
Teaching Software Engineering using Globally Distributed
Projects: the DOSE course

Martin Nordio
ETH Zurich, Switzerland

martin.nordio@inf.ethz.ch

Carlo Ghezzi
Politecnico di Milano, Italy

carlo.ghezzi@polimi.it

Bertrand Meyer
ETH Zurich, Switzerland
bertrand.meyer@inf.ethz.ch

Elisabetta Di Nitto
Politecnico di Milano, Italy

dinitto@elet.polimi.it

Giordano Tamburrelli
Politecnico di Milano, Italy

tamburrelli@elet.polimi.it

Julian Tschannen
ETH Zurich, Switzerland
julian.tschannen@inf.ethz.ch

Nazareno Aguirre
University of Rio Cuarto,

Argentina
naguirre@dc.exa.unrc.edu.ar

Vidya Kulkarni
University of Delhi, India

vkulkarni@cs.du.ac.in

ABSTRACT
Distributed software development poses new software engi-
neering challenges. To prepare student for these new chal-
lenges, we have been teaching software engineering using
globally distributed projects. The projects were developed in
collaboration with eleven universities in ten different coun-
tries in Europe, Asia, and South America. This paper re-
ports the experience teaching the course, describing the set-
tings, problems faced organizing the projects and the lessons
learned.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management— Program-
ming teams; K.3.2 [Computing Milieux]: Computers and
Education— Computer and Information Science Education

General Terms
Management, Documentation, Human Factors

Keywords
Distributed software engineering, multinational project

1. INTRODUCTION
Today’s software production is increasingly distributed.

Gone are the days of one-company, one-site projects; most
industry developments involve teams split over locations,
countries, and cultures. This geographic distribution poses
new challenges in communication, software requirement spec-
ifications, interface specifications (in the sense of program
interfaces, also known as APIs), and project management.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0590-7/11/05 ...$10.00.

One of the roles of software engineering courses is to pre-
pare the students for software engineering development as is
done in industry. It is indeed a widely adopted practice to
include a development project as part of software engineer-
ing courses, so that students get exposed to the problems of
the field, and get practical experience on some approaches
to deal with them. These projects are typically used to teach
concepts such as requirements, interface specifications, de-
sign, etc., via a “hands-on” approach.

We have experimented with teaching software engineer-
ing using a geographically distributed software project in-
volving various countries with different cultures, native lan-
guages and time zones. Such a project gives the students the
opportunity of facing the challenges of distributed software
development; it also helps them understand typical software
engineering issues, such as the importance of software re-
quirements specifications, or the relevance of adequate sys-
tem design. This project provides an authentic distributed
development experience, in which many of the difficulties
typical of such a setting take place.

Despite the mentioned benefits of running a distributed
project, there exist various difficulties that make the or-
ganization of the project itself as well as the correspond-
ing courses (in their respective countries) challenging. Be-
sides the obvious time scheduling inconveniences, caused by
courses being run in different countries with different time
zones, a particular problem to tackle is the coupling of the
participating teams. The success of the project does not only
depend on the success of a (local) team, but also depends
on its partner teams, located in different countries, being
successful too. Issues such as how to keep teams committed
to their peers, and how to handle risks and failures are part
of the experiences that we report in this paper.

In this paper, we describe our experience teaching dis-
tributed software engineering centered in the above described
distributed projects, and involving, in the past four years,
eleven universities in ten different countries in eight differ-
ent time zones. We explain how this experience enabled us
to recreate the atmosphere of an internationally developed
project, the obstacles we faced, and how we dealt with these.

This paper expands the experiences reported in [8] with
new experience of distributed software development gath-

ered in the courses taught in 2009 and 2010, which involved
more universities and a more ambitious project.

2. THE DOSE COURSE
The Chair of Software Engineering at ETH Zurich has

been teaching a “Distributed and Outsourced Software En-
gineering”(dose) course for several years. The course targets
master students with good experience in programming and
some prior knowledge in software engineering. The topics
covered in the course are requirements elicitation and writ-
ing software requirements specifications, the CMMI model,
quality assurance, cost models for outsourcing, supplier agree-
ments, and risk management in distributed projects.

