
EIFFEL

Te x tAC++ programmer said to Rabbi Shammai: “I promise to
try object technology if you can explain the secret of ob-
jects while standing on one foot.” Rabbi Shammai

whacked him on the head with a 10-by-2 ruler. He went to Rabbi
Hillel who, standing on one foot, answered: “No overloading.
That is the secret of objects. All the rest is commentary.”

Some commentary now. The beauty of object technology
(OT) is that for all the variations, refinements, codicils, and con-
sequences—including fifteen years of the Journal of Object-Ori-
ented Programming articles—everything in the end rests on a
single idea: class. A class is an association between some names
and some operations, called “features” in Eiffel (and known as
“members” in several other languages). In a class P O I N T d e-
scribing points in a plane, the names may include x, y, ro, theta,
move, and rotate; the features may include operations to return
a point’s cartesian and polar coordinates, move it by a certain
displacement, and rotate it around the origin by a certain an-
gle. The association between names and features is one-to-one:
x denotes the operation that returns the horizontal coordinate;
ro the one that returns the distance to the center; rotate the ro-
tation operation.

Enforcing a one-to-one correspondence keeps everything
simple and manageable. It makes the class readable and avoids
confusion: if you see a feature name f and do not know what it
means, you only have to search until the first feature declara-
tion with that name, and stop there; you know that you have
found what you are looking for, and do not need to worry about
some competing definition. Easy, simple, and comforting.

THE PRINCIPLE

The rule is simple:
Human languages do not quite follow that rule. This can be a
source of riddles, as in “time flies like an arrow.” Amusement
apart, it is also a source of confusion, not appropriate for a pro-
gramming or specification language that is designed for precise

statement of intent. Within a single syntactic scope such as a class,
just choose different names.

Why indeed give the same name to two different things? Names
are not an endangered species, and there is no tax on keystrokes.
Even in Eiffel, where we like giving features clear, meaningful, pro-
nounceable names—I have never been able to understand why
others use b t n C l i c k or even b t n C l k when it is so simple to write
b u t t o n _ c l i c k, and say it loud when needed—we have endless pos-
sibilities from words and their combinations. If it is two different
things, call them by different names. Appending a character to a
string, or concatenating another string at the end, are not the same
operation by any stretch of imagination. Why pretend that they
are, and in the process confuse the poor program reader? Just use

extend (c: CHARACTER)

-- Add c at end.

e n s u r e

c o u n t = old c o u n t + 1

item (count) = c

for adding a character, and

a p p e n d (s: S T R I N G)

-- Concatenate characters of s at end.

r e q u i r e

s /= V o i d

e n s u r e

c o u n t = old c o u n t + s . c o u n t

e q u a l (s u b s t r i n g (o l d c o u n t + 1, c o u n t), s)

for concatenating a string. The different contracts confirm that
these are different operations. Features to concatenate the string
representation of an integer, a real number, etc., will similarly
have different names to reflect their differences.

Note that this practice goes well with the rule, part of the Eif-
fel style guidelines, of not over-qualifying feature names. A be-
ginner will sometimes be tempted to include the target type’s
name into a feature name, calling the feature extend_to_string.
The style rules disallow this practice since the extra qualifica-
tion leads to unnecessarily long names: in any actual use of the
feature, such as my_string.extend ('X'), the type of the target,
here my_string, unambiguously specifies the class to which the
feature belongs (or an ancestor of that class).

Overloading vs. Object Te c h n o l o g y
Bertrand Meyer

No-Overloading Principle

Different things should have different names.

Bertrand Meyer is CTO of Interactive Software Engineering, which just released
ISE Eiffel 5.0, the most important new version since ISE Eiffel 3 in 1993.
(http://www.eiffel.com). His latest book is The .NET Training Course (P r e n t i c e
Hall). He may be reached at Bertrand_Meyer@eiffel.com.

