
Verifying Executable Object-Oriented
Specifications with Separation Logic

Stephan van Staden1, Cristiano Calcagno??2 3, and Bertrand Meyer1

1 ETH Zurich, Switzerland
{Stephan.vanStaden,Bertrand.Meyer}@inf.ethz.ch

2 Monoidics Ltd
3 Imperial College, London

ccris@doc.ic.ac.uk

Abstract. Specifications of Object-Oriented programs conventionally
employ Boolean expressions of the programming language for assertions.
Programming errors can be discovered by checking at runtime whether
an assertion, such as a precondition or class invariant, holds. In this work,
we show how separation logic can be used to verify that these executable
specifications will always hold at runtime. Both the program and its ex-
ecutable assertions are verified with respect to separation logic specifica-
tions. A novel notion called relative purity embraces historically problem-
atic side-effects in executable specifications, and verification boils down
to proving connecting implications. Even model-based specifications can
be verified. The framework is also well-suited to separation logic proof
tools and now implemented in jStar. Numerous automatically verified
examples illustrate the framework’s use and utility.

Key words: Object-orientation, Specification, Verification, Separation
logic, Executable assertions, Contracts

1 Introduction

Many conventional Object-Oriented (O-O) program specification approaches,
such as Eiffel [1], Spec# [2] and JML [3], use Boolean expressions of the pro-
gramming language to specify routine preconditions and postconditions, class
invariants, and other assertions which hold at particular points such as loop in-
variants. Explaining the operational meaning of such executable assertions to
programmers is easy, as they already know the meaning of programming lan-
guage expressions. Even if such specifications are not formally verified, their
runtime checking and value for testing provide significant benefits. Their popu-
larity in software development is therefore not surprising.

Verifying that executable specifications will always hold at runtime is not
easy. Expressions used for assertions typically include calls to methods which
depend on the heap and which may also cause side-effects such as heap mu-
tation. Consider for example a class SLIST which implements a sorted list of
?? This work was done while visiting ETH Zurich.

2 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

integers. The postcondition of method insert(i) can be specified as has(i), mean-
ing that the list has or contains an element i. Yet has(i) might allocate a new
iterator, traverse the linked structure, and temporarily affect bookkeeping of
active iterators. Translating expressions such as has(i) into logical formulae for
static verification is hard. Moreover, programming language expressions might
have preconditions and are generally not guaranteed to terminate. This further
complicates matters for verification.

In contrast to executable specifications, separation logic predicates are not
computations. They specify the effects of computations in terms of program
states, i.e. the contents of the stack and heap, and not in terms of outcomes of
further computations. Proof systems based on separation logic (e.g. [4, 5]) are
promising for O-O verification and can successfully verify common programming
patterns such as the Visitor [6] and Composite [7]. Unfortunately, the semantics
of separation logic is not yet widely known by O-O programmers.

How separation logic specifications can be used to tame executable ones
is the topic of this paper. The guarantee is simple: if a program satisfies its
separation logic specification and the executable assertions are verified with the
separation logic ones, then all executable assertions are guaranteed to hold at
runtime. We do not verify the program with respect to its executable assertions,
we verify the program and its executable assertions with respect to a separation
logic specification. For example, if a program containing class SLIST satisifies its
separation logic specification, and the separation logic postcondition of insert(i)
is Q, then we are guaranteed that the executable postcondition, has(i), will
always hold at runtime if we can prove the connecting implication Q V has(i).
A connecting implication connects the world of separation logic predicates with
the one of Boolean programming language expressions. It is proved in this case
by deriving the Hoare-style triple {Q}v := has(i){Q ∧ v = True}, where v is a
fresh variable. A novel notion called relative purity is embedded in connecting
implications and embraces side-effects in expressions such as has(i). The logical
framework depends on the non-faulting semantics of separation logic triples and
its ∗-connective, as we shall see.

We believe that executable and separation logic specifications can be com-
plementary in O-O software development. The proposed formal framework ac-
commodates both ordinary programmers and proof experts. Programmers can
express their intentions in the form of executable assertions and use runtime
checking to identify faults. While software designs are still evolving, it is prob-
ably also easier to change executable assertions than more elaborate specifica-
tions. We envisage that in a second phase, once the software has stabilized and
many faults have been removed, proof experts would annotate the critical parts
with separation logic for verification. At this point the executable assertions do
not have to be discarded: our framework integrates the specification approaches
and can verify whether the expectations recorded in executable assertions are
fulfilled. Problems in the verification of executable assertions can indicate dis-
crepancies between the two types of specifications, e.g. a misunderstanding by
the separation logic specifier as to when a routine may be called. Executable

Verifying Executable Object-Oriented Specifications with Separation Logic 3

and separation logic specifications can therefore complement each other even in
verification.

This paper makes several contributions in the area of O-O specification and
verification:

1. It describes a simple technique based on connecting implications for verifying
executable preconditions and postconditions. It gives executable assertions
a semantics based on their semantics as expressions. The formalization can
even be applied to contracts for non-O-O non-garbage collected languages
such as C.

2. It presents simple techniques to verify class invariants. If an invariant is
specified with a separation logic predicate, then properties of the invariant,
such as the fact that it holds in all visible states [8], often follow as a conse-
quence. The framework can help to devise flexible and sound class invariant
protocols.

3. It illustrates the framework’s applicability to model-based specifications [9],
where model classes and model queries are used to strengthen contracts [10].

4. It shows how the novel notion of relative purity tolerates side-effects in exe-
cutable assertions to a high degree.

The techniques are well-suited to separation logic proof tools. We imple-
mented them in the jStar tool [6] and verified the paper’s examples automati-
cally.

A discussion of background material follows in Section 2. Precondition and
postcondition verification are the topics of Sections 3 and 4 respectively. Section 5
contains an exposition on class invariants. The verification techniques are then
applied to model-based specifications in Section 6. Relative purity and predicate
extraction are considered in Section 7. A discussion of the jStar implementation
follows in Section 8. Finally, Section 9 concludes and mentions related work.

2 Background

The paper presents the verification framework in an abstract setting, which can
be instantiated with concrete languages and proof systems. The abstract setting
is not committed to a particular separation logic, proof system or language type.
It is even applicable to non-O-O non-garbage-collected languages such as C. Our
presentation uses an O-O language and proof system to illustrate the abstract
ideas with concrete examples.