To face the challenges of distributed software develop-
ment, the course has incorporated, in the last four years, a
distributed project. To make the course manageable, baring
in mind that these distributed projects pose new challenges
both for the students and for teachers, the topics of the
projects are carefully selected to be simple, yet challenging
enough to keep students motivated. In 2010, the project was
developed in collaboration with eleven universities: (1) ETH
Zurich, Switzerland; (2) Hanoi University of Science and
Technology, Vietnam; (3) Korea Advanced Institute of Sci-
ence and Technology, Republic of Korea; (4) Odessa Poly-
technic National University, Ukraine; (5) Politecnico di Mi-
lano, Italy; (6) State University of Nizhny Novgorod, Russia;
(7) University of Debrecen, Hungary; (8) University of Delhi,
India; (9) University of Rio Cuarto, Argentina; (10) Univer-
sity of Zurich; and (11) Wuhan University, China.

Each participating university has its own course with its
own course material, however, the covered topics are similar.
The course material used at ETH Zurich is shared, and the
lectures at ETH Zurich were recorded and were available for
all students [1]. Eiffel and Design by Contract are used as a
general framework for the analysis, design and implementa-
tion of the projects.

2.1 Setting up a Distributed Project
Setting up a distributed project for the first time is not

an easy job. Many unpredicted problems could rise in the
last minute: misunderstandings in communication, delays in
finishing the assignments, integration problems, etc. An im-
portant issue to consider is how to keep the students’ moti-
vation high, and how to avoid students leaving the course.

The first time the dose course integrated a distributed
project was in Fall 2007, in collaboration with University of
Zurich, ETH Zurich, Odessa National Polytechnic Univer-
sity, and the State University of Nizhny Novgorod.

The project topic was the development of a system to an-
alyze e-mail postings of computer science events, from mail-
ing lists such as the ECOOP list and SE World, to feed
the Computer Science Event List (CSEL). The automatic
part of the system identified key elements of a conference
announcement, such as event name, event date and call for
papers deadline, to prepare a CSEL entry. Since the iden-
tification cannot be perfect, the system includes a human
editing step to correct mistakes in the automated identifica-
tion process. The system was divided into three subsystems:
(A) ANALYZE: automatically extract the essential informa-
tion; (B) BEFIT: user interface for interactive correction;
(C) COMBINE: integration of components A, B and the
CSEL website.

To reduce the communication overhead, which we assumed

would be a major source of potential obstacles, in this first
experience an instance of the system was implemented by
three teams located in two countries. Typical group con-
figurations were (A) Zurich – (B) Nizhny Novgorod – (C)
Zurich; and (A) Zurich – (B) Zurich – (C) Odessa.

This approach has a pedagogical benefit: it forces the
teams, in their work and especially their interactions with
other teams, to focus on APIs. This is a key software engi-
neering concept; the best way to teach it is by experience, as
students discover the essential role of high-quality interface
descriptions, in particular contracts, and realize the extreme
degree of precision required to avoid mishaps. The pedagog-
ical value is higher and the lessons deeper than what can be
learned from the experience of implementing someone else’s
blueprint in the process-based approach (although that ex-
perience is also useful).

The project, developed over 11 weeks out of the semester’s
13, was divided into four phases:

• Phase 1: Requirements (4 weeks).

• Phase 2: Interface specification (3 weeks).

• Phase 3: Implementation (2 weeks).

• Phase 4: Testing (2 weeks).

While the project was relatively simple and small, the re-
sulting system implementation was weak. The main problem
in the project was the delay in finishing each phase. These
delays were produced by various issues, such as misunder-
standings in the APIs. These resulted in the impossibility of
integrating the final system in some of the projects. Accord-
ing to the students’ feedback, one of the main lessons they
learned from dose 2007 was the importance of APIs.