www.joopmag.com October/November 2001 Journal of Object-Oriented Programming 3

E I F F E L

RENAMING

The No-Overloading Principle (meaning that a class establishes
a one-to-one correspondence between feature names and fea-
tures) has a strong consequence on multiple inheritance: if a
class C has two parents A and B, and both have a feature called
f, you can’t leave things as they are; this would be as bad as in-
troducing two features called f in C itself. The Eiffel technique
relies on the observation that there is nothing wrong with A
and B taken individually: each of them, to be valid, must have
provided its one-to-one correspondence. There is also no prob-
lem (in the absence of further complications, such as might
result from repeated inheritance) if C wants to inherit both
classes and hence inherit both the features called f: These are
different features; the only issue is an unfortunate naming con-
flict. To resolve that issue, it suffices to rename one or both in-
herited features, at the point of inheritance in C. This is the
well-known r e n a m i n g technique of Eiffel:

c l a s s C i n h e r i t

A

r e n a m e

f a s f 1

e n d

B

r e n a m e

f a s f 2

e n d

f e a t u r e

... The features specific to C …

end – class C

Now, as a result, C defines its own name-feature correspondence,
one to one. The power of renaming extends beyond this case: it
enables you to adapt the names of inherited features to the con-
text of the new class. Even if a parent’s feature is useful to the
clients of C, its name may not be the most appropriate for those
clients, who see the feature in a different light, as part of the ab-
straction represented by C, not its parent. Each class is a machine,
whose designer should have full power to define both the func-
tionality (the features) that he deems most useful to the clients,
and the exact form under which the clients will get that func-
tionality, including names most appropriate to their needs. Re-
naming helps the designer achieve that goal.

Past the r e n a m e clauses, the inherited features are known in
the new classes under their new names. This leads to the notion
of the final name of a feature: its declared name if it is immedi-
ate (introduced in the class itself); its original name if it is inher-
ited and not renamed; the new name if it is inherited and renamed.
Every reference to a feature of a class, from anywhere in the soft-
ware text —the feature’s class, or another—uses its final name.

The designer will also, in some cases, want to change the in-
herited features themselves. This is the purpose of redefinition:

c l a s s C i n h e r i t

A
r e n a m e

f a s f 1
r e d e f i n e

g
e n d

B
r e n a m e

f a s f 2
e n d

f e a t u r e

g i s
… New declaration of g

…

... Features specific to C …
e n d – class C

Redefinition changes the feature, not its name. Renaming changes
the name, not the feature. In some cases you’ll want both:

c l a s s C i n h e r i t

A

r e n a m e

f a s f 1

r e d e f i n e

f1, g

e n d

…

Note the use of the final name for the redefinition.This view of
each class as a professional-quality machine under the precise con-
trol of the machine’s designer is central to the Eiffel method.

WRONG CRITERION

What is puzzling in languages that support overloading is the cri-
terion they use to distinguish competing features with the same
name—through their type signatures. The rule is that it is legal to
give two features the same name if and only if at least one of the ar-
gument types differs. But that criterion is irrelevant—two com-
peting features may well have the same argument types. For ex-
ample our P O I N T class might have features r e s e t _ c a r t e s i a n a n d
r e s e t _ p o l a r that reset a point’s coordinates to given values. This is
a typical situation where overloading, for people attracted to this idea,
would seem appropriate. Unfortunately for them, even in such a
rudimentary example it doesn’t work since the argument types
happen to be the same in both cases: both r e s e t _ c a r t e s i a n and r e-
set_polar will take two arguments of R E A L type. The signature cri-
terion has nothing to do here.

In such a case you could in principle name the features differ-

4 Journal of Object-Oriented Programming October/November 2001 www.joopmag.com

ently, but C++ and its successors such as Java and C# don’t leave
you that possibility. In its overloading zeal, C++ forces you to give
all “constructors” of a class—the procedures used to initialize its in-
stances—the same name, which must be the name of the class.
Calling everything the same certainly saves efforts of imagination,
but the results are strange. In our example, P O I N T would not only
be the class name but also the name of all the constructor routines.
How then do you offer alternative ways of creating a point, one by
providing the cartesian coordinates and one by providing the po-
lar coordinates? You do not. It is just not possible. Here, over-
loading appears not only as useless and potentially confusing, but
as a facility that severely limits the power of expression of the lan-
guage and prevents the use of commonly useful patterns.

