
Awareness and Merge Conflicts
in Distributed Software Development

H.-Christian Estler∗ Martin Nordio∗ Carlo A. Furia∗ Bertrand Meyer∗,†
∗Chair of Software Engineering, Department of Computer Science, ETH Zurich †ITMO National Research University

Zurich, Switzerland St. Petersburg, Russia
firstname.lastname@inf.ethz.ch

Abstract—Collaborative software development requires pro-
grammers to coordinate their work and merge individual contri-
butions into a consistent shared code base. Traditionally, coordi-
nation follows a series of “update-modify-commit” cycles, where
merge conflicts arise upon committing if individual modifications
have diverged and must be explicitly reconciled. Researchers
have been suggesting that providing timely awareness infor-
mation about “who’s changing what” may not only help deal
with conflicts but, more generally, improve the effectiveness of
collaboration.

This paper investigates the impact of awareness information in
the context of globally distributed software development. Based
on an analysis of data from 105 student developers constituting
12 development teams located in different countries, we analyze,
among other things: 1) the frequency of merge conflicts and
insufficient awareness; 2) the impact of distribution on team
awareness; 3) the perceived impact of conflicts and lack of
awareness on productivity, motivation, and project punctuality.
Our findings include: 1) lack of awareness occurs more frequently
than merge conflicts; 2) information about remote team members
is missing roughly as often as information about co-located ones;
3) insufficient awareness information affects more negatively
programmer’s performance than merge conflicts.

Index Terms—Distributed software development, Empirical
study, Awareness, Merge Conflicts

I. INTRODUCTION

The inexorable trend of software development, from local
to globally distributed, brings new kinds of challenges and
aggravates existing ones—especially those related to collab-
oration, as globally distributed development is necessarily
collaborative.

An elusive, yet major, issue in collaborative endeavors is
awareness. Coordination between parties requires that they
be aware of each other’s work, to avoid duplications and
redundancies, and to ensure that independently developed
modules can function in combination. Conversely, insufficient
awareness indicates lack of crucial information, which may
disrupt progress and jeopardize efficiency and timeliness.

This paper presents an empirical study of the problems
related to awareness deficiency in the practice of distributed
software development, with the goals of understanding their
severity and suggesting solutions to allay them or to prevent
them from happening. A concrete simplified scenario will help
better introduce the terms of the problem.

Motivating scenario. Anita and Bruno are developers who
respectively belong to the American and Brazilian develop-
ment units of a globally distributed software company; they

have been working together on a software for trading stocks.
As it is customary these days, they use a distributed version
control system to keep track of changes and to share them.
Following another good practice of software engineering, they
have modularized the system so that Anita can work on
improving the features to sell stocks while Bruno is working
on a GUI for the whole system. Since they work on distinct
private copies of the code base, Anita and Bruno can see
each other’s work only when they push the local commits
to a shared repository. Bruno proceeds with his work until he
realizes that he has been refactoring some functionality whose
original design was Anita’s. At this point, he has to interrupt
his work and try to contact her. In an online meeting, they
discuss progress in general terms; Anita is however reluctant
to share her work so far, since she hasn’t had a chance to test
some new features that Bruno’s work is using. After a few
days, when they are finally ready to merge their changes to the
code, it is clear that Bruno’s refactoring work is inconsistent
with Anita’s. The two meet again online and reconcile the
inconsistencies until merging is possible without conflicts. It
turns out that Anita’s conflicting changes were introduced over
two weeks ago, but Bruno could not plan his work around them
since he was unaware of the location and nature of Anita’s
changes.

Research questions. The scenario describes some fre-
quently occurring problems related to insufficient awareness
of the work of other developers. In particular, it highlights
merge conflicts as a possible outcome, and hints at the fact
that insufficient awareness often leads to work interruptions
and deteriorates coordination. Based on this, we frame the
problem of awareness into the following research questions:

RQ.A: How frequent and how significant are merge con-
flicts? Do they originate more often in the work of
co-located or of remote team members?

RQ.B: How frequent and how significant is insufficient
awareness (of the work of team members)? Does
it originate more often in the work of co-located or
of remote team members?

RQ.C: What are the effects of merge conflicts and of
insufficient awareness on project development?

RQ.D: What are the frequency and detail level with which
awareness information should be provided that are
preferred by developers in a distributed setting?

firstname.lastname@inf.ethz.ch

Summary of findings. Section IV describes our study’s
findings in details. The most important results are:
• The likelihood of incurring into merge conflicts is not sig-

nificantly affected by the location (co-located vs. remote)
of developers within the same team.

• Interruptions due to insufficient awareness occur fre-
quently for teams of non-trivial size. As for merge
conflicts, the location of developers does not significantly
affect the likelihood of such interruptions.

• Interruptions impact more negatively than just merge
conflicts measures such as productivity, motivation, and
keeping to the schedule.

• Developers would appreciate having access to awareness
information frequently but not in real time; they have,
however, diverse preferences regarding the level of detail
in which such information should be made available.

Awareness applied to development tools. In the last
decade, development tools have been introduced specifically
to provide improved awareness of other developers’ work, to
reduce the chance that merge conflicts occur, and to facilitate
resolution when conflicts do occur. The findings of this paper
can help improve such tools by suggesting how awareness-
related problems occur in practice and what their impact
is. Therefore, Section II briefly reviews the state of the art
for awareness tools, highlights their assumptions and further
motivates the paper’s empirical analysis.

