
Draft 1, 2 July 2015
This is the short version, omitting proofs and many discussions.
Theory of Programs
Bertrand Meyer
“Computer science” (informatics) is really program science since a computer, by itself too gen-
eral a machine to be of practical interest, yields useful machines through programs that people
write for it. While the theoretical study of programs fills volumes, few people realize that a hand-
ful of concepts from elementary set theory suffice to establish a clear and practical basis.

Among the results:

• To describe a specification or a program, it suffices to define one relation and one set.

• To describe the concepts of programming, concurrent as well as sequential, three elementary
operations on sets and relations suffice: union, composition and restriction.

• These techniques suffice to derive the axioms of classic papers on the “laws of
programming” as straightforward consequences.

• To define both program correctness and refinement, the ordinary subset operator “” suffices.

Paragraphs labeled “Intuition” relate the concepts to the experience of readers having done some
programming. Readers with knowledge of previous views of theoretical informatics will find
comparisons in “Comment” paragraphs. Section 5 provides more discussion.

1 Programs
A program is a simple mathematical object: a constrained relation over a set of states.

Definition: program, specification, precondition, postcondition.

A program, also known as a specification, over a state set S, consists of:

• A relation post: S S, the program’s postcondition.
• A set Pre S, the program’s precondition.

Notation: A B is the set of binary relations between A and B, that is, P (A  B). The domain of a relation
r is written r and its range r .

Intuition: a program starts from a certain state and produces one of a set of possible states satis-
fying properties represented by post. Pre tells us which states are acceptable as initial states.

In the general case, more than one resulting state can meet the expectation expressed by post.
Correspondingly, post is a relation rather than just a function.

The definition covers continuously running programs, such as those embedded in devices,
since they are just repetitions of individual state transformations. Particular choices for S and for
acceptable post and Pre determine particular styles of programming, such as the following.

THEORY OF PROGRAMS §12
Definition: deterministic, functional, imperative, object-oriented, object

A program p is:

• Deterministic if postp is a function, and non-deterministic otherwise.
• Functional if every subset C of S is disjoint from postp (C), and imperative otherwise.

• Object-oriented if S is of the form 0. .n O for an integer n and a set O of “objects”,
and procedural otherwise.

, procedural

Notation: For a relation r in A B and subsets X and Y of A and B respectively, r (X) denotes the image of
X, and r -1 (Y) the reverse image of Y, by r. The relation is a “function” (short for “possibly partial function”)
if r ({x}), for any element x of A, has at most one element. If it always has one, r is “total”. A B is the
subset of A B containing total functions only. An integer interval is written m. .n. Section 4.2 will present
a more elaborate structure for S in which the above characterizations apply to the “store” part.

Sp, Prep and postp are the state set, precondition and postcondition of a program p. In addition,
discussions of an indexed set of programs pi will use Si, Prei and posti for the i-th program.

The principal concepts of programming, studied in the rest of this presentation, are independent
of such choices of style and of the properties of S.

Definition: feasibility
A program p is feasible if Prep  postp .

Intuition: Prep tells us when we may apply the program, and postp what kind of result it must then
give us. A program/specification is safe for us to use if it meets its obligation whenever we meet
ours. Feasibility expresses this property: for any input state satisfying Prep, at least one output
state satisfies postp.

Definition: program equality

Two programs are equal if they have the same Pre and the same post / Pre.

Notation: For a relation r and subsets X and Y of its source and target sets, r / X and r \ Y are r restricted
to domain X (meaning r  (X  S)) and corestricted to codomain Y (meaning r  (S  Y)). Two
straightforward properties (restriction and corestriction theorems) are that r / X X and r \ Y Y .

Comment: while it is customary to distinguish between programs and specifications, all defini-
tions of the purported difference are vague, for example that a specification describes the “what”
and a program the “how”. The reason for the vagueness is that the difference does not exist. It is
impossible to assign a given artifact solely to one of the two categories. An assignment instruc-
tion is implementation to the application programmer and specification to the compiler writer.
(See also section 3.) Any useful notion has to be relative: artifact 1 “specifies” artifact 2.

Definition: refines, specifies

A program/specification p2 refines another, p1, and p1 specifies (or abstracts) p2, if:
P1 S2  S1 -- Extension

P2 Pre2  Pre1 -- Weakening
P3 post2 

Pre1
post1 -- Strengthening

, abstracts

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 3
Notation: r  r’
X

means (r / X) r’; in other words, whenever r maps an element of X to a result, r’

maps it to the same result. The same conventions applies to other operators on relations, as in r
X=r’. Note

the names (extension, weakening, strengthening) associated with the three conditions of the definition.

Intuition: a refinement of p gives more detail than p, but still satisfies all properties of p relevant
to users of p. So it must cover all of p’s states, accept all the input states p accepts and, for these
states, only yield results that p could also yield. It may have more states, a more tolerant precon-
dition, and yield only some of the results that p could yield (reduce non-determinism).

Theorem: Refinement

P4 Refinement is an order relation.

 Theorem

Definition: implementation

An implementation of p is a feasible refinement of p.

Intuition: not every refinement of a specification is feasible. For example the infeasible program
having the empty relation as its postcondition and S as its precondition refines every specification
over S. Hence the importance of finding feasible refinements, also known as implementations.
This concept still does not provide a distinction between programs and specifications.

