
 Compiler Error Messages: What Can Help Novices?

Marie-Hélène Nienaltowski
School of Computer Science and

Information Systems
Birkbeck, University of London

Malet Street, Bloomsbury
London WC1E 7HX

marie-helene@dcs.bbk.ac.uk

Michela Pedroni
Chair of Software Engineering

ETH
8092 Zurich, Switzerland

michela.pedroni@inf.ethz.ch

Bertrand Meyer
Chair of Software Engineering

ETH
8092 Zurich, Switzerland

bertrand.meyer@inf.ethz.ch

ABSTRACT
Novices find it difficult to understand and use compiler error
messages. It is useful to refine this observation and study the
effect of different message styles on how well and quickly
students identify errors in programs. For example, does an
increased level of detail simplify the understanding of errors and
their correction? We analyzed messages produced by a number of
compilers for five programming languages, and grouped them into
three style categories from their level of detail and presentation
format, and correlated the level of experience and error type with
performance and speed of response. The study involved two
groups of students taking an introductory programming course at
two different institutions; they used messages in these three styles
to debug erroneous code. The results indicate that more detailed
messages do not necessarily simplify the understanding of errors
but that it matters more where information is placed and how it is
structured.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and
Information Science Education – Computer science education;

General Terms
Experimentation, Human Factors.

Keywords
Compiler error messages, novice programmers.

1. INTRODUCTION
As many teachers of programming have noted [6], commercial
compilers are built for experts. In tutoring systems for
programming, there are currently three main approaches to
improve compilers for novices: writing new compilers specifically
devised for such users [7]; improving existing commercial
compilers [4]; enhancing the error messages (for example by
rewriting them in layman’s terms [1]). What matters to students is
not the compiler used but the messages. Why are those from
commercial compilers not good enough for novices? Reasons are
numerous: they are too brief, not visual enough, too technical, etc.

In this work we analyze these observations more systematically
by studying experimentally how message style affects novices.
The assumption is that longer explanations and suggestions of
error corrections improve novices’ understanding of the problem
and therefore their performance. The study used a multiple-choice
questionnaire that combined three error message styles with three
error types in nine questions. Each of the nine questions required
the student to identify an error in a program extract, from the
message and the extract itself. The three styles are a synthesis of
the techniques used in both commercial compilers and compilers
purposefully built for novices. The choice of the three error types
relies on earlier publications on common novice errors [2] and
data collected from our own students over the past three years [5].
It includes common novice errors: unknown identifier, wrong
number of arguments, private access violation. Two groups of
students studying two different programming languages at two
different institutions answered the questionnaire. One group
answered online, allowing tracking of answering time; the other
answered the questionnaire in class in limited time. We present
the setup, analyze the collected data, and discuss the results.

2. COMPILER ERROR MESSAGES
A survey of existing error message styles led to the derivation of
three broad styles. Table 1 shows the compilers used in the
survey. The styles are: a short form of error message, a visually
inline form, and a long form.

Table 1: Surveyed compilers

 Short form Visual form Long form

Pr
og

ra
m

m
in

g
En

vi
ro

nm
en

t C++ Digital Mars,
Borland,
GNU C++,
IBM XL
C/C++ for
AIX

Java SUN JDK6 BlueJ

Ada Gnat-ada95

Scheme Dr. Scheme

Eiffel EiffelStudio

The short form is most commonly used in commercial compilers.
It is displayed separately from the code (e.g. in a console or a
separate part of a programming IDE) and consists of the file name
and line number where the error occurred, type of the error, a brief
error message, and a code snippet.

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003...$5.00.

168

Short form example:
ticket_machine.e, line 27: Cannot find identifier.
total := total + price
^
The visually inline form highlights the line where the error
occurred in the code and gives a brief error message.
Visually inline form example:
class TICKET_MACHINE
feature {NONE} -- Access
 price: INTEGER
 -- Cost of ticket
 balance: INTEGER
 -- Amount of inserted money
 total: INTEGER
 -- Total value of transaction

feature -- Basic Operations
 print_ticket is
 -- Print ticket.
 local
 an_amount: INTEGER
 do
 if ballance >= price then
 io.put_string ("USD " + price.out)
 total := total + price
 balance := balance - price
 else
 ...
 end
 end
end

Error message:
Cannot find identifier.

