
Framing the Frame Problem
Bertrand Meyer

ETH Zurich, Innopolis University & Eiffel Software
http://se.inf.ethz.ch — http://www.eiffel.com

Abstract. Some parts of the software verification process require human annotation, but as
much as possible of the rest should be automatic. An excellent candidate for full automation
is change analysis, also known as the frame problem: how to determine which program
properties remain unchanged under a given operation. The problem is particularly delicate in
the case of programs using pointers or references, in particular object-oriented programs. The
double frame inference strategy automates both frame specification and frame verification. On
the specification side, it deduces the set of permissible changes of a routine (its “modifies
clause”) from a simple examination of its postcondition. On the implementation side, it applies
the change calculus, itself based on the alias calculus, to determine the set of expressions
whose values the routine can actually change. Frame verification then consists of ascertaining
that the actual change set is a subset of the permissible change set.

Keywords. Software engineering, software verification, program specification, program
verification, program proving, frame analysis, change analysis, alias analysis, alias calculus,
frame calculus, frame inference, Design by Contract, Eiffel, object-oriented programming,
pointers, references.

1 Overview of the problem and the solution

Software verification ascertains what programs do. It must also ascertain what they
do not.

The “frame problem” covers the second of these obligations. McCarthy and
Hayes explained it back in 1969 [3]:

In proving that one person could get into conversation with another, we
were obliged to add the hypothesis that if a person has a telephone he still
has it after looking up a number in the telephone book. If we had a number
of actions to be performed in sequence we would have quite a number of
conditions to write down that certain actions do not change the values of
certain queries. In fact with n actions and m queries we might have to
write down mn such conditions.

With the exception of one word (I took the liberty of substituting “query” for
McCarthy’s “fluent”, a term that has not stuck), this description is just as current
today; so is the problem it describes. Software specifications and the corresponding
verification techniques usually focus on how program operations change their
environment: withdrawing a hundred francs decreases your balance by that amount.
But we are also interested in what they leave unchanged: a withdrawal should not
make someone else become your account’s owner. Such a requirement that an action
must leave a query’s value unchanged is called a “frame property”. Even if the
specification of a program element restricts itself to non-frame properties, the
verification process will often need to rely on frame properties.

A solution to the frame problem should cover two aspects:

• Specification: expressing the desired frame properties without falling into the mn
trap described by McCarthy and Hayes. Some language conventions are
necessary to ensure that the programmer or specifier can concentrate on the
interesting parts — specifying how things change — and let the rest (frame
properties) follow as a consequence.

• Verification: proving that actions do not change the queries specified in frame
properties. In principle this task could use the same techniques as for non-frame
properties; but the specific nature of frame properties, all of the form query = old
query, may call for simpler solutions.

The rest of this discussion addresses these two issues in the context of an object-
oriented programming language. Here is a summary of the results.

The solution is to use automation on both sides, hence the term double frame
inference, then to compare the results.

The first component is a specification convention: avoid the mn problem by
understanding every routine postcondition to be complemented by clauses of the form
query = old query for every query not explicitly cited in the postcondition. In other
words, if a command will change a query, it has to say something about that query in
its specification. The specification does not have to say how the query will change; it
simply names it. Unmentioned, unchanged. For a program element p, we may call
inferred frame specification, written p

_
, the result of applying this convention: the

set of queries which p, according to the specification, is permitted to change.

The second component is a technique for inferring from the program text which
queries a command can actually change. The mechanism is the change calculus, a set
of rules specifying, for instructions p of all possible kinds in a programming language,
the set of queries that p may affect, called the inferred frame implementation and
written p. An example rule, slightly simplified, is if c then p else q end= p ∪ q:
executing a conditional can change whatever either branch can change. (The full form
of this rule is given in section 5 and involves an extra parameter, the alias relation.)

The combination of these two techniques yields a specification of what is
permitted to change and of what may actually change. The third step, the easiest, is
verification: ascertain that every routine p satisfies the frame condition p ⊆ p

_
.