In Eiffel, of course, constructors (creation procedures) are
named; you create an object through

c r e a t e m y _ p o i n t . m a k e _ c a r t e s i a n (1, 0)

where m a k e _ c a r t e s i a n is one of the procedures of the class, and is
listed in the Creation clause at the beginning of the class:

c l a s s P O I N T c r e a t e

make_cartesian, make_polar, default_create

f e a t u r e

… Declaration of features, including

m a k e _ c a r t e s i a n and m a k e _ p o l a r…

Note that creation procedures such as m a k e _ c a r t e s i a n and m a k e _ p o-
lar are otherwise normal procedures; by setting their export status,
you can elect to have them usable for creation only, for resetting of
an existing object (playing the role of r e s e t _ c a r t e s i a n and r e s e t _ p o-
l a r as posited above), or both. Procedure d e f a u l t _ c r e a t e is available
in all classes; you can redefine it in any class to override the default
initializations performed in procedure-less creations of the form

c r e a t e m y _ p o i n t

formally understood as an abbreviation for c r e a t e m y _ p o i n t . d e-
f a u l t _ c r e a t e . If the class has no Creation clause, it is understood to
have one listing only d e f a u l t _ c r e a t e, so that the basic form c r e a t e
m y _ p o i n t is permitted by default.

I have briefly described this Eiffel mechanism, using named
creation procedures, because it seems the obvious and simple thing
to do. The reliance on overloaded non-named constructors is hard
to justify.

INTRODUCING INHERITANCE

With inheritance, the use of overloading appears even more con-
fusing. Consider a simple pair of inheritance links (see Figure 1).

We will use names reminiscent of the corresponding types. In
class A, feature f is overloaded with two variants accepting arguments
of types X and Y. Let’s also assume that B redefines (overrides)
these versions. The following polymorphic assignments are possi-
ble for a 1 of type A, x 1 of type X and so on:

a1 := b1

x1 := y1

Now consider the corresponding calls:

a1.f (x1)

a1.f (y1)

b1.f (x1)

b1.f (y1)

In an OO environment, they should all give the same result, since
a 1 and b 1 are both attached to the same object, and x 1 and y 1
both attached to another single object; but overloading compli-
cates everything. (If you program in a language with overloading,
can you tell—Quick! No textbooks! No language lawyers!—which
variants are permitted? What does each do?)

Overloading simply does not go with inheritance and its as-
sociated techniques of redefinition, polymorphism, and dynamic
binding. If you are happy to sacrifice inheritance, then you may
consider overloading (as in Ada 83), although enough unpleasant
consequences remain that I would not advise following that route.
But with OO techniques it becomes impossible.

GOVERNMENT BY WARNING

To see the consequences of the systematic reliance on overloading
and how it clashes with inheritance, consider the following mech-
anism, known as “version management,” of C#.

If a feature of a class has a name that conflicts with the name of
an inherited feature, it must normally be declared as either “o v e r-
r i d e” or “n e w.” The first case is the normal OO mechanism of re-
definition. The second is only possible because of overloading, and
requires that the argument signature be different from the signature
of the inherited version.

So far so good, or rather (in light of the previous discussion)
so far so bad. But now comes a special convention, designed to ad-
dress the case of delivering to your customers a new version of a
class A with a new feature called f. That name was not used in
previous versions of A , so perhaps one of your customers had writ-
ten a descendant class B where he introduced a feature of his own,
called f. But now this name conflicts with that of an inherited fea-

Figure 1. Overloading clashes with inheritance.

www.joopmag.com October/November 2001 Journal of Object-Oriented Programming 5

ture. Since there is no direct equivalent of renaming, you should nor-
mally go back to B and change it to declare f as n e w. But then it
means that B does not work “as is” any more. To facilitate the up-
grading process, the language lets you omit any n e w or o v e r r i d e
specification, with the understanding that an absent specification
will have the same effect as a n e w declaration, and the requirement
that the compiler must produce a warning.

This is disturbing. First, it is (at least as far as I know) a first
in the history of programming languages: the first case of defin-
ing a language’s semantics through compiler warnings. Seman-
tics should be defined very precisely, since it conditions the validity
of programs and the effect of valid programs. The 70 or so “va-
lidity rules” of Eiffel1 are all of the form,

“A construct of the form, …, is valid if and only if, …”

with a list of painstakingly precise conditions telling you exactly
when the compiler will reject your attempts (“only if…”) and
when it m u s t accept them (“if”). Relying on an operational de-
scription of what “the compiler” will do would be bad enough;
relying on a warning is worse.