The long form consists of an error code, brief error description,
suggestion of what to do, affected class, affected feature, involved
token, line number, and a code snippet of where the error occurs.
Long form example:
Error code: VEEN
Error: unknown identifier.
What to do: make sure that identifier, if needed,
is final name of feature of class, or local entity
or formal argument of routine.
Class: TICKET_MACHINE
Feature: make_tm
Identifier: price
Taking no argument
Line: 10
do
-> price := ticket_cost
balance := 0

Some compilers display a list of error messages if more than one
error exists in the code. To facilitate the study and for consistency,
the questionnaire presented one error at a time; it has been argued
anyway that this is better for novices [1].

3. STUDY SETUP
Two groups answered questions that combined the three error
message types applied to three common types of novice errors.

3.1 Questionnaire
The questionnaire consisted of nine questions representing the
combination of three message types and three error types as
summarized in Table 2. For example, Q4s_id represents Question 4
relating to the Unknown identifier error and using the short form
message. Each question presented one or two classes (as the
example in Section 2.1.2 shows) with an error in the code. One of
the message types was shown, followed by a multiple-choice
question asking the student to identify the error. Published studies
on the most common error messages [2] and data collected from

our students over the past three years [5] guided the choice of
error types, which included:
Unknown identifier. In all studies this error type is the most
common novice error.
Wrong number of arguments. This is the second most common
error type in our data collection.
Private access violation. This error appears in our own data
collection and in [3] as one of the top 12 errors.
The questionnaire used error types of differing complexities to
ensure that variations (or their absence) in the results would not be
due solely to the choice of the error types, thus allowing
generalizations of the findings for all types of errors. The
Unknown identifier error was the least complex and involved only
one class in the questions. The Private access violation error was
the most complex since it required students to identify how the
two presented classes interacted.
Table 2: Questions: combinations of message and error types
 Short

form (s)
Visual

form (v)
Long

form (l)
Unknown

identifier (id) Q4s_id Q5v_id Q2l_id

Wrong number of
arguments (arg) Q9s_arg Q6v_arg Q8l_arg

Private access
violation (acc) Q1s_acc Q3v_acc Q7l_acc

3.2 Participants
From the 2006-2007 Introduction to Programming course at ETH,
43 students answered the questionnaire. Students of this course
typically come with various backgrounds; few are completely new
to programming. The course uses Eiffel. In addition to
fundamental OOP and procedural concepts such as objects,
classes, inheritance, control structures, recursion, it covers more
advanced topics such as event-driven and concurrent
programming and fundamental concepts of software engineering.
The questionnaire was accessible online1 towards the end of the
semester to all students wishing to participate in the study. In
background questions, the participants rated their level of
programming expertise on a Likert scale of 1 to 5 (where 1
represented having little experience and 5 a lot). 30% described
themselves as belonging to levels 1 and 2; 37%, 28% and 5% as at
levels 3, 4 and 5 respectively, as illustrated in Figure 1. The
students answered the compiler error questions one at a time in a
preordered sequence. The time at which the student started a
question was recorded. Students had 45 minutes to complete the
questionnaire. The timing data indicates students spent the time
answering questions on task. Most completed the questionnaire
before time-out.
From Birkbeck, University of London, 24 students studying the
Software and Programming 1 module answered the questionnaire.
The course uses Java and covers the basics of programming such
as loops, selection, assignments and basic concepts of object
oriented programming such as classes and objects, feature calls,
argument passing; it does not go as far as inheritance. In contrast
to ETH, most of the participants in that course have never

1 at http://se.ethz.ch/people/pedroni/compilererrors

169

programmed before. 75% describe themselves as being at level 1,
the rest do not go beyond level 4 (Figure 1). Volunteers had one
hour to complete a paper questionnaire in class towards the end of
the term in 2007. It used the same questions as the ETH
questionnaire, but adapted to Java terminology. It was not
possible to control the order of question answering although the
instructors asked students not to go back to previous questions
once they had completed them. This setup also prevented
recording of times as for the ETH students.

