
1

An automatic technique
for stat ic deadlock prevention

Bertrand Meyer

ETH Zurich, Innopolis University & Eiffel Software

se.ethz.ch, university.innopolis.ru/en/research/selab/, eiffel.com

Abstract. Deadlocks remain one of the biggest threats to concurrent program-
ming. Usually, the best programmers can expect is dynamic deadlock detection,
which is only a palliative. Object-oriented programs, with their rich reference
structure and the resulting presence of aliasing, raise additional problems. The
technique developed in this paper relies on the “alias calculus” to offer a complete-
ly static and completely automatic analysis of concurrent object-oriented pro-
grams. The discussion illustrates the technique by applying it to two versions of
the “dining philosophers” program, of which it proves that the first is deadlock-
free and the second deadlock-prone.

1 Overview

Deadlock is, along with data races, one of the two curses of concurrent programming.
Although other dangers — priority inversion, starvation, livelock — await concurrent
programmers, these two are the most formidable. The goal of the technique presented
here is to avoid deadlock entirely through static analysis, so that any program that could
cause deadlock will be rejected at compile time. No implementation is available and the
description is preliminary, leaving several problems open.

The general approach is applicable to any concurrency model, but its detailed
application relies on SCOOP (Simple Concurrent Object-Oriented Programming) [3] [4]
[7] [8] [9], a minimal concurrent extension to an OO language, retaining the usual modes
of reasoning about sequential programs. One of the distinctive properties of SCOOP is
that the model removes the risk of data races, but deadlocks are still possible. The goal
of the approach described here is to remove deadlocks too, statically.

In today’s practice, the best concurrent programmers may usually hope for is
dynamic deadlock detection: if at run time the system runs into a deadlock, a watchdog
will discover the situation and trigger an exception. Such a technique is preferable to
letting the execution get stuck forever, but it is still unsatisfactory: the time of program
execution is too late for detection. We should aim for static prevention through a
technique that will analyze the program text and identify possible run-time deadlocks.

Like many interesting problems in programming, static deadlock detection is
undecidable, so the best we can expect is an over-approximation: a technique that will
flag all programs that might deadlock — meaning it is sound — but might occasionally
flag one that won’t. The technique should be as precise as possible, meaning that the
number of such false alarms is minimal. In fact an unsound technique may be of interest
too, if it detects many — but not all — deadlock risks. The technique described here is
intended to be sound, but no proof of soundness is available.

http://se.ethz.ch
http://eiffel.com
http://university.innopolis.ru/en/research/selab/

2

The approach relies on two key ideas. The first idea is that deadlock prevention
means finding out if there is any set of processors whose hold sets and wait sets are
mutually non-disjoint. The second idea is that in an object-oriented context, with
references and hence possible aliasing, we can compute these sets by applying alias
analysis to get a model of the processors associated with concurrent objects, and hence
of their hold and wait sets. The key supporting tool in this step is the alias calculus, a
technique developed by the author and colleagues for fully automatic alias analysis.
Section 7 is a hands-on application of the resulting technique to two programs
implementing solutions to the well-known “dining philosophers” problem; the analysis
proves that the first version — the standard SCOOP solution of this problem — is
deadlock-free, and that the second version, specifically contrived to cause potential
deadlocks, can indeed result in a deadlocked execution.

The discussion begins with a general formalization of the deadlock condition,
applicable to any concurrency framework (section 2). Based on this model, a general
strategy is possible for detecting deadlock statically; the principle is that deadlock may
arise if the “hold sets” and “wait sets” of a set of processors are not pair-wise disjoint.
This strategy is the topic of section 3. After a short reminder on SCOOP in section 4,
section 5 shows how to produce a deadlock in SCOOP; the design of the model makes
such a situation rare, but not impossible. Section 6 refines the general deadlock detection
technique of section 3 to the specific case of SCOOP, showing the crucial role of alias
analysis, as permitted by the alias calculus. Section 7 shows the application to an
important and representative example problem: dining philosophers, in the case of two
components. Section 8 lists the limitations of the present state of the work and the goals
of its future development.

