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Abstract—The recent turn towards multicore processing
architectures has made concurrency an important part of
mainstream software development. As a result, an increasing
number of developers have to learn to write concurrent
programs, a task that is known to be hard even for the expert.
Language designers are therefore working on languages that
promise to make concurrent programming “easier”. However,
the claim that a new language is more usable than another
cannot be supported by purely theoretical considerations, but
calls for empirical studies. In this paper, we present the design
of a study to compare concurrent programming languages with
respect to comprehending and debugging existing programs
and writing correct new programs. A critical challenge for such
a study is avoiding the bias that might be introduced during the
training phase and when interpreting participants’ solutions.
We address these issues by the use of self-study material and an
evaluation scheme that exposes any subjective decisions of the
corrector, or eliminates them altogether. We apply our design to
a comparison of two object-oriented languages for concurrency,
multithreaded Java and SCOOP (Simple Concurrent Object-
Oriented Programming), in an academic setting. We obtain
results in favor of SCOOP even though the study participants
had previous training in writing multithreaded Java programs.

Keywords-empirical study; concurrency; programming lan-
guages; usability

I. INTRODUCTION

The advent of multicore processing architectures has
rapidly increased the importance of concurrency in com-
puting. The new situation entails that many programmers
without extensive concurrency training have to write con-
current programs, a task widely acknowledged as error-
prone due to concurrency-specific errors, e.g. data races or
deadlocks. Such errors typically arise from the incorrect
usage of synchronization primitives.

To avoid these pitfalls, the programming languages com-
munity works towards integrating concurrency mechanisms
into new languages. The goal is to raise the level of abstrac-
tion for expressing concurrency and synchronization, and
hence to make programmers produce better code. Resulting
programming models can exclude certain classes of errors by
construction, usually accepting a penalty in performance or
programming flexibility for the sake of program correctness.

The question remains whether these new languages can
deliver and indeed make concurrent programming “easier”

for the developer: both understanding and modification of
existing code and the production of new correct code should
be improved. It is difficult to argue for such properties in an
abstract manner as they are connected to human subjects:
empirical analyses of the usability of concurrent languages
are needed to distinguish promising from less promising
approaches, driving language research in the right direction.

Empirical studies for this purpose have to deal with two
main challenges. First, to compare the usability of two
languages side-by-side, additional programmer training is
needed: typically, only few programmers will be skilled both
programming paradigms. However, bias introduced during
the training process has to be avoided at any cost. Second,
a test to judge the proficiency of participants using the
languages has to be developed, along with objective means
to interpret participants’ answers.

In this paper we propose the design of an empirical
study that addresses the mentioned challenges and provides a
template for comparing concurrent programming languages.
In particular, we make the following contributions:

• a design for comparative studies of concurrent pro-
gramming languages, based on self-study followed by
individual tests;

• a template for a self-study document to learn the basics
of concurrency and a new concurrent language;

• a set of test questions that allows for a direct compar-
ison of approaches;

• an evaluation scheme for interpreting answers to the
test questions, objective and reproducible;

• application of the study design to a comparison of two
concrete languages, multithreaded Java and SCOOP, in
an academic setting with 67 B.Sc. students.

A companion technical report available online [9] includes
the complete self-study material as well as the test questions
of the multithreaded Java vs. SCOOP study, for reproduction
of this study or for adapting the template to other languages.
A short paper [10] outlines a methodology for comparative
studies of concurrent languages from a teaching perspective.

The remainder of this paper is structured as follows.
In Section II we review multithreaded Java and SCOOP.
Section III outlines our hypotheses. In Section IV we present
an overview of the design of the study. We present the design
of the training phase including the structure for a self-study



document on concurrency in Section V. The design of the
test and the results of the multithreaded Java vs. SCOOP
study are presented in Section VI. We discuss threats to
validity in Section VII and give an overview of related work
in Section VIII. We conclude and present avenues for future
work in Section IX.

II. REVIEW OF SCOOP AND JAVA THREADS

As background for the main part of the paper, this section
briefly reviews SCOOP (Simple Concurrent Object-Oriented
Programming) [8], [11] and multithreaded Java [15], two
object-oriented concurrent programming models.

A. SCOOP

The central idea of SCOOP is that every object is asso-
ciated for its lifetime with a processor, an abstract notion
denoting a site for computation: just as threads may be
assigned to cores on a multicore system, processors may
be assigned to cores, or even to remote processing units.
References can point to local objects (on the same processor)
or to objects on other processors; the latter ones are called
separate references. Calls within a single processor remain
synchronous, while calls to objects on other processors are
dispatched asynchronously to those processors for execution,
thus giving rise to concurrent execution.