II. TOOLS FOR AWARENESS AND
MERGE CONFLICT DETECTION

We summarize related work, including ours, in developing
awareness and conflict detection tools, to provide additional
motivation for studying awareness and merge conflict prob-
lems independent of specific solutions and tools. Table I,
which we reproduce from [10], gives a synoptic overview.
Section VI reviews related work in other areas.

Awareness tools seek to raise developers’ awareness about
the changes introduced by others, with the goal of reduc-
ing conflicts and improving coordination. Awareness mostly
targets direct (syntactic) conflicts and only simple indirect
conflicts such as changes to method signatures. The granularity
of details about what has changed varies from tool to tool, in-
cluding line-based, class-based, and branch-based awareness.
Question RQ.D of our empirical study investigates this aspect.

Advanced conflict detection. Conflict detection and con-
flict prediction tools search for conflicts and report them as
soon as possible. These tools normally work by continuously
trying to merge local copies of different users; whenever a
speculative merge fails, it means that a conflict might occur. As
shown in Table I, these tools may perform sophisticated merge
conflict detection that include compilation and running tests.
On the other hand, they usually do not provide information
about how the code has been modified. Question RQ.C of our
empirical study investigates how this information may affect
developers.

Other tools for collaboration. A diversity of tools are used
to simplify collaboration among distributed teams, including

some commercial products such as IBM’s Jazz [5] and Mi-
crosoft’s Team Foundation [12]. Tools such as CodeRun [7]
have brought IDEs to the web by largely replicating function-
alities of traditional IDEs: every developer works on a different
copy of the code, stored on a server. Some web-based IDEs, for
example Cloud9 [6] and Collabode [13], support collaborative
development through real-time code sharing: developers can
simultaneously work on the same piece of code with the same
view, as if they were editing a GoogleDoc shared document.
Section IV-D suggests that this kind of collaboration is only
useful in certain circumstances where direct tight interaction
is required, such as in pair programming practices.

III. DESIGN OF THE EMPIRICAL STUDY

The subjects participating in our empirical study were
students enrolled in the 2013 edition of DOSE, a master-level
university course on “Distributed and Outsourced Software
Engineering” which we have been organizing for several
years [22], [21]. Ten universities across the globe took part
in the 2013 edition of the course: the University of Rio
Cuarto (Argentina); the University of Adelaide (Australia);
the Pontificia Universidade Catolica do Rio Grande do Sul
(Brazil); the IT University of Copenhagen (Denmark); Cairo
University (Egypt); the Politecnico di Milano (Italy); the State
University of Nizhny Novgorod (Russia); the Universidad
Politecnica de Madrid (Spain); ETH Zurich (Switzerland); and
the University of Zurich (Switzerland).

DOSE teaches globally distributed software engineering in
a globally distributed setting: its key component is a software
development project carried out by the students in inter-
university distributed teams. The 2013 project theme was the
development of a platform for networked multi-player games.
We defined the overall architecture so that it could accommo-
date top-level modules for different games. The 171 students
from the 10 universities were arranged in 12 development
teams; each development team produced a different game
for the platform. 134 students were active developers; the
remaining 37 students played the role of project customers.

Each team consisted of 3 groups with different responsibili-
ties: one group focused on GUI and networking development;
one group on implementing the game logic; and one group
on the artificial intelligence component. The requirements
elicitation phase was completed before the actual development
started.1 Each group consisted of 3 or 4 student developers;
members of the same group were located in the same country
and attended the same university. But the 3 different groups
making up a development team were located in different
countries, so as to make it a distributed development effort.

For our empirical study, we collected data about the devel-
opment that spread over a total of 4 weeks, and produced 12
successful projects. (The average project size was 11’776 lines
of code in 68 classes).

1For organizational reasons that are not important here, it mainly involved
students from Australia and Brazil.

2

di
re

ct
co

nfl
ic

t

in
di

re
ct

co
nfl

ic
t

fa
ls

e
po

si
tiv

es

av
ai

la
bi

lit
y

Awareness

lin
e-

ba
se

d

cl
as

s-
ba

se
d

br
an

ch
-b

as
ed

Editing

sh
ar

ed
ed

iti
ng

au
to

m
at

ic
m

er
gi

ng

FastDash [2] no no – real-time yes yes yes no no
Palantir [26] detect detect – real-time no yes no no no
Syde [19] detect, inspect no no real-time no yes no no no
CollabVS [16] detect detect, inspect yes real-time yes yes no no no
Crystal [4] detect detect no commit no no yes no no
WeCode [15] detect detect no saving no no yes no no
CloudStudio [10] prevent, detect, inspect detect, inspect no real-time yes yes yes no yes
Collabode [14] no no – no no no no yes no
Cloud9 [6] no no – no no no no yes no

TABLE I: MAIN FEATURES OF AWARENESS SYSTEMS AND CONFLICT DETECTION TOOLS. For each system, we report:
whether it supports detection of direct conflicts and of indirect conflicts (cf. [26]); whether conflict reports may include false
positives; whether conflicts are available in real-time or upon commit; the granularity of the awareness system (line, class, or
branch); whether collaborative editing supports shared sessions a la Google Doc and automatic merging of versions.