Theorem: Implementation Theorem

P5 A specification/program having an implementation is feasible.

2 Operations on specifications and programs
The fundamental operations of elementary set theory yield fundamental operations on specifica-
tions and programs. Only the first three (those of 2.1) refer directly to the basic concepts defined
so far; all the rest follow as combinations of these three.

2.1 Basic constructs

Definition: choice, composition, restriction

Name Notation
Mathematical definition Programming

intuitionPostcondition Precondition

Choice
(or: union)

p1 p2
(Dijkstra: p1 []p2)

post1 post2 Pre1 Pre2
Performs like p1

or like p2

Composition
(or: sequence,

compound, block)
p1 ; p2 (post1 \ Pre2) ; post2 Pre1 post1

-1 (Pre2) Performs first like
p1 then like p2

Restriction
(guarded command)

C: p
(Dijkstra: C p)

postp / C Prep
Performs like p

on C

Notation: In the “postcondition” column, the semicolon “;” denotes composition of functions or relations,
in the order of application, so that (r ; s) (X) is s (r (X)). (Mathematical texts often use s o r for r ; s.)
“Dijkstra” means the notation of [3].

THEORY OF PROGRAMS §24
For a known set of states S, <post, Pre> is the program of postcondition post and precondition Pre.

Theorem

P6 For feasible operands and arbitrary conditions, the above operators yield feasible programs.

Theorems

Choice, like union of sets, is commutative; composition of programs, like composition of relations,
is not. Choice and composition are associative, so we may apply them without parentheses to any
number of operands, as in p1 ; p2 ;  ; pn. In addition:

P7 C1: (C2: p) = C2: (C1: p) -- Restriction is commutative. In fact:

P8 C1: (C2: p) = (C1 C2): p
P9 C: (p1 p2) = (C: p1)  (C: p2) -- Restriction distributes over choice.
P10 C: (p1; p2) = (C: p1) ; p2 -- Composition absorbs restriction.

P11 q ; (p1 p2) = (q ; p1)  (q ; p2) -- Composition distributes left
P12 (p1  p2); q = (p1 ; q)  (p2 ; q) -- and right over choice.

The following programs are of interest, all of them feasible, the first two total: Skip, the identity
over S, with postcondition x: S | {x} (always applicable, changes nothing); Havoc, with postcon-
dition S S (always applicable, but we may not assume anything about the result); and Halt,
defined as <, > (empty relation as postcondition and, for feasibility, empty set as precondition).

Notation: generalized lambda notation serves to define relations in A B, using either x: A | Y where
Y is a subset of B (as here for Skip), or x1: A; x2: B | p (x1, x2) where p is a two-variable predicate. A
program/specification is total if its precondition is S.

Theorems

P13 (p ; Skip) = (Skip ; p) = p
P14 (p  Halt) = (Halt  p) = p -- Does not hold in the demonic theory.
P15 (Halt ; p) = (p ; Halt) = Halt

P16 (p  Havoc) = (Havoc  p) = Havoc
P17 (p ; Havoc) = (Prep: Havoc)
P18 p  (C: p) -- (Reminder: on programs is refinement.)

P19 If D  C, then (C: p)  (D: p). -- Order reversal (precondition weakening).
P20 If q  p, then (C: q)  (C: p). -- Refinement safety, see below.
P21 If q1  p1 and q2  p2, then (q1  q2)  (p1  p2) and (q1 ; q2)  (p1 ; p2).

P22 p  (Prep: Havoc) for any p.
P23 p  Havoc for any total p.
P24 p  Halt if and only if p = Halt -- Halt is refined only by itself
P25 Halt  p if and only if p = Halt --  and refines only itself

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 5
Notation: “” for choice is a new example (after “” for refinement) of extending set operators
to programs. The following application of this idea is also useful:

Name Notation Postcondition Precondition Programming intuition

Corestriction p \ C postp \ C Prep postp
-1 (C) p, applied only when

results satisfy C

(There is no need for a restriction notation p / C since we already have C: p.) The first of the fol-
lowing properties shows that corestriction can be defined from restriction and composition.

Theorems

P26 (p \ C) = (p ; (C: Skip))
P27 (p1 p2) \ C = (p1 \ C)  (p2 \ C) -- Compare with P9.

P28 (p \ C)  C -- Refinement. Compare with P18.
P29 If D  C, then (p \ D)  (p \ C) -- Compare with P19.

The restriction and corestriction theorems apply to programs: C: pC and p \ C C .

Notation: in the same spirit, the range and domain notations apply to programs: p is a synonym for
Prep; and (more importantly) p is a synonym for postp (p), the set of values that p can actually yield.

Definition: refinement safety

An operator § on programs is refinement-safe if q1p1 and q2 p2 implies (q1§ q2) (p1§ p2).

Theorem

P30 All the operators on programs introduced in this article are refinement-safe.

In a corresponding sense, the program properties “functional” and “object-oriented” are refine-
ment-safe (but not their contraries, “imperative” and “procedural”).

