
Reference: Bertrand Meyer, The Grand Challenge of Trusted Components, in ICSE 25 (International
Conference on Software Engineering, Portland, Oregon, May 2003, IEEE Computer Press.

© IEEE, 2003
The Grand Challenge of Trusted Components

Bertrand Meyer
ETH Zürich, Chair of Software Engineering

and Eiffel Software, Santa Barbara

se.inf.ethz.ch
Abstract

Reusable components equipped with strict guarantees of
quality can help reestablish software development on a
stronger footing, by taking advantage of the scaling effect of
reuse to justify the extra effort of ensuring impeccable
quality. This discussion examines work intended to help the
concept of Trusted Component brings its full potential to the
software industry, along two complementary directions: a
“low road” leading to qualification of existing components,
and a “high road” aimed at the production of components
with fully proved correctness properties.

1 Overview

Progress in software engineering over the past four decades
has undeniably had a beneficial effect on software quality.
The advances fall short, however, of the kind of break-
through that appear necessary to cope with the increasing
demands on our software. The general idea developed in
this article, reuse, is far from new; but the notion of Trusted
Component brings in a critical concept: extreme attention to
component quality. This is indeed the definition of the term:

(The term “trusted” as introduced in [14] appears destined
to stay, but any confusion should be avoided with the notion
of trust in secure computing. Although security properties
will be part of the quality a component must provide, “trust”
in Trusted Components extends to all other quality factors.)

2 Approaches to quality

The considerable existing literature on improving software
quality advocates a variety of approaches, which one may
classify along two orthogonal criteria: Management vs
Technical; and A Priori vs A Posteriori.

The first division affects which of process and product
is viewed as more important:

• Some authors consider that most serious software
engineering problems are, in the end, management
problems, and that technology is a secondary concern.
Naturally they focus on process-oriented solutions:
Capability Maturity Model, ISO certification, Six-
Sigma, relationship of IT with the rest of the company,
user awareness. As an example of this approach, the
Standish Group’s CHAOS reports [19], well-known for
their large-scale analysis of software project failures,
offer a recipe for project success consisting of ten
“success factors” that are all non-technical: more user
involvement, executive support, clear business
objectives, experienced project manager, small
milestones, firm basic requirements, competent staff,
proper planning, ownership (complemented by “other”).
This is an extreme variant of the management-first
approach, not accounting for the report’s own finding of
a significant improvement in project success rates
between 1994 and 1998. (It is not immediately evident
why “user involvement” or “executive support” should
have made major advances during that period; on the
other hand, 1994 to 1998 was also the time when, at least
in a partial form, object technology was spreading
through the industry, a technology factor discounted by
the list. The factors given are not even software-
specific.) In less exclusive forms, books on software
engineering economics [4] and “Peopleware” [6]
emphasize non-technology factors. Frequently heard
advice about the need for better education also falls in
this category, even when the education is about technical
topics. Yet another example is the systematic use of code
inspections, whether for open source (“enough
eyeballs”) or in commercial settings.

• By contrast, a large portion of the literature is devoted to
technical solutions, from programming language
features enhancing reliability (static typing, modular
mechanisms...) to implementation support (garbage
collection), testing techniques, formal development
methods, design principles.

Trusted Component
A Trusted Component is a reusable software
element possessing specified and guaranteed
property qualities.

http://se.inf.ethz.ch

The second division affects whether the techniques are
applied to producing the software, or to assessing and cor-
recting it once it exists:

• A priori techniques help avoid flaws in the first place;
along ideas already cited, executive support and use of
formal methods fall (from remote ends of the spectrum)
into this category.

• A posteriori techniques apply when the software or at
least some initial version already exists; they help
identify and correct any deficiencies that may have
escaped the a priori component of the quality effort.

Neither division is absolute: a technique such as configura-
tion management spans the technology / management line;
Design by Contract [10] [12] spans the a priori / a posteriori
line. Most techniques, however, fit in one box of the follow-
ing table showing some examples of the classification.

Most of the ideas listed have a part to play in the search for
software quality. As argued elsewhere [15], the field should
avoid compartmentalization and the ever-present tendency
to push various approaches as exclusive. There is no magi-
cal solution, and every little bit helps.