2.1 The abstract setting: triples and footprints

An abstract triple is of the form {P}s{Q}. The partial correctness meaning of a
triple is as follows: statement s does not fault when executed in a state satisfying
P, and if it terminates then the resulting state satisfies Q. Faulting occurs when
s accesses unallocated memory. In O-O terms, ‘unallocated memory’ means heap

4 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

storage which is not necessarily present in the initial state4 and not allocated by
s before being accessed. O’Hearn [11] uses the term footprint of s to describe the
minimal state from which s can be executed safely. So s when executed in a state
satisfying P will not fault if P describes at least the footprint of s. The notion
of footprint has been expanded since [12], yet this is of little concern here.

2.2 The concrete setting: an O-O language and proof system

O-O language The programming language notation is based on Eiffel [1]. Void
corresponds to ‘null’ in other languages. Two reserved program variables Cur-
rent and Result denote the current object (‘this’) and the result of a function
call respectively. Current is never Void. The term feature describes methods
and fields, sometimes called the ‘members’ of a class. Feature overloading, in-
cluding method overloading, is not allowed. We drop empty argument lists in
method declarations and calls, and adhere to the uniform access principle [1]
where queries can be implemented by fields or result-returning methods.

Predicates Predicates have the usual intuitionistic separation logic seman-
tics [13, 11, 14, 5]. Informally, the predicate x.f ↪→ e means that the f field of ob-
ject x has value e, and P ∗ Q means that P and Q hold for disjoint portions of
the heap. The predicate x : C means x references an object whose dynamic type
is exactly C, and x <: C means x references an object whose dynamic type is a
subtype of C. In both cases x 6= Void, and x : C ⇒ x <: C. Within a context,
if x is declared of type C then x <: C whenever x 6= Void.

As customary in a Hoare-style logic, we allow auxiliary variables5 in pred-
icates. FV (P) denotes the set of free variables, i.e. free program and auxiliary
variables, in predicate P.

Abstract predicate families [15, 5] facilitate O-O abstraction in predicates.
An abstract predicate family (abbreviated apf) provides an abstract predicate
p for which each class C can define an entry p@C. The first argument of an
apf predicate or entry is called the root. The root followed by a dot is written
before the apf predicate or entry name. The whole prefix is omitted if the root
is Current. An apf predicate’s root can never be Void. Since the meaning of
an apf predicate depends on the dynamic type of the root object, it can be
seen as mirroring dynamic dispatch of object-orientation in the logic. The other
arguments of an apf predicate or entry are a set of tagged arguments, where tag
names provide useful hints about the purpose of tagged values. Apfs offer high
levels of abstraction in specifications and proofs: apf predicates and entries are
treated abstractly by clients, unless information about them is made explicitly
available [4].

Finally, inductive data types and functions involving them are used in predi-
cates. This paper employs only sequences of integers, where α and β are sequence-
valued variables. ε denotes the empty sequence, and [e] denotes the singleton
4 Separation logic systems do not rely on well-formedness of the heap.
5 Also called logical or ghost variables.

Verifying Executable Object-Oriented Specifications with Separation Logic 5

sequence whose only element is e. The length of α is written |α|, the i’th element
of α is αi, and α++β denotes the sequence obtained by appending α and β.

Separation logic proof system The proof system for partial correctness we
use is described in [4]. An understanding of Parkinson and Bierman’s proof
system [5] also suffices, since the extensions which [4] provides are exercised
sparingly in the presentation.

Judgments about statements are of the form ∆; Γ `s {P}s{Q}, where s is a
statement and P and Q are separation logic predicates. The predicate ∆ contains
assumptions about the class in which s appears, and the environment Γ contains
specifications of all methods in a program. In examples we leave ∆ and Γ implicit,
since the presented proofs do not rely on ∆ and method specifications appear in
program listings.

The proof rules for most statements are standard (see e.g. [14, 4]). Verification
of a dynamically dispatched call uses the called feature’s dynamic separation
logic specification. Provided x is not y and x is not in z, the rule for a dynamically
dispatched result-returning call is:

Γ(C.f) = (u,{P} {Q})
∆; Γ `s {P[y, z/Current,u] ∗ y <: C}

x := y.f(z)
{Q[y, z, x/Current,u,Result]}

where u are the formal arguments of feature f in class C.
Structural rules for manipulating statement judgments include the rule of

Consequence and the Auxiliary variable elimination rule. Separation logic also
has the Frame rule, which facilitates local reasoning with high levels of abstrac-
tion in the presence of aliasing. Provided s modifies no variable in FV (T):

∆; Γ `s {P}s{Q} Frame∆; Γ `s {P ∗ T}s{Q ∗ T}
Informally, the Frame rule states that a statement does not modify disjoint
portions of the heap, since the statement can never access storage outside its
footprint.

Programming language expressions The kernel language [4] for which the
proof system is defined uses simple statements and expressions. To facilitate for-
mal reasoning about executable assertions, the function LEMv translates a pro-
gramming language statement v := E to an equivalent kernel language statement.
We assume v has the same static type as expression E and that t, t1, . . . tn are
fresh variables:

LxMv
def= v := x, if x is a variable, Void or True.

Le0.f(e1, . . . , en)Mv
def= Le0Mt0 ; . . . ; LenMtn ; v := t0.f(t1,. . . ,tn)

Lnot eMv
def= LeMt; v := not t

Le1op e2Mv
def= Le1Mt1 ; Le2Mt2 ; v := t1 op t2, if op ∈ {and,+,−,=,>=}.

6 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

The translation function preserves the semantics of complex programming
language expressions. For example, if the source language used short-circuit eval-
uation of e1 and e2 instead, then its translation would have involved a conditional
statement.

3 Precondition verification

Given a separation logic predicate P and an executable assertion B which should
hold at the same program point, the question is whether B somehow follows from
P. To this end we define the connecting implication P V B, which informally
means that P is sufficient to evaluate B to True:

P V B def= {P}v := B{P ∧ v = True}, where v is a fresh variable.

The intuition behind the definition is that in every state satisfying P, we can
evaluate B into v without faulting, and if this computation terminates, then P
will hold in the resulting state and v will have value True. The routine body relies
on P, so it must be re-established by the evaluation of B. This enforces a notion
of purity on B, i.e. it prevents B from performing certain kinds of side-effects
while allowing others. Section 7.1 contains more about this.

In the concrete setting of the O-O proof system, there is a sufficient condition6

for P V B:

If ∆; Γ `s {P}LBMv{P ∗ v = True}, then P V B under ∆ and Γ.

In intuitionistic separation logic, which is used for garbage-collected O-O lan-
guages such as our concrete one, (P ∗ e = e′) ⇔ (P ∧ e = e′). The ∆; Γ used
to verify a B appearing in class C is the same ∆; Γ under which statements and
methods of C are verified. In the presented examples we omit explicit reference
to ∆ and Γ, since none of them uses the additional logical assumptions in ∆, and
method specifications in Γ can be read directly from code listings. For a formal
treatment of ∆ and Γ, the reader is referred to [4].

