
Advanced Hands-on Training for Distributed and
Outsourced Software Engineering

Martin Nordio
ETH Zurich

Clausiusstrasse 59
8092 Zurich, Switzerland

+41/44-632-0297
Martin.Nordio@inf.ethz.ch

Roman Mitin
ETH Zurich

Clausiusstrasse 59
8092 Zurich, Switzerland

+41/44-632-7290
Roman.Mitin@inf.ethz.ch

Bertrand Meyer
ETH Zurich

Clausiusstrasse 59
8092 Zurich, Switzerland

+41/44-632-0410
Bertrand.Meyer@inf.ethz.ch

ABSTRACT
Today’s software projects are often distributed across multiple
locations. This distribution poses new challenges produced by the
cooperation across different countries, times zones, and cultures.
Software engineering courses have to prepare students
accordingly. This paper reports an experience on teaching a
distributed software engineering course. In this course, students
develop software in collaboration with five universities located in
Italy, Hungary, Russia, Switzerland, and Ukraine. The projects
allow students to face the difficulties of developing software in a
globalized context, and provide a practical experience on
distributed software engineering. We describe the major obstacles
to organize such a course, and we suggest best practices to
achieve successful outcome.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – life cycle,
productivity, programming teams, cost estimation, software
quality assurance.

General Terms
Management, Documentation, Performance, Human Factors.

Keywords
Distributed software engineering, multinational project, teaching.

1. INTRODUCTION
Developing software engineering projects is difficult. Distributing
the team across different countries, continents, time zones and
cultures does not help to solve the problem; it makes it harder.
Due the restriction in communication, software requirement
specifications, interface specifications, and project management
become a key to develop successful distributed projects. Failures
reported in outsourced and distributed projects happened not due
to lack of technical expertise, but due to lack of proper
management. One of the roles of software engineering courses is
to prepare students to face the new challenges of distributed

software engineering.

Most of today’s software engineering courses include a student
project as key component. The project provides a practical
experience for the students. Distributed software engineering
courses should also include a project, in this case a distributed
project. To provide a real experience the teams in the distributed
projects should be located in different countries with different
cultures, native languages and if possible, different time zones.
How can one organize these projects?

Some of the difficulties of organizing these projects, besides the
time schedules of the courses, which can differ from one country
to another, is the coupling between the teams: the success of the
project does not only depend of the success of a local team but
also the success of the team located in another country. This
coupling does not exist in typical software engineering projects
where a project is developed by one team. Another problem is the
integration of the projects in a final system: even if the local teams
perform a great job, the project might still fail.

This paper describes a practical experience teaching distributed
software engineering. This experience recreates the atmosphere of
an international project, and faces some of severe obstacles that
may come up in a real project. Some aspects of the course have
been described in previous publications[7][5]; the novel elements
in this paper are: (1) a description of the major obstacles
organizing distributed projects, (2) an assessment of the results,
and (3) best practices to achieve successful results. The paper is
organized as follows: in Section 2 we describe our software
engineering course. Section 3 presents the assessment. The paper
concludes with lessons learnt.

2. THE COURSE
The Chair of Software Engineering at ETH Zurich has taught a
“Distributed and Outsourced Software Engineering” course
(DOSE) for several years. The course targets master students with
good experience in programming and some prior knowledge in
software engineering. In the last two years, the course has
incorporated a distributed project in collaboration with Politecnico
di Milano (Italy), Odessa National Polytechnic University
(Ukraine), the State University of Nizhny Novgorod (Russia), and
University of Debrecen (Hungary). While the organization of the
courses is local to each university, the project is shared.

As a result of this scheme, the students get experience in the
development of true distributed projects. Although the size of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

projects is small as compared to an industrial project, students
face the same difficulties as in a distributed project in industry.

2.1 Lectures
While each participating university was teaching its own software
engineering course, the course material was shared. Furthermore,
the lectures at ETH Zurich were recorded and were available for
all students. The course had two hours of lectures and one hour of
exercise sessions.

The topics covered in the course are requirements elicitation and
writing software requirement specification, the CMMI model,
quality assurance, cost models for outsourcing, supplier
agreements, and risk management in distributed projects.