3 The limits of project-oriented techniques

Useful as they are, the solutions usually proposed tend to
target individual projects. This seems unlikely to yield the
breakthrough in quality and productivity that the field
needs. So much new software gets produced every year —
billions of lines — that a more efficient approach seems
desirable. As to education, hordes of new developers enter
the market every year; only a few of them will have had the
benefit of a good software engineering education. It is
unlikely for example that the reported 6 million Visual
Basic developers are all trained computer scientists.

Education is of course necessary, but it’s a never ending
effort and we can hardly make the overall quality of
software development dependent on its progress.

We can address the issue through Trusted Components.
The availability of a large base of guaranteed-quality
reusable elements would make application development
less dedicated to producing software from the ground up,
and hence less dependent on the individual skills of project
developers; the focus would shift towards composition,
combination, mix-and-match. This particularly applies to
the huge amount of software being developed by non-
computer-scientists. On such a large population, in whose
concerns and jobs software is often only a part, our most
earnest attempts at education can only have a limited effect.
Our strongest lever is to give them impeccable components
of ever broader scope, with a division of labor between
component providers and component consumers.

The application developers can still mess up when combin-
ing and extending components, but the more and better we
give them the less this will happen. The division of labor
suggested by figure 2 helps: an application expert may be
best equipped to fight quality problems that depend on the
specifics of the application, its users, its corporate environ-
ment; but to make sure that the infrastructure is right — to
address typical software technology issues such as choice of
data structures and algorithms, communication, synchroni-
zation, database optimization — it’s more effective to rely
on components put together by software professionals in
these respective areas.

Technical Management

A priori Design methods
Object-oriented
development
Formal
development

User involvement
Executive support
Better education
for engineers and
managers.

A posteriori White-box testing
Static analysis
(e.g. PREfix)
Proofs (of existing
programs)

Testing and
acceptance
procedures

 Figure 1: Varieties of quality advice — examples

Compilers, operating systems

Basic components

Applications

Specialized components

 Figure 2: Levels of software and expertise

4 The case against quality

Dependence on programmer education is not the only obsta-
cle to the potential effectiveness of the most widely cited
approaches to improving software quality. An economic
argument suggests that, applied to projects rather than com-
ponents, they face a natural limit.

Considering the matter from an economic perspective is
legitimate because quality, at least as perceived by project
developers, their managers and the rest of an organization,
has a cost. The theoretical argument that “Quality is free”
because non-quality causes greater cost is of little interest to
the project manager faced with looming deadlines and
budget constraints. The practical question then becomes
how much quality effort the project can afford. Every
manager knows that a non-perfect but acceptable version on
time is better than absolute perfection two years later,
especially if the company has gone bust in the meantime for
failing to release a product. There is a quality incentive, but
it only leads to the acceptability point: the stage at which
remaining deficiencies do not endanger its usefulness to the
market. Beyond that point, most managers consider that
further quality-enhancing measures yield a quickly
diminishing return on investment.

This pragmatic view, which some have cited as one of the
reasons behind Microsoft’s success, is no longer the dirty
secret of project management since Ed Yourdon gave it
respectability under the name “Good Enough Software” [21].

Although Yourdon has recently stated, citing Microsoft
initiatives to address some security-related issues, that
Good Enough may not be good enough any more in the
post-September-11 climate, the overall industry attitude
doesn’t seem, at least so far, to have dramatically changed.
(The hard economic times can have opposite effects on
companies, some tempted to get rid of any non-core efforts
such as quality initiatives, others realizing that improving
quality is their best bet for survival.)

Good Enough Software is a global consequence of accumu-
lating individual optima. The example of capitalism sug-
gests we should strive, in human systems, for an
equilibrium where the combination of individual strategies
that each person considers optimal for his own purposes
matches the global optimum that best benefits the group as
a whole. The prevalence of the Good Enough approach indi-
cates that in the software engineering field we have not
reached such an equilibrium: the ideal for society is that all
software should be as good as possible; but if I am a project
manager the ideal for me is only to make my product good
enough. In fact, by spending more money and time to make
my product better than it strictly has to be for market accept-
ability, I am putting at risk the product, my company and my
own career.

This is the culture that, in many places, has made
“perfectionism” a dirty word for software development. The
reasons are clear: programmer perfectionism can indeed be
detrimental to key goals of management, chief among them
timely delivery of an acceptable product. But that culture is
unlikely to create the conditions from which to expect a
breakthrough in software quality.