Both p and p
_

may be over-approximations. On the implementation side, it is
impossible to guarantee that p is the exact list of changed queries, both for theoretical
reasons of undecidability and pragmatically, because we are relying on simple rules
supporting efficient implementation. According to the change calculus, for example,
y := x ; x := y changes x (as well as y) even though x in fact regains its original value.
On the specification side, it is not a bug to be over-cautious and write a postcondition
that leaves open the possibility that the routine could change a query, even if
verification does not need that property. In addition, we may have to extend p

_
to

ensure the frame condition in case of over-approximation in the implementation; in the
example, we might have to list x in the postcondition.

The most difficult part of the process is the frame implementation inference (the
computation of p). More precisely it is difficult in the presence of pointer (reference)
operations, as in object-oriented programming languages but also, for example, in
Pascal or C. Pointers imply in particular that one can no longer assume the seemingly
obvious property that an assignment x := y can only change x and expressions
involving x: if this assignment occurs after z := x, then it also affects any expression of
the form z.a. The reason is that before an assignment some expressions, such as z in
this example, may be aliased to the current object. Frame analysis for an object-
oriented language must as a consequence include alias analysis.

Usual approaches to the frame problem — involving, for example, separation
logic or ownership types — require a manual specification effort, and annotations on
the implementation as well. The contribution of this article is a comprehensive method
of frame analysis, automatic on both the specification and implementation sides
thanks to the technique of double frame inference. The benefit is to free software
developers from the tedious task of specifying and verifying which properties should
not change, allowing them instead to concentrate on the interesting part: which
properties do change, and how.

2 The automation tradeoff

To understand the rationale for the present approach it is useful to take a global look
at what various approaches to verification demand and yield: work required (from the
specifier, programmer and proving engineer) versus extent of verification results. The
following figure suggests the tradeoffs involved.

Although the classification is rough and the distances subjective, the general idea
should be non-controversial. The most successful approaches either:

• Like axiomatic semantics, require a fair amount of manual effort (writing
contracts and other verification conditions), but can yield verification of full
functional correctness.

• Like model-checking, require only modest annotation effort, and hence are almost
entirely automated, but only yield the specification of particular (although often
critical) safety or liveness properties.

It is unrealistic to hope for the top-left area, and approaches at the bottom-right would
be of no interest. Any verification technique, and any improvement to existing
technique, should consider the tradeoff between manual effort and verification benefit.
To make verification an integral part of the software development process, we must
carefully weigh the amount of annotations that we expect programmers to contribute:

• It is legitimate to require that programmers express properties — such as contracts
specifying routine preconditions, routine postconditions and class invariants —
that describe the functional behavior expected of programs elements. Without
such a specification there can be no functional verification, since one would not
know what to verify.

• Everything else, in particular intermediate properties that are necessary for the
proof but may seem to the programmer too detailed and internal, should as much
as possible be inferred automatically.

Axiomatic
(Hoare-style)

Extent of manual effort

Extent of proved properties
Separation logic,
ownership types

Model-checking,
abstract interpretation

Frame properties (like loop invariants, which however are still hard to synthesize
automatically) belong to the second category. In spite of their intellectual elegance,
approaches to framing relying on separation logic or type ownership have the
disadvantage of requiring extensive annotations (heap assertions or type annotations),
moving them to the right of the figure, while serving internal needs of Hoare-style
verification and hence bringing little visible upward lift. Frame properties do not
deserve imposing such a manual effort; having to specify them explicitly is a nuisance.
The present work strives for an implicit and automatic approach to frame verification.

3 Frame specification inference: a convention

Three conventions are possible for specifying frame properties: manual, exclusive
and implicit.

The manual convention does not rely on any specific technique for frame
properties, but treats them like any other specification element. For example:

The annotations illustrate the concepts of the preceding discussions: only the first
postcondition clause (the one on balance) is interesting for the programmer, since it
expresses the routine’s functional goal; but the others are boring frame properties.
With m commands such as deposit and n queries such as holder the manual convention
raises the mn problem. The problem is not just, however, the sheer number of boring
properties to specify. Software engineering must account for changes; the class author
or maintainer may add new queries, such as iban (international account number). If,
as is usually the case, existing commands do not affect the new queries, they must still
be updated, one by one, with postcondition clauses of the form iban = old iban. Not
only is the manual convention tedious, it leads to instability in the software process.