Examples. Consider the method preconditions of class SLIST in Figure 1.

1. The executable precondition of the constructor SLIST and features insert,
has, count and is empty is True. For any separation logic predicate P it holds
that P V True:

Assigment axiom∆; Γ `s {True = True}v := True{v = True}
Consequence∆; Γ `s {True}v := True{v = True}
Frame rule∆; Γ `s {True ∗ P}v := True{v = True ∗ P}
Consequence∆; Γ `s {P}v := True{P ∗ v = True}

6 Whether or not this condition is also necessary depends on the completeness of the
proof system.

Verifying Executable Object-Oriented Specifications with Separation Logic 7

class SLIST
define x.L@SLIST(l: α) as . . .
axiom

L sorted: ∀α· L(l: α) ⇒ [∀i,j∈ (1..|α|)· i < j ⇒ αi ≤ αj]
feature

SLIST
dynamic {True} {L(l: ε)}
executable {True} {is empty}

insert(i: INT)
dynamic {L(l: α)} {∃αF, αS· L(l: αF++[i]++αS) ∗ αF++αS = α}
executable {True} {has(i) and count = old(count) + 1}

remove first
dynamic {L(l: [e]++α)} {L(l: α)}
executable {not is empty} {count = old(count) − 1}

first: INT
dynamic {L(l: [e]++α)} {L(l: [e]++α) ∗ Result = e}
executable {not is empty} {not is empty}

has(i: INT): BOOL
dynamic {L(l: α)} {L(l: α) ∗ Result = (∃j ∈ 1..|α| · αj = i)}
executable {True} {True}

count: INT
dynamic {L(l: α)} {L(l: α) ∗ Result = |α|}
executable {True} {True}

is empty: BOOL
dynamic {L(l: α)} {L(l: α) ∗ Result = (α = ε)}
executable {True} {True}

invariant
count non negative: {L(l: α)} count >= 0
empty definition: {L(l: α)} is empty = (count = 0)

end

Fig. 1. The interface of a sorted list class.

8 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

The side-condition of the Frame rule is satisfied: modifies(v := True) = {v}
and {v}∩FV(P) = ∅ (remember that v is fresh). The second application of
Consequence used the commutativity of ∗ and the fact that P⇒ (P ∗ True)
in intuitionistic separation logic.
Instead of such detailed proofs, the rest of the paper uses proof outlines
where statements are interspersed between assertions. Explicitly mentioning
the freshness of certain variables is omitted if it is clear from the context.
The above proof looks as follows in outline form:

{P}
v := True

{P ∗ v = True}

2. The preconditions of remove first and first are identical. Here is a proof of
L(l: [e]++α) V not is empty:

{L(l: [e]++α)}
t := is empty

{L(l: [e]++α) ∗ t = ([e]++α = ε)}
{L(l: [e]++α) ∗ t = False}

v := not t
{L(l: [e]++α) ∗ t = False ∗ v = ¬t}
{L(l: [e]++α) ∗ v = True}

3. The executable precondition does not always follow from the separation logic
one. Suppose that the executable precondition of has is not True but instead
not is empty. A proof attempt of L(l: α) V (not is empty) proceeds as
follows:

{L(l: α)}
t := is empty

{L(l: α) ∗ t = (α = ε)}
v := not t

{L(l: α) ∗ t = (α = ε) ∗ v = ¬t}
{L(l: α) ∗ v = (α 6= ε)}

Since α 6= ε is not a consequence, the proof cannot conclude with L(l: α) ∗
v = True. The separation logic specification is too weak to demonstrate the
executable one.7

Such a clash of specifications has several potential causes. The executable
assertion is maybe overly restrictive, or it captures important semantic prop-
erties of the domain which the separation logic one ignores. If the issue is
not resolved, there is no guarantee that the executable assertion will hold at
runtime. 2

The rest of the paper contains more examples of the form P V B.
7 In fact we have shown that (not is empty) evaluates to False if α = ε, so the only

way it can also evaluate to True is when it loops forever. A verified implementation
of SLIST (and classes transitively used by it) for which (not is empty) terminates
when executed in some initial state satisfying L(l: ε) comprises a counterexample for
L(l: α) V (not is empty).

Verifying Executable Object-Oriented Specifications with Separation Logic 9

4 Postcondition verification

Executable postconditions for routines may contain so-called old-expressions.
The old-expression old(E) denotes the value of expression E in the state right
before the routine is executed, i.e. the state which satisfies the precondition.

Given two separation logic predicates P and Q and an executable assertion
B which may contain old-expressions, the connecting implication P,Q V B in-
formally means that any pre-state satisfying P and any post-state satisfying Q
are sufficient to evaluate B to True:

Let old(E1),. . . ,old(En) be the list of old-expressions in B and let v, v1,. . . ,vn

be fresh variables.

P,Q V B def= ∃R· {P}(v1 := E1, . . . , vn := En){P ∗ R} and
{Q ∗ R}v := B[v1; . . . ; vn]{Q ∧ v = True}

B[v1;. . . ;vn] def= B[v1/old(E1),. . . ,vn/old(En)]

Intuitively, R contains the result of evaluating (v1:=E1,. . . ,vn:=En) in the
pre-state where P holds. Old-expression evaluation must re-establish P because
the routine body relies on it. The existence of old-expression results depends on
runtime checking, so R is not contained in Q and the body is not allowed to
access state described by R. The body is verified only with respect to P and Q,
which guarantees that it will establish Q upon termination and never touch R.
So Q ∗ R holds right after the body’s execution. Evaluating B[v1;. . . ;vn] in this
state should yield True and re-establish Q, since clients depend on the fact that
Q holds. Figure 2 summarizes the proof obligations of a routine.

r
pre: P B

body
post: Q C

P V B
{P}body{Q}
P,Q V C

{P}
v := B

{P ∧ v=True}
{P}

(v1:=E1, . . . ,vn:=En)
{P ∗ R}
{P}

body
{Q}

{Q ∗ R}
w := C[v1;. . . ;vn]

{Q ∧ w=True}
{Q}

(a) (b) (c)

Fig. 2. (a) Routine r and its specification. (b) Resulting proof obligations. (c) Proof
obligations as triples in a proof outline.

10 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

The predicate R will almost certainly have v1,. . . ,vn as free variables, but
should not have free variables which are modified by the routine body.8

An assertion language’s semantics will stipulate how to prove a triple of the
form {P}(v1 := E1, . . . , vn := En){Q}. For example, if old-expressions are evalu-
ated in an unspecified order, then {P}s{Q}must be proved for every permutation
s of (v1:=E1,. . . ,vn:=En).

