed, to update references on the

client side — a principal property, although one fraught with obvious risks (aliasing risks

in particular), of the object-oriented style of programming.

These observations also explain the inversion rules /32/ and /33/: x.x’ is Current (for
the client) and x’.x is Current (for the supplier).

c := d
x.r (c)

r (u: T)
do

f := u -- f is an attribute of the enclosing class.
end

u := x’.c

x

c, d f, u ?

x

x’
c(See completion of

this figure below)

u

§6 The object-oriented calculus 29
The following, sound version of the rule describes the correct semantics of aliasing
for qualified calls:

(The last part, call r, can also be written r.body from the unqualified call rule /27/.)
The rule works as follows. To compute the aliasings

induced by call x.r in the aliasing environment a, we need to
compute the aliasing induced by a simple unqualified call
call r; not in a, however, as a is relative to the client object,
but in the view that the supplier object (corresponding to the
target x) has of a. This view is x’ a, with both elements of
every pair in a prefixed by the inverted variable x’, a back
pointer giving access to the client. This means in particular that if r executes f := u where
u is aliased to an actual argument c, known in the routine as x’.c, then f will get aliased to
x’.c. The resulting alias relation, meaningful in the environment of the supplier, is a’=
((x’ a) |= call r). In the end, however, we need to interpret the result back in the
environment of the client, which knows the supplier as x; so we use x a’, prefixing both
elements of every pair in a’ by x. If such an element is of the form x’.e, this prefixing will
yield just e, since the dual rule /32/ tells us that x’.e = Current. In the example, the pair
[x.f, x’.c] in a’ will give [x.f, c], and as a consequence [x.f, d], in a; this is the proper result
as illustrated.

Thus we are permitted to prove that the unqualified call creates certain aliasings, on
the assumption that it starts in its own alias environment but has access to the caller’s
environment through the inverted variable, and then to assert categorically that the
qualified call has the same aliasings transposed back to the original environment. This
change of environment to prove the unqualified property, followed by a change back to the
original environment to prove the qualified property, explains well the aura of magic
which attends a programmer's first introduction to object-oriented programming.

In the case of recursive or mutually recursive procedures, the qualified rule /36/
invalidates he finiteness arguments that the E1 discussion used to show the existence of a
fixpoint reached finitely: every alias pair [m, n] created by call r will yield (in the absence
of x’ aliasing) a pair [x.m, x.n], increasing the dot count of both elements by one; with
recursion the count would grow unbounded. This possibility causes no practical problem,
however, since the basic assumption of the theory of aliasing (2.3) is that it only considers
expressions that actually appear in a program. So it suffices to limit application of rule /36/
to alias relations a whose dot count is no greater than the maximum dot count of
expressions in the program, defining the dot count of a pair of expressions as the maximum
of the dot counts of its elements, and the dot count of a relation as the minimum dot count
of its pairs. (The precise argument is more subtle, since in principle two expressions of the
program could become aliased as a result of rule /36/ aliasing each of them to an expression
not appearing in the program and having a dot count higher than any that will be computed
using the limited rule. It is easy to see, however, that this case is impossible.)

a |= call x.r = x ((x’ a) |= call r) /36/

x

x’
c, d

(Completion of
preceding figure)

f, u

The theory and calculus of aliasing §630
Example 16: the following program includes a qualified call x.q, actually
representing a call with arguments, x.q (Current, f).

The resulting alias relation is Current, x.b, x.d, f, x.a, x.c, x.b.f, x.c. As appropriate, it only
includes aliases reachable from the node representing the current object (the top-left node
in the figure). An aliasing such as a, c, which applies to another node (the rightmost one
in the figure, which represents the target of the call x.q) appears in its form relative to the
current object node, as x.a, x.c.

In the technique used so far, the assignments representing the argument passing
appear in the called procedure (see the first two lines of q), rather than in the caller. If a
procedure is called from several places, the corresponding assignments should then appear
as separate branches in then … else … conditionals. This method is not good for
modularity. It is preferable to introduce in the procedure a variable r_client (where r is the
procedure name) representing the client, and set this variable on the client side prior to the
call. With this approach, we may rewrite the above example as

Example 17: the program shown above gives the same alias relation as example 16,
extended with properties of q_client.

procedure Main
f := x.a
call x.q

end
procedure q

b := x’
c := x’.f

-- The above two lines represent the argument
-- passing x.q (Current, f), with formal
-- arguments b and c in q.

d := b
end

procedure Main
f := x.a
q_client := x
call q_client.q

end
procedure q

b := q_client’
c := q_client’.f
d := b

end

x

b, d, x’

f
a, c

§6 The object-oriented calculus 31
6.7 Aliasing among list structures

Example 18: for the final example (this variant and the next), consider the list manipulation
program mentioned in the introduction. To model the LIST and CELL procedures

we use the following E2 procedures:

Assume two separate lists x and y, to which we may add elements to our heart’s content:

extend (a: ELEMENT) -- In class LIST
local

new: CELL
do

if first = Void then
create first
last := first

else
from last := first until last.right = Void loop last := last.right end

end
create new ; new.set (a); last.set_right (new)

end
set (v: ELEMENT) do item := v end -- In class CELL
set_right (right: CELL) do right := c end -- In class CELL

procedure extend -- In LIST
a := extend_client’.el
then

create first ; last := first
else

last := first
end
loop last := last.right end
create new ; call new.set ; call last.set_right

end
procedure set -- Called from only one place, with target new and argument a.