The same forces work against correcting instances of
non-quality: bugs or, more generally, anything that could be
done better. If someone points out a possible improvement
to an application, and I am responsible for that application,
then improving it is my job. Not surprisingly, my reaction
may be to avoid fixing anything that’s non-critical. That
may indeed be my best personal survival strategy in the
Darwinian world of industrial software development; but
globally it’s not good for the industry.

This clash between the optimization of individual
strategies and the pursuit of the common good may be a
stronger obstacle to software quality improvement than any
technical limitation of current quality approaches such as the
ones cited in section 2. Many known ideas and solutions —
from better programming languages and advanced tools to
formal methods — have the potential of ensuring better
processes and products, and yet are not as widely used as
they could; the various justifications for refusals to use them
are often smokescreens for the real reason: that quality is
only one the criteria, and improving it doesn’t necessarily
justify the cost.

If this hypothesis on how companies and projects react
is correct, it puts a natural limit on the practical effect of any
quality technique that entails any costs, as long as the
technique is directed to individual projects. Major progress
can only come from changing the economic incentives so
that individual perfectionism is good not only for everyone
else but for the individual as well. Basing software
development on Trusted Components appears to do this:
• The component developers (producers) make quality

components available to application developers
(consumers), who can turn them to their advantage in
building their applications.

• It is the common interest of the consumer and the
producer that the components should be good, and that
deficiencies should be fixed. Because the managerial
and political framework is different, consumers’ choices
have a higher likelihood of being based on technical
merit, since their goal is the success of their application,
based on the components.

• If in the course of developing an application a consumer
spots a deficiency in a component, the burden of
correcting it falls on someone else. It is then in the
consumer’s interest to exert pressure to have the
deficiency corrected; this is also in the producer’s
interest in a competitive situation.

As a result there appears to be, in this scenario, a better
match between optimization of the common good and the
combined optimization of individual goals.

5 Components and quality

The concept of Trusted Component is of course based on the
idea of software reuse, long present in the software engi-
neering literature. But arguing for Trusted Components is
not just arguing for reuse.

Although reuse has often been advocated — at the same
level as techniques such as those listed in section 2 — as one
of the ways to improve quality, a reuse-based development
process is not by itself a quality guarantee. The expected
advantages come from the scaling-up effect, which lets new
applications benefit, again and again, from a one-time
investment; but reuse scales up everything, the bad as well
as the good. The improper reuse of earlier software in the
Ariane 5 maiden launch disaster has been widely cited as an
illustration of the dangers [9].

Trusted Components are the combination of reuse
with a special attention to the quality of the components
being reused.

The quality standard for Trusted Components is far
higher than what is commonly exercised on application
software. To be more precise, the only area in which similar
criteria apply (or should apply) is the construction of life-
critical systems as in transportation and defense. There the
analysis of costs and benefits justifies the extra effort. With
Trusted Components, the justification comes not from the
net impact of each software element by itself, but from its
cumulated impact through the many applications that will
reuse it.

This multiplicative effect of reuse also adds some
personal and technical factors to the economic and political
elements discussed so far. We should not underestimate the
benefits of accepting and even encouraging developers’
perfectionism. The common managerial perception that
perfectionism is bad — because it delays the project and
hence harms the company — fosters a general attitude of
cynicism, detrimental to the morale of the best developers.
With reusable components, the picture changes:

• It pays to improve the details; perfectionism is justified
by the expected reuse effect. “Worse is better” [7] no
longer has to hold.

• Conversely, not improving the details becomes
dangerous. There is no “minor” flaw any more, since
with the potential of widespread reuse for a component
any deficiency has an increased likelihood that some
client application will exercise it.

So as managers we can, without a bad conscience, let com-
ponent developers exert their best creativity and pay atten-
tion to details.

Component development is one of the most exciting
opportunities for a talented software developer. It’s the
opportunity to take the time to do things right, and let many
consumers benefit.

Component development is also the place to try out the
newest, most advanced techniques, before they find their
way into ordinary application development. The
development of reusable components is the Formula-1 of
software engineering.

