| Object Technology

Editor: Bertrand Meyer, ISE Inc., 270 Storke Road, Suite 7, Goleta, CA 93117;
phone (805) 655-1006; fax (805) 685-6869; Internet ot-column@eiffel.com

The conceptual perspective

Bertrand Meyer, ISE Inc.

bject technology is here to stay. For a while, after

object-oriented ideas burst onto the software scene

in the mid-eighties, we heard people say, “It’s just
a fad and will go away like the others.” Not any more.

The commitment of the big players is proof enough. Just
mention your favorite household name in hardware or
software; almost certainly it has defined an “all object”
software policy (although one might quibble about how
seriously they are doing it, how much is show and how
much isreality). True, except for banking, networking, and
other areas with particularly demanding requirements,
the spread of OO ideas is not as universal in the applica-
tions software community as in the core group of computer
vendors and major software houses. But the move is irre-
sistible, and very few software experts doubt that object
technology is the way to go. Not since Dijkstra came up
with structured programming around 1970 has any idea
affected so deeply how we think about software.

This department’s goals

There is no dearth of books, conferences, and articles
on object technology. The aim of this new department is
different. We will seldom go into deep technical details of
tools, techniques, or languages, although we will not shun
technical aspects when necessary to make a point. What
we plan to give you, month after month, are flashes of
insight into the method and its applications.

One thing this object column will not try to be is—well,
objective. There are enough opportunities elsewhere for
dispassionate appraisals. Here, we want to do something
else: tell youwhat is going on in the life of this adolescent
branch of software technology—not from an outsider’s
perspective, but straight from the keyboards of the people
who are making it happen. Contributing authors have been
asked to be insightful, constructive, clear, informative, and
provocative if need be. They are free to choose the topics
they find most important or informative, but they have

Computer

been reminded of the diverse backgrounds and interests
of Computer’s readers. Pleasing all of the people all of the
time is not part of the specification; bringing you the best
minds of object orientation is.

Here is how it will work. I will write the first three
columns, setting the tone. Then, we will go into alternat-
ing mode, with approximately half of the columns written.
by guest contributors. The list of people who have agreed
to contribute reads like an Object Hall of Fame: Grady
Booch and Jim Rumbaugh on method unification, Sally
Shlaer and Steve Mellor on elaboration versus translation,
Kim Waldén and Jean-Marc Nerson on reversibility in the
software process, Ivar Jakobson on use cases, and Roger
Osmond on rules for successful OO project management.

Asyou can see, this is enough to promise sparkling con-
tributions for many months, and there will be more invi-
tations to other top contributors. Together, they will
address all major areas—object-oriented design, object-
oriented programming, object-oriented databases, object-
oriented analysis, patterns, concurrency, methods,
languages, management aspects, formal specifications—
representing the various trends and schools of thought in -
this diverse and sometimes contentious field.

We would like to include readers’ contributions aswell. If
youwant to comment on an installment, I suggest the exist-
ing forum for object technology discussions, the Usenet
newsgroup comp.object. If you do post a message there,
please send a copy to me at ot-column@eiffel.com. Space
permitting, we will publish the most salient comments in a
subsequent column orin “Letters to the Editor.” We may also
include an occasional “Objects and Classes in Progress” sec-
tion reporting on conferences, recently published books,
and other news of interest to object aficionados.

For the first three columns, I have chosen three topics
of broad interest. Naturally enough, the first article—this
one—presents a broad overview of the technology, which
I have kept high level and jargon free. Next month, I will
talk about the central issue of retise from both a manage-
rial and object-technology perspective. The third column
will be devoted to design by contract, which is meant to
help us build truly reliable object-oriented systems.

Object technology’s goals

The rest of this presentation will describe the essentials of
object technology—not as a narrow technical approach, but
as an intellectual contribution to fundamental software .
issues and, beyond software, to widely diverse systems. (I
am of the opinion that we software people, because of our
incessant wrangling with extreme complexity, have learned
a trick or two of value to anyone interested in knowledge
and scientific thought. Most of us have not yet realized this,
and we cannot always explain the ideas—even to ourselves.