Then, in practice, where do warnings go? They may very well
be ignored. We have all seen cases of compilers producing hun-
dreds of warnings, some meaningful and some not; after a while
programmers just brush them aside. When partisans of languages
that permit potentially dangerous conversions (casts), such as C
and C++, argue with users of strongly typed languages, they point
out that really bad type errors will be caught by compiler warn-
ings or l i n t-like tools; but it is easy to show by example that such
tools produce such an ocean of unjustified warnings that the few
important ones lost in their midst are easy to miss.

This convention, “saying nothing means n e w plus a warning,”
seems to be an effort at addressing a minor potential problem by
causing major potential damage. How real is the minor problem
anyway? If one of your classes inherits from A and you get a new
version of A, it would be very foolish to accept the new version
blindly; you should check that it does not affect the assumptions
that your class made about its parents. In Eiffel, the subcontracting
rules help you in this process, by guaranteeing that the descen-
dant’s semantics is compatible with the original’s: the class in-
variant is inherited, and in the case of overriding a feature, its
properties must remain compatible (precondition kept or weak-
ened, postcondition kept or strengthened). In other languages
you don’t have this, so it’s even more necessary to check that
the decision to inherit from A—a strong commitment!—is still
legitimate with the new version. Occasionally having to adapt
a newly clashing feature name is a small part of the process. In
fact, there is further good reason to require manual checking of
such cases: ignoring the case of programmers who court trou-
ble by choosing names thoughtlessly (such as the famous foo),
most feature names suggest a specific intent, so a name clash
with an inherited feature always justifies going back to the class
to see whether it shouldn’t be an overriding after all. If you have
a feature called a p p e n d in both the parent and the heir, they

probably have related semantics. Language conventions such as
overloading, which exorcises name clashes as soon as the sig-
natures differ by as little as one argument type, and “version
management” techniques which legitimizes dubious cases by
interpreting them as “n e w” declarations, are dangerous. For the
debatable sake of short-term convenience, they open the way
to serious long-term trouble.

SEMANTIC OVERLOADING

The mention of polymorphism and dynamic binding helps ex-
plain where the fundamental contradiction lies. The form of over-
loading discussed so far may be called s y n t a c t i c overloading; it
gives the same name to different operations. There is no good
reason to do this. With OT, we can give the same name to dif-
ferent variants of the same operation. For example, class P O I N T
could be part of a hierarchy of graphical classes that all have a
variant of the procedure

move_horizontally (h: REAL)

-- Displace figure by horizontal offset of h.

e n s u r e

-- For all points p in figure, p . x = o l d p.x + h

Then a call of the form

my_figure.move_horizontally (1.0)

will trigger a different procedure depending on the exact type of
the object to which m y _ f i g u r e happens to be attached at the time
of execution of the call. These procedures are all different, and
yet they are all implementations of the same basic contract: move
all the points of a figure horizontally by h. This may be called s e-
m a n t i c overloading and provides some of the principal expres-
sive power of OO development, allowing various components of
a system to know as little as possible about each other, and hence
supporting flexible, extendible software architectures.

Syntactic overloading gives the same name to different oper-
a t i o n s . In contrast, semantic overloading—to continue using this
term for a while, although of course “polymorphism and dynamic
binding” is more precise—guarantees that features from a single
seed, appearing in descendants of a common ancestor, are alter-
native implementations of the same underlying abstract oper-
a t i o n, such as “move horizontally by a given displacement.” This
property is not just hand waving: in Eiffel, it is guaranteed by the
inheritance rules of Design by Contract, since you can specify a
precondition and postcondition at the highest level, defining the
common semantics, which the language rules automatically en-
force on all the alternative variants. Here, OT brings one of its
major contributions to both programming techniques and soft-
ware architecture.

A MATHEMATICAL NOTE

As a conclusion, let me sketch the mathematical underpinning
for the preceding discussion. This presentation is tentative and

E I F F E L

www.joopmag.com October/November 2001 Journal of Object-Oriented Programming 6

by no means formal; it just shows the general direction of a sat-
isfactory mathematical model.

If we apply the No-Overloading Principle, the basic mathe-
matical model for classes is simple: we consider a class as es-
sentially a function

C: Name F e a t u r e

where A B denotes the set of finite functions from A to B. You
may view a finite function as simply a set of pairs, such as

{[0, 0], [1, 1], [2, 4], [3, 9], [4, 16]}

(part of the “square” function on integers); it’s finite—that is
all we deal with using computers—meaning it only has a fi-
nite set of pairs, and it is a function, meaning that no two pairs
start with the same element. For example, {[0, 0], [0, 1], [2,
4]} is not a function because two of its pairs start with the same
element 0.