A. Data Collection
We collected data for our study from two sources:2 a

questionnaire and a real-time tracking tool.
While merge conflicts are well-defined events, a general

problem with studies of awareness is that it is hard to measure
lack of or insufficient awareness directly. Instead, we shifted
all questions from awareness to the tightly related—but much
more clearly defined and tangible—problem of interruptions
due to lack of or inconsistent information. For example, if we
cannot proceed because we realize that a function (originally
developed by another team member) does not behave as per re-
quirements, it would be useful to acquire the information about
whether other developers have noticed the same problem, and
whether someone is already in the process of fixing it. Thus,
we make the underlying assumption that: interruptions of the
development workflow are indicative of insufficient awareness
of the work of other developers on the same team. Section IV-C
will discuss data that confirms a posteriori the soundness of
this assumption.

Questionnaire. The questionnaire consisted of two parts.
The first part asked for a self-assessment of the participants’
experience in distributed development and in some of the tools
used for the project. Section III-B outlines the picture that
emerged from these questions. The second, and major, part
of the questionnaire asked the participants to express their
preferences and their experience during project development
regarding several aspects:
• Merge conflicts and usage of distributed version control

(specifically, Git).
• Interaction and problems during development with the

local (intra-group) team members.

2The questionnaire and all collected data is available for analysis and
replication: http://se.inf.ethz.ch/data/awareness.

• Interaction and problems during development with the
remote (inter-group) team members.

• How they coped with interruptions due to interaction.
• Preferences regarding awareness of other team members’

work.
We illustrate the detailed content of the specific questions as
we analyze the data in Section IV.

Real-time tracking. With the goal of collecting finer-
grained quantitative information about interruptions of the
workflow (as proxies for awareness problems), we built a
web-based session tracking tool called James.3 Whenever
starting a programming session, one can also activate James
in a browser. James provides a simple interface to enter data
about interruptions, shown in Figure 1. Whenever a workflow
interruption occurs, one increments the counter according to
the nature of the problem and to whether the object of the
interruption pertains the work of a local or remote team
member. James logs all the events in real time, and also offers
the option to store free text notes in case something unusual
is worth recording.

B. Participants

Questionnaire. At the end of the course, we invited all 134
student developers of DOSE 2013 to fill in the questionnaire; no
reward was offered. 105 of the students accepted the invitation
to fill in the questionnaire, giving a solid response rate of 78%.

Background and experience. It is useful to understand the
self-assessed experience of the 105 participants in matters of
distributed development. We asked to rate their experience on a
scale of 1 to 7 (where 1 means no experience and 7 means lots
of experience) in: programming in general; programming in

3Available at http://cloudstudio.ethz.ch/james.

3

http://se.inf.ethz.ch/data/awareness
http://cloudstudio.ethz.ch/james

Fig. 1: Screenshot of the web-based tracking tool.

teams of two or more developers; programming in distributed
teams of two or more developers; and using distributed version
control (in particular, Git). Figure 2 and Table II summarize
the results. Overall, the participants had fairly extensive (for
students) experience in programming and team programming,
but little or no experience with distributed development and
distributed version control systems. As we will see in Sec-
tion IV, some of the study results reflect this situation (in
particular, the lack of experience with Git exacerbated some
problems related to merge conflicts).

1
2

3
4

5
6

7

Programming
Te

am

Dist.
 te

am Git

Fig. 2: Experience of the study participants in programming,
team programming, distributed team programming, and Git.
Experience ranges over a 1–7 scale.

Real-time tracking. Before beginning the development
phase, we invited all the 134 student developers of DOSE
2013 to use the real-time tracking tool during development;
no reward was offered other than a public acknowledgment.
Since this was a much more burdensome task than filling in
a questionnaire, we expected only a minority of motivated
students to reply; we made clear in the request that there was
no obligation involved, but also that we expected volunteers

experience median min max mean
programming 5 2 7 4.6

team programming 5 1 7 4.5
distributed programming 1 1 6 2.1

Git 3 1 7 2.9

TABLE II: Experience of the study participants in program-
ming, team programming, distributed team programming, and
Git. Experience ranges over a 1–7 scale.

to do a good job and use the tool throughout the 4 weeks
of development. 15 students accepted the invitation and used
the real-time tracking tool. Post mortem, we removed the few
obviously spurious sessions from the logs, leaving us with
data about 106 distinct development sessions, each lasting an
average of 2.9 hours. Table III shows more statistics about the
data collected with the session tracking tool.

developers 15
programming sessions 106
sessions with interrupt 36
total development time (hrs) 311
median session time (hrs) 2
mean session time (hrs) 2.9
median sessions per user 5
mean sessions per user 7
min sessions per user 1
max sessions per user 34

TABLE III: Data collected through the tracking tool.

We discuss in detail the data about real-time tracking in
combination with the questionnaire data in the next section.

IV. RESULTS OF THE EMPIRICAL STUDY

The data collected in our empirical study demonstrates how
merge conflicts and (lack of) awareness impact on distributed
software development activities—in particular, coordination
between developers on the same team. This section presents
the results that emerged from a combined analysis of the ques-
tionnaires and the real-time tracking data (described in Sec-
tion III). Sections IV-A through IV-D describe the main find-
ings corresponding to research questions RQ.A through RQ.D;
Section IV-E discusses correlations between data and how
they delineate other potentially disruptive aspects of distributed
software development.

A. Merge Conflicts: Frequency and Origin

Research question RQ.A points to the well-known problem
of merge conflicts: upon trying to export their local mod-
ifications into a shared global code base, developers may
introduce inconsistent changes that must be reconciled. This
section discusses how frequently merge conflicts occurred
in our study; how much time conflict resolution took; and
whether changes by co-located or by remote team members
were the main source of conflicts.