class ACCOUNT feature

holder: PERSON

number: STRING

branch: BRANCH

balance: INTEGER

deposit (amount: INTEGER)
-- Add amount to the account’s balance.

require
amount > 0

do
…Implementation …

ensure
balance = old balance + amount
-- The following clauses are pure frame properties:
holder = old holder
number = old holder
branch = old branch

end
…Other features …

end

The exclusive convention relies on the observation that the mn matrix is usually
sparse: most commands affect only a few queries. It directs the programmer or specifier
to give for each command an exhaustive list of the queries that the command may
affect. With the exclusive convention the postcondition of deposit will read, in full:

The syntax here uses the keyword only, which was at one point proposed for Eiffel
(until the implicit convention, studied next, displaced it). Other common keywords are
modifies and (in JML) assignable; rather than appearing in the postcondition, as with
only, such clauses can be separate elements of the specification. Regardless of the
details, “modifies clause” is the accepted name for clauses of this kind. The semantics
is that a modifies clause “only a, b, c” denotes a set of clauses q = old q for all queries
q other than a, b and c. Note that in spite of its name a modifies clause does not require
a command to modify the queries listed: instead, it forbids it from modifying the
queries not listed. This is the reason for preferring the keyword only.

The exclusive convention is so named because it defines the unaffected queries
by exclusion. As a side benefit, it also makes it easy to specify that a command is pure
(has no side effects): just write an empty modifies clause. With appropriate
precautions [2], the exclusive convention can be made to work with inheritance.

The implicit convention derives from the exclusive convention, but removes
explicit frame specifications. It was initially suggested by an informal review
performed on publicly available JML code, which revealed that in practice queries
mentioned in a modifies (“assignable”) clause for a command also appear in the
postcondition of that command. In other words, it seems that whenever JML
programmers state that something can be modified they also say how it will be
modified. They do no necessarily say it in exact terms, as in q = some_value, but may
just state some_property (q). Either way, however, the postcondition names q. It then
seems a waste of effort to require writing a special clause listing such queries. If the
empirical observation has exceptions, it is easy to correct a frame property omission
by inserting into the postcondition a clause relevant (q) where relevant is a boolean
function that always returns True but brings its argument, here q, into the picture.

The analysis of the postcondition should only consider query occurrences outside
of an old clause: a clause q1 = some_function (old q2) indicates that q1 can be
modified, but says nothing about q2.

The implicit convention yields the notion of frame specification inference:
instead of requiring programmers to write modifies clauses, the verification tools infer
them from the postcondition. This is only one kind of “frame inference”, not to be
confused with the other one, frame implementation inference, discussed in section 5.

The implicit convention reflects the observation that when you realize that
something changes you will generally want to say something about how it changes. Of
the three possible conventions, this is the simplest one for programmers. The present
work relies on it, as the first part of its double frame inference method.

ensure

balance = old balance + amount

only balance

The rest of the discussion is, however, not dependent on this choice of convention.
It only needs to assume the existence of a frame specification. With the manual
convention, that specification follows from explicit q = old q clauses; in the exclusive
approach it follows from modifies clauses; and in the implicit convention it obtains a
list of unmodified queries from a straightforward parsing of the postconditions.

4 The nature of frame specifications

Defining frame properties precisely requires raises three delicate questions, requiring
clear choices.

The first question is how to handle inheritance and polymorphism. Although the
framework developed here can be extended to inheritance, the present article does not
cover that aspect. For a discussion of the problem, see Leino et al. [2].

The second question is what exactly we should consider a “change” to a query. In
particular, if a routine initially changes the value of a query, but restores it later during
its execution, should we consider that it changes it? In the most trivial case, we may
ask whether x := x changes x. There are arguments for either answer, but in the present
work we will answer yes: as soon as a routine can set the value of a query, it changes
it. (We may think in the same way as, in hardware, the designer of a solid-state drive
memory: since each cell in an SSD can only be written a finite number of times before
it goes bad, every write operation is significant even if it rewrites the cell with its
previous value.) This convention can be surprising since the following scheme is
common, for example in cursor-based data structures of the EiffelBase library:

• Save a certain state property, such as the cursor position in a list.