The SCOOP version of the producer/consumer problem
serves as a simple illustration of these main ideas. In a root
class, the main entities producer and consumer are defined.
The keyword separate denotes that these entities may be
associated with a processor different from the current one.

producer: separate PRODUCER
consumer: separate CONSUMER

Creation of an separate object such as producer results in
the creation of a new processor and of a new object of type
PRODUCER that is associated with this processor. Hence
in this example, calls to producer and consumer will be
executed concurrently, as they will be associated with two
different new processors.

Both producer and consumer access an unbounded buffer

buffer: separate BUFFER [INTEGER]

and thus their access attempts need to be synchronized to
avoid data races (by mutual exclusion) and to avoid that
an empty buffer is accessed (by condition synchronization).
To ensure mutual exclusion, processors that are needed for
the execution of a routine are automatically locked by the
runtime system before entering the body of the routine. The
model prescribes that separate objects needed by are routine
are controlled, i.e. passed as arguments to the routine.

For example, in a call consume(buffer), the separate object
buffer is controlled and thus the processor associated with
buffer gets locked. This prevents data races on this object for
the duration of the routine. For condition synchronization,

the condition to be waited upon can be explicitly stated
as a precondition, indicated by the keyword require. The
evaluation of the condition uses wait semantics: the runtime
system automatically delays the routine execution until the
condition is true. For example, the implementation of the
routine consume, defined in the consumer, ensures that an
item from a buffer is only removed if a buffer is not empty:

consume (a buffer: separate BUFFER[INTEGER])
require

not (a buffer.count = 0)
local

value: INTEGER
do

value := a buffer.get
end

Note that the runtime system further ensures that the result
of the call a buffer.get is properly assigned to value using a
mechanism called wait by necessity: while the client usually
does not have to wait for an asynchronous call to finish, it
will do so if it needs the result of this call.

The corresponding producer routine does not need a
condition to be waited upon (unboundedness of the buffer):

produce (a buffer: separate BUFFER[INTEGER])
local

value: INTEGER
do

value := new value
a buffer.put (value)

end

In summary, the core of SCOOP offers the programmer:
a way to spawn off routines asynchronously (all routines
invoked on separate objects have this semantics); protection
against object-level data races, which by construction cannot
occur; a way to explicitly express conditions for condition
synchronization by preconditions with wait semantics. These
are the main reasons for SCOOP’s claim to make concurrent
programming “easier”, as some concurrency mechanisms
are invoked implicitly without the need for programmer
statements. This comes at the cost of a runtime system taking
care of implicit locking, waiting, etc.

B. Java Threads
In multithreaded Java1 (Java Threads for short), no further

abstraction level is introduced above threads. Hence in
the producer/consumer problem, both the producer and the
consumer are threads on their own (inheriting from class
Thread) and share a buffer as in the following code example:

Buffer buffer = new Buffer();
Producer producer = new Producer(buffer);
Consumer consumer = new Consumer(buffer);

1We consider “traditional” multithreaded Java, without the advanced
features implemented in later versions of its concurrency library.



Once the threads are started

producer.start();
consumer.start();

the behavior defined in the run() methods of producer and
consumer will be executed concurrently.

Mutual exclusion can be ensured by wrapping accesses
to the buffer within synchronized blocks that mention the
object that is used as a lock (in this case buffer):

public void consume() throws InterruptedException {
int value;
synchronized (buffer) {

while (buffer.size() == 0) {
buffer.wait();

}
value = buffer.get();

}
}

Condition synchronization can be provided by injecting
suitable calls to wait() and notify() methods, which can
be invoked on any synchronized object. For example in
the consume() method, wait() is called on buffer under
the condition that the buffer is empty and puts the calling
process to sleep. For proper synchronization, the notify()
method has in turn to be called whenever it is safe to access
the buffer, to wake up any threads waiting on the condition:

public void produce() {
int value = newValue();
synchronized (buffer) {

buffer.put(value);
buffer.notify();

}
}

In summary, the core of Java Threads offers: a way
to define concurrent executions within an object-oriented
model; no automatic protection against object-level data
races, but a monitor-like mechanism based on synchronized
blocks; monitor-style wait() and notify() calls to implement
condition synchronization. In comparison with SCOOP, the
runtime system is less costly as the programmer is given
more responsibility to correctly apply the offered concur-
rency mechanisms.