Our field is still waiting for its Stephen Hawking who will
explain to an intellectually curious but nonspecialist pub-
lic the general epistemological value of what we do. Object
technology is an ideal vehicle to discuss such concepts with-
out going into messy technicalities.)

The object-oriented method has grown out of a meet-
ing between a problem and a set of powerful ideas that
provide, if not a solution, at least the path to a solution.

The problem is easy to state: transforming software con-
struction into an industrial activity. This is not a new idea.
The first “software engineering” conference dates back to
1968, but the term has largely remained a slogan. Industry
involves mass production, repeatable processes, reliable
products, reusable parts, and widely accepted design prin-
ciples. With or without objects, there has been substantial
progress on all these fronts, but we are still far from the
stage where the software community can seriously be
described as an industry.

Why is this more crucial now than, say, in 1980, and why
have so many people recognized the need for a dramatic
change in the way we build software? I think the answer
lies in five words: size, change, reliability, productivity,
and reuse.

Size. We are tackling ever more ambitious projects. As
a point of comparison, Lientz and Swanson’s authorita-
tive study of software maintenance, often quoted in the
literature, relied on a 1979 study of 483 “commercial” pro-
jects. The average size of these projects, measured in lines
of code—probably in the then-dominant languages,
Cobol, PL/1, and Fortran—was 23,000. Well, 23,000 lines
of Cobol would not be considered a very significant devel-
opment today. The complexity of what we are trying to do
defies a non-OO approach. Beyond a certain degree of
sophistication, no one even knows how to tackle projects
in a non-00 way.

Change. Customers are demanding software that is
. not hardware—software that can be adapted quickly to
respond to new needs and market changes.

Reliability. Tolerance for bugs is decreasing. Users
want software that does what it is supposed to do.

Productivity. When you talk to the typical CEO about
software, the reaction is usually somewhere between
jaded and angry. Rightly or wrongly, such people see soft-
ware as the part of the project that has the highest likeli-
hood of being late and over budget.

Reuse. The concept of reusability has at last penetrated
the collective psyche of the software profession and even
some of its practices. Almost everyone agrees that sys-
tematic software reuse is a condition of the quantum leap
the discipline needs. Although substantial progress has
happened on this front—especially in the past two or three
years—much more is needed.

Intellectual tools

Object technology’s answer to these five challenges is
based on five powerful ideas: decentralization, contracts,
selfishness, classification, and seamlessness.

Decentralization. Object technology is, before any-
thing else, an architectural discipline. We focus not on the
guts of software systems—individual instructions or expres-
sions—but on their higher level structure. To meet the goals
of change and reuse, we take an inflexible approach to soft-
ware system flexibility, severely limiting the nature, num-
ber, and size of intermodule relations. We also do away with
main programs, top-down design, global variables, and
other notions that suggest a system has a center. Instead,
we build our systems as networks of cooperating agents,
each “cultivating its own garden” (in Voltaire’s terms) and
interfering with the others as little as possible. Only two
relations can exist between modules: client-supplier and
heir-parent. Without this draconian attitude to intermod-
ule relations, we could neither change our systems easily
(since changes in one module could have unforeseen effects
on others) nor reuse modules individually.

Contracts. Relations between clients and suppliers are
the most vulnerable aspects of a system’s architecture. For.
reuse, reliability, and decentralization, we must design these
relations based not on vague hopes but on precise expres-
sions of what each side expects and promises, so as to check
that the promises match or exceed the expectations.