Frequency. To get a qualitative picture of how frequently
merge conflicts occur, we asked how many conflicts occurred

4

over the four weeks of project development; Table IV sum-
marizes the questionnaire responses. Overall, more than 94%
of the 105 developers had to deal with some merge conflicts,
but only a minority experienced them very frequently.

number of conflicts responses %
0 7 6.7

1–4 61 58.1
5–9 19 18.1
≥ 10 18 17.1

TABLE IV: Number of merge conflicts encountered during a
four-week development period.

Significance. To get an idea of the severity of merge
conflicts, we asked how much time developers spent to resolve
a single conflict, on average and in the worst case; Table V
summarizes the questionnaire responses. Conflicts do not
normally seem to take a lot of time to resolve: nearly 70%
of the developers spent no more than 10 minutes to deal with
a conflict on average. However, the worst cases of conflict
resolution can be substantially more time consuming.

average case worst case
time (min) responses % responses %

≤ 1 4 4.3 1 1.1
1–5 28 30.1 11 11.8

5–10 33 35.5 17 18.3
10–20 13 14 19 20.4
≥ 20 15 16.1 45 48.4

TABLE V: Average- and worst-case time (in minutes) spent
to resolve one merge conflict.

Origin. To estimate whether merge conflicts are more
frequently due to the parallel work of co-located or of remote
team members, we asked whether “most conflicts” occurred:
with local (i.e., co-located) members of your team; with
remote members of your team; or with developers of other
teams. The last option was meant to indicate cases of unwanted
interaction between the work of independent teams, possi-
ble since all teams committed into different directories and
branches but in the same physical repository. Table VI sum-
marizes the questionnaire responses. The difference between
local and remote team members is not large and probably not
significant4; this may indicate that the likelihood of conflicts
depends more directly on other factors than location. More
significantly, the majority of responses indicate the work of
other teams as the main source of conflicts suggesting that
bad practices in the usage of the Git version control system

4Statistical significance tests do not seem to be applicable: paired tests
(such as the Wilcoxon signed-rank test) typically require samples of the same
population in different conditions, and unpaired two-sample tests (such as the
U test) typically require independent samples. Neither seems justifiably the
case in our experiments of local vs. remote: local and remote conditions in
each pair are reported by the same person (hence they are likely dependent);
the populations of local and of remote are not directly comparable (in our
setup, each local group interacts with two remote groups).

were the norm rather than the exception. Our intent in using a
unique repository was to let developers have read access to the
work of every other teams, while using the powerful features
of Git to manage their work independently. Unfortunately, the
data indicates that this didn’t work in practice as expected; the
result is consistent with the fact that most developers indicated
a below average experience with Git and distributed version
control (see Section III-B). Overall, our study did not find
major differences between local and remote team members as
origins of source conflicts; but the project setup decreases our
confidence in this appraisal.

most conflicts with: responses %
local team members 30 30.9
remote team members 22 22.7
members of other teams 45 46.4

TABLE VI: Origin of most conflicts: local vs. remote team
members.

Merge conflicts will occur but are not very frequent; most
of them have limited significance, as they take few minutes
to resolve. The location of team member does not seem to
have a major effect on the likelihood that their work will

introduce conflicts.

B. Workflow Interruptions: Frequency and Origin

Research question RQ.B looks for problems related to
insufficient awareness of the work of team members. It is
hardly possible to measure (lack of) awareness in real-time,
since it is a somewhat elusive notion that emerges mostly as an
afterthought: for example, in the scenario outlined in Section I,
a merge conflict makes Bruno realize that he previously was
unaware of Anita’s work.

Given this nature of awareness, we collected indirect data
about possible effects of the lack of awareness in terms
of interruptions caused to a developer’s workflow: due to
lack of documentation about some functionality; due to some
expected functionality missing altogether; and due to func-
tionality present but incorrect (that is, behaving differently
than documented). The questionnaire asked to estimate the
frequencies of these interruptions; and the real-time tracking
system recorded these interruptions as they were flagged.

Frequency. To get a qualitative picture of how frequently
workflow interruptions (as a sign of awareness deficiencies)
occur, we asked to assess their frequencies on an ordinal
scale from 1 to 7 (where 1 means never and 7 means very
often). Table VII summarizes the questionnaire responses,
which were broken down according to kind of interruption
(missing documentation, missing functionality, and incorrect
functionality) as well as to whether the source of interruptions
was related to the work of local or of remote team members.
Overall, interruptions to one developer’s workflow seem to
be roughly proportional to the number of team members he
or she interacts with, as each local group collaborated with
two remote groups (and all groups were roughly the same

5

size). This entails that the frequency of interruptions becomes
significant (but hardly overwhelming) as soon as more than
few people collaborate closely on the same project.

interruption median min max mean

documentation L 2 1 7 2.5
R 4 1 7 3.7

functionality L 2 1 7 2.4
R 5 1 7 4.4

incorrect L 2 1 7 2.3
R 4 1 7 3.9

TABLE VII: Frequency of workflow interruptions according
to the questionnaire responses. There are three kinds of inter-
ruptions: due to missing documentation, missing functionality,
and incorrect functionality. The source of interruptions can
be the work of local (L) or remote (R) team members.
Frequencies range over a 1–7 scale.