Although the literature on deadlock prevention and detection is huge, there is (to my
knowledge) no precedent for an approach that, as presented here, permits static deadlock
analysis for concurrent object-oriented programs by relying on alias analysis. This is the
reason for the restricted nature of the bibliography.

2 General deadlock condition

Deadlock is, as mentioned above, only one of two major risks in traditional concurrent
programming. It is closely connected to the other one, data races. A data race arises when
two concurrent program elements access and modify data in an order that violates their
individual assumptions; for example, if each tries to book a flight by first finding a seat then
booking it, some interleavings of these operations will cause both to believe they have
obtained a given seat. The remedy is to obtain exclusive access to a resource for as long as
needed; but then, if concurrent elements share more than one resource and they obtain
exclusive access through locking, the possibility of deadlock looms: the execution might
run into a standstill because every element is trying to obtain a resource that one of the others
has locked. In the flight example, one client might try to lock the seat list then the reservation
list, and the other might try to lock them in the reverse order, bringing them to an endless
“deadly embrace”, as deadlocks are also called. This analysis indicates the close connection
between the two plagues: to avoid data races, programmers lock resources; but the ability
of multiple clients to lock multiple resources may lead to deadlock.

3

The two problems are, however, of a different nature. One may blame data races on
the low level of abstraction of the usual concurrent programming techniques (such as
threading libraries with synchronizaation through semaphores); the SCOOP model
removes the risk of data races by requiring program elements to obtain exclusive access
before using any shared resource. The key mechanism (section 4) is the SCOOP idiom
for reserving several resources at once, moving the task of data race avoidance from the
programmer to the SCOOP implementation. As a consequence, many deadlock cases
disappear naturally. But, as we will see in detail, deadlock does remain possible, and is
a harder problem to eliminate statically.

Ignoring SCOOP for the moment, we will now study under what general conditions
deadlock can arise. The term “processor” will denote (as in SCOOP but without loss of
generality) a mechanism able to execute sequential computations. Concurrency arises
when more than one processor is at work. Processors can be of different kinds, hardware
or software; a typical example is a thread as provided by modern operating systems.

The deadlock scheme considered here is the “Coffman deadlock”, which assumes
that two or more processors need exclusive access to two or more shared resources, and
all seek to obtain it through locking. Deadlock arises if at some time during execution
these processors become involved in a cycle, such that every one of them is seeking to
lock a resource that is held by the next processor in the cycle. This is the usual informal
definition, which we may formalize (without making the cycle explicit) as follows.
There is a set P of processors and a set R of resources, both finite. For each processor p,
at any execution time t, there are two disjoint sets of resources:

• H (p), the hold (or “has”) set, containing resources that p has locked and not yet
unlocked, and to which, as a result, it has exclusive access.

• W (p), the wait (or “want”) set, containing resources that p is trying, unsuccessfully
so far, to lock.

(To avoid ambiguity, we may make the time explicit, writing Wt (p) and Wt (p).)

Deadlock arises between the processors in P when every one of them wants
something that another has:

To get the usual cycle based presentation it suffices to start from an arbitrary processor
p and follow the successive p’ of the condition. Since P is finite the sequence is cyclic.

It is also useful to state the reverse condition, deadlock-freedom:

This condition holds in particular when W (p) is empty, that is to say, p is progressing normally
and not waiting for any resource. It also holds if every processor only ever needs one resource
at a time, formally expressed as ∀ p : P | H (p) ≠ ∅ W (p) = ∅: in that case, if the deadlock
condition held, the cyclic sequence obtained by the above construction would consist of
processors for which neither H nor W is empty, which contradicts this assumption.

∀ p : P | ∃ p’: P | W (p) ∩ H (p’) ≠ ∅ -- Deadlock condition

∃ p : P | ∀ p’: P | W (p) ∩ H (p’) = ∅ -- Progress condition

4

3 Deadlock prevention strategy

The preceding analysis leads to a general strategy for statically detecting possible
deadlocks. The strategy as presented here applies to any concurrency model; the next
section will describe its application to the specific case of SCOOP.