In Fall 2008, Politecnico di Milano and University of De-
brecen joined the course. The main difference with respect
to 2007 was that each project was globally distributed in
three locations; typical group configurations were: Zurich –
Nizhny Novgorod – Milano; and Debrecen – Milano – Zurich;
and Milano – Zurich – Odessa

The project was organized in phases similar to those of
2007, but 13 weeks of the semester were dedicated to the
project. To avoid misunderstandings and ambiguities of the
requirements document, the interface specifications were writ-
ten in Eiffel using contracts (our previous work [9] shows a
study of the use of contracts in distributed projects). The
last phase was the implementation and testing of the system.

In dose 2007, we observed that students typically started
working on the assignments at least a week after these were
handed out. This showed that students were not fully aware
of the criticality of deadlines in distributed software projects,
and produced integration problems (the assignments were
finished too close to the deadline, leaving no time to sort
out integration issues). To solve this problem, in 2008 each
phase was implemented in two cycles; the students had to
submit a draft version halfway through an assignment. The
introduction of two deadlines per assignment resulted to be
a key element that contributed to the success of the dose
projects.

2.2 A Challenging Project
The next two editions of dose included universities in

Asia and South America, increasing the challenge of people
of different cultures and time zones working together.

Figure 1: Architecture of the DOSE 2009 project.

A main difference with projects from previous years was
that, in order to make the setting more realistic and chal-
lenging, as well as more motivating for the students, we
chose a larger project, to which all students contributed,
as opposed to developing various independent instances of a
smaller project, and in previous editions of the course. Still,
in order to make the system realizable and keep the risks
of the whole development to a minimum, the design of the
project to be developed needed to be easy to partition, into
relatively independent subsystems.

For example, in 2009, the overall project consisted of a
game platform where players could log in, and choose a game
to play. Figure 1 shows the architecture of the project.

The students developed eight networked multi-player card
games, with each game being implemented by two teams lo-
cated in two different countries. For each game, one team
implemented the logic of the game and the other team im-
plemented the graphical user interface (GUI) and the net-
work communication. The implemented games were Tien
Len (Vietnamese game), Belot (Bulgarian game), Tschau
Sepp (Swiss game), Rikiki (Hungarian game), Bura (Rus-
sian game), Briscola Chiamata (Italian game), Makao (Pol-
ish game), and Scala 40 (Italian game). The games Belot
and Makao were proposed by students originally from Bul-
garia and Poland.

The main changes in the structure of the project, com-
pared to 2007 and 2008, were the introduction of a scope
document and a communication plan. In the first week of
the course, we provided a scope document describing the
general architecture of the game platform. In phase 1, the
students developed one scope document per game describ-
ing the scope of each project, and the role of each student in
the team. The scope document helped the students to avoid
misunderstandings regarding the scope of each component.
The project was organized as follows:

• Phase 1: Scope document and communication plan (2
weeks)

• Phase 2: Requirements document (3 weeks)

• Phase 3: Interface specification (2 weeks)

• Phase 4: Implementation and Testing (6 weeks)

The project for the 2010 edition of dose consisted in the
development of a learning platform to help users to learn lan-
guages such us English, Spanish, German, etc. The project

was again organized in a single system, developed by 110 stu-
dents. The system was composed of eleven subcomponents
(each subcomponent developed by one group). A group con-
sisted of three teams located in three different countries. The
main reason to split the project in three different locations
was to experience more about the barriers of developing soft-
ware using different time zones.

3. ASSESSMENT
The project outcome in 2007 was not good: several groups

had problems to integrate their system and in the end only
one team partially integrated the system. In dose 2008,
2009, and 2010 the situation improved.

In 2008, the results of the project were satisfactory: most
teams integrated the respective subsystems and managed to
have their projects working by the end of the semester. Al-
though some functionalities of the project were missing, the
requirements with the highest priority were implemented.
At the beginning of the semester, there were six projects
(42 students distributed in the five universities): five projects
were implemented and successfully integrated; and one project
failed. On average, each of the implemented instances of the
project had 44 classes, and 4800 lines of code (the projects
were developed by 6-7 students).

In 2009, the results were even better. All the projects were
successfully implemented and integrated in the game plat-
form. The whole project has 300 classes and 55’000 lines of
code; each group implementation has an average of about 37
classes and 6800 lines of code. Each group had 7-8 students.