To quantitatively look at interruption frequency, we asked
to tag interruptions in each category in real time. Table VIII
summarizes the data about the 15 developers who used the
real-time tracking tool over a total of 106 sessions, each lasting
2.9 hours on average. Overall, interruptions occurred in 34% of
the 106 sessions; assuming that our sample is representative of
the actual distribution of interruptions, we expect a workflow
interruption every 2.5 hours. These figures are consistent with
the qualitative findings, and suggest that interruptions occur
with significant frequency for teams of non-trivial size.

interruption # ratio R/L

documentation L 9 1.9R 17

functionality L 25 1.6R 39

incorrect L 16 1.2R 19

TOTAL
L 50 1.5R 75

TABLE VIII: Number of workflow interruptions recorded in
real time by 15 developers working for a total of 307 hours.
There are three kinds of interruptions: due to missing docu-
mentation, missing functionality, and incorrect functionality.
The source of interruptions can be the work of local (L) or
remote (R) team members.

Kind. The collected data suggests that interruptions due
to missing functionality—that is, a functionality described in
the requirements but not available in the code base—are the
most frequent kind among the three considered (missing doc-
umentation, missing functionality, and incorrect functionality).
Overall, problems with functionality (missing or incorrect) ac-
count for nearly 80% of the interruptions according to the real-
time tracking data. This is consistent with the emphasis on the
requirements elicitation phase in project development, where
we insisted that teams agree on a reasonable requirements

specification document before they start the implementation
phase.

Origin. As we mentioned when discussing interruption
frequencies, remote team members are twice as numerous as
local team members. Therefore, if location plays no dominant
role in determining interruptions, it is to be expected that the
origin of interruptions be the work of remote team members
more frequently than the work of local team members. This is
what we observe in Table VII, where median and means for
remote team members are consistently higher than the corre-
sponding measures for local team members. To have a visual
confirmation of this difference, Figure 3 shows the distribution
of answers summarized in Table VII: the distributions for co-
located team members are slanted towards low frequencies,
whereas those for remote team members are more uniform and
include higher frequencies. The quantitative data of Table VIII
confirms this trend: remote interruptions are overall 50% more
numerous than local ones.

If we refine the picture by weighing in additional factors,
we can understand the fine-grain differences between local
and remote shown in Table VIII. First, while remote team
members are roughly twice as numerous as local ones, the
modular architecture of the systems and the matching division
of labor were such that local team members interacted more
closely on the same piece of code. Second, problems related
to functionality (missing or incorrect) determine interruptions
that are likely more prominent than missing documentation:
in the latter case, one can often resort to exploration and
testing to understand the behavior; in contrast, if functionality
belonging to another component is missing or incomplete, one
probably has to check with the responsible developer what
the issue really is. Therefore, we expect the closer interaction
associated with local team members to affect more strongly
interruptions related to functionality. These observations help
explain the data in Table VIII: location is essentially irrelevant
for missing documentation (where an almost perfect 2-to-1
ration of interruptions is observed); whereas it affects problems
related to functionality to some extent, as a result of local team
members interacting more closely on the same module.

Workflow interruptions (related to insufficient awareness)
occur fairly frequently for teams of non-trivial size.

Interruptions due to functionality (missing or incorrect) are
more frequent than interruptions due to documentation

problems. Developer location seems to play no major role
in determining the frequency of interruptions.

C. Conflicts and Interruptions: Impact and Effects

Research question RQ.C asks for the effects of merge
conflicts and of insufficient awareness on project development.
To address these issues, we asked to estimate the impact of
merge conflicts and of workflow interruptions (which we use
as a signal of insufficient awareness) on various dimensions of
success; and to describe what actions are normally undertaken
when workflow is interrupted.

Impact. We asked to assess the negative impact of both
merge conflicts and workflow interruptions on one’s pro-

6

Missing documentation Missing functionality Incorrect functionality

Workflow interruptions with local teams

P
er

ce
nt

0.
00

0.
10

0.
20

0.
30

0.27 0.35 0.15 0.14 0.05 0.02 0.02 0.35 0.28 0.2 0.06 0.07 0.03 0.02 0.33 0.35 0.16 0.08 0.04 0.03 0.01

Missing documentation Missing functionality Incorrect functionality

Workflow interruptions with remote teams

P
er

ce
nt

0.
00

0.
05

0.
10

0.
15

0.
20

0.1 0.2 0.17 0.21 0.16 0.05 0.1 0.1 0.11 0.14 0.13 0.16 0.13 0.21 0.14 0.18 0.14 0.11 0.15 0.13 0.13

Fig. 3: Frequency of workflow interruptions according to the questionnaire responses. The top row shows interruptions caused
by the work of local team members; the bottom row shows interruptions caused by the work of remote team members.
Frequencies range over a 1–7 scale.

Productivity Motivation Schedule

Impact of conflicts

P
er

ce
nt

0.
00

0.
10

0.
20

0.2 0.18 0.16 0.13 0.18 0.09 0.04 0.25 0.17 0.09 0.17 0.09 0.12 0.11 0.25 0.25 0.13 0.18 0.11 0.05 0.04

Productivity Motivation Schedule

Impact of work flow interruptions

P
er

ce
nt

0.
00

0.
10

0.
20

0.03 0.2 0.15 0.23 0.2 0.09 0.1 0.1 0.19 0.16 0.25 0.12 0.05 0.13 0.03 0.2 0.16 0.17 0.12 0.12 0.19

Fig. 4: Impact of conflicts (top row) and of workflow interruptions (bottom row) on productivity, motivation, and ability to
keep to the assigned schedule. Impact ranges over a 1–7 scale, where higher rank means more negative impact.