2.2 Atomic concurrency
Definition: concurrency

Name Notation Definition Programming intuition

Atomic concurrency p1 || p2 (p1 ; p2) (p2 ; p1) Performs once like each
of p1 and p2

Theorems: concurrency is commutative, associative and refinement-safe. In addition:

P31 p1 || (p2 p3) = (p1 || p2)  (p1 || p3 -- Concurrency distributes over choice, left)

P32 (p1 p2) || p3 = (p1 || p3)  (p2 || p3) --  and right.
P33 C: (p1 || p2) = (C: p1) || (C: p2) -- Restriction distributes over concurrency

P34 (p1 || p2) \ C = (p1 \ C) || (p2 \ C) --  and so does corestriction.
P35 (p1 ; p2)  (p1 || p2) -- Sequential composition refines concurrency
P36 (p2 ; p1)  (p1 || p2) --  in any order.

Concurrency generally does not refine composition, but in one particular case it does.

THEORY OF PROGRAMS §26
Definition: commuting programs

Two specifications/programs commute if (p1; p2) (p2; p1).

Example and counter-example: if S is the set of functions PERSON Z, recording people’s bank
account balances, consider an infinite set of programs, defined for any person p and any integer
n: the postcondition of depositp,n expresses that the output differs from the input only by having
the balance of p increased by n, and similarly for withdrawp,n. All these programs commute with
each other. They do not commute, however, with the program resetp setting p’s balance to zero.

Theorem

P37 If p1 and p2 commute, then (p1|| p2) (p1; p2).

(Not just refinement, but equality. Immediate generalization to more than two programs.)

Intuition: commuting programs are a boon for concurrent computation, since they open up many
possible realizations for “computing” program results (finding values satisfying postp) on actual
“computers” (the physical devices that ensure postconditions). Assume for example a large num-
ber of deposit and withdraw operations with various clients and amounts. If the specification is
that at the end of the trading day the balance of each should be correct, any assignment of the
operations among any number of computers in any order is suitable.

Theorem

P38 For deterministic programs with identical preconditions, refinement and abstraction
preserve commuting.

2.3 Non-atomic concurrency

The atomic concurrency operator has a fixed level of granularity, defined by its operands: if they
are themselves complex programs built out of simpler components, it will not interleave these
components. For example let on be “switch on the light”, off “switch it off” and p “say whether
the light is on”. Assuming that in the initial state the light is on, (on ; off) || p will always say no,
regardless of which of the operands of “||” goes first, since (on ; off) is equal to Skip.

The practice of concurrency often calls for finer-grain control on concurrency. Here you
might want p to execute at the beginning, in the middle (between on and off), or at the end. Such
flexibility causes much of the difficulty of concurrent programming, since it opens up the possi-
bility of “data races” (inconsistent orderings of operations, in some executions only); but a gen-
eral theory of programming must provide a model for it, given here by a ternary operator.

Name Notation Definition Programming intuition

Non-atomic concurrency (p1 , p2) || q ((p1 || q) ; p2) 
(p1 ; (p2 || q))

Performs once like each
operand, with p1 before p2

Notation: the only new symbol is the comma, used at a place where the semicolon of composition could
also appear. The reuse of “||” is only for convenience: the “Notation” entry describes a new three-operand
operator. Its “Definition” entry relies on the previously defined atomic concurrency operator “||”. No
confusion arises since the non-atomic operator only occurs in conjunction with the comma.

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 7
Non-atomic concurrency is associative on its first two operands p1and p2, so you may use com-
mas to separate any number of program operands of non-atomic concurrency.

Theorems

P39 (p1 , p2) || q = (q ; p1 ; p2)  (p1 ; q ; p2) (p1 ; p2 ; q)

P40 (p1 ; p2) || q  (p1 , p2) || q -- Coarser-grained refines finer-grained.
P41 p1 ; (p2 || q)  (p1, p2) || q -- First “law of exchange” of [8].
P42 (p || q1) ; q2  p || (q1, q2) -- Second “law of exchange” of [8].

It is straightforward to symmetrize the non-atomic concurrency notation to (p1 , p2) || (q1 , q2),
yielding the generalized law of exchange from [8]: (p1 || q1) ; (p2 || q2) (p1 , p2) || (q1 , q2).

2.4 Conditionals

Definition: conditionals

Name Notation Definition Programming intuition

Guarded conditional if C1: p1 []C2: p2 end (C1: p1) (C2: p2) Performs like p1 on C1,
like p2 on C2

If-then-else if C then p1 else p2 end (C : p1) (C’: p2) Performs like p1 on C,
like p2 elsewhere

Notation: C’, for a subset C of S, is its complement: S — C. The usual programming notation is “not C ”
(see 2.5 below). The guarded conditional is in fact not new since if p1 []p2 end was introduced in 2.1 as
a synonym for p1 p2, but it highlights the important case of p1 and p1 being restrictions.

Theorems: the guarded conditional is commutative; the corresponding property for if-then else is
that (if C then p1 else p2 end) = (if C’ then p2 else p1 end). Both operators are associative; as a
consequence they can be applied to more than two operands (if-then-else uses elseif for the sec-
ond to next-to-last branches, as in if C1 then p1 elseif C2 then p2 else p3 end), and to just one:
for the guarded conditional, if C: p end is the same as C: p; for if-then-else, by convention, if C
then p end is an abbreviation for if C then p else Skip end.

Theorems: both forms are distributive over choice and concurrency, but not over composition.
The guarded conditional is commutative, but not if-then-else. In addition:

P43 If D1  C1 and D2  C2, then (if D1: p []D2: q end)  (if C1: p []C2: q end).