• Perform operations that change that property, for example by moving the cursor
to some other part of the list.

• Restore the value, here by bringing the cursor to its original position.

In such cases the header comment typically states “Do not change cursor position”.
What this means in practice is that the postcondition should include a clause
index = old index; in line with the “implicit” convention adopted in the preceding
section, index (the cursor position), being mentioned in the postcondition, does not fall
under the implicit frame specifications.

The third and final question is what kind of properties (called “queries” up to
now) we should list in modifies clauses, whether explicit or implicit. On this side too
three possibilities are available; we may call them A for attributes, Q for queries and
E for expressions.

Much of the existing work on frame inference only considers changes that
commands can make to attributes (object fields). The reason for this approach
(convention A) is that changes to attributes are easy to deduce from the code. But in
object-oriented programming we should apply the Uniform Access principle [4], which
states that a query should be freely implementable as an attribute or a function, and that
this implementation choice does not affect the essential semantics of a class and its use
by clients. For example, in a.balance for an account a, balance could be a function
(computing the balance) or an attribute (looking up the balance in the account object).

Convention Q, more in line with object-oriented principles, considers that a class
is an implementation of an abstract data type, with some commands and some queries;
a command changes an object, a query returns information on the object. Then frame

properties are the effect of commands on queries, regardless of each query’s
implementation as an attribute or a function. Queries, however, can have arguments;
just filling in the mn matrix, which indicates which command affects which query,
lumps together (for example) all array elements, since command put, which changes
an array element, modifies query item, which returns an array element, but a
specification at that level implies that any element change potentially affects all
elements. In such an example there may be no better way to specify frame properties,
but for other cases the specification will be too coarse-grained.

Convention E more closely reflects how verification can use frame properties. In
practice, programs work with expressions, including “path expressions” such as
first_element.right.right (giving the third element of a list). This approach evaluates
the effect of commands on expressions actually appearing in the program and its
contracts, plus any others that might be needed in the frame computation. It may be
called a “mercenary” approach in the sense that it does not try to compute the whole
set of frame properties but restricts itself to properties of interest for the verification.
An argument for this restriction is that for object-oriented programs the frame set is
often infinite, as illustrated by this example:

If l is attached to the first element of a list, right to the successor of every element, and
set changes the contents of its target object, then depending on some_condition this
code may change no object at all (if the list is not empty and its first element satisfies
the condition) or any of the objects attached to l, l.right, l.right.right, and so on. If,
on the other hand, we limit ourselves to expressions appearing in the program, we do
not have to deal with infinity.

The rest of the discussion uses choice E.

5 Frame implementation inference

Frame implementation inference relies on the frame calculus, first presented in an
earlier paper [1] but appearing here with corrections and improvements.

A general observation is that when a change set includes an expression e it also
includes e.f for any expression f. For example any instruction that changes l also
changes l.right, l.right.right and so on. The notation e.∗ will be used (in informal
discussions only) to denote all possible successors of e, including e itself.

From the discussion of the previous two sections we may assume that for every
instruction p we have a specified change set p

_
. Since we have chosen the implicit

convention, p
_

will be obtained through analysis of the postcondition, but it could
derive from another convention, such as “modifies” clauses, without affecting the rest
of the discussion.

Let pc be the actual change set of p. Frame verification consists of assessing that
the following property holds:

from a := l until a = Void or else some_condition loop a := l.right end

if a /= Void then a.set (some_value) end

pc ⊆ p
_

-- Theoretical frame condition

It is not possible, however, to define a calculus that would yield pc exactly, since the
frame set, like with many interesting program properties, is undecidable. Instead we
can compute p, an approximation of pc. Soundness means that it should be an over-
approximation; in other words pc ⊆ p. As a consequence, we may settle for the
following variant of the frame condition:

The approximated frame set p is a property of the program state s. In general, a
property w of the state can be of any of three possible kinds. Let w (ST) the application
of w to a set of states ST, and p (ST) the set of states resulting from applying instruction
p to any state in ST. (In many cases we are interested in applying w and p to a single
state, yielding a single state, but programs can be non-deterministic, or undefined, so
it is better to generalize p and w to relations by using their images.) Then, depending
on how one can determine w’ = w (p (ST)), w can be:

• “Syntactic”, meaning that w’ can be computed on the sole basis of p. This case only
applies to simple properties such as the set of variables used by a program element.