In our concrete O-O setting, the assertion language specification states that
old-expressions will be evaluated in an arbitrary order. The following condition
is sufficient (but not necessary9) for concluding P,Q V B:

If ∀i ∈ (1..n)· ∆; Γ `s {P}LEiMvi{P ∗ Ri} with Result /∈FV (Ri)
and ∆; Γ `s {Q ∗ R1 ∗ . . . ∗ Rn}v := B[v1; . . . ; vn]{Q ∗ v = True}
then P,Q V B under ∆ and Γ.

Once again, an assertion B appearing in class C is verified with the same
∆; Γ as the statements and methods of C.

Relationships between P,Q V B and Q V B exist, which are convenient in
proofs because many executable postconditions contain no old-expressions.

1. If P,Q V B then Q V B whenever B contains no old-expression.

2. If Q V B then P,Q V B for any P.

So P,Q V B iff Q V B whenever B contains no old-expression.

Examples. Consider class SLIST in Figure 1.

1. For remove first, it is the case that L(l: [e]++α),L(l: α) V (count = old(count)
− 1). The executable postcondition contains one old-expression and E1 =
count. Here is the first part of the proof:

{L(l: [e]++α)}
t1 := count

{L(l: [e]++α) ∗ t1 = |[e]++α|}

Notice that FV(t1 = |[e]++α|) = {t1,e,α}. Using (t1 = |[e]++α|) for R1

completes the proof:

{L(l: α) ∗ t1 = |[e]++α|}
t2 := count

{L(l: α) ∗ t2 = |α| ∗ t1 = |[e]++α|}
{L(l: α) ∗ t2 = |α| ∗ t1 = |α|+ 1}

t3 := t1 − 1
{L(l: α) ∗ t2 = |α| ∗ t1 = |α|+ 1 ∗ t3 = |α|}

8 This allows the transfer of R over the routine body with the Frame rule.
9 Suppose we take (∃e· o.f ↪→ e ∗ even(e)) for P and o.f++ for both E1 and E2. Since

there exists no Ri such that ∆; Γ `s {P}LEiMvi{P ∗ Ri} for i∈ 1..2, the rule cannot
prove P,True V odd(old(E1)+old(E2)).

Verifying Executable Object-Oriented Specifications with Separation Logic 11

{L(l: α) ∗ t2 = |α| ∗ t3 = |α|}
v := t2 = t3

{L(l: α) ∗ t2 = |α| ∗ t3 = |α| ∗ v = (t2 = t3)}
{L(l: α) ∗ v = True}

2. The executable postcondition of the constructor SLIST contains no old-
expression, so it suffices to prove L(l: ε) V is empty:

{L(l: ε)}
v := is empty

{L(l: ε) ∗ v = (ε = ε)}
{L(l: ε) ∗ v = True}

3. The executable postcondition of first contains no old-expression, so we only
need (L(l: [e]++α) ∗Result = e) V not is empty. Example 2 in the previous
section established the inner triple of the proof:

{L(l: [e]++α) ∗ Result = e}
{L(l: [e]++α)}

Lnot is emptyMv
{L(l: [e]++α) ∗ v = True}

{L(l: [e]++α) ∗ v = True ∗ Result = e}
{L(l: [e]++α) ∗ Result = e ∗ v = True}

The Frame rule is key to the proof.
4. Consider the postcondition of insert. It contains one old-expression, namely

old(count):

{L(l: α)}
t1 := count

{L(l: α) ∗ t1 = |α|}

The second part of the proof consists of small pieces which are put together.

{L(l: αF++[i]++αS)}
t2 := has(i)

{L(l: αF++[i]++αS) ∗ t2 = (∃j ∈ 1..|αF++[i]++αS| · (αF++[i]++αS)j = i)}
{L(l: αF++[i]++αS) ∗ t2 = True}

Applying Frame and Consequence to this triple yields Piece 1:

{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ t1 = |α|}
t2 := has(i)

{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ t1 = |α| ∗ t2 = True}

Next, we prove

{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ t1 = |α|}
t3 := count

{L(l: αF++[i]++αS) ∗ t3 = |αF++[i]++αS| ∗ αF++αS = α ∗ t1 = |α|}
{L(l: αF++[i]++αS) ∗ t3 = |α|+ 1 ∗ αF++αS = α ∗ t1 = |α|}

t4 := t1 + 1
{L(l: αF++[i]++αS) ∗ t3 = |α|+ 1 ∗ αF++αS = α ∗ t1 = |α| ∗ t4 = t1 + 1}
{L(l: αF++[i]++αS) ∗ t3 = |α|+ 1 ∗ αF++αS = α ∗ t4 = |α|+ 1}

12 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

t5 := t3 = t4
{L(l: αF++[i]++αS) ∗ t3 = |α|+ 1 ∗ αF++αS = α ∗ t4 = |α|+ 1 ∗ t5 = (t3=t4)}
{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ t5 = True}

Applying Frame establishes Piece 2:

{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ t1 = |α| ∗ t2 = True}
t3 := count
t4 := t1 + 1
t5 := t3 = t4

{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ t5 = True ∗ t2 = True}

Here is Piece 3:

{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ t5 = True ∗ t2 = True}
v := t2 and t5

{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ t5 = True ∗ t2 = True ∗ v = (t2 and t5)}
{L(l: αF++[i]++αS) ∗ αF++αS = α ∗ v = True}

The proof is completed by putting the three pieces together, eliminating αF

and αS with the Auxiliary variable elimination rule, and applying Conse-
quence to move (t1 = |α|) and (v = True) out from under the quantifiers to
the top level in the precondition and postcondition respectively. 2

5 Class invariant verification

Consider an executable assertion B which should hold at program point pp. If
the separation logic predicate P holds at pp and P V B, then B is verified for
pp. This technique can be used to verify executable assert statements and loop
invariants, for example.

Class invariants10 (henceforth simply called invariants) are verified in a simi-
lar way. Since an invariant protocol [16] always specifies the points in a program
where an invariant, say B, should hold, B is verified if it is verified for all such
points.

Another technique is to annotate an invariant B with a separation logic pred-
icate P which characterizes the states in which the invariant should hold. If P
V B, then B is verified. This offers a flexible scheme if annotations are given on
the level of individual invariant clauses.

Examples. Consider the following invariant clauses, reproduced from the bottom
of class SLIST in Figure 1:11

invariant
count non negative: {L(l: α)} count >= 0
empty definition: {L(l: α)} is empty = (count = 0)

10 Also called object invariants.
11 These are public invariants, as opposed to private representation invariants (which is

how the term ‘invariant’ is used in the Spec# literature, e.g. [17]). Private invariants
can be verified in a similar way.