Two observations are necessary to evaluate programs for their susceptibility to the
deadlock condition. First, the condition refers to processors; but processors may only be
known at run time. We need to transpose the reasoning to what we can analyze statically:
positions in the program text. It suffices to extend the notations H (p) and W (p) to p
denoting a program position; they denote the run-time hold and wait sets of any
processor whose execution reaches position p.

The second observation is that it is only necessary to evaluate the condition at
“locking positions”: program points that contain an instruction that tries to lock a
resource. Locking positions mark where deadlock can occur.

The general strategy, then, is to develop techniques for:

1 • Estimating the H and W sets of any locking position. (The technique may be more
general, and yield these sets for any program position.)

2 • Estimating, for every locking position lp1, the set of its “simultaneous” positions:
all locking positions lp2 such that during execution a processor may reach lp1 and
another lp2 at the same time. Note that lp1 and lp2 may be the same position if
several processors execute the same code.

3 • Computing W (lp1) ∩ H (lp2) for every simultaneous pair [lp1, lp2].

The progress condition holds if this intersection is empty for at least one pair.

For the first two steps, the strategy “estimates” the result since it may not be possible
to determine them exactly. As noted in section 1, an estimation should normally be an
over-approximation, as accurate as possible.

The implementation of these two steps, and the precision of the estimation, depend
on the concurrency model. We now come to the application to a specific model, SCOOP.

4 SCOOP basics

The SCOOP model simplifies the framework developed above. “Processor” is a central
notion in SCOOP, and is general enough to subsume the concept of resource.

SCOOP closely connects the concurrency architecture with the object-oriented
architecture of a system, through the rule that every object has an associated processor,
its handler, which is responsible for all operations on the object (all calls of the form
x.r (…) where r is attached to the object). The result is a partitioning of the object space
into a number of regions, each associated with a handling processor:

5

In the figure, the object OA has a field x, attached (at a particular time during execution)
to an object OB in another region. A call x.r (…) issued by the processor of region A
(handler of OA) will be executed by the processor of region B (handler of OB).

Such a call applied to a separate object is (in the case of a procedure, rather than a
function) asynchronous: it does not block the A processor. To reflect this property, a
variable such as x that may represent objects in another region must be declared
separate. But x.r (…) is only permitted if the processor executing this operation has
obtained exclusive access to the object. The basic way to achieve exclusive access is
through a procedure call with x as argument. More generally, a routine with header

will guarantee exclusive access to the separate arguments for the duration of the
execution of r’s body. A call r (a, b, …) may as a consequence have to wait until it has
obtained exclusive access to the objects attached to a, b, …. This is how SCOOP gets
rid of data races: if you need a resource, or any number of resources, you must first
obtain exclusive access to them; so a program element cannot invalidate another’s
assumption by messing up with shared resources.

If at the time of such a call one of the actual arguments, for example a, is already
accessible under exclusive access, perhaps because a is a formal argument of the routine
in which the call appears, this exclusive access is transferred to r, under “lock passing”,
for the duration of its execution.

As an example of simultaneous reservation of multiple resources, the following code
implements the “dining philosophers” scheme. Two classes are involved, FORK and
PHILOSOPHER. All we need from a fork is the ability to help us eat:

The creation procedure (constructor) make of class PHILOSOPHER gives a
philosopher a left and a right forks, represented as separate objects. The procedure live
capture a philosopher’s behavior:

r (x : separate T; y : separate U; …)

class FORK feature
use do …Use the fork to eat …end

end

class PHILOSOPHER create make feature
left, right: separate FORK

Objects

OA OB

B

A Region

CD

A

x
Region boundary

Client
(“calls” relation)

6

The key element is the highlighted call eat (left, right) which, by virtue of the basic
SCOOP processor reservation mechanism, obtains exclusive access to the two forks. No
other synchronization operation is necessary. The classical problems of securing
multiple resources without risking deadlock or starvation are no longer the application
programmer’s business; the SCOOP implementation handles them.