Figure 1: Experience levels of the two groups

4. ANALYSIS
The principal conjectures under evaluation are: (1) the more
information a message provides, the more likely the student
(irrespective of his level of experience) is to understand the
message, identify the error and suggest an appropriate correction;
and (2) novices, in particular, benefit from enriched messages
since they get their answers right as they obtain more information
on the error and explanations of how they could correct it.
Additional conjectures included whether an enriched message
results in shorter response times independent of the correctness of
the student’s answer and of their level, and whether the error type
determines the number of correct answers.
The analysis treats the results separately for the two different
groups. For analyses where time is involved, only the online
questionnaire filled in by the ETH students provides information.
The first limitation of this study is the possibility of self-selection
introduced by voluntary participation. Additionally, since
questions were lengthy, the questionnaire was designed with only
one question per pair of error message style and error type.
Having more questions per pair could help leveling out
differences in the level of difficulty for single questions. Adding
error types might also have helped in producing clearer results.
These two limitations are threats to the validity of these results.

5. RESULTS
This section details the results obtained for each of the six stated
hypothesis. It describes the motivation for the hypothesis, the
results for the ETH group and their interpretation, then the results
and interpretation of these for the Birkbeck group, and the results
overall.
A general observation is that students from ETH generally did
much better than the Birkbeck students, reflecting their more
advanced level. This is also reflected in their self-assessment of
their level of knowledge (see Section 3.2).

Hypotheses A to C measure correlations between programming
experience and the outcomes of the questionnaire. They answer
the following questions: Does the programming experience
significantly influence the time needed to answer questions? Does
the programming experience significantly influence the number of
correct answers? And does the programming experience still
significantly influence the number of correct answers if
discriminating according to message styles? The analyses use the
Spearman’s rank correlation to assess the direction and strength of
the relationship between the two variables under test.
Hypotheses D to F compare means for the outcomes of the study
discriminated by a second variable. They answer the following
questions: Does a certain message style produce significantly
more correct answers? Does a certain message style result in
significantly faster answers? And to complement the findings,
does a certain error type produce significantly more correct
answers? These analyses use the Wilcoxon rank-sum test, a non-
parametric alternative to the two-sample t-test, and assess whether
two samples of observations come from the same distribution.
Hypothesis A: Higher experience results in faster answers.
Someone who has significant experience and encounters an error
will have most likely encountered a similar situation previously
and should therefore be able to answer questions quickly.
It was not surprising to find a significant correlation between
programming experience and how quickly students answered each
question, Spearman’s correlation: r = -.40, p (two-tailed) < .01.
Programming experience seems to express itself in the speed with
which code is analyzed for errors.
This analysis only considers the ETH group, since timing
information is not available for Birkbeck students.
Hypothesis B: Higher experience results in more correct
answers.
Hypothesis A did not consider whether the question was answered
correctly or not. It seems likely that an experienced participant
will not only answer quickly but also answer correctly.
Again we find a significant correlation between programming
experience and number of correct answers, Spearman’s
correlation: r = .48, p (two-tailed) < .01 for ETH students.
The result differs for the Birkbeck students: no significant
correlation between correctness of answers and programming
experience exists. A possible explanation is the homogeneity of
programming experience for Birkbeck students. In an attempt to
overcome this barrier, if the groups are combined, a significant
correlation exists: r = .48, p (two-tailed) < .01.
Hypothesis C: At a lower experience level, enhanced messages
result in more correct answers.
Perhaps the most interesting question is: do novices benefit from
messages that provide more information? This would indicate
how compilers or tutoring systems for novices can be improved.
Table 3 summarizes the percentage of correct answers obtained
for both groups at various experience levels. In the ETH group,
the long and short form messages are best for novices. The visual
form does not seem to suit them. These results suggest the visual
form as one to avoid for beginners.
When establishing the significance of correlations, we find none
between the level of experience and the number of correct
answers for the long form message. This could be due to the fact

170

that ETH students are used to the long form message; all students
understood it well by the time they answered the questionnaire.
For visual inline and short form messages, the level of experience
of ETH students correlates significantly with the number of
correct answers: Spearman’s correlation, r = .43, p (two-tailed) <
.01 and r = .33, p (two-tailed) < .05 respectively. This shows that
the higher the experience the more correct answers students get
for these message types. The more experienced students are likely
to have experimented with other compilers and seen other
message types. Since experience is likely to have improved their
skills anyway, they would do better than the less experienced
students.
In the Birkbeck group, at all experience levels, the visual form
message is the least suited to help students understand errors. The
long and short form messages do not differ significantly as
illustrated in Table 3. Spearman’s correlation between the level of
experience and any of the message types establishes no significant
correlations. A plausible explanation for this is again the
homogeneity of the group.