Verifying Executable Object-Oriented Specifications with Separation Logic 13

1. For the clause named count non negative, L(l: α) V (count >= 0) holds:

{L(l: α)}
t := count

{L(l: α) ∗ t = |α|}
v := t >= 0

{L(l: α) ∗ t = |α| ∗ v = (t ≥ 0)}
{L(l: α) ∗ v = True}

2. The invariant clause empty definition is verified similarly:

{L(l: α)}
t1 := is empty

{L(l: α) ∗ t1 = (α = ε)}
t2 := count

{L(l: α) ∗ t2 = |α| ∗ t1 = (α = ε)}
t3 := t2 = 0

{L(l: α) ∗ t2 = |α| ∗ t1 = (α = ε) ∗ t3 = (t2 = 0)}
{L(l: α) ∗ t1 = (α = ε) ∗ t3 = (|α| = 0)}

v := t1 = t3
{L(l: α) ∗ t1 = (α = ε) ∗ t3 = (|α| = 0) ∗ v = (t1 = t3)}
{L(l: α) ∗ v = ((α = ε) = (|α| = 0))}
{L(l: α) ∗ v = True}

2

The fact that the structural rules of separation logic are sound provides a
simple way to show that a verified invariant clause holds at a particular program
point. The following rules can also be used when verifying other executable
assertions:12 13

P V B
Frame′(P ∗ Q) V B

P ⇔ Q P V B
Conseq′Q V B

P V B
AuxVarElim′

(∃x·P) V B

P V B Q V B
Disj′(P ∨ Q) V B

and others.

12 Similar rules can be given for P,Q V B.
13 These rules are independent of the structure of B. Rules also exist which do depend

on its structure. For example, if P1 V B1 and P2 V B2, then (P1 ∗ P2) V (B1

par and B2). This rule allows concurrency in executable assertions.

14 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

The Frame′ rule does not need any side-condition, since the translation of
B will modify only fresh variables, i.e. variables not free in Q. Note the way
Conseq′ is written: if P V B and Q ⇒ P, then Q V B does not necessarily hold
(example 3 in Section 7.1 provides a counterexample). In the AuxVarElim′ rule,
the variable x may not be free in B.

Example. If a program containing class SLIST from Figure 1 is verified, then it
follows as a consequence of the separation logic specification that both invariant
clauses hold in the visible states [8] of SLIST. In other words, both clauses are
established by the constructor and hold on entry and exit of all other public
features. Since each clause B is verified, we know L(l: α) V B. In the following
proofs the ‘V B’ part is omitted.

1. Upon exit from SLIST :

L(l: α)
Frame′L(l: α) ∗ α = ε
Conseq′L(l: ε) ∗ α = ε
AuxVarElim′

∃α· L(l: ε) ∗ α = ε
Conseq′L(l: ε) ∗ True
Conseq′L(l: ε)

2. Upon entry to remove first :

L(l: α)
Frame′L(l: α) ∗ α = β
Conseq′L(l: β) ∗ α = β
AuxVarElim′

∃α· L(l: β) ∗ α = β
Conseq′L(l: β)
Frame′L(l: β) ∗ β = [e]++α
Conseq′L(l: [e]++α) ∗ β = [e]++α
AuxVarElim′

∃β· L(l: [e]++α) ∗ β = [e]++α
Conseq′L(l: [e]++α)

3. For the exit of insert, we start with L(l: β) which was derived in the previous
proof.

L(l: β)
Frame′L(l: β) ∗ β = (αF++[i]++αS) ∗ αF++αS = α
AuxVarElim′

∃β· L(l: β) ∗ β = (αF++[i]++αS) ∗ αF++αS = α
Conseq′L(l: αF++[i]++αS) ∗ αF++αS = α
AuxVarElim′

∃αS· L(l: αF++[i]++αS) ∗ αF++αS = α
AuxVarElim′

∃αF, αS· L(l: αF++[i]++αS) ∗ αF++αS = α

2

In effect we create fine-grained invariant protocols by annotating invariant
clauses: the predicate abstractly specifies the program points where they should

Verifying Executable Object-Oriented Specifications with Separation Logic 15

hold, and invariants can be verified, i.e. guaranteed, to hold there. One can refine
this idea to create more sophisticated invariant protocols.

Example. Here is a sound invariant protocol for single-inheritance programs
where subclasses can refine individual invariant clauses. Γ maps a class name
and invariant clause name to the invariant specification predicate and Boolean
expression. Two rules distinguish the case where class C introduces an invariant
clause named inv from the case where C inherits and refines inv from its parent
C′:

∀i ∈ (1..n)· (P ∗ Current : C) V Bi

Γ `i introduce inv: {P} 〈B1〉 and . . . and 〈Bn〉 in C

C′ ≺1 C
Γ (C.inv) = {P} B
B = 〈B1〉 and . . . and 〈Bn〉
P ⇔ (P′ ∗ R)
∀i ∈ (1..n)· (P′ ∗ Current : C′) V Bi

∀j ∈ (1..m)· (P′ ∗ Current : C′) V B′j
Γ `i inherit inv: {P′} B and 〈B′1〉 and . . . and 〈B′m〉 in C′

The above invariant protocol guarantees that whenever ‘inv: {P} B’ appears in
class C, then ∀x <: C· P[x/Current] V B[x/Current] where x is fresh. The
soundness proof uses the fact that if P V B and P V B′, then P V (B and B′).
Enclosing an expression in angle-brackets provides it with a side-effect scope. 2

6 Model-based specifications

Since executable specifications are frequently not very expressive, model classes
and model-based contracts are sometimes used to strengthen them [9, 10].

Example. Consider the interface of model class SEQUENCE in Figure 3. It pro-
vides an abstraction of immutable sequences for specification purposes. Class
SLIST can be specified in terms of SEQUENCE, as the interface extract in Fig-
ure 4 shows. Note that SLIST now has a model query, namely model, which
returns the immutable sequence abstraction of an SLIST instance at the point
when it is called. A comparison of remove first ’s specification in Figures 1 and 4
shows that the model-based specification involves the element values stored in
an SLIST instance and not just their number. 2

The following three problems are typically not easy to solve with conventional
techniques [18, 19]:

1. Devising semantics for model classes and proving their implementations cor-
rect.

2. Giving a semantics to model queries, such as model in Figure 4, and proving
their implementations correct.

16 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

class SEQUENCE
define x.SEQ@SEQUENCE(s: α) as . . .
feature

SEQUENCE
dynamic {True} {SEQ(s: ε)}

cons(i: INT): SEQUENCE
dynamic {SEQ(s: α)} {SEQ(s: α) ∗ Result.SEQ(s: [i]++α)}

head: INT
dynamic {SEQ(s: [e]++α)} {SEQ(s: [e]++α) ∗ Result = e}

tail: SEQUENCE
dynamic {SEQ(s: [e]++α)} {SEQ(s: [e]++α) ∗ Result.SEQ(s: α)}

is nil: BOOL
dynamic {SEQ(s: α)} {SEQ(s: α) ∗ Result = (α = ε)}

eq(o: SEQUENCE): BOOL
dynamic {SEQ(s: α) ∗ o.SEQ(s: β)}

{SEQ(s: α) ∗ o.SEQ(s: β) ∗ Result = (α = β)}
end

Fig. 3. The interface of model class SEQUENCE.

class SLIST
. . .

feature
. . .
model: SEQUENCE
dynamic {L(l: α)} {L(l: α) ∗ Result.SEQ(s: α)}
executable {True} {True}

remove first
dynamic {L(l: [e]++α)} {L(l: α)}
executable {not model.is nil} {model.eq(old(model).tail)}
. . .

invariant
. . .
empty inv: {L(l: α)} is empty = model.is nil

end

Fig. 4. An extract from class SLIST which uses model-based contracts.

Verifying Executable Object-Oriented Specifications with Separation Logic 17

3. Verifying model-based specifications, such as the model-based contract of
remove first and the model-based invariant clause empty inv in Figure 4.

The first two problems can be solved with separation logic. Figures 3 and 4
show separation logic specifications for a model class and model query. Conven-
tional separation logic proof systems can be used to verify their implementations.
The third problem can then be addressed with the framework of this paper.

Examples. Consider the model-based specifications of class SLIST in Figure 4.
Suppose that omitted features have the same separation logic specifications as
in Figure 1.

1. For the invariant clause empty inv :

{L(l: α)}
t1 := is empty

{L(l: α) ∗ t1 = (α = ε)}
t2 := model

{L(l: α) ∗ t2.SEQ(s: α) ∗ t1 = (α = ε)}
t3 := t2.is nil

{L(l: α) ∗ t2.SEQ(s: α) ∗ t3 = (α = ε) ∗ t1 = (α = ε)}
{L(l: α) ∗ t3 = (α = ε) ∗ t1 = (α = ε)}

v := t1 = t3
{L(l: α) ∗ t3 = (α = ε) ∗ t1 = (α = ε) ∗ v = (t1 = t3)}
{L(l: α) ∗ v = True}

2. We next verify the postcondition of remove first which contains one old-
expression:

{L(l: [e]++α)}
v1 := model

{L(l: [e]++α) ∗ v1.SEQ(s: [e]++α)}

The proof is completed by using v1.SEQ(s: [e]++α) for R1:

{L(l: α) ∗ v1.SEQ(s: [e]++α)}
t1 := model

{L(l: α) ∗ t1.SEQ(s: α) ∗ v1.SEQ(s: [e]++α)}
t2 := v1.tail

{L(l: α) ∗ t1.SEQ(s: α) ∗ v1.SEQ(s: [e]++α) ∗ t2.SEQ(s: α)}
{L(l: α) ∗ t1.SEQ(s: α) ∗ t2.SEQ(s: α)}

v := t1.eq(t2)
{L(l: α) ∗ t1.SEQ(s: α) ∗ t2.SEQ(s: α) ∗ v = (α = α)}
{L(l: α) ∗ v = True}

2

7 Relative purity and predicate extraction

7.1 Relative purity

Side-effects in executable specifications conventionally complicate verification,
since the logical predicates extracted from them cannot be imperative. Most

18 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

techniques therefore impose some form of purity, i.e. side-effect freeness, on spec-
ification expressions. Purity comes in many flavors, such as strong purity, weak
purity and observational purity [20, 21].

The verification techniques of this paper tolerate side-effects in executable
specifications to a high degree. In fact, they use a novel notion of purity, namely
relative purity. An executable assertion is pure or impure with respect to a given
separation logic specification:

B is pure relative to P def= {P}v := B{P}, where v is a fresh variable.

This means informally that B can be evaluated in a state satisfying P, and that
the evaluation will preserve P. Similarly, for an executable assertion B containing
the list of old-expressions old(E1),. . . ,old(En):

B is pure relative to P,Q def= ∃R· {P}(v1 := E1, . . . , vn := En){P ∗ R} and
{Q ∗ R}v := B[v1; . . . ; vn]{Q}

where v, v1,. . . ,vn are fresh variables and B[v1;. . . ;vn] is defined as before.
The following lemmas follow from the definitions by the rule of Consequence:

If P V B, then B is pure relative to P.

If P,Q V B, then B is pure relative to P,Q.

Examples. Consider the specification of class SLIST in Figure 1.

1. Suppose we replace the executable postcondition of insert with an assertion
B for which LBMv is given by:

t := remove first
insert(t)
v := has(i)

B is pure relative to the separation logic postcondition of insert because one
can prove14 (∃αF, αS· L(l: αF++[i]++αS) ∗ αF++αS = α) V B.

2. Suppose B is an assertion for which LBMv is:

insert(4)
v := not is empty

B is not pure relative to L(l: α). We cannot complete the following proof
attempt, since the needed implication does not necessarily hold:

{L(l: α)}
insert(4)

{∃αF, αS· L(l: αF++[4]++αS) ∗ αF++αS = α}
v := not is empty

{∃αF, αS· L(l: αF++[4]++αS) ∗ αF++αS = α}
// An implication is needed to establish:
{L(l: α)}

14 The proof uses axiom information [4] expressed in L sorted. The rule of Disjunction
can combine subproofs arising from a case split on αF = ε.

Verifying Executable Object-Oriented Specifications with Separation Logic 19

A counterexample showing that B is not pure relative to P in the context of
class C comprises:
(a) a verified implementation of C and all classes transitively used by it;
(b) an execution trace where B is evaluatated in an initial state satisfying P

that either faults or terminates in a state not satisfying P.
3. We use B from the previous example and show (∃α· L(l: α)) V B:

{∃α· L(l: α)}
insert(4)

{∃α, αF, αS· L(l: αF++[4]++αS) ∗ αF++αS = α}
v := not is empty

{∃α, αF, αS· L(l: αF++[4]++αS) ∗ v = True ∗ αF++αS = α}
{∃α· L(l: α) ∗ v = True}

So B is pure with respect to ∃α· L(l: α).
Since L(l: α) ⇒ (∃α· L(l: α)), this example and the previous one show that
if P ⇒ Q and Q V B, then P V B does not hold in general.