7

ductivity, motivation, and keeping to the schedule using a
scale of 1 to 7 (where 1 means had no negative impact at
all and 7 means had very much negative impact). Table IX
summarizes the questionnaire’s responses; Figure 4 details
the distribution of responses. While there seems to be no
significant difference between the effects on productivity,
motivation, and keeping to the schedule, there is a systematic
bias in favor of merge conflicts; that is, the negative impact of
merge conflicts is consistently lower than the negative impact
of workflow interruption. This is confirmed (with different
confidence in different categories) by a Wilcoxon signed-rank
test5 comparing conflicts and interruptions in each category,
whose p-values are given in the last column. This data suggests
that interruptions that are ultimately related to awareness
problems are more pernicious or however have a broader
impact than “run-of-the-mill” merge conflicts.

impact of on median min max mean p
MC productivity 3 1 7 3.3

0.001WI 4 1 7 4.0
MC motivation 3 1 7 3.5

0.08WI 4 1 7 3.8
MC schedule 3 1 7 3.0

10−7
WI 4 1 7 4.3

TABLE IX: Negative impact of merge conflicts (MC) and
workflow interruptions (WI) on: productivity, motivation, and
keeping to the schedule. Impact ranges over a 1–7 scale.

Effects. To get an idea of how workflow interruptions
are dealt with, we asked to indicate one or more actions
typically done when the workflow is interrupted (due to lack
of awareness). The questionnaire included four predefined
answers: “I check the repository for a recent commit”; “I
contact the responsible developer asynchronously (e.g., via
email)” ; “I contact the responsible developer in real time
(e.g., via Skype)”; “I switch to a different task that does not
depend on the interruption”; as well as the option to write
down an open answer. The open answer option was not used
by the respondents; Table X summarizes the results for the
predefined answers. The least popular option is switching to a
different task; this indicates that most workflow interruptions
require to be dealt with by acquiring missing information and
cannot be worked around by adjusting the workflow. This
is an indirect confirmation of our assumption that workflow
interruptions are often due to missing awareness; and that tools
enhancing the awareness of other developers’ work may help
reduce disruptive interruptions.

Workflow interruptions (related to insufficient awareness)
have a more negative impact than merge conflicts on

productivity, motivation, and keeping to the schedule. Most
interruptions require acquisition of missing information to

continue, and thus disrupt the planned workflow.

D. Awareness: Preferences and Granularity
The answers to RQ.C in Section IV-C suggest that workflow

interruptions are a serious issue and originate in insufficient

5In this case, data in each pair are from comparable populations.

action responses % of respondents
check repository 67 64.4
contact via email 52 50.0
contact via Skype 46 44.2
switch task 24 23.1

TABLE X: Actions developers taken when their workflow is
interrupted due to missing/incorrect functionality or documen-
tation. Developers could choose more than one option.

or missing awareness information. Research question RQ.D in-
vestigates the follow-up problem of whether developers would
welcome tools that make awareness information available
more often than it is available using standard tools. To answer
this question, we first investigate the overall preference for
or against awareness information; then we try to figure how
frequently and with what detail awareness information should
be made available.

Overall preference. We asked to assess how helpful having
access to information about the work of other developers
before they push to the repository would be. Helpfulness
ranges on an ordinal scale from 1 to 7 (where 1 means not
helpful at all and 7 means very helpful). Table XI summarizes
the answers. Overall, there is some preference but not a very
strong one.

median min max mean
How helpful? 1 4 7 3.81

TABLE XI: How helpful would it be to have awareness
information? Usefulness ranges over a 1–7 scale.

Time granularity. Given that lack of awareness is a sig-
nificant source of nuisances and problems (Section IV-C), we
partly attribute the limited enthusiasm for awareness infor-
mation to the difficulty of evaluating a fairly abstract idea.
Developers have a hard time imagining exactly how awareness
information would be displayed and made available, which
would determine whether it would be helpful.

To get into more concrete options, we asked to choose
one or more preferred “times” when information about other
developers in one’s own team should be displayed: in real-
time as if having complete access to the other developers’
computers; whenever a developer completes a successful com-
pilation; whenever a developer commits locally; or whenever a
developer pushes committed changes to the shared repository.
Table XII summarizes the answers. The option of being
notified whenever a developer in one’s team successfully
completes a version of the system is the most popular one,
chosen by over half of the respondents. In contrast, being
notified in real time as developers type in their changes is
the least popular option. Overall, the responses reinforce the
timid preference for awareness information indicated by the
previous generic question. They also suggest that real-time
awareness can be distracting rather then helpful: the real-time
collaboration features highlighted by web-based IDEs such as

8

those discussed in Section II are probably mostly useful only
for practices that require a tight interaction between very few
developers (such as remote pair programming), but would not
scale to larger teams and more complex interactions.

when? responses % of respondents
real time 28 26.7
compile time 57 54.3
commit time 34 32.4
push time 39 37.1

TABLE XII: When should awareness information be made
available? Developers could choose more than one option.