Table 3: % correct answers at various experience levels
 Short Form Visual Form Long Form

ETH
Exp. 1 & 2 84.62 71.79 84.62

Exp. 3, 4, 5 95.56 94.44 90.00

Birk-
beck

Exp. 1 & 2 57.89 47.37 56.14

Exp. 3&4 66.67 60.00 66.67

While we find no significant correlations in all cases for the
Birkbeck group; the ETH group shows a significant correlation
between two of the message styles and the level of experience.
These findings must be taken with caution since we are working
with very small numbers (since grouping students by their level of
experience results in small groups). The percentages clearly show
that hypothesis C does not hold but indicate the visual form does
little to help beginners. When both groups are combined, the
visual form remains least suited for novices but there is a
significant correlation between all message styles and level of
experience (r = .40, p (two-tailed) < .01 for short form; r = .29, p
(two-tailed) < 0.05 for long form; r = .48, p (two-tailed) < .01 for
visual inline form).
Hypothesis D: More information results in more correct
answers.
This hypothesis states that the more information a message
provides, the more likely a student is to get a correct answer since
he can understand better the origin of the problem. A brief
message might not give enough information to understand where
the problem is.
Table 4 shows the percentage of correct answers per message
style (rightmost column). These results contradict hypothesis D:
Both ETH and Birkbeck students scored low for Question Q7l_acc,
considered the hardest (72.1% and 33.3% respectively) despite
being given more help (through a lengthy message).
The results for hypothesis D are not significant in both groups.
For all message types, Wilcoxon signed-rank test indicates that
there is no significant difference between the means.

Table 4: % correct answers per message style and error type

 Unknown
identifier

Wrong
number of

args.

Private
access

violation
Avg.

ETH

Short 95.3 90.7 90.7 92.23

Visual 79.1 88.4 95.3 87.60

Long 93 100 72.1 88.37

Birk-
beck

Short 83.30 41.70 58.30 61.10

Visual 87.50 8.30 54.20 50.00

Long 75.00 66.70 33.30 58.33

Hypothesis E: The error type determines the number of
correct answers.
Does the error type influence the number of correct answers?
Students usually find it more difficult to answer questions
involving complex problems. Hypothesis E complements other
results in the study by helping to identify whether a certain error
type was overly difficult.
For the ETH students, small differences appear in the percentage
of correct answers between error types, but they are not
significant.
Tangible differences exist for the Birkbeck students: it is clear that
most students were able to find the answer for the Unknown
identifier problems unlike for the other error types. The
percentage of correct answers for individual questions contained
in the group of questions relating to Unknown identifier (first
column of Table 4) uncovers few differences between the
message types. Wilcoxon signed-rank test confirms there is a
significance in the comparison of the number of correct answers
for Unknown identifier and Wrong number of arguments: z = -
3.92, p < .01; Unknown identifier and Private access violation: z
= -3.12, p < .01. This confirms that the result was probably due to
the easier nature of the problem rather than influence from the
message type. Birkbeck students, unlike their ETH peers, confirm
this hypothesis.
Hypothesis F: More information in the error message results
in shorter response times.
The more information a message provides, the more there is to
read, which increases the time it takes to answer. On the other
hand, the longer the message, the more information is available to
understand what might have gone wrong. This might help the
student to get an answer faster.
The analysis shows that this hypothesis does not hold. According
to mean times (247.2,166.9, and 223.0 seconds for short, visual
and long form respectively), the message type that contains a
visual representation results in significantly faster answers. The
analysis resulted in significance between the short and visual
styles and long and visual styles with: z = -4.86, p< .01 and z = -
4.03, p < .01 respectively. The study assumes that participants did
spend some time thinking about the problem and their answers
rather than clicking through one of the options (multiple-choice
questionnaires may produce biased results if participants do not
make a genuine effort when answering questions; with open-
ended questions, this risk is reduced, but assessing and grading the
answers uniformly is more difficult). Again this analysis only
considers the ETH group.

171

6. DISCUSSION
Table 5 summarizes the results obtained for each hypothesis.
Many run counter our expectations but provide an indication of
where efforts can be placed to efficiently help novices.