III. HYPOTHESES

Stating the research questions to be answered is an
essential part of the design of any empirical analysis. In the
case of our comparative study, a suitable abstract hypothesis
is given by the frequently used claim of language designers
that programming is simplified by the use of a new language:

It is easier to program using SCOOP than using
Java Threads.

Note that, to support intuition, we explain our study template
here and in the following with the concrete languages
SCOOP and Java Threads.

A broad formulation such as the above leaves open many
possibilities for refinement towards concrete hypotheses:

Hypothesis I Programmers can comprehend an exist-
ing program written in SCOOP more accurately
compared to an existing program having the same
functionality written in Java Threads (program
comprehension).

Hypothesis II Programmers can find more errors in an
existing program written in SCOOP than in an
existing program of the same size written in Java
Threads (program debugging).

Hypothesis III Programmers make fewer programming
errors when writing programs in SCOOP than
when writing programs having the same function-
ality in Java Threads (program correctness).

For the comprehension and correctness tasks we focus
on programs having the same functionality, while for the
debugging task we require them to have only the same
size (close correspondence in number of classes, attributes,
functions, and overall lines of code). This is because we want
to separate the debugging task from the program’s semantics
in as far as possible, focusing on syntactic or “shallow”
semantic errors. Asking for the detection of deeper semantic
errors would be conceivable as well, but would introduce a
possibility for misinterpretation: within the same task, one
would have to specify what the program is supposed to do,
opening the possibility for misunderstanding of either the
program or its specification.

IV. OVERVIEW OF THE EXPERIMENTAL DESIGN

In this section we give an overview of the design of our
study; subsequent sections will detail the training phase and
the test phase that are part of this design. We start by ex-
plaining the basic study setup, using the example of SCOOP
vs. Java Threads, then discuss participants’ backgrounds in
our concrete study.

A. Setup of the study

As we want to analyze how programming abstractions for
concurrency affect comprehension, debugging, and correct-
ness of programs, the study requires human subjects. We
have run the study in an academic setting, with 67 students
of the Software Architecture course at ETH Zurich in Spring
semester 2010. All participants were B.Sc. students, 86.2%
in their 4th semester, the others in higher semesters.

This population was split randomly into two groups: the
SCOOP group (30 students) worked during the study with
SCOOP and the Java group (37 students) worked with Java
Threads. To confirm that the split created groups with similar
backgrounds we used both self-assessment and a small



number of general proficiency test questions, as detailed
below in Section IV-B.

The study had two phases, which we run in close suc-
cession of each other: a training phase, run during a two-
hour lecture session, and a test phase, run during an exercise
session later on the same day. Two challenges for a study
design present themselves:

• Avoiding bias during the training phase. We kept the
influence by teachers to a minimum through the use of
self-study material, discussed further in Section V.

• Avoiding bias during the evaluation of the test. For
this we developed a number of objective evaluation
schemes, discussed further in Section VI.

In the following we give a brief account of the practical
procedure of running the study.

1) Training phase: During the training phase, the par-
ticipants were given self-study material, depending on their
membership in the SCOOP or Java group. The participants
were encouraged to work through the self-study material
in groups of 2-3 people, but were also allowed to do this
individually. The time for working on the study material
was limited to 90 minutes. Tutors were available to discuss
any questions that the participants felt were not adequately
answered in the self-study material.

2) Test phase: During the test phase, participants filled
in a pen & paper test, depending on their membership in the
SCOOP or Java group. They worked individually, with the
time for working on the test limited to 120 min (calculated
generously). The tutors of the Software Architecture course
invigilated the test and collected the participants’ answers at
the end of the session.

B. Student backgrounds

To learn about the students’ backgrounds and to confirm
that the random split created groups with similar back-
grounds we used both self-assessment and a small number
of general proficiency test questions; this information was
collected during the test phase.

1) Self-assessed programming proficiency: We collected
information regarding the current study level of the students
and any previous training in concurrency. This confirmed
that all students were studying for a B.Sc. degree, and had
furthermore taken the 2nd semester Parallel Programming
course at ETH, thus starting with similar basic knowledge of
concurrency. All students were familiar with Java Threads,
as this was the language taught in the Parallel Programming
course (we discuss this further in Section VII).

Concerning programming experience we asked the partic-
ipants to rate themselves on a scale of 5 points where 1 rep-
resents “novice” and 5 “expert” regarding their experience
in: programming in general; concurrent programming; Java;
Eiffel; Java Threads; SCOOP. Figure 1 shows the results
with means and standard deviations. Both groups rate their
general programming knowledge, as well as their experience

with concurrency, Java, and Eiffel at around 3 points, with
insignificant differences between the groups. This confirms
a successful split of the students into the groups from this
self-assessed perspective.