Detail granularity. Having ascertained that awareness in-
formation is helpful to have as long as it’s not displayed too
frequently, we assessed the orthogonal dimension of “detail”.
We asked to choose one or more preferred detail levels for
the information about other developers in your team: the
“full detail” of all changes and additions to the code base;
which routines have been affected (but now how they have
been modified); which classes have been affected (but not
which routines within those classes); which packages or other
modules have been affected (but not which classes within
those packages); and no information about the change at
all. Table XIII summarizes the answers. We observe varied
preferences, but with a trend towards more detail. Overall,
this suggests that as much information as possible should
be available within an awareness tool, but it should also be
possible for users to customize what is displayed according to
their individual preferences of the moment: one size does not
fit all.

what? responses % of respondents
full detail 37 35.2
changed routines 32 30.5
changed classes 25 23.8
changed packages 5 4.8
no information 6 5.7

TABLE XIII: What should the detail of awareness information
be? Developers could choose more than one option.

Most developers prefer awareness information to be
available at significant events (such as successful

compilation) rather than in real time. Different developers
have different preferences regarding the level of detail that

awareness information should have.

E. Correlation Analysis

To look for dependencies between responses, we performed
a correlation analysis between all pairs of variables corre-
sponding to the answers to the questionnaire, including those
for the self-assessment of the respondents’ experience with
programming and collaboration (see Section III-B). Table XIV
shows all variable pairs that exhibit a significant correlation.

The correlations are not particularly surprising in hindsight.

For example, the correlations between the number of inter-
ruptions due to incorrect and missing functionality (both with
local and with remote team members) reflect the fact that well-
coordinated teams (with well-understood requirements) will
have fewer problems with both incorrect and missing function-
ality, whereas badly-coordinated teams encounter problems
with both. On the other hand, missing correlations bring more
insight. Specifically, the lack of significant correlations with
variables measuring the level of experience with distributed
version control and other techniques for collaborative software
development suggests that the findings distilled from the
questionnaire are not a direct result of the background and
pre-existing skills of the respondents. This reflects positively
on the generalizability of our findings.

V. THREATS TO VALIDITY

Internal validity. To minimize threats to internal validity,
we manually went through all data (105 questionnaire re-
sponses, and 106 real-time sessions from 15 subject) looking
for obviously inconsistent or bogus information. For example,
we discarded the data of respondents that declared that they
“never experienced conflicts” and took “over 20 minutes to
resolve conflicts on average”; and very short tracking sessions
that increased and decreased the interruption counts without
sensible pattern. The fact that only 8% of the data points had
to be discarded suggests a fundamentally good quality of the
sanitized data. We also reran our analysis on data that only
contained the top-50 developers (in number of commits). All
the qualitative findings applied to this subset as well. This
gives us confidence that our findings are largely independent
of the development time invested by participants.

External validity. The major threat to generalizability
comes from the majority of participants’ low level of expe-
rience with Git, which is something not to be expected of
experienced professional developers. Nevertheless, in spite of
their limited experience, our study participants did not find
merge conflicts an overall dominant problem; therefore, it
is reasonable to speculate that experienced developers would
strengthen our findings about the severity of workflow inter-
ruptions. Another threat comes from only involving student
developers, albeit at the master’s level. The fact that the results
showed no correlation linking developers’ experience to the
significant measured variables indicates, however, that this
threat is unlikely to be severe.

VI. RELATED WORK

Other challenges and issues in globally distributed devel-
opment have been investigated empirically; for example, the
effect of time zones [17], [9], [20]; the role of development
processes [11]; the impact on productivity and quality [24],
[3]; the usage of contracts [23]; and the role of dispersion [25].

There is a broad body of research about awareness in
distributed software development [27], mostly targeting as-
pects related to project management—orthogonal to those
of the present paper which focuses on the practical impact
on development activities. [1], [18], for example, focus on

9

correlation of and of τ p-value
average time to resolve conflict worst time to resolve conflict 0.75 0
incorrect due to Local functionality due to Local 0.57 10−12

documentation due to Remote incorrect due to Remote 0.60 10−15

functionality due to Remote incorrect due to Remote 0.55 10−13

MC impact on motivation MC impact on productivity 0.55 10−12

MC impact on schedule MC impact on productivity 0.56 10−12

WI impact on motivation WI impact on productivity 0.61 10−15

WI impact on schedule WI impact on productivity 0.66 0
MC impact on motivation WI impact on motivation 0.53 10−11

TABLE XIV: All variable pairs that correlate (Kendall’s τ > 0.5) with high significance (p < 10−3).

high-level aspects such as personal information or level of
expertise; similarly, [8] shows the importance for developers of
information about requirements, planning, and project status.

Research on awareness tools, reviewed in Section II, is
often accompanied by experiments to test the tools against
traditional version control systems. These experiments nor-
mally involve [16], [10], [26] small (2 or 3 people) teams
working on controlled artificial exercises (such as refactoring)
that can be carried out in a short programming session. In
other cases [4], the experiments used regression data from
open-source software repositories to estimate the effectiveness
of their conflict detection mechanisms. The present paper’s
study complements both kinds of experiments by targeting
real software development over a considerable time span,
beyond the information stored by version control systems, and
independent of specific solutions (as they were implemented
in the evaluated tools).

VII. CONCLUSIONS

This paper presented an empirical study of the significance
of merge conflicts and awareness-related problems in dis-
tributed software development. To achieve general findings
independent of specific tool protocols, we studied interrup-
tions to the workflow as proxies for situations of insufficient
awareness. The findings confirm the benefits of improving
awareness information; suggest that different developers often
have different preferences regarding the frequency and detail
that awareness information should have; and do not indicate
developer location as a major factor in determining merge
conflicts or awareness problems.