2.2 Project
The key component of the DOSE course is its distributed project.
Since distributed projects pose new challenges, the topic of the
project should not be a complex system; however, it should be
interesting enough for the students. In DOSE2008 [1], the project
was chosen from the topics offered in the SCORE [9]
competition: “BTW” [10], a system to provide advice to someone
planning a trip to a city. We divided the project into three clusters1
to be handled by different teams within a group2; the BTW
clusters were:

• SYST: GUI and overall organization of the system
• GEO: Interface with GIS information
• PLAN: Route planning and advice

Each project group includes teams from different universities.
Specifically each group in DOSE 2008 was made of three teams,
each including two students from a given university. Typical
group configurations were:

• Zurich – Nizhny Novgorod – Milano
• Debrecen – Milano – Zurich
• Milano – Zurich – Odessa

This approach has a pedagogical benefit: it forces the teams, in
their work and especially their interactions with other teams, to
focus on interfaces (in the sense of program interfaces, also
known as APIs). This is a key software engineering concept; the
best way to teach it is by experience, as students discover the
essential role of high-quality interface descriptions, in particular
contracts, and realize the extreme degree of precision required to
avoid mishaps. The pedagogical value is higher and the lessons
deeper than what can be learned from the experience of
implementing someone else's blueprint in the process-based
approach (although that experience is also useful).

2.3 Schedule
The course had the duration of 14 weeks (from September to
December 2008), devoting 13 weeks for the project. The nature of
the project makes it desirable to have other participating
universities adhere as closely as possible to this schedule. This is
difficult to achieve as other universities have their own calendars.

1 A cluster is a part of the project implemented by one team.
2 A group does the full project and is made of teams, each doing a

part of the project; A team is made of students from one
university, but a group involves teams from different
universities

This is one of the reasons of the collaboration with Milano,
Nizhny Novgorod, Odessa, and Debrecen: their academic
calendar is similar to ETH calendar.

The project consisted of the following three phases:

• Phase 1: Elaborate requirements document per
component (4 weeks)

• Phase 2: Revise requirements documents and create
consolidated document and develop interface
specification (5 weeks)

• Phase 3: Implementation (4 weeks)

In the first phase, besides elaborating the first version of the
requirements document, the students have prepared a
communication plan. The task consisted of making the first
communication with all members of the group, and agreeing on a
time slot for weekly meetings. The requirement for the weekly
meetings was that at least one member of each team had to
participate in the meeting. This task forced students to start the
communication from the beginning of the project, and it helped to
avoid possible misunderstandings.

The second phase was devoted to revise the requirements
documents. The documents were reviewed by all members of the
group, and feedback was integrated. Furthermore, students
developed interface specifications for their clusters. To avoid
misunderstandings and ambiguities of the requirements document,
the interface specifications were written in Eiffel using contracts
(our previous work [7] shows a study of the use of contracts in
distributed projects). The last phase was the implementation and
testing of the system.

In 2007 (DOSE2007 [2]), we ran a similar experience with
distributed projects. We found out that students did not start the
assignments after the first week. This late starting of the
assignments produced integration problems: the assignments were
finished closed to the deadline leaving no time to solve integration
problems. To solve this problem, last year, each phase was
implemented in two cycles; thus students had to submit an
assignment every second week.

2.4 Technology
The analysis, design and implementation of the projects are done
in Eiffel, using the open-source EiffelStudio environment. As
Students in several of the universities involved did not know
Eiffel in advance, thus ample teaching material was available
from the teaching pages at the Chair of Software Engineering's
site se.ethz.ch and also from Eiffel Software. Learning Eiffel was
not a difficulty for the students, however, we require knowledge
of an object-oriented language. One of the reasons of the use
Eiffel is its integrated Design by Contract mechanism. Last year
projects have shown that contracts help the development of
distributed projects [1].

To host the student projects, we use the Origo platform [8] as a
general-purpose open-source hosting framework. Origo provides
forums for discussions, Wiki pages, configuration management
support (Subversion) etc.

3. ASSESSMENT
3.1 Project outcome
The results of the project were good: the teams integrated the
subsystems and a final project was working at the end of the
semester. Although some functionalities of the project were
missing, the requirements with high priority were implemented.
At the beginning of the semester, there were six projects (about 50
students distributed in the five universities): five projects were
implemented and successfully integrated; and one project failed.
On average, the implemented projects had 44 classes, and 4789
lines of code (the projects were developed by 6-7 students).