• “Compositional”, if w’ can be computed from p and w (ST).

• Non-compositional otherwise, meaning that w’ requires more information about
the state than given by w (ST).

The change set p is syntactic only for a very simple language without pointers (where
it suffices to list the targets of assignments), but it is also not compositional, as
illustrated by the example of

whose change set includes not only x.a.∗ but also y.a.∗, a property that cannot be
deduced from the change sets of the two constituent expressions since neither them
includes y.

The issue here is the close connection between framing and aliasing. The reason
why y must appear in the change set after x.set_a (b) is that before this instruction y is
aliased to x, so any operation affecting successors of x also affects successors of y. The
instruction x.set_a (b), is such an operation, reattaching a as shown by the dotted line:

The combination of aliasing and framing is, on the other hand, compositional. In other
words, we may work with pairs containing each a set c of expressions changed so far
(possibly over-approximated) and an alias relation r. Then [c, r] p will denote the
corresponding pair (or an over-approximation) holding after the execution of p.

p ⊆ p
_

-- Practical frame condition

x := y ; x.set_a (b) -- set_a sets the a field

y

ax

b

Compositionality means that it is possible to compute this resulting pair from c, r and
p. The notation p used so far for the change set in the inferred frame implementation
simply denotes the first projection of [c, r] p. At the program’s starting point, c and r
are empty.

An “alias relation” [5] is, at an arbitrary program position, the set of pairs of
reference expressions that might (with possible over-approximation) become aliased
to each other, that is to say, be attached to the same object. Aliasing is compositional
just by itself, and reference [5] has introduced the alias calculus, which computes the
alias relation. The rules will not be repeated here; the frame calculus only specifies the
change set, as given below, followed by an explanation of the notations and of the
practical meaning of each rule. Only the first rule (assignment) actually makes use of
the relation r, but in a critical way.

In addition, a meta-rule, dot completeness, states that whenever the change set as
determined by these rules includes e, it also includes e.f for any f.

In the assignment rule, Current is the current object (“this” in some object-
oriented languages), and r (x) is the set of aliases of x, including x itself. A naïve
version of the rule, correct in the absence of pointers, would list only t (and its
successors per dot completeness) as being changed. But if the value of e is a reference
to the current object, then the assignment will, in addition to t, affect e.t, as in the
figure below for e = a.b.

In this rule and the last two (for calls), the dot symbol of object-oriented programming,
“.”, is used as a distributive operator when applied to sets, lists and relations; for
example x.[a, b] is [x.a, x.b].

In programming languages, a conditional includes a condition, with a syntax such
as if c then p else q end; the conditional rule ignores the if c part since the condition
(assumed to have no side effect) does not affect the change set. In essence, it treats the
conditional as non-deterministic choice. The loop rule similarly ignores the loop exit
condition. The same conventions are used by the rules of the alias calculus [5]. They
may introduce imprecision, for example in the case of a conditional whose condition
always evaluates to True, but does not imperil soundness since the approach accepts
possible over-approximations of pc.

[c, r] (t := s) = r (Current).t

[c, r] (p ; q) = ([c, r] p) q

[c, r] then p else q end = [c, r] p ∪ [c, r] q

[c, r] loop p else q end = [c, r] p ∪ [c, r] p2 ∪ …
[c, r] call r (l) = ([c, r] |r|) [r

.
: l]

[c, r] call x.r (l) = x.([x’.c, x’.r] call r (x’.l))

a s

Current t

b

In the loop rule, pn denotes n successive executions of p.

In the unqualified call rule (for call x.r (l)), r
.

is the list of formal arguments of r
and the notation [r

.
: l] denotes substitution of actuals arguments, given by the list l,

for the corresponding formals.

The last rule, for qualified calls call x.r (l), relies on the preceding rule,
transposed to the context of the target object x. To transpose the result back, it uses the
“negative variable” technique [6] [5] for reasoning about properties of object-oriented
programs: x’, the “negation” of x, is a (fictitious) back-pointer to the calling object,
with the property that x.x’ = Current.