Selfishness. This is, in some ways, both the best-
known and least-understood part of the OO approach. It
is best-known under the terms “abstraction” and “infor-
mation hiding”: the idea that supplier modules must pub-
licize only part of their properties (part of their garden)
to their clients. What is not always well-understood is that
information hiding is for the client’s protection, not the
supplier’s. The point is not that the author of a supplier
module should keep client authors from finding out how
he or she implemented its specification (this is a manage-
ment isstie, sometimes a commercial issue, not a technical
one). The point is that, as the author of a client module,
you do not want to know the details.

Protecting yourself against suppliers’ details is not a lux-
ury; it is a matter of survival in the fight against complex-
ity. Hence, the principle of selfishness: “I am not interested
in who you are. Tell me only what you can do for me.” For
relations between modules and the authors of modules,
this principle helds the secret of a successful attack on size,
change, and reuse. This epistemological principle goes
beyond software and beyond what anyone in the software
literature (signatory included) has so far been able to
explain to the rest of the world. In the software world,
many people start to yawn when they hear talk about
abstraction. They think they already know all about it, and
itisindeed easy to relate to the idea intellectually. But fully
applying that idea to the practice of software development
is another matter. In my experience, fewer than 10 per-
cent of the people who practice OO development, or think
they do, have truly mastered the concept. (If you are not
sure whether you are in that category, stay tuned for the
next installments of this column.)

One consequence of the selfishness principle in object

technology is the elegant notion of dynamic binding. This
is the idea that choosing the precise variant of an opera-
tion, when several are available, occurs at the latest pos-
sible time, based on the type of the operation’s target. This

January 1996

is the utmost in information hiding. As a client, you refuse
to concern yourself with any detail until you cannot do
otherwise—that is, at execution time. This mechanism
requires the notion of contract to ensure thatall operation
variants are abstractly compatible (implement the same
general contract), although some of their concrete details
may differ.

Classification. In our head-on charge on complexity,
we inherit (if may use this term) a weapon perfected by
the founders of modern science, who long ago realized
that the human mind can only comprehend what it can
describe in one small chunk at a time.

Science is about order. But the world, as a rule, is not
orderly; it tends to be a rather messy place. Science’s solu-
tion: pretend. Define an artificial order that will approxi-
mate, as well as possible, the natural disorder. That is how
biologists cope with the mess of possible life forms and
mathematicians cope with the wealth of mathematical
creatures invented by their colleagues. Needless to say,
when it comes to creating messes, no one beats a pro-
grammer. That is why we need classifications, which
object technology calls inheritance hierarchies. They let us
classify our abstractions so that we can remain in control.

Seamlessness. One of the least understood aspects of
the technology, even (once again) when accepted
abstractly, is seamlessness. The method’s modeling power,
and improvements in programming languages, let us use
object technology to decrease or even remove traditional
distinctions between software activities such as analysis,
design, and implementation.

From seamlessness follows reversibility. We should accept
belated wisdom (specification ideas that arise at imple-
mentation or maintenance time) as an inevitable phenom-
enon and devise a software process that allows orderly
U-turns. Here, youwill find differing views in the field—
and probably among future columnists. The Object-
Oriented Analysis folks tend to think that what matters most

-is high-level modeling and specification. I am of the reverse

view (although we might meet in the middle). I believe
progress comes from making our implementation process
and supporting tools so powerful that they will subsume
design and analysis, thereby removing from the software
construction process the “impedance mismatches” that are
so detrimental to the quality of the final product. |

Object technology can achieve seamlessness because of
its intellectual power—its use of a small number of strik-
ingly productive concepts that are not just programming
concepts but, more fundamentally, tools for thinking
about complex systems.

Such are the founding ideas of the object-oriented
approach. At this point, there is no need to talk about dou-
ble-dispatch polymorphism or covariant argument typ-
ing, although the time will undoubtedly come. What we
seeis a clear goal—industrializing software—and a small
number of powerful concepts. In the columns that follow,
my fellow columnists and I will explore the ramifications
of these ideas, so that—we hope—you can gain further
insights and apply them to your own systems.
Welcome to the “Object Technology” column.

Computer