Furthermore, the Java group achieved a higher self-
assessed mean for knowledge of Java Threads, and anal-
ogous for the SCOOP group. The knowledge of SCOOP,
which none of the students was familiar with initially, ranked
significantly lower than the knowledge of Java Threads.
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3!

4!

5!

0! 1! 2! 3! 4! 5! 6! 7!

SCOOP 
group!

Java group!

General! Concurrency! Java! Eiffel! Java 
Threads!

SCOOP!

Figure 1. Self-assessed programming proficiency

2) General proficiency test: To confirm that the partici-
pants have enough knowledge in the base language – Java in
the case of Java Threads, and Eiffel in the case of SCOOP
– the test included an understanding task: participants were
asked for the output of a given program (4 classes, plus an
additional wrapper class in Java; approximately 80 lines of
code). To assess participants’ concurrency knowledge, we
also asked multiple choice and text questions on multipro-
cessing, process states, data races, mutual exclusion, and
deadlock. On both accounts, the students of the two groups
achieved very similar results (which we have to omit for
brevity), confirming again the successful split into groups.

V. TRAINING PHASE

When running a comparative study involving novel pro-
gramming paradigms, study subjects who are proficient in
all of these will typically be the exception, making a training
phase mandatory. The training process can however also
introduce bias, for example if the teaching style of two
teachers differs. Requiring the presence of teachers for the
study makes it also harder to re-run it elsewhere, as a teacher
trained in the subject has to be found.

To avoid these problems, we focused on the use of
self-study material. Bias could also be introduced when
writing this material, but the quality of the material can be
judged externally, adding to the transparency of the study.
In addition, re-running the study is much simplified.

A. Self-study material

A course on concurrency can easily take a whole semester.
The self-study material we were using and are proposing as
a template can be worked through in 90 minutes and thus
appears unduly short. However, the material has to be judged



Java Threads
§1 Concurrent execution

– Multiprocessing and multitasking
– Operating system processes

§2 Threads
– The notion of a thread
– Creating threads

– Joining threads
§3 Mutual exclusion

– Race conditions
– Synchronized methods

§4 Condition synchronization
– The producer/consumer problem
– The methods wait() and notify()

§5 Deadlock
Answers to the exercises

SCOOP
§1 Concurrent execution

– Multiprocessing and multitasking
– Operating system processes

§2 Processors
– The notion of a processor
– Synch. & asynch. feature calls
– Separate entities
– Wait by necessity

§3 Mutual exclusion
– Race conditions
– The separate argument rule

§4 Condition synchronization
– The producer/consumer problem
– Wait conditions

§5 Deadlock
Answers to the exercises

Figure 2. Structure of the self-study material

in conjunction with the questions of the test; our results
in Section VI show that participants can actually acquire
solid basic skills in the limited time frame. A pre-study with
six participants, which allowed us to gain various helpful
feedback on the study material, confirmed also that the study
material can be worked through in 90 minutes.

For teaching the basics of a concurrent language, we
suggest the basic structure shown in Figure 2, side-by-side
for Java Threads and SCOOP. The only prerequisite for
working with these documents is a solid knowledge of the
(sequential) base language of the chosen approach, i.e. Java
and Eiffel. It is apparent that the documents closely mirror
each other, although they describe two different approaches:

§1 This section is identical in both documents, introducing
basic notions of concurrent execution in the context of
operating systems.

§2 This section concerns the creation of concurrent pro-
grams. Here the central notion for Java Threads is
that of a thread, for SCOOP it is that of a processor
(compare Section II). At the end of the second section,
participants should be able to introduce concurrency
into a program, but not yet synchronization.

§3 This section introduces mutual exclusion. Race condi-
tions and their avoidance using synchronized blocks
in Java and separate arguments in routines in SCOOP
are presented.

§4 This section introduces condition synchronization. The
need is explained with the producers/consumers exam-
ple, and the solutions in Java, i.e. wait() and notify(),
and SCOOP, i.e. execution of preconditions with wait
semantics, is explained.

§5 This section introduces the concept of a deadlock.

Furthermore, in every section of the self-study material,
there is an equal number of exercises to check understanding
of the material; solutions are given at the end of the docu-
ment. The Java Threads document had 18 pages including

exercises and their solutions, the SCOOP document 20
pages. The self-study material is available online [9].