P44 If q1  p1 and q2  p2, then (if C: q1 []C: q2 end)  (if C: p1 []C: p2 end).
P45 If q1  p1 and q2  p2, then (if C then q1 elseq2 end)  (if C then p1 elsep2 end).
P46 (C : p) = (if C : p end)

P47 (if C1: p1 []C2: p2 end)  C1: p1 -- A conditional refines any of its branches
P48 (D: (if C1: p []C2: q end)) = (if (D  C1): p [](D C2): q end) -- Distributivity.
P49 (if C then p1 elsep2 end) = (if C : p1 []C’: p2 end)

P50 (if C then p1 elsep2 end) = (if C’ then p2 elsep1 end)

THEORY OF PROGRAMS §28
2.5 Conditions

Two special conditions are useful for building programs. True is another name for S, and False
another name for the empty set. They should not be confused with the similarly named constants
of propositional calculus: True and False are, like all conditions, sets (subsets of S). In fact the
theory of programs relies on set theory rather than directly on logic, although it is easy to define
boolean-like operators on conditions: and and or as other names for “” and “”, not as another
name for complement (in P50 we may write C’ as not C), implies or “” as other names for “”,
and so on. Here, in addition to P19, are some properties involving operations on conditionals.

Theorems

P51 (True: p) = p -- And correspondingly for conditionals.
P52 (False: p) = Halt

P53 p \ True = p -- Here “\” is corestriction on programs.
P54 p \ False = Halt
P55 (if True then p1 elsep2 end) = p1

P56 (if False then p1 elsep2 end) = p2 -- And similarly for guarded conditionals.
P57 and, or, not, implies distribute over choice, restriction and conditionals.

2.6 Loop

Definition: repetition constructs

Name Notation Definition Programming
intuition

Fixed repetition pi

for any natural integer i
p0 = p : Skip

pi+1 = (p ; pi)
 p repeated i times

Arbitrary repetition
loop p end

(or p)


i 0
 pi p repeated any

number of times

“While loop”
from a until C loop b end

(or
a; while not C loop b end)

a ; (loop C’: b end) \ C
or equivalently:

a ; ( (C’: b) i \ C)
i 0

a, then p repeated
until C holds

Notation: in the second definition of the while loop, it does not matter how we parenthesize the “\”; see P27.
Since composition is associative, the inductive expression for fixed repetition can also be written (pi ; p).

Intuition: loop p end is the program that performs like p repeated some finite (but unknown) num-
ber of times. Cyclic programs, such as those on embedded devices, follow this pattern. The rest
of the present discussion concentrates on the from a until C loop b end loop, which starts like a
then performs like b, the loop’s “body”, as many times as needed (possibly zero) until reaching
a state satisfying C. In slightly different terms: for the loop to yield a result from a given input

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 9
state x, that result must be the first element of C reached by successive executions of b after a.
All the previous states are not in C, so they are in C’, meaning that what we are iterating is not
the whole b but just C’: b.

From distributivity follows another expression of the loop:

Theorem: Loop Lemma

P58 The loop l = from a until C loop b end can be written 
i0

 qi, where qi is a ; (C’: b) i \ C).

As a consequence, l =  qi.

Intuition: qi represents a restricted version of the loop, which yields a result (satisfying C) after
exactly i iterations. The loop is the union of all such partial versions of it.

Comment: the loop does not automatically get feasibility from that of its operands: it is possible
for a, b and all qi to be feasible, while l is not. A loop is feasible if and only if for every suitable

state s there exists an integer i (typically not the same for different s) such that a ; (C’: b) i ({s})
contains an element in C. The feasibility condition relies on the notion of invariant.

2.7 Invariants

Definition: invariant

A condition I is an invariant of a program/specification p if postp (p I) I.

Intuition: an invariant is called that way because if it holds before application of p it will hold
afterwards. More precisely, for the initial condition we need not the whole of I but just p I,
since results of p only matter when it starts from the precondition. The following two theorems
ensue directly from the definition.

Theorems

P59 Any I disjoint from p is an invariant of p.
P60 If I is an invariant of p, so is J if J I.
P61 If I and J are invariants of p, so are I J and I J.

Theorem: Invariant Refinement Theorem

P62 If I is an invariant of p1 and p2 p1, then I is an invariant of p2 / Pre1.

Comment: in practice, the precondition often stays the same under refinement, but in the general
case p2 might have a broader precondition; there is no guarantee that the original invariant will
hold for the new states, hence the restriction to Pre1.

Definition: invariant-preserving operator

An operator on programs is invariant-preserving if any invariant of all its program operands
is also an invariant of the operator’s result.

Example: program composition is invariant-preserving.

THEORY OF PROGRAMS §310
Theorem: General Invariant Theorem

P63 All the program operators defined so far are invariant-preserving.

Every element of the infinite unions that define loops is made out of basic operators and, by
induction, is invariant-preserving. Since union maintains this property, the loops themselves pos-
sess it. They benefit, however, from a more specific form of the notion of invariant.

Definition: loop invariant

A loop invariant of from a until C loop b end is a subset of a that is an invariant of C’: b.

Theorem: Loop Correctness Theorem

P64 If I is a loop invariant of the loop l = (from a until C loop b end), then l C I

Intuition: The theorem characterizes the fundamental property of loops [11] [5]: the goal of a loop
is to obtain on exit (l) a combination of the exit condition (C) and a judiciously chosen invariant
(I, a weakening of the desired result).

