Object Technology

Editor: Bertrand Meyer, Interactive Software Engineering, 270 Storke Road,
Suite 7, Goleta, CA 93117; phone (805) 685-1006; fax (805) 685-6869; Internet

ot-column@eiffel.com

The many faces of inheritance:
A taxonomy of taxonomy

Bertrand Meyer
Interactive Software Engineering

ne of the most important considerations in con-

structing object-oriented software is the

methodology of inheritance: how to use this
mechanism well. In preparing the second edition of my
book, Object-Oriented Software Construction (Prentice
Hall, 1988), I wrote a detailed discussion of the method-
ology of inheritance. One of the prerequisites to the work
on the corresponding chapter (which can be consulted
in draft form at http://www.eiffel.com, following the link
to “Object Technology Column”) was to classify the var-
ious forms of inheritance — to construct a taxonomy of
taxonomies. This column presents the taxonomy, com-
prising 12 kinds of inheritance usage grouped into three
broad categories.

A broad-minded view

A widely circulated view holds that inheritance should
only be used for strictly limited purposes, and that any form
of “implementation inheritance” or “inheritance for code
reuse” is bad. I find this view too restrictive. It also lacks the
strong theory that should support any such indictment (as
shown by the first and most famous of all, Edgar Dijkstra’s
1968 excommunication of the goto, based not on opinion
but on a detailed theoretical argument and a comprehen-
sive model of software development).

My own view of inheritance is broad. My colleagues and
I have used all 12 of the categories extensively. I find them
both theoretically legitimate and practically indispensable.

In this column, however, we have to set aside such dif-
ferences. If your attitude toward inheritance is more
restrictive, perhaps this classification will help you better
appreciate the categories you accept and more lucidly crit-
icize those you reject.

. Proper and improper uses

Abroad-minded view of inheritance does not mean that
anything goes! It is easy and sometimes tempting to mis-
use the mechanism. In general, inheritance is applicable
only if you can seriously argue for the presence of an “is”
relation between the instances of the heir and parent
classes. This guideline is broad enough to include some of
the more controversial uses, but limiting enough to exclude
obvious mistakes.

Improper uses of inheritance tend to fall into three cat-
egories:

* “Has” relation with no “is” relation. Over the years I
have heard or seen a few similar ones, often as pur-
ported examples of multiple inheritance, such as

APPLE_PIE inheriting from APPLE and from PIE.
Another example, reported by Adele Goldberg, is
ROSE_TREE inheriting from ROSE and from TREE.

* Taxomania (an abbreviation for “taxonomy mania”).
This is a typical result of beginner’s enthusiasm.
Beginners often add useless intermediate nodes in the
inheritance structure as a substitute for simple
Boolean properties (such'as gender for people
records) or properties that have a few fixed values
(such as the color of a traffic light). The theory of
abstract data types supplies the appropriate guidance
here: Introduce a new class only if it provides signifi-
cant new or modified functionality in the form of
query or command operations — features.

* Convenience inheritance. The developer sees some use-
ful features in a class and inherits from that class sim-
ply to reuse these features, without the proper “is”
relationship between the corresponding abstractions
— or in some cases without adequate abstractions
atall.

General taxomony

Figure 1 shows the taxonomy’s general structure. The
classification is based on the observation that every soft-
ware system reflects a certain external model, which is in
turn connected with some outside reality in the applica-
tion domain. So it distinguishes between:

» Model inheritance, which reflects “is-a” relations
between abstractions in the model.

* Software inheritance, which expresses relations within
the software itself rather than in the model.

* Variation inheritance, which describes a class by how
it differs from another class (a special case that may
pertain either to the software or to the model).

The definitions assume that the parent class is called A
and the heir class B. Each definition will state which of
A and B is permitted to be effective and which deferred. (A
class is effective if it is fully implemented; deferred if one
or more of its features are specified but not implemented.)
The examples that follow use Eiffel conventions.

Subtype inheritance
AandB represént certain sets A’ and B’ which are external
objects. A is deferred, B’ is a subset of A’, and the set mod-

eled by any other subtype heir of A is disjoint from B’.

May 1996



This definition assumes that the software relies on a
model of some external system, for example, some aspect
of a company’s business or some part of the physical world.

Subtype inheritance is the inheritance form that is clos-
est to the hierarchical taxonomies of botany, zoology and
other natural sciences. A typical software example is
CLOSED_FIGURE <« ELLIPSE. We insist that the parent,
A, mustbe deferred, so that it describes an incompletely spec-
ified set of objects. B, the heir, may be effective or deferred.

View inheritance

B describes the same abstraction as A, but viewed from a
different angle.

View inheritance is an advanced technique, open to mis-
use, so I will stay away from it in this presentation. Please
see the detailed discussion in the Web document.

Restriction inheritance

The instances of B are those instances of A that satisfy a
certain constraint, expressed if possible as part of the
invariant of B and not included in the invariant of A. Any
feature introduced by B should be a logical consequence
of the added constraint. A and B should be both deferred
or both effective.