To set everything going we may use — in the illustrative case of two philosophers
and two forks — the following “root” class. (The class text is supporting code, with no
particularly deep concepts, but needed for the example analysis of the next sections):

live
-- Perform philosopher cycle with left and right forks.

do
from until False loop

think

-- Simultaneous point (see section 7

end
end

eat (l, r: separate FORK)
-- Pick both l and r.

do
l.use ; r.use

end
think do … Not specified … end

feature -- Initialization

make (l, r : separate FORK)
-- Initialize with l as left and r as right forks.

do left := l ; right := r end
end

class MEAL create make feature
fork1, fork2: separate FORK

phil1, phil2: separate PHILOSOPHER

make
-- Set up two philosophers sharing forks, and get them started.

do
-- Create the philosophers and forks:

create fork1 ; create fork2

create phil1.make ()

create phil2.make ()
-- Start the philosophers:

execute (phil1, phil2)
end

eat (left, right)

fork1, fork2

fork2, fork1

7

The creation instructions for the philosophers reverse the “left” and “right” role for the
two forks. It would not be possible to merge the creation procedure make with execute
since it needs to perform calls such as p1.live on attached targets, requiring exclusive
access to the corresponding objects; so we first need the creation instructions in make
to create these objects, then execute to work on them.

In the version above, make does call execute, so that creating a meal object
(create m.make) is enough to trigger a full system execution. As a result, execute is
secret (private), as specified by feature {NONE}. It would also be possible to separate
the two parts, removing the call to execute in make and declaring execute public.

The illustrated constructs are the main components of the SCOOP concurrency
model. They suffice for the rest of the presentation, but for completeness it is useful to
list the other properties which together with them make up all of SCOOP:

• A separate call on a query (function or attribute, returning a result), as in the
assignment y := x.f (…) is, unlike a call to a procedure, synchronous: since the
execution needs the value, it will wait until f has terminated. Waiting on the result of
a query is the SCOOP mechanism for re-synchronizing after an asynchronous call.

• A routine precondition of the form require x.some_condition, where x is a
separate formal argument of the routine, will cause the execution of the routine’s
body to wait until the condition is satisfied. This is the SCOOP mechanism for
condition synchronization.

• To work on separate targets, a program element must have exclusive access to
them. The usual way to obtain it is to pass the targets as arguments to a routine, as
in execute (phil1, phil2). If execute is not available separately from make, it is
possible to avoid writing execute altogether and replace the call execute (phil1,
phil2) by the “inline separate” construct

separate phil1 as p1, phil2 as p2 do
p1.live ; p2.live

end
with the same effect of guaranteeing exclusive access to phil1 and phil2 under the
local names p1 and p2. Inline separate avoids the writing of wrapper routines for the
sole purpose of performing simple operations on separate targets. The rest of the
discussion will use explicit wrapping, with no loss of generality since object
reservation and access has the same semantics with inline separate as with wrapping.

feature {NONE}
execute (p1, p2: separate PHILOSOPHER)

-- Perform both philosophers’ lives.
do

p1.live

p2.live
end

end

8

5 Deadlock in SCOOP

To discuss deadlock in the SCOOP context, we do not need to distinguish between
processors and resources as in the general model introduced at the beginning of this
discussion. As illustrated by philosophers and forks, the notion of processor covers
resources as well. A resource is an object; exclusive access to it means exclusive access to
its handling processor. This unification of concepts significantly simplifies the problem.

In the practice of SCOOP programming, many deadlock risks disappear thanks to
SCOOP’s signature mechanism of reserving several separate targets at once by passing
them as arguments to a routine (or, equivalently, using an inline separate). The most
common case of deadlock other approaches arises when p and q both want to reserve r
and s, but attempt to lock them in reverse order, ending up with p having r and wanting
s while q has s and wants r. In SCOOP they will both execute some_routine (r, s); each
will proceed when it gets both. No deadlock is possible. (In addition the SCOOP
implementation guarantees fairness.)

Unfortunately, even though deadlock will not normally arise in proper use of
SCOOP, it remains a distinct theoretical possibility. It is in fact easy to construct
examples of programs that may deadlock, such as the following variant of the dining
philosophers solution. The correct eating procedure in PHILOSOPHER, repeated here
for convenience, is

Now consider the following:

eat (l, r: separate FORK)
-- Pick both l and r.

do
l.use r.use

end

-- Features to be added to class PHILOSOPHER
eat_bad (f : separate FORK)

-- Pick f, then the other fork.
do

pick_one (f)

pick_second (f, opposite (f))

end
pick_one (f : separate FORK)

-- Pick f.
do

f.use

end

9

and replace the key call in procedure live by eat_bad (left) (or
eat_bad (right)).