The term “component” has not been defined. As the
reader may have guessed, this discussion doesn’t restrict
itself to the case of binary, directly deployable components
as advocated by Szyperski [20]; rather, we accept a broad
range of components that can extend from classes of object-
oriented libraries (or even subroutines of numerical
libraries) to very large-grain components, provided they
meet specific criteria:

Condition 1 distinguishes a component, meant to be used by
other software, from a program, meant to be used by people
or by non-software systems. A given software element may
be usable both as a program and as a component, for exam-
ple an application (say Excel) that is available to human
users but can also be packaged into a COM object for use by
software clients. Condition 2 brings in information hiding
and the need for interface specification. Condition 3
excludes a software element that would useful only as part
of a certain program or set of programs, and hence could
take advantage of insider knowledge about the context of its
use; a component should instead be part of a library and
usable by any client that respects the interface conditions.

[16], part of discussions with Szyperski [3], has argued
that what matters most is not the binary nature of
components but information hiding and abstraction.
Without again entering this debate we note that most of the
present article applies equally to Szyperski’s more specific
view of components. For example, the lessons gained from
the systematic development of the EiffelBase object-
oriented library of fundamental data structures and
algorithms, and the resulting principles as described in [11],
seem largely to extend to components of other kinds; and
more generally the principles of Design by Contract [10]
[12] appear particularly relevant for components [2] [17].

Definition: component
A component is a software element (modular
unit) satisfying the following three conditions:
1• It can be used by other software elements, its

“clients”.
2• It possesses an official usage description,

which is sufficient for a client author to use it.
3• It is not tied to any fixed set of clients.

6 High and low road

If Trusted Components are indeed one of the major hopes
for a breakthrough in software quality, how do we go about
establishing a base of high-quality components?

An examination of the state of the art in industry and
research shows a great discrepancy between what’s possible
in both worlds:

• In industry, components have taken off in recent years,
with great practical success, from object-oriented
libraries (C++, Java, Eiffel) to ActiveX controls, COM
objects, Enterprise Java Beans, .NET assemblies. These
efforts could greatly benefit from a stronger quality
focus and in particular from component certification
applied to existing commercial components.

• In research, one of the great advances of the past decade
has been the practical improvements to formal methods,
and in particular to proof techniques, making it possible
to produce sizable, realistic systems equipped with full
proofs. Although it has not yet changed the generally
negative image that “formal methods” convey to many
people, this practical progress is undeniable.
Applications so far have largely been focused on life-
critical systems; the reasoning developed above
suggests that components are another ideal application
area, as the two notions of reuse and formal
development seem destined for each other [13].

The gap, however, is huge. Choosing one of the directions
to the exclusion of the other would mean ignoring either
long-term prospects for major advances or the short-term
needs of industry. This suggests defining two complemen-
tary paths for the progress of Trusted Components, a low
and a high road:

• The low road starts from today’s components,
commercial or open-source. The extent of the quality
guarantees we can achieve there is by nature limited; in
particular, proofs are excluded in almost all cases, if
only because the source code is generally not available
in the commercial case, but more fundamentally
because one of the lessons of formal methods is that one
can’t hope to prove software unless it has been produced
with that goal in mind. Even if not accompanied with
absolute guarantees, certification is still possible in this
case; as we’ll see next, we may hope to provide
interesting if incomplete quality assessments.

• The high road is intended to lead to components with
fully proved properties. The ambition of this goal
implies that it’s more long-term, and that its realization
must start with relatively fine-grain (but practically
critical) components such as library classes.

The efforts along both directions are different. An effective
Trusted Components effort should be both realistic, follow-
ing the low road for immediate benefits to industry inter-
ested in the quality of today’s components, and ambitious,
following the high road for the ultimate goal of fully proved
components. The Trusted Components effort that we have
started at ETH, with the aim of establishing a Component
Certification Center, is intended to address both sets of
issues.

7 Towards a Component Quality Model

One of the most important tasks on the “low road” is to
define criteria against which to assess components. In other
words we need a Component Quality Model, intended to
assess products rather than (as the Capability Maturity
Model) processes for obtaining these products.

A first framework for a Component Quality Model
appears in figure 3. It divides properties of interest into
five categories, the “ABCDE” of component quality (I am
indebted for this terminology to Richard Walker of ANU
in Canberra):

The categories are largely orthogonal, as there is no single
scale against which to assess components.