B. Students’ feedback
To learn about the quality of the training material, we also

asked for feedback on the self-study material participants
had worked through; this information was collected during
the test phase.

Figure 3 gives an overview of the answers to our questions
on this topic, rated on a Likert scale of 5 points (where
1 corresponds to “strongly disagree” and 5 to “strongly
agree”). Most of the students felt that the material was
easy to follow and provided both enough examples and
exercises, with insignificant differences between the groups.
Both groups also felt that 90 minutes were enough time
to work through the material, where the Java group felt
significantly better about this point; this might be explained
by the fact that the Java group knew some of the material
from before. Overall most students agreed, but not strongly,
that self-study sessions are a good alternative to traditional
lectures.
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0! 1! 2! 3! 4! 5! 6!

SCOOP 
group!

Java group!

Easy to 
follow!

Enough 
examples!

Enough 
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Enough 
time!

Good 
alternative!

Figure 3. Feedback on the self-study material

The overall very positive feedback to the self-study mate-
rial was confirmed by a number of text comments, and by the
tutors invigilating the sessions, who reported that students
explicitly expressed that they liked the format of the session.



VI. TEST PHASE AND STUDY RESULTS

In this section we present the design of the test and our
test evaluation scheme, and report on the results of the
concrete study concerning Java Threads vs. SCOOP. After
some general remarks, we describe Tasks I to III with their
individual evaluation schemes and results, and conclude with
a brief interpretation of results. The test material is available
online [9].

A. General remarks

The participation of the students in the test was high at
84.8% out of 79 students registered in the course. No special
incentives such as a prize were given, and the students were
told beforehand that their performance in the test cannot
affect their grades. The students were told a week in advance
that the lecture and the exercise session on the day of the
study would be devoted to the study of two concurrent
programming techniques.

Our goal was to focus on the correctness of answers,
rather than the speed of producing them. For this reason, we
allowed for ample time to complete the test (120 minutes);
consequently, all students were able to hand in before the
time was up. However, time to completion is an important
complementary measure in our setup and therefore we asked
students to self-assess the time needed. Completion times
turned out to be comparable in both groups: students in the
Java Threads group took 54.4 minutes on average, SCOOP
students 61.2 minutes on average – the difference between
the means was not significant at a 95% confidence level
(exact significance level: 8.6%).

B. Task I: Program comprehension

Task I was developed to measure to what degree par-
ticipants understand the semantics of a program written in
a specific paradigm, and thus to test Hypothesis I. Rather
than having the semantics described in words, which would
make answers ambiguous and their evaluation subjective, we
let participants predict samples of a program’s output. This
task is interesting for concurrent programs, as the scheduling
provides nondeterministic variance in the output.

The concrete programs in Java Threads and SCOOP
(5 classes, plus an additional wrapper class in Java; ca.
80 lines of code) were printing strings of characters of
length 10, with 7 different characters available. In total,
the programs’ possible outputs contained 28 such sequences,
but the participants were neither aware of this number nor
the length of the strings. The test asked the participants to
write down three of the strings that might be printed by the
program.

1) Evaluation: To evaluate the results of Task I, we
aimed to find an objective and automatic measure for the
correctness of an answer sequence. The obvious measure –
stating whether a sequence is correct or not – appeared too
coarse-grained. For example, some students forgot to insert

a trailing character that was printed after the concurrent
computation had finished. Such solutions, although they
might show an understanding of concurrent execution as
expressed by the language, could have only be marked
“incorrect”.

We therefore considered the Levenshtein distance [6] as a
finer-grained measure, a common metric for measuring the
difference between two sequences. In our case, we had to
compare not two specific sequences, but a single sequence s
with a set C of correct sequences. Our algorithm computes
the Levenshtein distance dist between s and every element
c ∈ C, and then takes the minimum of the distances:

Lmin(s) = min {dist(s, c) : c ∈ C}

This corresponds to selecting for s the Levenshtein distance
to one of the closest correct sequences. As the participants
were asked for three such sequences, we took the mean of
all three minimal Levenshtein distances to assign a measure
to a participant’s performance on Task I:

1

3
·

∑
i=1,2,3

Lmin(si)

EXAMPLE To illustrate our evaluation algorithm, consider
the following example:

Given sequence A closest correct sequence dist

ATSFTSFPML ATSFTSFPML 0
ATSFMTSFPL ATSFPTSFML 2
APTSFTSFM APTSFTSFML 1

In this case we obtain 1
3 · (0 + 2 + 1) = 1.