The need for procedure pick_second comes from the assumptions of the dining
philosophers problem: if we replaced the second instruction of eat_bad with just
pick_one (opposite (f)), no deadlock would arise, but we would violate the basic
condition that a philosopher requires access to both forks at once. The first argument of
pick_second serves to maintain hold on the first fork.

If this scheme seems convoluted it is precisely because deadlock does not naturally
arise in ordinary SCOOP style. With this version, however, classic dining-philosophers
deadlock is possible, with a run-time scenario such as this: eat_bad for phil1 executes
pick_one (fork1); eat_bad for phil2 executes pick_one (fork2); then the first eat_bad
tries to execute pick_second (fork1, fork2) and waits because phil2 holds fork2; but the
second processor is also stuck, trying to execute pick_second (fork2, fork1) while phil1
holds fork1.

At this stage the deadlock condition of section 2 holds. Identifying each processor
by the program name of an object it handles:

• H (phil1) = {fork1)

• W (phil1) = {fork2}

• H (phil2) = {fork2}

• W (phil2) = {fork1}

• Hence both H (phil1) ∩ W (phil2) ≠ ∅ and H (phil2) ∩ W (phil1) ≠ ∅.

6 The SCOOP deadlock detection rule

To apply the strategy of section 3, we must:

• Find which pairs of locking positions are “simultaneous” (that is to say, might be
executed concurrently).

• For every such pair [lp, lp’] compute the hold and wait sets of lp and lp’.

• Find out if all the intersections H (lp) ∩ W (lp’) are non-empty.

pick_second (f1, f2 : separate FORK)
-- Already holding f1, pick f2.

do
f2.use

end
opposite (f : separate FORK)

-- The fork other than f.
-- (With more than two forks, would be replaced by a “next” function.)

do
Result := if f = left then right else left end

end

eat (left, right)

10
In the SCOOP context, a locking position in SCOOP is a call r (a, b, …) to a routine with
separate arguments. (As noted, we ignore inline separate instructions, which can be
handled in the same way.)

We can define instruction simultaneity thanks to the following auxiliary concepts. Two
instructions in the same routine are “siblings” if their closest enclosing Compounds are the
same or nested within one another. (In i1; if c then i2 i3 else i4 end i5, all instructions
are siblings except for the pairs i2, i4 and i3, i4.) In addition, a routine appearing in a loop
is its own sibling. The “dependents” of a routine r, or a call to that routine, are r itself and
all the routines that it may call directly or indirectly. A qualified call x.r (…) is
“separate”if its target x is separate. Then two instructions i1 and i2 are simultaneous if i1
is in a dependent of a separate call c, and i2 is in a dependent of a sibling of c. For example in

both i1 and i2 are simultaneous with all the instructions of r, s and their dependents.

Now the hold and wait sets. For an entity x in the program (formal argument, local
variable, attribute) let <x> be the handler of the object attached to x. The notation
generalizes to lists: <l> is the set of handlers of all the elements of a list l. Let Current
denote the current object (“this”). Then:

The call c (like any instruction in the same routine) holds the handler of the current
object and the handlers of all the formal arguments of the enclosing routine. To proceed,
c requires exclusive access to the handlers of actual arguments. This property applies
both to a synchronous call, such as an unqualified call r (Actuals), for which the
execution will not proceed until it has executed the body of r, and to an asynchronous
call of the form sep.r (Actuals) for which the execution does not need to wait for r to
complete or even to start, but does need to obtain exclusive access to the arguments.

The W rule ignores lock passing. To avoid the loss of generality, we may fictitiously
extend the formal argument list of a routine with the separate arguments of its callers,
although a more direct technique is desirable. The example discussed below does not
involve lock passing.

