Object Technology

Editor: Bertrand Meyer, Interactive Software Engineering, 270 Storke Rd., Ste.
7, Goleta, CA 93117; voice (805) 685-1006; fax (805) 685-6869; ot-

column@eiffel.com.

Schema evolution: Concepts,
terminology, and solutions

Bertrand Meyer
ISE, Inc.

ost applications must keep objects from one

session to the next. This is known as persis-

tence. But objects are not raw data: They are
instances of classes. What happens if an object’s class (its
generator) changes from one session to the next? This
problem is known as schema evolution (the term schema is
borrowed from relational databases). This column defines
a framework for addressing schema evolution in object
technology.

Forms of persistence

There are several ways to make objects persistent. First,
the environment may offer a mechanism for storing objects
in a file, as Figure 1 shows. Such a mecha-
nism should satisfy the Persistence Closure
Principle:

When storing an object, it should also store
any other to which it refers directly or indi-
rectly.

This is what happens with the Eiffel
STORABLE class: The operation x. store
("some_file”) will store the entire object
structure. The x ?= retrieved opera-
tion will recreate the structure.

Second, the persistence mechanism may
use a relational-object interface to store objects in a rela-
tional database.

Finally, the mechanism may use an object-oriented data-
base, whose concepts most closely reflect those of OO
development.

A special case of the STORABLE mechanism actually
transfers objects rather than storing them. The EiffelNet
library, for example, uses STORABLE to exchange object

Figure 1. An object and its dependents.

structures between a client and a server. Even though no
file or database is involved, the concepts discussed here
directly apply to such a case.

Basic terminology

Schema evolution occurs if at least one class used by a
retrieving system (the system that attempts to retrieve some
objects) differs from its counterpart in the storing system
(the system that stored these objects). In the case of object
transmission through a network, the storing and retrieving
systems would be better called the sending and receiving
systems.

Object retrieval mismatch (object mismatch for short)
occurs when the retrieving system
attempts to retrieve an object whose gen-
erating class in the storing system was
different. Object mismatch affects an indi-
vidual object; schema evolution affects one
or more classes.

Possible solutions
Two extreme approaches to schema evo-
lution are not appropriate:

. e You could forsake previously stored

ﬁ%ﬁ%%ﬁa objects (schema revolution!). The

developers of the new application will

like this idea because it makes their lives so much
easier. But users will not be amused.

¢ You could offer a migration path from old format to

new, converting the old objects en masse. Although

this solution may be acceptable in some cases, it will

not do for a large persistent store or one that must be

available continuously.

What we really need is a way to convert old objects on
the fly, as they are retrieved or updated. As a bonus, an on-
tue-fly mechanism will let you do en-masse conversion if
vouneed it: You simply write a small system that retrieves
the existing objects using the new classes, applies on-the-
fly conversion as needed, and stores everything.

The mechanics of an on-the-fly conversion are tricky.
We must get the details right, lest we end up with cor-
rupted objects and corrupted databases. The most chal-
lenging problem is how each application will deal with an
obsolete object.

October 1996



Schema evolution involves three separate issues:

Detection is the task of catching object mismatches
(cases in which a retrieved object is obsolete) at
retrieval time.

s Notification is the task of making the retrieving system
aware of an object mismatch so that it can react appro-
priately. Continuing with an inconsistent object would
likely cause major trouble later on!

Correction, the task of the retrieving system, brings
the mismatched object to a consistent state. In other
words, it will be a correct instance of the new version
of its class—a citizen, or at least a permanent resi-
dent, of its adopted system.

All three issues present delicate problems. Fortunately,
they can be addressed separately.

DETECTION. There are two general categories of
detection policy: nominal and structural. In both cases
the goal is to detect a mismatch between
the version of an object’s generating class
used by the storing system and the version
used by the retrieving system.

In the nominal approach, each class ver-
sion is identified by a version name. This
approach assumes some kind of registra-

tion mechanism. Two variants are possi-
ble:

¢ You can use a configuration-manage- =
ment system to register each new ver-
sion of the class, either by supplying a version name or
letting the system supply one.

e You can use an automatic identification facility in the
style of mechanisms used by Microsoft’s OLE 2, which
assigns random numbers so large that the likelihood
of a clash is infinitesimal.

Either solution requires some kind of central registry.

If you want to avoid this hassle, you will have to rely on
the structural approach. The idea here is to associate a
class descriptor with each class version. Descriptors are
deduced from the actual structure of the class, as defined
by the class declaration. Here you must ensure that the
persistent mechanism stores both the object and its asso-
ciated class descriptors. (Of course, you may store many
instances of a class and only one copy of the class descrip-
tor.) To address the detection problem, the retrieved mech-
anism will compare the class descriptor of each retrieved
object with the new descriptor. If they are different, you
have an object mismatch.

What goes into a class descriptor? Here you have some
flexibility. The answer will be a trade-off between effi-
ciency and reliability. Efficiency dictates that you not waste
too much storage space or time comparing descriptors.
Reliability dictates that you minimize the risk of missing
an object mismatch. Here are four possible levels:

1. Atone extreme, you could simply use the class name
as the class descriptor. In most cases this is insufficient

because the retrieving system would accept totally

Computer

incompatible classes as the same class.