By using a general metric such as the Levenshtein differ-
ence, equal weight is given to all errors in the sequence. In
future work, defining a customized distance measure could
allow to distinguish between errors and to analyze in detail
the language aspects that are confusing for students.

2) Results: The results for Task I are displayed in Fig-
ure 4 with means and standard deviations.
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Figure 4. Results Task I

A two-tailed independent samples t-test gives that the
means can be assumed to be different at a confidence level
of 95% (exact significance level 3.3%). This implies that
the SCOOP group with the lower mean performed better at
Task I than the Java group.



C. Task II: Program debugging

To analyze program debugging proficiency, we provided
programs (3 classes, ca. 70 lines of code) that were seeded
with 6 bugs. For Java Threads the bugs included the follow-
ing types

• Calling notify() on a non-synchronized object
• Creating a synchronized block without a synchroniza-

tion object
• Failing to catch an InterruptedException for wait()

and for SCOOP they included:
• Assigning a separate object to a non-separate variable
• Passing a separate object as non-separate argument
• Failing to control a separate object

Participants were asked for the line of an error, and a short
explanation why it is an error.

1) Evaluation: The evaluation assigned every participant
points, according to the following scheme:

• 1 point was assigned for pointing out correctly the line
where an error was hidden;

• 1 additional point was assigned for describing correctly
the reason why it is an error.

The rationale for splitting up the points in this way was that
participants may recognize that there is something wrong
in a particular line (in this case they would get 1 point),
but might or might not know the exact reason that would
allow them to fix the error; depending on whether they could
actually debug the error, they would get another point.

2) Results: The results for Task II are displayed in
Figure 5. A two-tailed independent samples t-test showed
a significant difference between the results of the Java and
the SCOOP group at a confidence level of 95% (exact
significance level 4.2%). This implies that the SCOOP group
with the higher mean performed better at Task II than the
Java group.
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Figure 5. Results Task II

D. Task III: Program correctness

To analyze program correctness, the third task asked
participants to implement a program where an object with
two integer fields x and y is shared between two threads.
One thread continuously tries to set both fields to 0 if they
are both 1, the other thread tries the converse. As a pen &

paper exercise, the usual compile-time checks that are able
to find many of the errors made were not available.

1) Evaluation: Even in everyday teaching routine, the
grading of a programming exercise can be challenging, and
is often not free of subjective influences by the corrector.
To avoid such influences in the evaluation of Task III, we
used a deductive scheme in which every answer to be graded
starts out with 10 points, and points are deducted according
to the number and severity of the errors it contains.

To make this type of grading possible, the grading process
was split into several phases:

1) In a first pass of all answers to Task III, attention was
paid to the error types participants made.

2) The error types were assigned a severity, which would
lead to the deduction of 1 to 3 points.

3) In a second pass of all answers, points were assigned to
each answer, depending on the types of errors present
in the answer and their severity.

The severity of an error was decided as follows:
Ordinary error An error that can also occur in a se-

quential context (1 point deduction).
Concurrency error An error that can only arise in a

concurrent setting, but which is lightweight as
it still allows for concurrent execution (2 points
deduction).

Severe concurrency error An error that can only arise
in a concurrent setting, but is severe as it prevents
the program from being concurrent (3 points de-
duction).

Typos and abbreviations of keywords or other very minor
mistakes did not lead to a deduction of points.

2) Error types: The limited size of the programming task
led to few error types overall: seven for Java Threads and six
for SCOOP. Figures 6 and 7 show the error types with their
frequency for Java Threads and SCOOP. Error types with
dark/medium/light shaded frequency bars were marked se-
vere concurrency/concurrency/ordinary errors, respectively.
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Figure 6. Error types for Java Threads

In Java Threads, we considered it a severe error if a proper
setup of threads or the starting of threads was missing,



hence obtaining a functionless or non-concurrent program.
In SCOOP, a direct counterpart to this error was the omission
to declare the worker objects separate, also leading to a
non-concurrent program. 8.3% of Java participants made this
error, and 10.7% of SCOOP participants.

Another severe error was marked for Java Threads if the
program did not contain any wait() or notify() calls, hence
providing no condition synchronization. The corresponding
error in SCOOP was the absence of wait conditions. Only
3.5% of the SCOOP group made this error, while 11.1%
of Java participants did so, an indication that a tighter in-
tegration of synchronizing conditions into the programming
language might have advantages.
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Figure 7. Error types for SCOOP

For non-severe concurrency errors and ordinary errors the
comparison is no longer that straightforward. A majority of
SCOOP participants did not control worker objects and did
not declare the data object as separate. These are typical
novice errors, and would be caught by compile-time checks.
Also a large number of SCOOP participants did not use
setter routines as needed in Eiffel, a typical ordinary error.