Acceptance
A.1 Some reuse attested
A.2 Producer reputation
A.3 Published evaluations

Behavior
B.1 Examples
B.2 Usage documentation
B.3 Preconditioned
B.4 Some postconditions
B.5 Full postconditions
B.6 Observable invariants

Constraints
C.1 Platform spec
C.2 Ease of use
C.3 Response time
C.4 Memory occupation
C.5 Bandwidth
C.6 Availability
C.7 Security

Design
D.1 Precise dependency

documentation
D.2 Consistent API rules
D.3 Strict design rules
D.4 Extensive test cases
D.5 Some proved

properties
D.6 Proofs of

preconditions, post-
conditions, invariants

Extension
E.1 Portable across

platforms
E.2 Mechanisms for

addition
E.3 Mechanisms for

redefinition
E.4 User action

pluggability

 Figure 3: Framework for a Component Quality Model
(the ABCDE of Trusted Components)

A, for Acceptance, is a non-technical dimension: a
provider may claim a component is reusable, but it helps to
have evidence of usage. This part of the classification
addresses the natural question of a potential consumer:
“Who else is reusing this?”. A.1 to A.3 are a scale of
evidence pointing to prior successful use of the component.

B, for behavior, addresses a key property of a good
component: that it should be equipped with a precise list and
individual specification of the functionalities it offers. Here
too the levels make up a scale — a gradation towards better
evidence of quality: at the minimum we expect examples of
use, and probably (B.2) usage documentation. More precise
specifications are desirable; for example it is dubious
whether one can be comfortable with using a component
unless it is equipped (B.3) with a precise specification of its
preconditions, the conditions under which it will deliver a
proper result. (Most commercial components, regrettably,
don’t include this in any precise way). The next two levels
add more of the Design by Contract mechanisms:
postconditions, providing either some or (more difficult)
full specification of the outcome; invariants.

C, for constraints, covers performance considerations.
Here we no longer have a scale, just a set of partly
independent criteria, such as response time, security
(protection against undesired use), bandwidth requirements,
ease of use. Techniques of performance specification and
enforcement are less developed than the techniques of
behavior specification (the previous category), but the need
is just as important.

D, for Design, a scale again, considers the internal
perspective. What you want as a component consumer is a
guarantee of the component’s external properties —
properties characterizing what it makes available to you —
but any information on the principles and techniques that
the component authors have used during development can
reinforce your trust. At the very least you will want an
indication of the component’s dependencies on hardware
and software elements [20]. The next few levels correspond
to systematic design rules; our experience with EiffelBase,
as documented in [11], has taught us that, beyond a few
components, a library should follow strict and uniform rules
for naming classes and their features, choosing arguments
(operands and options), distinguishing between commands
and queries (that is to say, staying away from side-effect-
producing functions), uniform access. Knowledge that the
library authors have followed a systematic policy of this
kind is an important element to reassure component
consumers. The last levels involve proofs and open up the
“high road” of this discussion.

E, for Extension, addresses an important feature of
software reuse: it’s not only about reusing components as
they are, but also (unlike reuse in the “hard” engineering
disciplines, hard in the sense that their products are material
and you can’t just drive your fist into them) adapting a
component to your specific needs. One aspect is portability:
applicability to different platforms. For growing flexibility,
you may have the possibility of adding your own
mechanisms to the components; of redefining some existing
components, as with inheritance in object-oriented
development (under the guidance of contracts); and, the
most flexible, the ability to plug in your own mechanisms,
as with callbacks or higher-level versions of this notion.

This classification provides a first grid of criteria against
which to assess components. The plan is, clearly, to develop
it to the point where it can be used as a component
certification standard.

8 The high road: proofs

The high road involves producing components with cor-
rectness proofs. It is in general meaningless to talk about
“proving software”: one can at best prove that the software
satisfies specific properties. The phrase becomes legiti-
mate, however, if we consider software elements that are
already equipped with correctness properties; this is the
case with the classes of Eiffel libraries which possess con-
tracts. For this reason we are devoting our first efforts to
this target, starting with the EiffelBase library which has
the added interest of covering data structures and algo-
rithms that are both often difficult to get right and con-
stantly useful for everyday programming across essentially
all application domains.