4. Let B be any executable assertion without old-expressions. B is always pure
relative to False. If B never faults, then it is also pure relative to True. 2

Any notion of purity which classifies side-effects as intrinsically harmful or
not will rule out executable assertions that programmers might want to write.
Relative purity judges whether a side-effect is harmful or not only with respect
to the properties one wants to establish. For example, the side-effects in B of
examples 2 and 3 are harmless with respect to ∃α· L(l: α), but harmful with
respect to L(l: α). This is so because the side-effect of inserting 4 in a sorted list
will maintain a list structure (what the first purity specification states), but not
a list structure with the same elements (what the second specification demands).
The concept of relativity pervades verification already, since code is only correct
or incorrect relative to a specification. We adopt it also for purity.

Relative purity guarantees soundness of reasoning and does not impose un-
necessary constraints on executable assertions. An executable assertion is free to
perform any side-effect as long as nothing happened from the perspective of the
separation logic specification. Runtime assertion checking does nothing relative
to the specification of a verified program. An executable assertion can even print
‘Hello World!’ if the specification permits it. Purity is in the eye of the asserter.

7.2 Predicate extraction

Programmers are conventionally encouraged to specify sets of states with com-
putations. Hoare-style verification cannot do much with computations – it needs
predicates. So conventional verification approaches, including the Spec# sys-
tem [2] and JML toolset [22], have to extract predicates from computations.
This can be achieved in various ways: as long as there is an agreed-upon map-
ping from computations to predicates, the computations can be seen as syntactic
sugar for predicates.

20 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

When given an executable assertion B without old-expressions15, one pos-
sibility is to extract a predicate P which follows from B. This is described by
the connecting implication B V P, which informally means that B evaluating to
True is sufficient to conclude P. Here is a formal definition:

B V P def= ∀Q· if Q V B then Q⇒P, where v is fresh.

If B V P, then P V B does not necessarily hold. However, the best predi-
cate that can be extracted in this way, i.e. the strongest P such that B V P, is
precisely the weakest P such that P V B. So if we define

Best(B) def=
∨

Q∈{R|RVB} Q

then the following lemmas hold:

1. Best(B) V B and B V Best(B), i.e. Best(B) WV B
2. B V P iff Best(B) ⇒ P
3. If P V B then P ⇒ Best(B)

Since Best(B) WV B, the predicate Best(B) can be seen as the exact logical
counterpart of B.

Examples. Let us ignore inheritance and suppose an implementation of class
SLIST in Figure 1 maintains its stored elements in a list of linked nodes.

1. If is empty is implemented as a field in class SLIST, then
Best(is empty) = (is empty ↪→True).

2. If is empty tests whether a field named ‘head’, which points to the first node,
is Void, then Best(not is empty) = (∃x· head ↪→ x ∗ x 6= Void).

3. If has is implemented by a simple linear traversal of the nodes, then the
predicate Best(has(i)) denotes that i is encountered inside a node before the
next node pointer becomes Void. Note that Best(has(i)) is too weak to rule
out a cyclic or frying-pan [23] list. Such a list does not even have to contain
i in order to satisfy Best(has(i)), because the definition does not demand
termination of has(i). 2

As these examples show, the logical counterparts of executable assertions are
often very weak. Predicate extraction techniques will have to map computations
into stronger predicates in order to verify method bodies. Such predicates are
similar in flavor to the ones used in this paper, and do not follow from the
executable ones.

Our approach uses predicates rather than computations to characterize states.
It views the separation logic specification as the primary one for verification.

15 The treatment can be generalized to executable assertions with old-expressions.

Verifying Executable Object-Oriented Specifications with Separation Logic 21

There is no extraction of predicates, and verification treats executable asser-
tions as computations which should evaluate to True. We do not verify the pro-
gram using its executable assertions, we verify the program and its executable
assertions.

8 Implementation

We extended jStar [6] to provide fully automatic verification of executable O-O
assertions with respect to separation logic specifications. The implementation
leverages mechanisms which are present in jStar and most separation logic proof
tools: symbolic execution, implication checking and frame inference. Symbolic
execution and implication checking are the basic ingredients for proving connect-
ing implications. For example, when proving P V B, jStar executes v := B in
the symbolic state P to obtain a symbolic state P′. It then checks whether P′ ⇒
(P ∗ v = True). For executable postconditions, the results of old-expressions are
inferred automatically with frame inference and not specified manually. Suppose
jStar must prove the connecting implication P,Q V C, where C contains a single
old-expression old(E). Executing v1 := E in the symbolic state P yields a result-
ing symbolic state P′. Frame inference next determines the symbolic result R of
E in P′ ` P ∗ R. Then w := C[v1] is executed in the symbolic state Q ∗ R and
yields a symbolic state Q′. Finally, jStar checks whether Q′ ⇒ (Q ∗ w = True).

The implementation can easily handle the examples presented in this paper,
which are available online at [24]. We do not foresee any fundamental obstacles
in the broader application of this new verification method.

9 Conclusions and related work

The presented framework offers a sound and simple way to verify various exe-
cutable specifications with separation logic. The notion of relative purity is cen-
tral to the framework and embraces side-effects in executable assertions, thereby
allowing programmers more freedom of expression compared to conventional ver-
ification approaches. The framework is well-suited to separation logic proof tools
and implemented in jStar.

Regarding related work, separation logic [11, 13] offers local reasoning for
heap-manipulating programs and is central to the framework. Its adaptation to
object-orientation [14, 5, 4] is especially relevant. Abstract predicate families [14,
15, 5] provide high levels of abstraction in specifications and proofs of O-O pro-
grams. Our presentation builds upon proof systems [5, 4] which incorporate them.

Executable specifications are embodied in programming languages such as
Eiffel [1] and Spec# [2]. Dedicated specification languages such as JML [3] also
use them. JML includes model classes and allows model-based contracts [9].
Another library with model classes is MML [10]. Executable assertions offer
several benefits in software development, including runtime checking [1, 27] and
automated testing [28, 29].

22 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

The problem of obtaining the strongest P such that B V P amounts to
finding the weakest footprint of B preserved by B which ensures B evaluates
to True. This problem appears to be similar in flavor but more general than
abduction [30, 31].

Conventional approaches to verification, including the Spec# system [2] and
JML toolset [22], extract predicates from assertions in a different way [17, 20]:

1. They do not use footprints. Well-formedness of the heap is exploited and any
chain of references can be followed. Since a method can potentially modify
any reachable object, the absence of footprints makes reasoning more global.
Specifications must describe which objects are modified, because there might
be external references to reachable objects. The aliasing problem arises be-
cause objects maintaining such references, or aliases, most likely depend on
properties of the aliased objects. Approaches to the problem typically re-
strict or prevent aliases and/or operations on references. They include con-
finement, sharing and access control, ownership, immutability, uniqueness,
information flow and escape analyses [32].