We achieved a similar level of success in the 2010 edition
of dose, despite the increase in the people involved in the
development. The eleven groups successfully implemented
the project. The whole project consisted of over 600 classes,
and more than 130’000 lines of code (on average, each group
implementation has 55 classes, and 12’000 lines of code).
Each group had 7-9 students.

4. ORGANIZING DISTRIBUTED
PROJECTS

4.1 The Challenges of Distributed Projects

4.1.1 Interface Specification
Interface specifications are an important concept in soft-

ware engineering. This concept is taught in any software
engineering course. Distributed projects make this concept
even more relevant: a bad design in the API might result in
the failure of a project.

In dose 2007, many issues arose due to the lack of an
appropriate design of the API. For example, one group im-
plemented a class EVENT to represent conferences, work-
shops, symposiums, and summer schools. This class stored
the name of the conference, url, abstract and submission
deadlines, and the date and place of the event. This class
had two different semantics for the teams, which were lo-
cated in different countries. For team A, this class mod-
eled an event where all the data is valid. For example, a
restriction is that the date of the abstract deadline should
be earlier than the date of the submission deadline. Team B
assumed that the class EVENT represents any event even if
the data is not valid. According to the latter interpretation,
one would be able to create a conference where the dates are

not valid. This assumption and misunderstanding between
the teams introduced problems during the implementation
phase. These problems introduced delays in the development
of the projects, which in some cases led to not finishing the
project.

A way of dealing with API specification problems would
be to take the idea of providing a partitioning of each sub-
system into modules (e.g., the above mentioned partition of
each game subsystem into logic and GUI) further, and also
force students to attain to a given API for each subsystem
module. But as we mentioned, interface design is a crucial
software engineering concept, that we want students to get
training in. So, we want teams to design their own APIs, but
help in avoiding API misinterpretation. We provide then a
relatively simple API design process, based on code reviews,
and more importantly, design by contract. The students first
write the API for the core parts of their systems. This API
has to be fully equipped with preconditions and postcondi-
tions. This forces the students to clearly state the assump-
tions of each class and method, which is an important part
of the API design. Then, the students do a mandatory code
review for the API design. The members of the team have
to review the API and integrate the feedback before starting
the implementation. Furthermore, the teams have to define
a procedure for changes in the API. Thus, changes will be
communicated to the whole team describing how to adapt
the code to the new API.

The focus on a better API design are one aspect that
helped produce better results in the projects from 2008-2010.
Also, our case study in distributed projects [9] has shown
that contracts helped to develop interface specification and
to clarify misunderstandings in many ways. For instance,
the usual misunderstandings of textual specifications due to
natural language ambiguity are increased in the context of
our distributed projects, since students come from different
cultural backgrounds, and many are not fluent in English
(the language used for interaction). Contracts helped in al-
leviating this issue.

4.1.2 Project Management
In the dose course, students are exposed to the problem of

project management. Each group has to manage and orga-
nize its project monitoring the progress and communication
between the teams. In the first edition of the course, we did
not impose any scheme for the organization of the project:
each group had the freedom to organize the project as they
preferred. The lack of a person playing the role of project
manager in the group made the organization of the project
more difficult.

Since 2008, we impose the project organization for all the
groups introducing a group leader (project manager) per
group and a project leader per university. The role of the
project leader is to discuss the project with the students and
to help with the management of the project. Each project
leader gives a weekly report of the progress of each team to
the project management. This report helped to monitor the
progress of the project, and also to detect problems. The
role of the group leader is to organize his own group and
report progress to the project leader in the corresponding
university.

To further improve the organization of the projects, we
provide templates and examples from previous years for the
documents that are produced.

4.1.3 Communication
Communication is key for the success of geographically

distributed projects. Our experience in developing distributed
projects has shown that a communication plan for each project
is a necessary condition for a successful project. At the be-
ginning of the project, the students are requested to write
a communication plan defining the contact persons in each
team, a weekly time slot of one hour for meetings, and tools
to use. This plan also describes a communication protocol
indicating the expected time to reply e-mails, and how to
proceed if there is no reply. Generally, the communication
plans led to almost no communication issues being reported
to the project leaders in 2009-2010, as these were solved
within groups.