item := new’.a
end
procedure set_right -- Called from only one place, with target last and argument new.

right := last’.new
end

procedure build
-- The two lines below could also be in separate branches of a then … else.

extend_client := x ; loop create el ; call x.extend end
extend_client := y ; loop create el ; call y.extend end

end

right

item item

right


right

item

a
new

lastfirst

The theory and calculus of aliasing §632
Then we repeatedly access arbitrary elements of either list:

The alias relation (as obtained from running this example in the implementation, and remov-
ing the extend_client variable from the output) is:

The full relation, as noted, would be infinite; it includes for example all pairs of the form
[x.first.right.…, x.last] with an arbitrary number of “.right” after x.first. As discussed in
6.6, the application of the theory to a particular annotated program breaks off at the highest
dot length of expressions found in the program. To run the examples, the current imple-
mentation sets this maximum to thee dots, as illustrated in the above result.

The most important property of that result is that the relation does not include the pair
[f, g], showing that no pointer in either list can ever become attached to a cell of the other:

Example 19: Add the assignment x := y at the beginning of Main; keep the rest of example
18 unchanged. The resulting alias relation now includes f, g, x.first, y.first,
f, g, x.first.right etc. (run the implementation to see the full list). The important property is
that now, as a result of this single change, f can be aliased to g.

procedure Main
call build
f := x.first ; g := y.first
loop

then f := f.right else g := g.right end
end

end

f, x.first, x.last, f, x.first.right, x.last, f, x.first.right.right, x.last, f, x.last.right,
 f, x.last.right.right, g, y.first, y.last, g, y.first.right, y.last,
g, y.first.right.right, y.last, g, y.last.right, g, y.last.right.right, x.a, x.new.item,
 x.last.right, x.new, x.a, x.new.item, y.a, y.new.item, y.last.right, y.new

x

y

f (may point to any of these cells)

g (may point to any of these cells)

No aliasing
between f and g,
or between any
pointers in the
two structures

§7 Prototype implementation 33
7 Prototype implementation

The prototype implementation is stand-alone, rather than integrated into the compiler of a
programming language. It is written in Eiffel; mechanisms of inheritance (particularly
multiple inheritance), genericity and contracts have proved essential to the prompt com-
pletion of this implementation. Using an imperative language (including numerous mech-
anisms found in functional languages) was a key factor in this process; in particular, many
delicate decisions involved when to duplicate a data structure, such as the representation
of an alias relation, and when simply to update it.

The implementation makes it possible to write an E2 program and produce its alias
relation in canonical form, as illustrated by the examples of this article. All the examples
are part of the implementation and can be tried in the downloadable version.

The response for these examples is immediate, but no complexity analysis has been
performed to explore scalability to large programs.

8 Application to a programming language

The translation from an actual programming language involves the steps discussed earlier:
ignoring conditions of conditionals and loops; replacing functions by procedures; replac-
ing arguments, local variables and function results by attributes; associating inverted vari-
ables with actual arguments of qualifed calls.

9 Open problems

A number of problems remain to be addressed:
• Although the existing implementation provides a convincing proof of concept, it

should be integrated in the compiler for an actual programming language, together
with the implementation of the translation into E2.

• The modular application of the calculus calls for special attention.
• On the theoretical side, full descriptions should be published for the formal model

and soundness proofs sketched in 4.12 and 6.3.
• The application to the frame problem must be clarified (in a companion article).
• Application to large programs requires both experimentation and theoretical analysis

of the algorithms’ complexity.

10 Acknowlegdments

This article has benefited from discussions with Scott West, Stephan van Staden, Carlo
Furia, Cristiano Calcagno, Yi Wei and Alexander Kogtenkov.

11 References

This work was made possible by the literature on software verification, particularly axi-
omatic semantics, separation logic, shape analysis, ownership, dynamic frames and static
analysis. Two further references provide complementary background:
[1] Bedřich Smetana: Prodaná Nevěsta (The Bartered Bride), starring Gabriela Beňačková
and Peter Dvorský, Supraphon, 1981, released as a DVD in 2006.
[2] Jacques Offenbach (libretto by Meilhac and Halévy): La Belle Hélène, starring Felicity
Lott, Michel Sénéchal, Laurent Naouri and Yann Beuron, conducted by Marc Minkowsky,
2000 (Théâtre du Châtelet), released as a DVD by Kultur Video in 2004.

	The theory and calculus of aliasing
	1 Dynamic aliasing
	2 General observations
	2.1 Adding the alias calculus to an axiomatic framework
	2.2 Handling imprecision
	2.3 Scope of the theory

	3 Alias relations
	3.1 Definition
	3.2 Canonical form and alias diagrams
	3.3 The semantics of an alias relation
	3.4 Basic operation

	4 The basic calculus
	4.1 Skip
	4.2 Forget
	4.3 Creation
	4.4 Cut
	4.5 Assignment
	4.6 Compound
	4.7 Conditional
	4.8 Repetition
	4.9 Loop
	4.10 Monotonicity and the loop aliasing theorem
	4.11 A more intricate example
	4.12 Formalizing E0 and soundness

	5 Introducing procedures
	6 The object-oriented calculus
	6.1 New language concepts
	6.2 Object-oriented alias diagrams
	6.3 Formal model
	6.4 Dot expression properties
	6.5 Dot expressions as sources of assignments
	6.6 Qualified call
	6.7 Aliasing among list structures

	7 Prototype implementation
	8 Application to a programming language
	9 Open problems
	10 Acknowlegdments
	11 References