To apply these rules, we need a way to determine the handler <s> of any separate
entity s. More precisely, since the goal is to determine whether intersections of processor
sets are empty, we need to determine whether <s> and <t> can be the same for two
entities. This will be the case if t is aliased to s, or to s.x where x is a non-separate field
of s (so that s.x has the same handler as s). This observation highlights alias analysis
as the core task of deadlock analysis in an object-oriented concurrency framework.

i1
sep.r (…) -- Where sep is separate
i2
x.s (…) -- Where x may be separate or not

For a call c with separate actual arguments actuals, appearing in a routine with sep-
arate formal arguments formals:

• H (c) = <Current> ∪ <Formals>
• W (c) = <Actuals>

11
Previous work [5] [2] has introduced an alias calculus. The calculus is a set of rules
for computing statically, at any program point in the context of an object-oriented
language with references, the alias relation: the set of pairs of expressions that may, be
aliased when execution reaches that point. (Two expressions denoting references are
aliased if they are attached to the same object.)

The rules of the alias calculus give, for every kind c of construct in the programming
language and any alias relation ar, the value of ar » c: the alias relation that will hold
after execution of c if r held before. For example, ar » (c1 ; c2) = (ar » c1) » c2). The
reader may consult [2] for the full list of rules. (As may be expected, the alias relation
computed by these rules is usually an over-approximation of the aliasings that may
actually exist at execution time.) The present discussion assumes that we do have the
alias calculus at our disposal. For the purpose of alias analysis, we add s.x to the aliases
of s for all non-separate x.

In this framework, the above rule for computing the hold and wait sets becomes:

where aliases (e) is the set of expressions possibly aliased to e at the given program
position. In this formulation, the H and W sets contain program expressions rather than
the actual processors; the expressions act as proxies for these processors. Such an
abstraction is necessary in any case since the processors only become known at
execution time.

Deadlock analysis then reduces to the following steps.

7 Example application

The following scenario illustrates deadlock analysis on the two-dining-philosophers
example presented earlier.

The alias relations at each stage, resulting from the alias calculus, are assumed to
come from automatic alias analysis.

For a call c with separate actual arguments actuals, appearing in a routine with sep-
arate formal arguments formals:

• H (c) = aliases ({Current} ∪ Formals)

• W (c) = aliases (Actuals)

Deadlock analysis strategy:

• Determine all pairs [c1, c2] of simultaneous calls with separate arguments.

• For all calls c involved, determine H (c) and W (c) according to the rule above,
applying aliasing as necessary.

• Determine if all H (c1) ∩ W (c2) are non-empty.

12
In expressing these relations, we need the concept of negative variable, introduced
in [6] to handle the changes of coordinates that characterize object-oriented
programming. To understand this notion assume that a is aliased to b:

The alias relation is, in the notation of [5], , meaning that it contains the pair [a, b]
and the symmetric pair [b, a] (an alias relation is symmetric). Also, a and b are their own
aliases, but for economy we never explicitly include pairs [x, x] in an alias relation,
keeping it irreflexive by convention.

At this point the program executes a qualified call x.r (…). The routine r may
change the aliasing situation; but to determine these changes we cannot apply the alias
calculus rules to the original relation since a and b are fields of the original object
O1 and mean nothing for the target object O2. The relation of interest is x’.(), equal
by distributivity to . Here x’, the “negation” of x, represents a back-reference
to the caller as illustrated below. This reference need not exist in the implementation but
is necessary for the alias computation. If ar is the alias relation obtained by the alias
calculus at the end of the body of ar, then the result for the caller is x.ar, where any x’
will cancel itself out with x since x.x’ = Current and Current.e = e for any e.

Let us now consider the deadlock analysis of the preceding section to the two versions
of the dining philosopher program. In the first version, the relevant simultaneous pair is
the call , paired with itself (since it is in a loop), in the routine live. Prior
to aliasing, the hold and wait sets, seen from the philosopher object, are:

• H = {Current}

• W = {left, right}

O1

a
b

x

O2

a, b

a, b
a, b

x’.a, x’.b

O1

a
b

x

O2

x’

eat (left, right)

13
Considering both calls to live, the reference structure is the following:

The top node is the root object, of type MEAL; the middle nodes are philosopher objects;
the bottom nodes are fork objects. Through alias completion we get:

• H = {Current, p1’.phil1, p1’.p1}

• W = {left, right, p1’.fork1, p2’.fork2}

The intersection of these sets is empty: no deadlock. Now consider the version using
eat_bad (left) instead of eat (left, right). The sets at the point of the call to pick_second
in eat_bad are, at the PHILOSOPHER level and prior to alias completion:

• H = {Current, }

• W = {left, right}

The reference structure is the same as above, plus aliasing of f to left:

Alias completion yields:

• H = {Current, , p1’.phil1, p1’.p1, , left, p1’.fork1, p2’.fork2}

• W = {left, right, p1’.fork1, p2’.fork2, }

Since W now includes f, aliased to left, the intersection is not empty, revealing the
possibility of a deadlock.

f

f

f

14
8 Conclusion and perspectives

The limitations of this work are clear: the technique is not modular; it has not been proved
sound; its precision (avoidance of false alarms) is unknown; and it is not yet implemented.

The approach, however, seems promising. The reliance on aliasing seems to open
the way for a realistic approach to static deadlock detection, applicable to modern
object-oriented programs regardless of the complexity of their run-time object and
reference structure.

The next step is to remedy the current limitations and make the approach fully
applicable in a practical verification environment [7]. The goal is worth the effort:
unleashing the full power of concurrent programming by removing an obstacle that, for
decades, has been a nightmare.

Acknowledgments

The research reported here is part of the Concurrency Made Easy project at ETH, an
Advanced Investigator Grant of the European Research Council (ERC grant agreement
no. 29138). I am grateful to members of the CME project, particularly Scott West,
Benjamin Morandi and Sebastian Nanz, for numerous comments on the research.
Alexander Kogtenkov and Sergey Vedler were instrumental in the development of the
alias calculus. Victorien Elvinger spotted an error in an earlier version.

Bibliography

[1] EVE page (Eiffel Verification Environment) at se.inf.ethz.ch/research/eve/.

[2] Alexander Kogtenkov, Bertrand Meyer and Sergey Velder: Alias Calculus, Frame
Calculus and Frame Inference, in Science of Computer Programming, vol. 97, part 1,
January 2015, pages 163-172.

[3] Bertrand Meyer: Systematic Concurrent Object-Oriented Programming, in
Communications of the ACM, vol. 36, no. 9, September 1993, pp. 56-80.

[4] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall,
1997 (chapter 32 includes a description of SCOOP).

[5] Bertrand Meyer: Steps Towards a Theory and Calculus of Aliasing, in International
Journal of Software and Informatics, 2011, pages 77-116.

[6] Bertrand Meyer and Alexander Kogtenkov: Negative Variables and the Essence of
Object-Oriented Programming, in Specification, Algebra, and Software, Kanazawa
(Japan), 14-16 April 2014, eds. Shusaku Iida, Jose Meseguer and Kazuhiro Ogata,
Springer Lecture Notes in Computer Science 8313, pages 171-187, 2014.

[7] Benjamin Morandi, Mischael Schill, Sebastian Nanz and Bertrand Meyer.
Prototyping a concurrency model, in Int. Conf. on App. of Concurrency to Syst. Design,
pages 177-186, available at se.inf.ethz.ch/people/morandi/publications/prototyping.pdf.

[8] Piotr Nienaltowski: Practical framework for contract-based concurrent object-
oriented programming, PhD thesis, ETH Zurich, 2007, available at se.inf.ethz.ch/old/
people/nienaltowski/papers/thesis.pdf.

[9] SCOOP page at cme.ethz.ch.

http://cme.ethz.ch
http://se.inf.ethz.ch/old/ people/nienaltowski/papers/thesis.pdf
http://se.inf.ethz.ch/old/ people/nienaltowski/papers/thesis.pdf
http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/people/morandi/publications/prototyping.pdf

	An automatic technique for static deadlock prevention
	1 Overview
	2 General deadlock condition
	3 Deadlock prevention strategy
	4 SCOOP basics
	5 Deadlock in SCOOP
	6 The SCOOP deadlock detection rule
	7 Example application
	8 Conclusion and perspectives
	Acknowledgments
	Bibliography