3.2 The problem of using a distributed
project
There are several problems when one tries to develop distributed
projects: lack of communication, inconsistent shared vision,
cultural differences, different interest in the project, weak
commitment of certain teams in a group etc. However, one of the
most important problems to solve is the coupling of the
subsystems: if a subsystem fails, the whole project will fail.
In 2007, we experienced difficulties with teams leaving the
project. Some of the reasons are lack of motivation or inability to
cope with the language barrier. For example, in Russia one
student was excited about the project in the beginning but, due to
poor language skills, decided to leave the project. As a result one
group lost a team and the critical component this team was
working on. To solve this problem, we had to reorganize the
groups.
Students need a sufficient level in English to participate in the
project. In Russia and Ukraine, not all students speak English. To
avoid communication problems, students in Russian and
Ukrainian universities had to pass a language test before joining
the course.
At Politecnico di Milano, the DOSE project is a selective part of a
large software engineering course (with more than 100 students).
Since the project is taught, students had the option to implement a
distributed project or a local project. Many students in Milano
were interested in the distributed project, and the best applications
were selected to participate. This selection produced an excellent
result from the students at Politecnico di Milano: no student left
the project, and the quality of requirements documents and the
implementation was very good. In the other universities, there was
at least one student leaving the course either due to language
problems or personal interest.

3.3 Students’ feedback
During the projects, we have collected students’ feedback. This
empirical data is not statistically significant; it only characterizes
our experience. In the following sections, we present the results.

3.3.1 Motivation
Keeping the students motivated and excited about the project is
important for all software engineering projects. Before starting
each phase (1-requirements, 2-interface specification, and 3-
implementation), students filled in a questionnaire about how
motivated they were. They were asked to give a number from 1 to
10 where 1 is no motivation and 10 very motivated. The
questionnaire was filled in by 100% of the groups (the
questionnaire was part of the assignments, so all groups reported
their motivation). In average, the motivation was very high (8.2)

at the beginning of phase 1. Before phase 2 and phase 3,
motivation was still very high: 8.1 and 8.0 respectively. We think
challenging projects help to keep a high students’ motivation.

3.3.2 Expended Time
Some interesting questions to ask are:

• How much time did the teams expend in each phase?
• How much time did they expend in communication?

Table 2 shows the expended time in the whole phase 1 and phase
2, and the time expended only in communication. This data
represents the 78% of the projects; unfortunately, the collected
data for phase 3 is not representative and it is not presented in the
table.
The average of time expected in phase 1 is 30 hours; the average
time used for communication was 14 hours, which represents 47%
of the time used in phase 1. This high percentage is because in
phase 1, students start the collaboration; they exchange contact
information, they discuss how to organize the project, how to split
the tasks, they schedule the meetings, etc.
The percentage of the average of communication time was
reduced in phase 2: 40%. The average of hours expended in
communication is 43 hours, and the average of communication
time is 18 hours.
We think there are two main reasons why the time expended in
communication is high. The first one is that phase 1 and 2 are the
critical phases of the project: a misunderstanding in these phases
might produce that the project fails. In phase 2, students discuss
the interface specification. This interface specification is
important for the integration of the project.
The second reason is that projects are distributed in three
locations. All discussions have to involve three different
countries (in some cases with different time zones). We do not
have concrete evidence of the overhead in communication
comparing distributed projects in two and three locations; we plan
to make a study during the development of next DOSE course.

3.3.3 Tools for communication
Another important part of the students’ feedback was to collect
information about the tools they used to communicate. Most of
the students used Skype, e-mail, wiki, and Google docs. There
was a small group using Google groups and Basecamp. The
average of the tools is: 63% Skype; 26% e-mail; 8.5% e-mail;
1.5% Google docs; 1% other. This information was collected
three times during the project, and it represents 95% of the
projects.
Students reported that most of the Skype communication was
done using only chat. About 60% of the teams did not used voice
for communication. The reason was that the Internet connection,
especially in Russia, Hungary, and Ukraine, was slow, and they
were not able to use voice communication.