The contracts consist of preconditions, postconditions
and class invariants, complemented (in the routine bodies)
by loop variants and invariants, as well as “check”
instructions. They have been present in EiffelBase and other
libraries right from the start, but until now have been
applied (even if the prospect of proofs was always latent) to
other purposes [12]: as analysis and design aids, to get the
software right; as support for readability; for documentation
(the “contract form” is the official interface documentation
of a class); as management aids (allowing managers to
follow what’s going on at a sufficiently high level of
abstraction); for testing and debugging, through the run-
time monitoring of contracts.

Thanks to theoretical and practical advances, it is now
becoming possible to consider the contracts as properties —
characterizing software abstractions and their
implementations — to be proved mathematically. Beyond a
certain level of complexity, manual proofs, tedious and
error-prone, are not sufficient; we are working with proof
tools such as Atelier B [1] [5] for this purpose. The
challenges are numerous:

• Matching the usual top-down process of formal, proof-
oriented development, usually applied to full systems, with
the bottom-up style of component-based development and
the needs of proving individual components.

• Developing appropriate modeling techniques for critical
but tricky mechanisms such as pointers.

• Complementing the existing class contracts to arrive at
full specification.

• Developing the appropriate proof techniques.

• Making sure these techniques are appropriate for
mechanization, and feeding them into the proof engine.

As noted earlier, one can hardly hope to prove software that
hasn’t been built for this purpose. Even with the contract-
rich style that exists throughout our libraries, we expect that
the libraries themselves will have to be adapted to support
proofs (apart from any correction of bugs uncovered during
attempted proofs).

A number of ongoing papers [18] report on the progress
we have achieved so far in these various directions.

We don’t limit ourselves to proofs but also consider tests
of contract-equipped components, using the contracts to
guide test generation.

Many other groups are, of course, working on related issues.

The proofs we have studied so far apply to object-
oriented library classes, only a part of the component
story. We feel, however, that this is the right way to start
the proof effort:

• These libraries, as noted, play a key role in everyday
development. The ability to rest on a fully proved set of
data structures and algorithms classes would be by itself
a major boost to trust in software quality.

• The problems involved — such as extensive use of
pointers — are difficult. The ability to solve them is
an important prerequisite for proofs of other kinds of
components, and a good testbench for proposed
proof techniques.

• One of the conditions for performing proofs in any
application domain is the existence of a theory for that
domain. For business-oriented components, building
such theories will take time. Data structures and
algorithms have been researched for several decades and
enjoy a wide body of theory, even if only a subset is
useful for proofs.

We hope that this high-road approach, with its specific
focus, will be an important complement to the more short-
term approach of the low road, and that its relevance will
continue to grow.

9 A grand challenge

Tony Hoare, in advocating a large-scale effort to produce a
“verifying compiler”, has listed a number of conditions [8]
for a research goal to be a “grand challenge” that should
mobilize a significant part of the community, on a key
unsolved issue, for a decade or so, with ambitious goals that
can in principle be attained, but not without special effort,
resources and dedication. (“Send a human to the moon
before the end of the decade”.)

For software engineering, the major issue of yesterday
and today, which pollutes everything we do, is our inability
to produce industrial software, on a regular basis, with a
quality level of which we can be proud. Approaches focused
on single projects, however good individually, will not
bring a solution.

Developing a base of guaranteed-quality components,
and extensive techniques for qualifying reusable
components, is one of the most exciting prospects for the
software world today, perhaps the idea with the highest
potential for changing things for real. It satisfies all of
Hoare’s criteria (arising from “scientific curiosity about the
nature and limits of the discipline”, being generally
comprehensible, going beyond what’s initially possible,
calling for cooperation, necessitating collaboration of
specialties etc.), currently with the exception of
“enthusiastic support from (almost) the entire research
community, even those who do not participate”. I believe it
deserves that enthusiastic support, and I hope this survey of
issues, goals and approaches will help catalyze a collective
effort to solve the Grand Challenge of Trusted Components.

References

[1] Jean-Raymond Abrial: The B Book, Cambridge
University Press, 2002.

[2] Felix Bachmann, Len Bass, Charles Buhman, Santiago
Comella-Dorda, Fred Long, John Robert, Robert Seacord,
Kurt Wallnau: Technical Concepts of Component-Based
Software Engineering, Software Engineering Institute,
Carnegie-Mellon University, Pittsburgh (Pennsylvania),
Report CMU/SEI-2000-TR-008, available at
www.sei.cmu.edu/publications/documents/00.reports/00tr0
08.html; consulted September 2002.