4.2 Student Fluctuations
Students might leave a course during the semester. When

they are part of a distributed project, this not only affects
their local team, but might have an impact on the teams of
other universities. In 2007 and 2008, we experienced difficul-
ties with whole teams leaving the project. The main reasons
were lack of motivation or inability to cope with the lan-
guage barrier.

To ease this problem, we require an initial team size of
three or more students per team. In the case that during
the course a student quits, the remaining team members
can continue, possibly reducing the scope of their part of
the project. In the case that a whole team leaves the course,
the groups have to be reorganized or a subsystem of the
project has to be dropped.

At Politecnico di Milano, the dose project is a selective
part of a large software engineering course (with more than
100 students). Students have the option to implement a dis-
tributed project or a local project. Many students in Milano
were interested in the distributed project, and the best ap-
plications were selected to participate. This selection pro-
duced an excellent result from the students at Politecnico
di Milano: no student left the project, and the quality of
requirements documents and the implementation was very
good. Last year, we have applied a similar selection in Rus-
sia, Hungary, and Vietnam. This selection has resulted in an
improvement in the quality of the result.

4.3 Trainings and Exercises
The dose project involves different universities with dif-

ferent curricula. To normalize the level of the students, we
run trainings before the course starts. For example, in Russia
and Argentina, we teach a short course on Eiffel.

During the course, we organize exercise sessions where the
students face communication as well as project management
problems. The goal of these exercise sessions is to emphasize
the importance of good communication and project man-
agement. These sessions help the students identify poten-
tial problems in the group. Although these sessions are not
mandatory for the students, they are encouraged to partic-
ipate by the corresponding local teaching staff.

An example of these exercises is the on-line group com-
petition that we organized in 2010. Each group consisted
of eight students located in three different countries. Each
member in the team had a role: A, B, C1, C2, C3, D1, D2,
or D3; before the competition started, students had to select
their roles in the group. During the competition, they were
allowed to use any tool (Skype, e-mail, etc.).

When the competition started, each participating student
received the role card by e-mail. Each card has an array of
integers and a description of tasks to solve. The tasks were
simple (for example, find the maximum element in the arrays
C1+C2+C3) but they involved the array of the other team
members. There were 17 tasks distributed in the eight role
cards, some of them where repeated in several role cards.
All role cards mentioned that the solution had to be sent
by the person with role A. Only role card A mentioned that
only seven out of the 17 tasks had to be solved. The role
cards were designed in a way that if they distributed the
tasks, and organized well, they would finish earlier. The role
cards C1, C2, C3 contained the same task; to solve them,
the students only needed the arrays C1, C2, and C3. The
role cards D1, D2, and D3 were designed in the same way.

The first team completed the tasks in 41 minutes, and the
last team in 71 minutes. While the tasks were simple, some
of the groups reported wrong results.

The students’ feedback reported that in some groups, the
person in role A did not tell the others what tasks to solve;
thus they solved all the tasks. Looking to the Skype logs, we
found that chat messages were sent every 20 seconds. The
students reported that at the beginning of the competition,
it was difficult to work because of all the messages they got.
Some of the groups created sub-groups with different chats.
This organization reduced the overhead in communication.

The feedback also reported that the exercise was very in-
teresting and they learned the importance of a project man-
ager and good communication. We found that the exercise
was interesting, and we plan to repeat it in the next edition
of our course.

5. RELATED WORK
Lessons learned on educational experiences similar to ours

have been reported [5, 4, 3, 2, 6, 10]. Gotel et al. [5] describe
the lessons learned from the development of a project across
three globally distributed educational institutions in the US,
India, and Cambodia. A similar experience is described by
Damian et al. [4]. They report on the teaching experience
developing software requirements specifications in geograph-
ically distributed software development with three universi-
ties (located in Canada, Australia, and Italy), focusing on
the times zones and the cultural differences. Bosnic et al. [2]
present a teaching experience for distributed software engi-
neering in collaboration with Croatia and Sweden; Bruegge
et al. [3] develop a similar experience in collaboration with
universities in the US and Germany. Our experience, in par-
ticular dose 2010, involved more universities and different
settings; some of the groups had a twelve-hour time differ-
ence, others had a seven-hour time difference, and others
only two-hour time difference.