Many mathematical examples indeed fall into this cat-
egory, including ELLIPSE < CIRCLE, where the extra
constraint is that the two focuses of an ellipse are merged
into one point for a circle. The second sentence of the def-
inition is meant to avoid mixing this form of inheritance
with others and to limit new features, if any, to those that
directly follow from the added constraint. For example,
class CIRCLEhas a new feature radius which satisfies this
property: In a circle, all points have the same distance
from the merged center. This distance deserves the sta-
tus of a feature of class CIRCLE, whereas the corre-

Model

inheritance

Subtype

inheritance

View Extension S
inheritance | inheritance structure
inheritance | - Constant
inheritance
Restriction Implementation
inheritance Type § inheritance
Functional variation
S inheritance Machine
variation . inheritance
inheritance Uneffecting

Valid use of inheritance

Variation

h : Software
inheritance

inheritance

Reification
inheritance

Facility
inheritance

inheritance

Figure 1. Inheritance taxonomy.

Computer

sponding notion in class ELLIPSE (the average of the dis-
tances to the two focuses) is probably not significant
enough to yield a feature. Because the only conceptual
change from A to Bis to add some constraints, the classes
should be both deferred or both effective.

Extension inheritance

B introduces features not present in A and not applicable
to direct instances of A. A must be effective.

The presence of both the restriction and extension vari-
ants is one of the paradoxes of inheritance. Extension
applies to features, and restriction (and more generally
specialization) applies to instances, but this does not elim-
inate the paradox. The problem is that the added features
usually include attributes. So if we take the naive inter-
pretation of a type (as given by a class) as the set of its
instances, then it seems the subset relation is the wrong
way around! Assume for example

class A feature al: INTEGER end

class B inherit
A
feature
b1l: REAL
end

If each instance of A represents a singleton and each
instance of Bis a pair containing an integer and a real number,
then the set of pairs MB is not a subset of the set of singletons
MA. In fact, the subset relation is in the reverse direction: There
is a one-to-one mapping between MA and the set of all pairs
having a given second element, for example 0.0.

This discovery that the subset relation seems to be the
wrong way may make extension inheritance look suspi-
cious. An example (again from Adele Goldberg) is an early
object-oriented library that had RECTANGLE inheriting
from SQUARE rather than the other way around: SQUARE
has a side attribute; RECTANGLE inherits from SQUARE

and adds a new feature, other_side. This was criticized

and soon corrected.

But we cannot dismiss the general category of exten-
sion inheritance. In fact its equivalent in mathematics, in
which a notion is specialized with the addition of com-
pletely new attributes (or their mathematical counter-
parts) is frequently used, and everyone considers it
perfectly legitimate. A typical example is the notion of
“ring”, specializing the notion of “group”. A group has a
certain operation, say +, with certain properties. A ring
is a group, so it also has + with these properties, but it
adds a new operation, say *, with extra properties of its
own. This is not fundamentally different from introduc-
ing a new attribute in an heir software class.

In object-oriented software, in fact, thishappens often.
In most applications, of course, SQUARE should inherit
RECTANGLE, not the reverse; but it is not difficult to think
of more legitimate examples. For example a class MOV -
ING_POINT (for cinematic applications) might inherit
from a purely graphical class POINT and add a feature,
speed, to describe the speed’s magnitude and direction.



Functional variation inheritance

B redefines some features of A, and some of the redefini-
tions affect feature bodies, not just signatures. A and B are
either both deferred or both effective, and B must not
introduce any new features except for the direct needs of
the redefined features. :

Functional variation inheritance is used when we want
to adapt an existing class without affecting the original
class and its clients. This may at first look like a form of
hacking: twisting an existing class to fit it to a slightly dif-
ferent purpose. At least it avoids the dangers of directly
modifying the existing software. But if you do have access
to the source code of the original class, you should exam-
ine whether it is not preferable to reorganize the inheri-
tance hierarchy by introducing a more abstract class of
which both A (the existing variant) and B (the new one)
will both be proper descendants with peer status.

Type variation inheritance

Bredefines some features of A, and the redefinitions affect
only signatures. A and B are either both deferred or both
effective, and B must not introduce any new features
except for the direct needs of the redefined features.

Type variation inheritance is necessary only if some of
the original signatures did not make enough use of
anchored (1ike ...) declarations. For example, sup-
pose the SEGMENT class of an interactive drawing pack-
age has the function

perpendicular: SEGMENT is
—~ — Segment of same length-
— — and same middle point,
— = rotated 90 degrees

and you want to define an heir, DOTTED_SEGMENT, to
draw a dotted line. To accomplish this, perpendicular
should return a result of type DOTTED_SEGMENT, so you
must redefine the type.

This could all be avoided if the original returned a result
of type 1ike Currentandyouhad access to the source
of the original. You could then update the type declara-
tion without adversely affecting existing clients. If for
some reason this is not possible, the ability to redefine the
type this way can save your neck.