[3] Beyond Objects column of Software Development
magazine, articles by Bertrand Meyer and Clemens
Szyperski, 1998-2000.

[4] Barry W. Boehm: Software Engineering Economics,
Prentice Hall, 1981.

[5] ClearSy (name of company, no author listed): Web
documents on Atelier B, www.atelierb.societe.com,
consulted December 2002.

http://www.sei.cmu.edu/publications/documents/00.reports/00tr008.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr008.html
http://www.atelierb.societe.com

[6] Tom de Marco and Tim Lister: Peopleware: Productive
Projects and Teams, 2nd edition. Dorset House Publishing,
1999.

[7] Richard Gabriel: Is Worse really Better?, in JOOP
(Journal of Object-Oriented Programming), Fall 1992.

[8] Tony Hoare: Criteria for a Grand Challenge, at
www.cra.org/Activities/grand.challenges/hoare.pdf, cons-
ulted February 2003.

[9] Jean-Marc Jézéquel and Bertrand Meyer: Put it in the
Contract: The Lessons of Ariane, in IEEE Computer, vol.
30, no. 7, pages 129-130, July 1997.

[10] Bertrand Meyer: Applying “Design by Contract”, in
IEEE Computer, 25, 10, October 1992, pages 40. Also in
Object-Oriented Systems and Applications, ed. David Rine,
IEEE Computer Press, 1994.

[11] Bertrand Meyer: Reusable Software: The Base Object-
Oriented Libraries, Prentice Hall, 1994.

[12] Bertrand Meyer: Object-Oriented Software
Construction, second edition, Prentice Hall, 1997.

[13] Bertrand Meyer: The next Software Breakthrough, in
IEEE Computer, vol. 30, no. 7, pages 113-114, July 1997,
available at archive.eiffel.com/doc/manuals/technology/bm
articles/sd/contracts.html, consulted February 2003.

[14] Bertrand Meyer, Christine Mingins and Heinz
Schmidt: Providing Trusted Components to the Industry, in
IEEE Computer, vol. 31, no. 5, May 1998, pages 104-105.

[15] Bertrand Meyer: Towards more reliable software:
Every little bit counts, in IEEE Computer, November 1999,
pages 131-133, available at www.inf.ethz.ch/~meyer/publi
cations/computer/reliable.pdf, consulted February 2003.

[16] Bertrand Meyer: The Significance of Components, in
Software Development, November 1999, available at
www.sdmagazine.com/documents/s=7207/sdm9911k/,
consulted February 2003.

[17] Bertrand Meyer: Contracts for Components, in
Software Development, July 2000, variant available at
archive.eiffel.com/doc/manuals/technology/bmarticles/sd/c
ontracts.html, consulted February 2003.

[18] Bertrand Meyer: articles on proving classes at
www.inf.ethz.ch/~meyer/ongoing/references.

[19] Standish Group: CHAOS reports at
www.standishgroup.com/, consulted November 2002.

[20] Clemens Szyperski: Component Software: Beyond
Object Oriented Programming. Addison-Wesley, 1998.

[21] Ed Yourdon: When Good-Enough Software is best,
IEEE Software, Vol. 12, no. 3, May 1995, pages 79-81.
Design by Contract is a trademark of Eiffel Software.

http://www.standishgroup.com/
http://www.cra.org/Activities/grand.challenges/hoare.pdf
http://www.sdmagazine.com/documents/s=7207/sdm9911k/
http://archive.eiffel.com/doc/manuals/technology/bmarticles/sd/contracts.html
http://archive.eiffel.com/doc/manuals/technology/bmarticles/sd/contracts.html
http://archive.eiffel.com/doc/manuals/technology/bmarticles/sd/contracts.html
http://archive.eiffel.com/doc/manuals/technology/bmarticles/sd/contracts.html
http://www.inf.ethz.ch/~meyer/publications/computer/reliable.pdf
http://www.inf.ethz.ch/~meyer/publications/computer/reliable.pdf
http://www.inf.ethz.ch/~meyer/ongoing/references

	1 Overview
	2 Approaches to quality
	3 The limits of project-oriented techniques
	4 The case against quality
	5 Components and quality
	6 High and low road
	7 Towards a Component Quality Model
	8 The high road: proofs
	9 A grand challenge