Theorem: Loop Feasibility Theorem

P65 For feasible a and b, the loop from a until C loop b end is feasible if both:

b• C is a loop invariant.

• C’: postb is well-founded.

Notation: a “well-founded” (or “Noetherian”) relation is one that admits no infinite chain.

Definition: loop variant

A loop variant of from a until C loop b end is a total function v from S to a set V equipped
with a well-founded relation “<“, such that v (postb (s)) < v (s) for any s in C’.

(Strictly speaking, v only needs to be total on ( qi)  (C’ ( qi)).) The existence of a variant
shows that postb itself is well-founded, fulfilling the second condition of the Loop Feasibility
Theorem. The most frequent choice for V is the set of natural integers.

3 Contracted programs
There is, as noted, no difference of principle between specifications and programs. In practice we
are used to different connotations for these terms. Since the distinction is so commonly accepted,
let us see if we can find a justification serious enough to earn it a place in the theory of programs.

Just like the distinction between abstract and concrete is relative, the distinction between
descriptive and executable shifts with the evolution of language and compiler technology. To find
a true difference, we must look elsewhere.

The relevant criterion is correctness. As captured by the notion of feasibility, a specification
can be inconsistent (if it tells you that the result must be zero and also that it can be one) or con-
sistent; but it makes no sense to ask whether it is correct. Correct with respect to what? Probably

§3 CONTRACTED PROGRAMS 11
with respect to the customers’ desires, or to their actual needs, but these would have to be written
down as another, higher-level specification, only pushing the problem further. We do know, how-
ever, what it means for a program to be correct: it performs according to its specification. Cor-
rectness is a relative notion.

Definition: contracted program, specification part, contract, implementation part, correctness

The notation require Pre do b ensure post end, a contracted program, states that i is an
implementation of the specification/program p = <post, Pre>.

Then p is the specification part, or contract, and b the implementation part.The contracted
program is also said to be a correct program.

Intuition and comment: the notion of contracted program simply introduces a programming nota-
tion for the concept of refinement. Since a program is useless without a precise understanding of
what it is supposed to do, program authors should only produce contracted programs. Regretta-
bly, this practice is not yet universal.

The above definition provides a final clarification of what programs in the usual sense of the
term (contracted programs in the present theory) really are: a program is a proof obligation.
Writing require Pre do b ensure post end is a way to state that b must refine p, and requires the
author, before clicking “Compile”, let alone clicking “Run”, to click “Verify”.

Theorem

P66 If post  post’, Pre’ Pre, and require Pre do b ensure post end is a contracted
program, so is require Pre’ do b ensure post’ end.

Comment: in this case, since we keep the implementation and go to a new specification, we can
only strengthen the precondition and weaken the postcondition.

The following concepts are defined for given Pre, post and b.

Definitions: weakest precondition, strongest postcondition

postb / Pre, also written b sp Pre, is the strongest postcondition of b for Pre.
b — postb —post , also written b wp post, is the weakest precondition of b for post.

Intuition: postb —post is a set difference between two relations, giving us the set of pairs that
belong to the first but not to the second. Its domain, postb —post , is the set of states for which
b produces at least one result that post could never produce. Subtracting this domain from b , the
domain of b, gives us the set of states on which b is guaranteed to agree with post.

The following property justifies the terms “strongest” and “weakest”.

Theorem

P67 If require Pre do b ensure post end is a correct program, then (b sp Pre) post and
Pre (b wp post).

As a corollary, we get a compact definition of program correctness.

THEORY OF PROGRAMS §412
Theorem

P68 require Pre do b ensure post end is correct if and only if Pre b —postb —post .

Theorems

P69 b sp False = Halt
P70 b wp Halt = False

P71 Halt sp C = Halt
P72 Halt wp p = False
P73 b sp (p q) = (b sp p) (b sp q)

P74 b wp (p q)  (b wp p) (b wp q)

Definition: generalizing refinement to contracted programs

If q p (q refines p), require Pre do q ensure post end refines require Pre do p ensure post end.

Definition and theorem: Most Abstract Implementation

P75 For feasible p, require p do p ensure postp end, the most abstract implementation of
p, is a correct program, which every implementation of p refines.

Intuition: The most abstract implementation is the specification used as its own implementation.

4 States and environments

The exact nature of S, the state set, varies considerably between application domains and the for-
malisms supporting programming (programming languages as defined next in section 5). Some
properties, however, are common to most variants.

4.1 Mappings

The state tracks the evolution, during the computation, of certain elements of information rele-
vant to the results. As a consequence, a state almost always includes (as its essential components)
one or more mappings between these elements and their current values. “Mapping” is a general
term roughly equivalent to “function”; in programming, since the memories of both humans and
computers are finite, these functions will also be finite. S, then, includes components of the form
Name || Value for appropriate sets of names and values.

Notation: A | B is the set of possibly partial functions, and A | B the set of finite functions, from A to B.
Inclusions are: (A || B) (A | B) (A B) and (A  B) (A | B).

§5 LANGUAGES AND PROGRAMMING 13
4.2 Environment and store

It is common for the state two have two clearly identified components: the environment and the
store, also known as the static and dynamic parts. In a simple variant, with a set Var (for “vari-
ables”) of names and a set Type representing the types of possible values, the environment is of
the form Var || Type and the store of the form Var || Value. This division reflects the typical pro-
cess of executing programs on a computer:

• A first step known as compilation creates the environment.