Uneffecting inheritance

Bredefines some of the effective features of A into deferred
features.

This form of inheritance is not — and should not be —
common. It goes against the normal direction of inheri-
tance — we usually expect B to be more concrete and A
more abstract. Beginners should stay away from unef-
fecting, but it may be justified in two cases:

« In multiple inheritance, you want to merge features

inherited from two different parents and both are
effective. You uneffect one of them so that the other’s
implementation will take precedence.

* You find a reusable class that serves your needs,
except that it is too concrete. You can use uneffecting
to remove the unwanted implementations.

Reification inheritance

A represents a general kind of data structure and B repre-
sents a partial or complete implementation choice for that
data structure. A is deferred; B may still be deferred —
leaving room for further reification through its own heirs
— or it may be effective.

For example, the deferred class TABLE describes tables
of a very general nature. Reification leads to heirs
SEQUENTIAL TABLE and HASH_TABLE, still deferred.
Final reification of SEQUENTIAL_TABLE leads to effec-
tive classes ARRAYED TABLE, LINKED TABLE, and
FILE TABLE.

Structure inheritance

A, a deferred class, represents a general structural prop-
erty, and B, which may be deferred or effective, represents
a certain type of object possessing that property.

Usually the structural property represented by A is a
mathematical property. For example, the class COMPA -
RABLEin the standard Eiffel library is equipped with oper-
ations like infix "<"and infix"> =," representing objects
to which a total order relation is applicable. A class that
needs an order relation of its own, such as STRING, will
inherit it from COMPARABLE.

It is common for a class to inherit from several parents
in this way. For example, class INTEGER inherits from
COMPARABLE and from class NUMERIC (with features
such as infix "+" and infix "*").

Implementation inheritance

Bobtains from A a set of features (other than constant attrib-
utes and once functions) necessary to implement the ab-
straction associated with B. Both A and B must be effective.

A common case is the “marriage of convenience,” based
on multiple inheritance, in which one parent provides the
specification (reification inheritance) and the other the
implementation (implementation inheritance). For exam-
ple, the EiffelBase library class ARRAYED_STACK inherits
its specification from STACK and its implementation from
ARRAY. This form of inheritance is sometimes criticized,
but has turned out to be extremely useful in practice.

Facility inheritance

A exists solely to provide a set of logically related features
for the benefit of heirs such as B.

Here the parent, which is a collection of useful features
meant only for use by its descendants, becomes an heir of

May 1996

107



another chiefly for the benefit of using these features:
There are two common variants:

¢ Constant inheritance, in which the features of A are all
constants or once functions describing shared objects.
Both A and B are effective.

¢ Machine inheritance, in which the features of A are rou-
tines, which may be viewed as operations on an
abstract machine. B should be at least as effective asA.

For example, class EXCEPTTONS, a utility class that pro-
vides facilities for detailed access to the exception-han-
dling mechanism, is meant to be inherited by classes that
need those facilities. Sometimes, facility inheritance uses
only one of the two variants, but in other cases like EXCEP-
TIONS, the parent class provides both constants (such as
the exception code Incorrect_inspect_value) and routines
(such as trigger to raise an exception).

One mechanism, or more?
The variety of uses of inheritance maylead to the impres-
sion that we should have several language mechanisms to
‘ cover the underlying notions. Several authors have sug-
gested separating between module inheritance, which is
essentially a tool to reuise existing features, and type inher-
itance, which is essentially a type-classification mechanism.

Such a division seems to cause more harm than good,
for several reasons.

First, recognizing only two categories is not representa-
tive of the variety of uses of inheritance. No one would
advocate introducing 12 different language mechanisms.

Second, the practical effect of a division would be to raise
useless methodological discussions. Assume you want to
inherit from an iterator class. Should you use module inher-
itance or type inheritance? One can find arguments to sup-

- porteither answer. You will waste your time trying to decide
between two competing language mechanisms. The con-
tribution of such reflections to the only goals that count —
quality software and fast delivery — is exactly zero.

Such a division would also bloat the language. And
whenever we introduce new mechanisms into a language,
they interact with the rest, and with each other. Do we
prohibit a class from both module-inheriting and type-
inheriting the same class? If so, we may be just vexing
developers who have a good reason to use the same class
in two ways; if not, we open up a whole can of new lan-
guage issues— name conflicts, redefinition conflicts, and
SO On. ‘

There is only one serious objection to the use of a single
mechanism: The extra complication it imposes on the task
of static type checking. Solutions to this issue place an extra
burden on compilers, which is always justifiable if the bur-
den is reasonable and the effect is to facilitate the devel-
oper’s task.

The ability to use only one inheritance mechanism for
both module and type inheritance is not the result of a con-
fusion of genres. It is the direct consequence of the very
first decision of object-oriented software construction: The

.unification of module and type concepts into a single
notion, the class. If we accept classes as both modules and
types, then we should accept inheritance as both module
accumulation and subtyping.

Computer