2. At the other extreme, you could use the entire class
text as the class descriptor (stored perhaps not as a
string but in an internal form such as an abstract syn-
tax tree). This is clearly inefficient, and it may not even
be reliable because some class changes are harmless.
For example, if the new class text adds a routine but
does not change any attribute or invariant clause,
nothing bad can happen—yet an object mismatch will
be detected, causing unwarranted trouble (such as an
exception) in the retrieving system.

3. A more realistic approach is to include in the class
descriptor the class name and the list of attributes, each
characterized by its name and type. There is still the risk
that two different classes might have both the same
name and the same attributes, but this is unlikely.

4. A variation on technique 3 includes not just the
attribute but also the entire class invariant. Including
the invariant ensures that the addition or removal of
a routine is harmless, because if the routine changes

the semantics of the class it will affect the
invariant.

Technique 3 is the minimum reasonable,
and in usual cases seems a good trade-off,
at Jeast to start.

NOTIFICATION. A library mechanism
can let the retrieving system know of an
object mismatch so that it can take
corrective action. In Fiffel, class GENERAL
(ancestor of all classes in Eiffel, similar to
object in Smalltalk) should include a procedure

correct_mismatch is
do
..See full version below ...
end

with the rule that any detection of an object mismatch will
cause a callto correct_mismatch on the temporarily
retrieved version of the object.

Any class can redefine the default version of cor-
rect_mismatch, and—Ilike any redefinition of the
default exception handling procedure default_res-
cue—any redefinition of correct_mismatch must
ensure the invariant of the class.

What should the default version of correct_mis-
match do? It may be tempting, in the name of unobtru-
siveness, to give it an empty body. But this is not
appropriate because, by default, object retrieval mis-
matches will be ignored, leading to all kinds of possible
abnormal behavior. The better global default is to raise an
exception:

correct_mismatch is
— Handle object retrieval mismatch.
do
raise_mismatch_exception
end

where the procedure called in the body does what its name



suggests. This might cause some unex-
pected exceptions, but it is better than let-
ting mismatches go through undetected. A
project that wants to override this default
behavior can always redefine cor-
rect_mismatchatitsownrisk. If youdo
expect object mismatches for a certain class
you can redefine correct mismatchto
update the retrieved object.

CORRECTION. Suppose the retrieval
mechanism (through feature retrieved
of class STORABLE, a database operation)
has created a new object deduced from a
stored object with the same generating
class, but it has also detected a mismatch.

Figure 2. Object mismatch.

The new object is in a temporary state and

may be inconsistent. For example, it may
have lost a field that was present in the
stored object or gained a field not present in
the original. Think of it as a foreigner
without a visa.

Such a state is similar to the intermedi-
ate state of an object being created—apart
from any persistence consideration—by a
creation instruction ! ! x.make () just
after the object’s memory cell has been allo-
cated and initialized to default values, but
just before make has been called. At that stage the object
has all the required components but is not yet ready for
acceptance by the community. It is the official purpose of
the creation procedure make to override default initial-
izations as needed to ensure the invariant.

Let us assume for simplicity that the detection technique
is structural and based on attributes (technique 3),
although this discussion applies to other solutions, nom-
inal or structural. The mismatch is a consequence of a
change in the attribute properties of the class. We can
assume it is a combination of attribute additions and
removal (treating attribute replacement as a removal fol-
lowed by an addition.)

Attribute removal does not raise any obvious difficulty:
If the new class does not include a certain attribute, the
corresponding object fields may simply be discarded. In
fact, correct_mismatchdoesnot need to do anything
because the retrieval mechanism will have discarded
them when it created a tentative instance of the new
class. If you do worry that the attributes were needed,
you need a more elaborate detection policy, such as tech-
nique 4.

Attribute addition is more delicate. Suppose the situ-
ation is as in Figure 2, and the new class has added an
attribute that yields a new field (the top field in the
object in Figure 2). We must initialize this field some-
how. In the systems I have seen, the solution is to use a
conventional default (usually zero for numbers, empty
for strings) as an initialization value. But this may be
very wrong!

Figure 3 illustrates why. Class ACCOUNT has the attrib-
utes deposits list and withdrawals Iist.
Assume that a new version adds the attribute balance
and that a system using this new version attempts to

Figure 3. Retrieving an account object.

retrieve an instance created from the previous version.
The purpose of adding the balance attribute is clear:
Instead of recomputing an account’s balance on demand,
we keep it in the object and update it when necessary.

The new class invariant reflects this through a clause of
the form

balance = deposits_list.total
— withdrawals 1igt.total

But if we initialize balance as zero, it will not agree
with the record of deposits and withdrawals: It should be
$1,000.

Hence the importance of the correct_mismatch
mechanism. In this case the class will simply redefine the
procedure as

correct_mismatch is
— Handle object retrieval mismatch by
— correctly setting up balance
do
balance := deposits_list.total -
withdrawals_list.total
end

Note that if the author of the new class has not planned
for this case, the default version of correct_mismatch
will, if not redefined in ANY or another ancestor, raise an
exception. This will cause the application to terminate
abnormally unless a retry (another recovery possibility)
handles it. This is the right outcome, because continuing
execution could lead to the ultimate crime: Destroying the
consistency of some objects and, worse yet, the integrity
of the persistent object structure.

October 1996