Table 5: Summary of results

Hypothesis ETH Birk-
beck

A: Higher experience results in faster answers N/A

B: Higher experience results in more correct
answers

C: At a lower experience level, enhanced
messages result in more correct answers

D: More information results in more correct
answers

E: The error type determines the number of correct
answers

F: More information in the error message results in
shorter response times N/A

Giving a lot of information in an error message does not
necessarily help students get the correct answer, as assumed by
Hypothesis D. In particular, we expect novices to benefit most
from the provision of additional information. The results’ lack of
support for hypothesis C demonstrates that this is not necessarily
true. Adding timing aspects to this analysis shows that the more
experienced the students, the faster they can answer questions and
the more likely they obtain correct answers. The confirmation of
this result shows normality in the student populations; they
behave as expected. These timing analyses also help to examine
how novices react to being given more information on errors with
relation to time. Additional information should cause either an
increase or a decrease in response time. An increase might
indicate that the student took the time to read the message rather
than skipping it. A decrease might indicate that the student read
the information, found it helpful and did not spend a long time
trying to find out more on what the error is and where it could be
elsewhere. Since there is an increase in time only for questions
involving the Unknown identifier error type, and the response
times for questions involving the long form message type are
neither highest nor lowest, we have no indication whether the
provision of additional information leads to an increase or
decrease.
Results obtained for the ETH group and the Birkbeck group
differ: usually where one group exhibits strong tendencies, the
other tends to display none or little. The high percentage of
correct answers for all the questions in the ETH group indicates
that ETH students might have been too advanced in the course
and found the questions too easy for them. Birkbeck students
exhibit more difficulties. The homogeneity of this group however
restricts some of the analysis.
It is surprising to find no consistency in the results for message
styles: one message style does not obviously help more than
others with respect to the difficulty of the error type. The results
of the analysis indicate that the message form does not influence
the student’s performance.

7. CONCLUSIONS AND FUTURE WORK
The aim of this study was to explore whether the form of compiler
error messages can help students learning programming, and
especially to find out whether novices benefit from additional
information in error messages.
The kind of additional information provided in the long form
message does not seem to aid message comprehension, or help
identify the error faster or better; novices in particular do not seem
to reap significant benefits. We have to look elsewhere when
deciding what aspects of compiler messages help novices. Similar
studies for various characteristics of compiler error messages
(such as technicality of the error message, visual representation,
messages with examples, etc.) could identify the aspects that have
a strong positive influence on novices. With this knowledge,
compiler error messages could be tailored for them.
Improvements to the study involve fine-tuning questions to ensure
they require careful thought on the student’s part. This might
involve open-ended questions to reduce the possibility of quick
guesses. Adding more questions per error type and more types of
errors covering a broader spectrum of complexity should provide
more incontrovertible results. Carrying out the survey earlier,
while students are still learning will have the advantage of
reducing the possibility of skewing the data because the
participants are too experienced.

8. ACKNOWLEDGMENTS
Our thanks go to the participants of both studies who volunteered
their time. We are grateful to Manuel Oriol and Andreas Pedroni
for useful feedback.

9. REFERENCES
[1] T. Flowers, and A.C. Carver, and J. Jackson. Empowering

novice programmers with Gauntlet. Frontiers in Education,
2004.

[2] J. Jackson, M. Cobb, C. Carver. Identifying top Java errors
for novice programmers. Frontiers in Education, 2005.

[3] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the 2006
international Workshop on Computing Education Research
(Canterbury, United Kingdom, September 09 - 10, 2006).
ICER '06. ACM Press, New York, NY, 73-84.

[4] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg. The
BlueJ system and its pedagogy. Journal of Computer Science
Education, Special Issue on Learning and Teaching Object
Technology, 13(4), 2003.

[5] M.H. Ng Cheong Vee, B. Meyer, and K. L. Mannock.
Empirical study of novice errors and error paths in object-
oriented programming. 7th Annual HEA-ICS conference,
Dublin, Ireland, 29th -31st August, 2006.

[6] M. Satratzemi, and S. Xinogalos, and V. Dagdidelis. An
environment for teaching object-oriented programming:
ObjectKarel. Proceedings of The 3rd IEEE International
conference on Advanced Learning Technologies (ICALT 03),
342-343.

[7] E.R. Sykes and F. Franek. Presenting JECA: A Java Error
Correcting Algorithm for the Java Intelligent Tutoring
System. Proceedings of Conference on Advances in
Computer Science and Technologies, ACTS 2004, St.
Thomas, US Virgin Islands, November 2004.

172