For Java Threads, we see an extreme peak only for not
throwing an InterruptedException on calling wait(), which
was classified as an ordinary error and would be caught
by compile-time checks. Other concurrency errors involved
the use of wait() or notify(), for example forgetting a
corresponding notify() or applying it to a wrong object. Note
that these errors cannot be caught during compile-time.

3) Results: The results for Task III are displayed in
Figure 8. A two-tailed independent samples t-test does not
show a significant difference between the two means (exact
significance level 32.6%).

E. Interpretation of the results

The data confirms Hypotheses I and II in favor of SCOOP,
leading to the conclusion that SCOOP indeed helps to
comprehend and debug concurrent programs. Hypothesis III
concerning program correctness could neither be confirmed
nor refuted: the SCOOP group did approximately as well as
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the Java group. Given the small amount of training in the
new paradigm, these results are surprising, and promising
for the SCOOP model.

The question remains why SCOOP fails to help in pro-
gram construction. A direct way of interpretation would be
to conclude that SCOOP’s strengths only affect the tasks of
understanding a given program and debugging it. It does not
improve constructing correct programs.

However, the first two tasks are at the Comprehension
Level of Bloom’s taxonomy of learning objectives [1] –
level two out of a total of six levels, where a lower level
means less cognitively challenging. Comprehension tasks
mostly check whether students have grasped how the taught
concepts work, an important prerequisite for applying them
to new situations. Program construction is at a higher level;
depending on the difficulty of presented tasks and previously
studied examples, it could be on one of the level three to
five of Bloom’s taxonomy. It is possible that the training
time allotted for this study was too short to enable students
transfer the abstractions to the new problem presented in
the test. To find out whether this was the case and SCOOP,
in comparison to Java Threads, also benefits program con-
struction, a re-run of the study with a more extensive training
phase would be necessary.

VII. THREATS TO VALIDITY

The fact that all students of our study had previous
knowledge of Java Threads, but none of SCOOP, can be
expected to skew the results to benefit Java Threads. We
were aware of this situation already in the planning phase
of the study, and decided to run it with this group of partic-
ipants nonetheless. A similar situation also frequently arises
in practice: developers versed in a certain programming
paradigm consider learning a new one. The study results
show that even under these circumstances, the new paradigm
might prove superior to the well-known one (Tasks I and II).

Another threat to internal validity is the experimenter bias,
where the experimenter inadvertently affects the outcome of
the experiment. A double-blind study was not an option in
our case, as at least some of the results had to be analyzed by
humans, at this time revealing the membership to a group
in the experiment. Using automatic techniques for Task I,
clearly defined errors with line numbers in Task II, and



developing the deductive scheme for Task III should however
limit this bias to a minimum.

A further threat to internal validity is that results might
have been influenced by the usability of the base program-
ming languages themselves, Java and Eiffel. In self-assess-
ment participants attributed themselves however sufficient
proficiency in both languages and this was confirmed by a
short test (see Section IV-B); these influences might thus
be negligible. The SCOOP model can also be implemented
with Java as the base language [16]; using such an imple-
mentation could eliminate this threat altogether.

As a threat to external validity, we used only students as
study subjects and it is unclear how the study results gener-
alize to other participant groups and situations. In particular,
the use of development environments might greatly affect the
learning experience and the potential of producing correct
programs. We suggest to run further studies in the future
(see Section IX-B) to explore these situations, but deem our
study a “cleanroom approach” to analyzing the effects of
language abstractions.

As a threat to construct validity, it is difficult to justify
objectively that tasks were “fair” in the sense that they
did not favor one approach over the other. However, Java
Threads and SCOOP are languages that are suitable for
ordinary concurrency tasks, and such tasks featured in the
test. This situation would be more difficult for languages
that aim for a specific application domain.

VIII. RELATED WORK

According to Wilson et al. [17], the evaluation of par-
allel programming systems should encompass three main
categories of assessment factors: a system’s run-time perfor-
mance, its applicability to various problems, and its usability
(ease of learning and probability of programming errors).
The assessment of the factors described in the first two
categories are directly related to metrics that can be collected
through, for example, running benchmark test suites. But, as
shown for the domain of modeling languages by Kamandi
et al. [5], such metrics cannot predict the outcomes of con-
trolled experiments with human subjects for the assessment
factors of the third category “usability”. Also Sadowski and
Shewmaker [13] argue that usability is a key factor for the
effectiveness of parallel programming and describe metrics
for measuring programmer productivity.