• The actual computation, known as execution, takes place in the second step, which builds
and transforms the store, constrained by environment built in the first step.

One of the advantages of this approach is that it requires programmers to define types for every
variable, making it possible to detect mistakes (such as applying a boolean operation to integer
variables) in the first step; in that case the second step does not take place until the programmer
has corrected the mistake. Such a process limits the risk of erroneous computation. Another advan-
tage is that it is not necessary to repeat the first step once it has succeeded: subsequent executions
of the same program, applied to different input states, can use the result of the compilation.

Definitions: declaration, instruction

A function in S | S is a declaration if it leaves the store part unchanged, and an instruction
if it leaves the environment part unchanged.

Intuition: it is good practice to separate the two kinds of operation; declarations set up the environ-
ment; instructions, working in a defined environment, change only the store.

Comment: the characterization of programming styles (functional, object-oriented) in section 1
properly applies to the store component of the state.

5 Languages and programming
“Programming” is the act of writing correct programs according to the preceding definitions.
Such a program has two parts: the contract represents the goal of the program, as advertised to
its users; the implementation represents the operations that will run on the computer. The defini-
tion ensures that the implementation matches the contract.

5.1 Programming languages

If the contract is given, in the form of Pre and post, programming consists of solving require Pre
do b ensure post end, viewed as an equation of which b is the unknown.

The Most Abstract Implementation, as defined above, yields a trivial solution, often non-deter-
ministic, to the equation: postb = post / Pre, Preb = Pre. The reason why that solution is generally
of little use, and programming an interesting endeavor, is the practical difference between contract
and implementation. For b we seek a relation postb that a material computer can process (not nec-
essarily directly, but through the services of tools such as “compilers”). For the specification, since
the goal is to describe the problem, we can rely on a broader set of mathematical mechanisms.

THEORY OF PROGRAMS §514
In both cases we need a repertoire of mathematical tools to build programs and specifications.

Definition: programming language, specification language

A programming language over a state set S, also known as a specification language over S,
is a set of feasible programs over S. In practice it is given by:.

• A finite set of base programs, obtained from a finite set of relations in S S (serving as
base postconditions) and a finite set of subsets of S (serving as base preconditions).

• A finite set of operators for deriving new correct programs from previously defined ones.

Intuition: a programming language is a set of possible programs. Any useful programming lan-
guage is infinite, but it is derived from a few basic postconditions and preconditions, and a few
operators to combine them. Many of these basic elements, introduced in the earlier sections of
this presentation, can be used by programming languages regardless of the application domain:

• Havoc, Skip and Halt as base programs, with True and False (S and ) as base preconditions.

• The program construction operators of section 2, including the three basic ones (choice,
composition and restriction) and those derived from them (concurrency, conditionals, loops).

Beyond these universal elements, a language will offer specific mechanisms for the intended
application domain, beginning with a suitable set S of states and a suitable set of operations over S.

With a single S and a single specification and programming language, the language descrip-
tion will identify, among the language’s mechanism, the subset suitable for implementation. Then
the requirement on program authors is simply to produce a final version require Pre do b ensure
post end of the program in which the implementation part b only relies on that subset. Establish-
ing correctness means establishing:

• Refinement: b  <post, Pre>.

• Feasibility: Pre  post (or alternatively, thanks to the implementation theorem P5,
Preb  postb if the preceding condition holds).

One can express these properties convincingly, and prove them, since all three components, post,
Pre and b, are part of the same mathematical framework, even if the last one restricts itself to a
subset of that framework’s mechanisms.

5.2 Approaches to programming

The most common approach to programming today ignores the Pre and post elements of the defi-
nition, concentrating only on building implementations b from a programming language with the
hope that in some informal sense they will match the corresponding user needs. We may call this
the “hacking approach”; it has little to commend itself if correctness is part of the objectives.

At the other extreme, a “refinement approach” [17] [1] [15] has made its mark in informatics
research and led to such developments methods as B. If we set out to implement a given contract,
the Most Abstract Implementation theorem P75 tells us that we may use the contract itself — spe-
cifically, <post, Pre> — as its own first implementation. Refinement as a software development

§6 DISCUSSION 15
method starts with this first version and repeatedly takes advantage of theorems to choose a
“refinement” in the sense of the formal definition, P2 and P3, of the previous implementation
until reaching an implementation that belongs to the implementation part of the language.

The ideal process should combine the best elements of the “hacking” and “refinement”
approaches, retaining the practicality of the first and the rigor of the second. It is not the goal of
the present discussion to present such a process, but a general definition helps set the stage.

Definition: programming

Programming is the process of devising interesting contract-implementation pairs and dis-
charging the associated proof obligations.

The starting point for any step in the process may indifferently be:
• A contract element, for which we have to devise a satisfactory implementation (top-down).
• Existing implementation elements (bottom-up). Ideally these elements already have full

contracts. In practice, they often have no contracts, or incomplete ones; part of the process
then involves uncovering the precise intent of the components and writing the contracts.

This approach seems to yield the necessary flexibility while accommodating the need for rigor
and proofs. It yields a useful view of programs.