Meyer et al. [7] have described our first experience in dis-
tributed software development, dose 2007. This paper ex-
tends our previous paper [8].

6. CONCLUSIONS
We have presented our experiences regarding an approach

to teaching distributed software engineering centered in a
distributed software development project. The approach has
been implemented every year since 2007, and we have made
various significant improvements based on the lessons learned
in the earlier editions of the course. We described some of

these improvements, with their corresponding motivations
and results. Among these, the emphasis on API design, and
the role that contracts play in this activity, is a key char-
acteristic of the approach. We have also emphasized the de-
velopment of communication skills, since we identified that
at least 30% of the time spent by students in the project
corresponds to communication.

Organizers in each university should ensure that students
commit to the project. In many universities students can
leave the course at any time; this is strongly undesirable for
a distributed project. We have addressed this problem work-
ing with small groups of volunteer students. In some univer-
sities, students are selected. In the last year, we had only few
students leaving the course. This allowed us to successfully
reorganize groups when students dropped the course in the
middle of the execution of the project.

7. ACKNOWLEDGMENTS
We would like to thank all the people involved in dose: Do

Le Minh, Franco Brusatti, Huynh Quyet Thang, Lajos Kol-
lar, Mei Tang, Natalia Komlevaja, Peter Kolb, Raffaela Mi-
randola, Sergey Karpenko, Sungwon Kang, Victor Krisilov,
Viktor Gergel; and the students who took the course.

8. REFERENCES
[1] Dose 2010 course material and videos.

http://se.inf.ethz.ch/teaching/2010-H/

dose-0273/index.html#slides.

[2] I. Bosnic, I. Cavrak, M. Zagar, R. Land, and
I. Crnkovic. Customers’ Role in Teaching Distributed
Software Development. In CSEE&T, 2010.

[3] B. Bruegge, A. Dutoit, R. Kobylinski, and
G. Teubner. Transatlantic project courses in a
university environment. In 7th Asia-Pacific Software
Engineering Conference, 2000.

[4] D. Damian, F. Lanubile, and T. Mallardo.
Investigating IBIS in a Distributed Educational
Environment: the Design of a Case Study. In
Workshop on Distributed Software Engineering,
volume 1, 2005.

[5] O. Gotel, V. Kulkarni, L. Neak, C. Scharff, and
S. Seng. Introducing Global Supply Chains into
Software Engineering Education. In SEAFOOD, 2007.

[6] M. Hawthorne and D. Perry. Software engineering
education in the era of outsourcing, distributed
development, and open source software: challenges and
opportunities. In ICSE, 2005.

[7] B. Meyer and M. Piccioni. The allure and risks of a
deployable software engineering project. In
Proceedings of the 21st IEEE-CS Conference on
Software Engineering Education and Training, 2008.

[8] M. Nordio, R. Mitin, and B. Meyer. Advanced
hands-on training for distributed and outsourced
software engineering. In ICSE, 2010.

[9] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. D.
Nitto, and G. Tamburelli. The Role of Contracts in
Distributed Development. In SEAFOOD, 2009.

[10] I. Richardson, A. E. Milewski, N. Mullick, and P. Keil.
Distributed development: an education perspective on
the global studio project. In ICSE ’06: Proceedings of
the 28th international conference on Software
engineering. ACM, 2006.

http://se.inf.ethz.ch/teaching/2010-H/dose-0273/index.html#slides
http://se.inf.ethz.ch/teaching/2010-H/dose-0273/index.html#slides

	Introduction
	THE DOSE COURSE
	Setting up a Distributed Project
	A Challenging Project

	ASSESSMENT
	ORGANIZING DISTRIBUTED Projects
	The Challenges of Distributed Projects
	Interface Specification
	Project Management
	Communication

	Student Fluctuations
	Trainings and Exercises

	Related Work
	Conclusions
	Acknowledgments
	References