The need for controlled empirical experiments for con-
current programming has already been recognized 15 years
ago [14]. Nevertheless, only few such experiments have been
carried out so far. Those that have been carried out focus on
time that it takes the study participants to complete a given
programming assignment.

Szafron and Schaefer [14] conducted an experiment with
15 students of a concurrent programming graduate course.
They taught two parallel programming systems (one high-
level system and a message-passing library system) each

for 50 minutes to the entire class; students then had two
weeks to solve a programming assignment in a randomly
assigned system. The evaluation compared the time students
worked on the assignment, number of lines, and run-time
speed amongst other measures. Their results suggest that
the high-level system is more usable the message passing
library, although students spent more time on the task with
the high-level system.

The group around Hochstein, Basili, and Carver con-
ducted multi-institutional experiments [4], [3] in the area
of high performance computing using parallel programming
assignments and students as subjects. In all these experi-
ments, time to completion is the main measure taken. The
results of these studies indicate that the message passing
approach to parallel programming takes more total effort
than the shared memory approach. Cantonnet et al. [2]
examined the influence of the language UPC on programmer
productivity. They compared UPC to MPI using lines-of-
code and conceptual complexity (number of function calls,
parameters etc.) as metrics, obtaining results in favor of
UPC.

Luff [7] compares the programmer effort using traditional
lock-based approaches to the Actor model, and transactional
memory systems. He uses time taken to complete a task
and lines of code as objective measures and a question-
naire capturing subjective preferences. The data exhibits no
significant differences based on the objective measures, but
the subjective measures show a significant preference of the
transactional memory approach over the standard threading
approach. Rossbach, Hofmann, and Witchel [12] conducted
a study with undergraduate students implementing the same
program with locks, monitors, and transactions. While the
students felt on average that programming with locks was
easier than programming with transactions, the transactional
memory implementations had the fewest errors.

All of the above experiments target programmer produc-
tivity as their main focus. To measure this, the studies need
to provide substantial programs and a long time range for
completing them as a basis of work. By doing so, some of
the control over the experimental setup is lost. Our study has
a more modest goal: it tries to compare two approaches with
respect to their ease of learning them and understanding and
writing small programs correctly after a very short time of
instruction. By narrowing the focus in such a way, we place
the ability of controlling the experiment over being able to
generalize the results to arbitrary situations and levels of
proficiency. Given that this experiment is only a first step in
a series, it seems justified to do so.

IX. CONCLUSION

A. Discussion

The use of programming abstractions since the 1960s has
enabled the tremendous growth of computing applications



witnessed today. New challenges such as multicore program-
ming await the developers and the languages community,
but the multitude of proposals makes it hard for a new
language to leave a mark. Empirical studies are urgently
needed to be able to judge which approaches are promising.
Since abstractions are invented for the sake of the human
developer, and to finally improve the quality of written code,
such studies have to involve human subjects.

Despite the need for such studies, they have been run
only infrequently in recent years. One reason for this might
be that there is too much focus on established languages.
Hence newly proposed languages are not put to the test as
they should, ultimately hampering the progress of language
research. For this reason we have proposed a template for
a study, which can expressly be used with novel paradigms.
While established study templates are a matter of course
in other sciences, they are not common (yet) in empirical
software engineering. We feel that the community should
draw their attention to developing templates too, as these
will improve research results in the long term and provide
a higher degree of comparability among studies.

The key to making our study template successful was the
reliance on self-study material in conjunction with a test, and
an evaluation scheme that exposes subjective decisions of the
corrector. While 90 minutes for studying a new language is
brief, we were actually impressed how much the participants
learned, some of which handed in flawless pen & paper
programs.

B. Future work

Clearly, our template should be applied to more languages
in the future. Also, the set of study subjects can be varied in
future studies. In an academic setting, we would ideally like
to re-run the Java/SCOOP study with students who have
no prior concurrency experience. Also, the study template
should be used at other institutions, and in the end grow out
of the academic setting and involve developers.

The template could also be developed further. For exam-
ple, it would be possible to concentrate more strongly on
one aspect, e.g. program correctness, and to pose more tasks
to test a single hypothesis. The evaluation in Section VI-D
shows that participants might have improved their results
greatly if they have had access to a compiler; running the
test not as a pen & paper exercise but with computer support
would thus be yet another option.
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