The calculus gives, for any particular program, a set of fixpoint equations that can
be solved iteratively. Although there is no guarantee of finite termination, it is possible
to stop after a certain number of iterations by adding some imprecision for expressions
beyond a certain length.

In practice, an experiment reported in [1] showed that for a data structure library
that includes explicit modifies clauses, and hence does not require frame inference on
the specification side, the frame implementation inference yielded a high-quality set
of clauses. It succeeded in uncovering a few critical frame conditions that the frame
specification had missed, even though the library, explicitly designed for verification,
had been written very carefully. The experiment also illustrated some of the
limitations discussed next.

6 Limitations

The present work suffers from a number of limitations.

The frame calculus has not been proved sound. For the underlying alias calculus,
a Coq-based proof has been performed [1] for the basic rules, in particular assignment,
but not for the entire calculus.

As noted, the present discussion ignores inheritance. Handling inheritance is
possible in the given framework, but requires extensions that we have not yet added.

Another set of limitations comes from the reliance on the alias calculus, which
requires some over-approximations to avoid infinite relations.

As the experiment reported in [1] showed, a full-scale deployment of frame
implementation inference still faces a number of obstacles. They are engineering
issues rather than fundamental conceptual questions, but will require significant effort.
They include in particular the need to build automatically the correspondence between
abstract theory-based queries, as used in postconditions to obtain full specifications in
modern Design by Contract [7], and attributes, as used in the code.

A first implementation is available, covering frame implementation inference, but
it requires considerable extra work to become applicable to ordinary programs on a
routine basis.

Acknowledgments

Alexander Kogtenkov wrote the first implementation of the change calculus [1] and
provided extensive feedback in many discussions. The work on the alias calculus was
performed with him and with Sergey Velder. At a presentation at the IFIP working
group WG2.15 I received important feedback from Jean-Christophe Filiâtre, Andrei
Paskevitch (who spotted a significant error in an initial version of one of the rules) and
Andreas Podelski. I am also grateful to the speakers of the 2015 Marktoberdorf
Summer School for important comments on the concepts underlying the alias and
frame calculi, and to the organizers (Manfred Broy, Alexander Pretschner, Maximilian
Irlbeck and Katharina Spies) for giving me the opportunity to present this work in the
unique setting of the Marktoberdorf school.

References

[1] Alexander Kogtenkov, Bertrand Meyer and Sergey Velder: Alias Calculus, Frame
Calculus and Frame Inference, in Science of Computer Programming, vol. 97, part 1,
January 2015, pages 163-172.

[2] K. Rustan M. Leino, Arnd Poetzsch-Heffter and Yunhong Zhou: Using data
groups to specify and check side effects, in PLDI (Programming Language Design and
Implementation), 2002.

[3] John McCarthy and Patrick J. Hayes: Some philosophical problems from the
standpoint of artificial intelligence, Machine Intelligence 4, eds. Melzer and Michie,
1969, pages 463–502.

[4] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice
Hall, 1997.

[5] Bertrand Meyer: Steps Towards a Theory and Calculus of Aliasing, in
International Journal of Software and Informatics, 2011, pages 77-116.

[6] Bertrand Meyer and Alexander Kogtenkov: Negative Variables and the Essence of
Object-Oriented Programming, in Specification, Algebra, and Software, Kanazawa
(Japan), 14-16 April 2014, eds. Shusaku Iida, Jose Meseguer and Kazuhiro Ogata,
Springer Lecture Notes in Computer Science 8313, pages 171-187, 2014.

[7] Nadia Polikarpova, Carlo A. Furia, Yi Wei, Yu Pei and Bertrand Meyer: What
Good are Strong Specifications?, in proceedings of ICSE 2013 (35th Int. Conf. on
Software Engineering), San Francisco, May 2013.

	Framing the Frame Problem
	1 Overview of the problem and the solution
	2 The automation tradeoff
	3 Frame specification inference: a convention
	4 The nature of frame specifications
	5 Frame implementation inference
	6 Limitations