Slogan: program

Program = Contract + Implementation + Proof obligation

6 Discussion
This article applies to programming the standard method on which science and engineering rely
to solve practical problems in any application domain:

• Develop a mathematical model resulting in equations (in the present case, the feasibility
equation Pre  post and the program equation require Pre do b ensure post end, where b
is the unknown).

• Solve the equation.

• Build the solution in the application domain.

The main argument for the model developed in the preceding sections is the simplicity of its
premises: the mathematical baggage is elementary set theory, learned in high school around the
age of 15; the construction relies on just three mechanisms from that theory: union, composition
and restriction. The approach seems to have the potential to cover all the relevant concepts of pro-
gramming, although the present article takes only a first dig.

6.1 Axioms or theorems?

In theoretical informatics the habit has often been different: devising axiomatic theories. The
most developed example is the admirable work of Hoare and colleagues [7][8]. A notable prop-
erty of these efforts is that they postulate their laws; then “of course, the mathematician should
also design a model of the language, to check completeness and consistency of the laws, to pro-

THEORY OF PROGRAMS §616
vide a framework for the specifications of programs, and for proofs of correctness” [7]. The jus-
tification for this method — postulate your ideal laws, the model will follow — is that it has, in
Russell’s words cited in [9], “the advantages of theft over honest toil”.

However good the wisecrack, this is not how normal mathematics works. Unless your last
name is Euclid or Peano, or your first name Alfred or Bertrand (and even in this last case, only if
you have a hereditary peerage), few people will pay attention to axioms you assert on them as if
walking down from Mount Sinai. Imagine a world where every mathematical concept were
defined axiomatically; in trigonometry, sine and cosine would be postulated as functions satisfy-
ing certain properties — the sum of their squares is 1, the derivative of the former is the latter,
and so on; and similarly for every important notion. People would quickly tire of having to make
incessant leaps of faith.

We expect instead, when presented with new results, to see them derived, in the form of defi-
nitions and theorems, from what we already know. True, it is often a mark of elegance, for the
presenter of a theory and of the laws that it satisfies, to prove that it is the simplest possible con-
struction satisfying these laws; but it is a mark of politeness to perform this feat only as a bonus
step, coming after an explanation relying only on material already familiar to the reader.

Stretching Russell’s aphorism, we may note that even if Balzac’s observation (“The secret
of great fortunes without apparent cause is a forgotten crime”) may explain the origin of some
hereditary peerages, just as axioms explain the foundations of mathematics, in practice most
hereditary peers find it less bothersome to obtain the objects of their daily desires through “honest
toil”, or at least honest means, than by stealing.

These observations do not rule out occasional reliance on the axiomatic method in the intro-
duction of theories. Aphorisms aside, however, it is hard to justify asserting properties as postu-
lates when they can be proved as theorems. When a manageable mathematical derivation from
known concepts exists, it should be the first choice.

As the presentation of the theory of programs has attempted to show, such exactly is the sit-
uation with programming. Programs are just relations over sets. An informal and non-exhaustive
review of the axioms of classic articles such as [7] and its extension to concurrency [8] (not con-
sidering properties specific to individual calculi), as well as [6] and [10], suggests that most of
the properties they introduce can be derived, often straightforwardly, from the framework of this
article; many indeed appear above as theorems.

Many authors seem to have a suspicion, conscious or not, of the set-theoretical basis of pro-
gramming; but most — an important exception is Hehner with his “predicative programming”
[6] — resist the obvious solution of explicitly building the theory on that basis. They prefer to
throw in axioms, even if these axioms mimic the elementary properties of set operators. A dizzy-
ing example is the seminal “Laws of Programming” article [7] (together with the more recent
[8]), whose authors axiomatically introduce operators with names such as “” for non-determin-
istic choice and “” for refinement. They never suggest that these could actually be the standard
mathematical operators bearing the same names; but they cover several pages of Communica-

§6 DISCUSSION 17
tions of the ACM with such fascinating “axioms” as P (Q R) = (P  Q) R. One wonders
whether the thought ever arose that if it associates like union, commutes like union, distributes
like union, and typographically uses the exact symbol of union, perhaps it is union.

6.2 Keeping simple things simple

Because informatics already struggles to describe inherently complex phenomena, we should not
introduce complexity of our own making. Programming theory does not always keep the complex-
ity of the descriptions commensurate with the complexity of the described. Another seminal paper
of great elegance [10] introduces the “natural semantics” of the if-then-else conditional thus:

–E2 

–(if True then E2 else E3 end)

with a similar rule for the False case. In words: if in the environment  the expression E2 evaluates
to , then in  the expression if True then E2 else E3 end also doesThe companion rule tells us that
if E3 evaluates to the expression with False instead of True evaluates to .

In reality, if-then-else is a very simple concept. It expresses that one may solve a problem
by partitioning the domain into two parts and using a different solution in each. Euler would
undoubtedly have explained it to his 15-year-old princess pupil [4] by a little illustration:

C: p C’: q

and she would have understood on the spot. (A pedagogical presentation of the theory of pro-
grams’ concepts should indeed use Euler-Venn diagrams throughout, although this article has
shunned them under the presumption that its putative audience does not need pictures.)

Instead, the above “natural” semantics refers to advanced concepts of mathematical logic
and notions such as the “environment” (), which are a distraction from the idea of a conditional
instruction. These observations do not put into question the value of [10] and other classic seman-
tic articles, which were conceived as research advances, not tutorials. But they highlight the ben-
efit, as a domain gets understood better, of seeking simplicity and trimming down the set of
prerequisite concepts to the indispensable.