Our example class P O I N T gives the function

{ [“x”, horizontal_coordinate_feature] ,
[“y”, vertical_coordinate_feature] ,
[“move”, move_feature] ,
… }

where “m o v e” is a string (a feature name), m o v e _ f e a t u r e d e n o t e s
the associated feature, and so on.

One of the nice things about such a model—based on semantic
work done originally by Luca Cardelli in the 1980’s—is that it
immediately generalizes to objects. The instances of class P O I N T
are, in this model, functions in

Name V a l u e

where the only names to be considered here are those of attributes,
such as x and y in our example—a subset of the feature names
for the class—and Value describes the set of possible field values.
For example an object of type P O I N T representing the point of
coordinates x = 0 and y = 1 is, formally, the function

{ [“x”, 0], [“y”, 1]}

Returning to classes, the use of a function in this model auto-
matically applies the No-Overloading Principle without further
ado. Any form of syntactic overloading would lead to great math-
ematical complication.

Inheritance also fits nicely in this framework. Since we view
classes as functions, a special case of sets, the basic idea for mod-
eling inheritance is that a class is the “union” of its own defini-
tion and those of its parent or parents. For example, if B i n h e r i t s
from A , defined as {[“x”, f e a t u r e 1], {[“y”, f e a t u r e 2]}, and itself in-
troduces f e a t u r e 3 with name z, then it formally is {[“x”, f e a t u r e 1] ,

{[“y”, f e a t u r e 2], [“z”, feature3]}. But when there is a name clash
this does not work any more, as the union of two functions is not
always a function: with

f = {[0, 1], [1, 2]}
g = {[0, 0], [1, 1]}

both f and g are functions, but their union {[0, 1], [1, 2], [0, 0],
[1, 1]} is not since it has two pairs (the first and the third) start-
ing with 0 and giving conflicting values. For functions repre-
senting classes, this is the case of a name clash, for example between
inherited and new features.

To make a form of union work between functions, and always
yield a function, we may use an “overriding union” operator that
in the case of a conflict always selects the value from the second
operand. (This is arbitrary; we could have chosen the first operand
instead. Either way, we have to be consistent.) A possible symbol
for this operator is , leaning toward the “dominant” operand,
in the same way that the bottom bar of the Russian Orthodox
cross leans toward the thief who repented. With this operator,
the result is always a function; for example:

{[0, 1], [1, 2]} {[0, 0], [1, 1]} = {[1, 2], [0, 0], [1, 1]}

with the pair [0,0] from the second operand overriding the pair
[0, 1] from the first operand. If a class B inherits from a class A,
the resulting function will be A B, accounting for any feature
redefinition in B, which overrides the original from A.

In the case of multiple inheritance, it would be a mistake to
use overriding union to favor one parent over the other; this would
mean that the order in which a class lists its parents has seman-
tic consequences, certainly something we don’t want. Instead we
resort to the other technique for performing the union of two
functions and guaranteeing that the result is still a function: mak-
ing sure that their domains are disjoint, in other words that no
two pairs have the same first element—no two features have the
same name. Renaming achieves this by yielding a set of final names
that satisfies the No-Overloading Principle. Then we use over-
riding union with the features of the new class to take into ac-
count any necessary feature redefinitions.

This is only the start of a proper formal semantics for classes,
objects, and inheritance, but seems to indicate that by sticking to
the No-Overloading Principle we can in the end obtain a clean
and understandable mathematical model.

DON’T SHOOT YOURSELF IN THE FOOT

Mathematical model or not, this discussion will, I hope, have con-
vinced you that overloading does not go well with OT, and that
keeping things simple, in particular the correspondence between
names and features, is the key to building a solid basis for the pow-
erful techniques of OO analysis, design, and programming. n

REFERENCES

1. Meyer, Bertrand. Eiffel: The Language, Prentice Hall, Englewood Cliffs, NY., 1992.

7 Journal of Object-Oriented Programming October/November 2001 www.joopmag.com

jconnolly
Is this correct? I just wanted to check; I thought I remembered the TOP bar as leaning toward the bottom one.