2. They impose purity constraints on the methods used in assertion expressions.
Several notions of purity exist which prevent methods from changing the
state [20, 21]. A strongly pure method has no side-effect at all. A weakly pure
method does not change existing objects, but might allocate and modify
new ones. An observationally pure method may modify existing objects,
provided that the change is sufficiently encapsulated such that no other class
can observe a change. Proving method purity becomes harder as the notion
becomes more permissive. Weak purity can be proved with a combination of
pointer and escape analysis [33], while a method’s observational purity can
be shown by proving that it simulates a weakly pure one from the perspective
of other classes [21].

3. They encode pure methods and their contracts in first-order logic as un-
interpreted functions and axioms respectively [20, 17, 34]. Checking well-
formedness of pure method specifications is vital in this step, because in-
consistent axiomatizations can result from unsatisfiable specifications or re-
cursive specifications which are ill-founded [35]. A pure method call in an
assertion is encoded as an application of the corresponding uninterpreted
function. A loop, written in the stylized form of quantification over a finite
domain (as in JML and Spec#), is directly encoded as a quantified formula.
The reader is referred to [17] for assertion encoding details. Model class and
model-based contract encoding is discussed in [19].

This paper shows that a marriage between executable specifications and sep-
aration logic-based reasoning is possible.

Acknowledgements
Special thanks to Matthew Parkinson and Sebastian Nanz for feedback on this
work, and Matthew Parkinson for helping with the jStar implementation. Van
Staden was supported by ETH Research Grant ETH-15 10-1. Calcagno was
partially funded by EPSRC.

Verifying Executable Object-Oriented Specifications with Separation Logic 23

References

1. ECMA International: Standard ECMA-367. Eiffel: Analysis, Design and Program-
ming Language. 2nd edn. (June 2006)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: CASSIS ’05. Volume 3362 of LNCS., Springer (2005) 49–69

3. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3) (2006)
1–38

4. Van Staden, S., Calcagno, C.: Reasoning about multiple related abstractions with
MultiStar. Technical Report 666, ETH Zurich (2010)

5. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, New York, NY, USA, ACM (2008) 75–86

6. Distefano, D., Parkinson J, M.J.: jStar: towards practical verification for Java.
In: OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN conference on Object-
oriented programming systems languages and applications, New York, NY, USA,
ACM (2008) 213–226

7. Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using separa-
tion logic. SAVCBS Composite pattern challenge track (2008)

8. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered
object structures. Science of Computer Programming 62(3) (2006) 253–286

9. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly
supporting abstraction in design by contract: Research articles. Softw. Pract.
Exper. 35(6) (2005) 583–599

10. Schoeller, B., Widmer, T., Meyer, B.: Making specifications complete through
models. In: Architecting Systems with Trustworthy Components. Volume 3938 of
LNCS., Springer (2006) 48–70

11. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: CSL ’01. Volume 2142 of LNCS., Springer (2001) 1–19

12. Raza, M., Gardner, P.: Footprints in local reasoning. Logical Methods in Computer
Science 5(2:4) (2009) 1–27

13. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, Washington, DC, USA, IEEE Computer Society (2002) 55–74

14. Parkinson, M.J.: Local reasoning for Java. PhD thesis, University of Cambridge,
Computer Laboratory. Technical Report UCAM-CL-TR-654 (November 2005)

15. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL ’05: Pro-
ceedings of the 32nd annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, New York, NY, USA, ACM (2005) 247–258

16. Summers, A.J., Drossopoulou, S., Müller, P.: The need for flexible object invariants.
In: IWACO ’09: International Workshop on Aliasing, Confinement and Ownership
in Object-Oriented Programming, New York, NY, USA, ACM (2009) 1–9

17. Leino, K.R.M., Schulte, W.: A verifying compiler for a multi-threaded object-
oriented language. Software System Reliability and Security 9 (2007) 351–416

18. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects of Computing 19(2)
(2007) 159–189

19. Darvas, Á., Müller, P.: Faithful mapping of model classes to mathematical struc-
tures. IET Software 2(6) (2008) 477–499

24 Stephan van Staden, Cristiano Calcagno and Bertrand Meyer

20. Darvas, A., Müller, P.: Reasoning about method calls in interface specifications.
Journal of Object Technology (JOT) 5(5) (June 2006) 59–85

21. Naumann, D.A.: Observational purity and encapsulation. Theor. Comput. Sci.
376(3) (2007) 205–224

22. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer (STTT) 7(3) (2005) 212–232

23. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, New York, NY,
USA, ACM (2008) 101–112

24. Van Staden, S.: jStar sources of the examples. Available online at http://se.inf.
ethz.ch/people/vanstaden/executablespecs.tgz.

25. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In: ESOP
’08. Volume 4960 of LNCS., Springer (2008) 307–321

26. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular OO veri-
fication with separation logic. In: POPL ’08: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
New York, NY, USA, ACM (2008) 87–99

27. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java modeling
language (JML). In: Proceedings of the international conference on Software engi-
neering research and practice (SERP ’02), Las Vegas, CSREA Press (2002) 322–328

28. Meyer, B., Ciupa, I., Leitner, A., Liu, L.L.: Automatic testing of object-oriented
software. In: SOFSEM ’07. Volume 4362 of LNCS., Springer (2007) 114–129

29. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: Experimental assessment of random
testing for object-oriented software. In: ISSTA ’07: Proceedings of the 2007 inter-
national symposium on Software testing and analysis, New York, NY, USA, ACM
(2007) 84–94

30. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL ’09: Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
New York, NY, USA, ACM (2009) 289–300

31. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis. In: SAS ’09. Volume 5673 of LNCS., Springer (2009) 188–204

32. Clarke, D., Drossopoulou, S., Müller, P., Noble, J., Wrigstad, T.: Aliasing, con-
finement, and ownership in object-oriented programming (IWACO). In: Object-
Oriented Technology. ECOOP 2008 Workshop Reader. Volume 5475 of LNCS.,
Springer (2008) 30–41

33. Salcianu, A., Rinard, M.C.: Purity and side effect analysis for Java programs. In:
VMCAI ’05. Volume 3385 of LNCS. (2005) 199–215

34. Darvas, A., Leino, K.R.M.: Practical reasoning about invocations and implemen-
tations of pure methods. In: FASE ’07. Volume 4422 of LNCS., Springer (2007)
336–351

35. Rudich, A., Darvas, Á., Müller, P.: Checking well-formedness of pure-method
specifications. In: FM ’08. Volume 5014 of LNCS., Springer (2008) 68–83