6.3 De-emphasizing the program text

One source of complication in theories of programming is reverence for the program text.

Almost every discussion of programming — where “almost” is just to be on the safe side —
starts by defining a programming language. (Denotational or operational semantics often starts
with two languages, one to express programs and the other to express their meanings.)

THEORY OF PROGRAMS §718
This attitude seems to be a leftover from the early days when parsing was the difficult prob-
lem. Programmers and theorists were awe-struck when Backus, Bauer, Hopper and others
showed that instead of coding with zeros and ones it was possible to use a human-readable nota-
tion and have it translated automatically. The program text became the alpha and omega of pro-
gramming. But it is only an artifact. A computer is a mathematical machine for computing pairs
in relations. All the rest is decoration.

Programming is no more about programs than electricity is about plugs.

Parsing is the original computer science problem and even though it has long lost its theo-
retical difficulty it remains our unconscious template for all others. Semantic specification, for
example, often looks like a smarter kind of parsing, also starting from program texts and deriving
its properties — just more interesting properties. Denotational semantics, in particular, defines
“meaning functions” operating on program texts. Electrical engineers, if they worked that way,
would start from plugs, dutifully noting how different Swiss, French and Italian plugs are from
each other. In reality, of course, what counts is the electrical current — the same in all three coun-
tries, with their interconnected networks — and specifically the relevant equations.

In programming too a more productive approach — the application to semantics of the idea
of unparsing, the reverse of parsing — is to start from an analysis of what we need mathemati-
cally: what kinds of postconditions and preconditions give rise to useful specifications and real-
istic implementations. From this analysis we construct programming notations, not the other way
around. For example we do not start from if-then-else as a given construct of interest, but identify
the union of two relations as a relevant concept. We consequently derive suitable notations to
express it, each adapted to different mathematical situations: if the relations’ domains are prov-
ably disjoint, if C then p else q end; otherwise, the guarded conditional if C: p [] D: q end.

Far from lessening the value of the traditional objects of interest in informatics, such as pro-
grams and programming languages, this reversal of perspective makes them even more interest-
ing, turning them from arbitrary products of taste and circumstance into rationally justified
modes of expression for useful mathematical concepts.

7 Perspectives
The thesis of this article is that it is possible to found all of programming on a small set of con-
cepts from elementary set theory. The discussion has shown the basic applications, but is only a
start. (Also note that the theorems have not been mechanically checked.) Future tasks include:

• Reconstructing entire programming languages on that basis.

• Using the theory to build a “Formal Language Innovation Platform” (FLIP) for
experimenting with programming language mechanisms.

• Developing it towards specific approaches to programming, particularly object-oriented.

• Assessing whether the approach can produce effective program verification tools.

• Assessing whether it can help teach programming, including at the elementary level.

§8 ACKNOWLEDGMENTS 19
8 Acknowledgments
The authors invoked explicitly or not in section 6 (Hoare and coauthors, Kahn, Dijkstra,
Scott/Strachey/Plotkin and other pioneers of denotational semantics), complemented by Abrial
for his work on Z and B and by Mills and Gries, deserve deep acknowledgments for pioneering
the formal approach to programs and programming. Back’s and Morgan’s seminal work on
refinement (following Wirth’s) is another fundamental inspiration. Hehner’s Predicative Pro-
gramming is a comprehensive theory of programming based on binary relations, corresponding
to the postconditions of the present work. Also influential have been informal comments by
David Parnas on the merits of different assertion styles. A note by Shaoying Liu [16], criticizing
a purported deficiency in classical refinement approaches (the risk of refining into an unfeasible
program), suggested the need for a proper notion of feasibility.

9 References
[1] Back, refinement papers.

[2] Michael Butler, personal communication.

[3] Dijkstra, A Discipline of Programming.

[4] Euler, Lettres à une Princesse d’Allemagne sur divers Sujets de Physique et de Philosophie,
1760-1762.

[5] Furia, Meyer, Velder, Computing Surveys invariant article.

[6] Hehner, Predicative Programming

[7] Hoare, original paper on Laws of Programming.

[8] Hoare and van Staden, newer article.

[9] Hoare and van Staden, slides accompanying [8].

[10] Kahn, Natural Semantics.

[11] Meyer, IFIP 1980 paper.

[12] Meyer, ETL.

[13] Meyer, OOSC.

[14] Meyer, Multirequirements.

[15] Morgan, Programming from Specifications.

[16] Shaoying Liu, paper and slides from the 2014 Futatsugi Festschrift.

[17] Wirth, stepwise refinement.

	1 Programs
	2 Operations on specifications and programs
	2.1 Basic constructs
	2.2 Atomic concurrency
	2.3 Non-atomic concurrency
	2.4 Conditionals
	2.5 Conditions
	2.6 Loop
	2.7 Invariants

	3 Contracted programs
	4 States and environments
	4.1 Mappings
	4.2 Environment and store

	5 Languages and programming
	5.1 Programming languages
	5.2 Approaches to programming

	6 Discussion
	6.1 Axioms or theorems?
	6.2 Keeping simple things simple
	6.3 De-emphasizing the program text

	7 Perspectives
	8 Acknowledgments
	9 References