3.3.4 Other problems
The main problems during the project were about communication.
Some teams reported that the level of English of the other teams
was poor, making the communication harder.

There were some difficulties about project management: some
teams had problems deciding how to split the work in different
cluster, and agreeing the scope of the clusters. In the first phase of
the projects students were asked to prepare communication plan,

but absence of scope management plan was an additional obstacle
for the SRS phase.

4. CONCLUSIONS
One of the lessons learnt is how to organize distributed projects in
an academic environment. If it is the first time the course includes
a distributed project, it is strongly recommended that the teaching
stuff at the different universities meet to discuss the organization
of the course. Important items to discuss are the project topic, the
programming language to use, communication tools, set up for
svn or cvs repositories, and student assignments and deadlines.
We find useful to provide a scope document and a basic project
implementation. The scope document should describe the overall
project structure, and the interaction between the groups.

Organizers in each university should ensure that students commit
to the project. In many universities students can leave the course
at any time; this is strongly undesirable for a distributed project.
We have addressed this problem working with small groups of
volunteer students. In some universities, students are selected. If
students leave the course during the project, we reorganize the
groups.

To implement the project, we recommend that a common
programming language is chosen. This language can be also used
to define a common interface specification between the
subsystems. If the students are not familiar with the programming
language to use, it is useful to organize an introductory training
before the project starts.

Communication in distributed project is difficult. However, it is
not enough only to describe the problem of communication in a
lecture. Before starting the projects, we run several
communication exercises, and we discuss the results in an
exercise session. For example one good game can be found in
student books for official Microsoft MSF course. Furthermore, we
require students write a communication plan.

5. ACKNOWLEDGMENTS
We would like to thank all the people involved in DOSE 2008
especially Dr. Peter Kolb, Prof. Carlo Ghezzi, Prof. Elisabetta Di
Nitto, Giordano Tamburrelli, Prof. Viktor Gergel, Andrey
Zaychikov, Lajos Kollar, Prof. Juhasz Istvan, and Prof. Victor
Krissilov; to the students who worked hard and gave us useful
feedback.

6. REFERENCES
[1] DOSE 2008. http://se.ethz.ch/teaching/2008-H/dose-

0273/index.html
[2] DOSE 2007. http://se.ethz.ch/teaching/2007-F/outsourcing-

0273/index.html
[3] M.J. Hawthorne and D.E. Perry. Software engineering

education in the era of outsourcing, distributed development,
and open source software: challenges and opportunities. In
International Conference on Software Engineering. 2005.

[4] J.D. Herbsleb and D. Moitra. Global software development.
Software, IEEE, 2001.

[5] Meyer B., Piccioni, M.: The allure and Risks of a deployable
software engineering project. In proceedings of the 21st
IEEE-CS Conference on Software Engineering Education
and Training. 2008.

[6] Richardson, I., Milewski, A., Mullick, N., and Keil, P.
Distributed development: an education perspective on the
global studio pro ject. In ICSE ’06. 2006. ACM.

[7] Nordio, M., Mitin, R., Meyer, B., Ghezzi, C., Di Nitto, E.,
and Tamburelli, G.: The Role of Contracts in Distributed
Development in Proceedings of Software Engineering
Advances For Offshore and Outsourced Development. 2009.

[8] Origo. http://www.origo.ethz.ch/
[9] SCORE, http://score.elet.polimi.it/
[10] BTW Project, http://score.elet.polimi.it/projects.html

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 Av
Total time in
Phase 1

17h 24h 30h 56h 58h 25h 52h 21h 26h 9h 50h 19h 14h 17h 30h

Communication
in Phase 1

12h 15h 12h 30h 18h 8h 30h 6h 10h 5h 30h 7h 8h 7h 14h

Perc. in
communication

70% 63% 40% 53% 31% 32% 57% 28% 38% 55% 60% 36% 57% 41% 47%

Total time in
Phase 2

38h 55h - 80h 70h 22h 60h 14h 20h 30h - 100h 21h 13h 43h

Communication
in Phase 2

15h 16h - 30h 45h 4h 15h 6h 12h 12h - 50h 12h 3h 18h

Perc. in
communication

39% 29% - 37% 64% 18% 25% 42% 60% 40% - 50% 57% 23% 40%

Table 1. Expended time in phase 1 and phase 2