REFERENCES

[1] G. Aranda, A. Vizcaino, R. Palacio, and A. Moran. What information
would you like to know about your co-worker? A case study. In ICGSE,
pages 135–144, 2010.

[2] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson. FASTDash:
A visual dashboard for fostering awareness in software teams. In CHI,
pages 1313–1322. ACM, 2007.

[3] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does
distributed development affect software quality? An empirical case study
of Windows Vista. In ICSE, pages 518–528. IEEE, 2009.

[4] Y. Brun, R. Holmes, M. Ernst, and D. Notkin. Proactive detection of
collaboration conflicts. In ESEC/FSE, pages 168–178. ACM, 2011.

[5] L.-T. Cheng, C. R. de Souza, S. Hupfer, J. Patterson, and S. Ross.
Building collaboration into IDEs. ACM Queue, 1(9):40–50, 2003.

[6] Cloud9 IDE. http://www.cloud9ide.com.
[7] CodeRun Studio. http://www.coderun.com.

[8] K. Dullemond and B. van Gameren. What distributed software teams
need to know and when: An empirical study. In ICGSE, pages 61–70,
2013.

[9] J. A. Espinosa, N. Nan, and E. Carmel. Do gradations of time zone
separation make a difference in performance? A first laboratory study.
In ICGSE, pages 12–22. IEEE, 2007.

[10] H.-C. Estler, M. Nordio, C. A. Furia, and B. Meyer. Unifying configura-
tion management with awareness systems and merge conflict detection.
In ASWEC, pages 201–210. IEEE, 2013.

[11] H.-C. Estler, M. Nordio, C. A. Furia, B. Meyer, and J. Schneider. Agile
vs. structured distributed software development: A case study. In ICGSE,
pages 11–20. IEEE, 2012.

[12] M. T. Foundation. http://www.microsoft.com/visualstudio/en-us/
products/2010-editions/team-foundation-server/overview.

[13] M. Goldman, G. Little, and R. C. Miller. Collabode: Collaborative
coding in the browser. In CHASE, pages 65–68. ACM, 2011.

[14] M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding
in a web IDE. In UIST, pages 155–164. ACM, 2011.

[15] M. L. Guimarães and A. R. Silva. Improving early detection of software
merge conflicts. In ICSE, pages 342–352. IEEE Press, 2012.

[16] R. Hegde and P. Dewan. Connecting programming environments to
support ad-hoc collaboration. In ASE, pages 178–187. ACM, 2008.

[17] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter. Distance,
dependencies, and delay in a global collaboration. In CSCW, pages
319–328. ACM, 2000.

[18] Z. U. R. Kiani, D. Smite, and A. Riaz. Measuring awareness in cross-
team collaborations – distance matters. In ICGSE, pages 71–79, 2013.

[19] M. Lanza, L. Hattori, and A. Guzzi. Supporting collaboration awareness
with real-time visualization of development activity. In CSMR, pages
202 –211, 2010.

[20] M. Nordio, H.-C. Estler, B. Meyer, J. Tschannen, C. Ghezzi, and E. Di
Nitto. How do distribution and time zones affect software development?
A case study on communication. In ICGSE, pages 176–184. IEEE, 2011.

[21] M. Nordio, C. Ghezzi, B. Meyer, E. Di Nitto, G. Tamburrelli, J. Tschan-
nen, N. Aguirre, and V. Kulkarni. Teaching software engineering using
globally distributed projects: the DOSE course. In CTGDSD, pages
36–40. ACM, 2011.

[22] M. Nordio, R. Mitin, and B. Meyer. Advanced hands-on training for
distributed and outsourced software engineering. In ICSE, pages 555–
558. ACM, 2010.

[23] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. Di Nitto, and G. Tambu-
relli. The role of contracts in distributed development. In SEAFOOD,
volume 35 of LNBIP. Springer-Verlag, 2009.

[24] N. Ramasubbu and R. Balan. Globally distributed software development
project performance: An empirical analysis. In ESEC/FSE, pages 125–
134. ACM, 2007.

[25] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D. Herbsleb. Configuring
global software teams: A multi-company analysis of project productivity,
quality, and profits. In ICSE, pages 261–270. ACM, 2011.

[26] A. Sarma, G. Bortis, and A. van der Hoek. Towards supporting aware-
ness of indirect conflicts across software configuration management
workspaces. In ASE, pages 94–103. ACM, 2007.

[27] R. L. Vivian, E. H. M. Huzita, G. C. L. Leal, and A. P. C. Steinmacher.
Context-awareness on software artifacts in distributed software develop-
ment: A systematic review. In CRIWG, pages 30–44. Springer, 2011.

10

http://www.cloud9ide.com
http://www.coderun.com
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server/overview
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server/overview

	Introduction
	Tools for Awareness and Merge Conflict Detection
	Design of the Empirical Study
	Data Collection
	Participants

	Results of the Empirical Study
	Merge Conflicts: Frequency and Origin
	Workflow Interruptions: Frequency and Origin
	Conflicts and Interruptions: Impact and Effects
	Awareness: Preferences and Granularity
	Correlation Analysis

	Threats to Validity
	Related Work
	Conclusions
	References

