
Concurrent Software Engineering
and Robotics Education

Jiwon Shin∗, Andrey Rusakov∗, and Bertrand Meyer∗†
∗Chair of Software Engineering, Department of Computer Science, ETH Zürich, Switzerland

†Software Engineering Lab, Innopolis University, Kazan, Russia
Email: {jiwon.shin, andrey.rusakov, bertrand.meyer}@inf.ethz.ch

Abstract—This paper presents a new, multidisciplinary
robotics programming course, reports initial results, and de-
scribes subsequent improvements. With equal emphasis on
software engineering and robotics, the course teaches students
how software engineering applies to robotics. Students learn
independently and interactively and gain hands-on experience by
implementing robotics algorithms on a real robot. To understand
the effects of the course, we conducted an exit and an 8-month
survey and measured software quality of the students’ solutions.
The analysis shows that the hands-on experience helped everyone
learn and retain robotics well, but the students’ knowledge gain
in software engineering depended on their prior programming
knowledge. Based on these findings, we propose improvements
to the course. Lastly, we reflect our experience on andragogy,
minimalism, and interactive learning.

I. INTRODUCTION

With advancement of technology, the importance of good
software engineering has extended far beyond the traditional
computing devices and fields; however, most university-level
software engineering courses still do not address the need for
quality software outside of computer science. Consequently,
computer science students rarely gain hands-on experience
with a real system, and students of other fields may learn
how to code but not how to engineer software. Even in
fields such as robotics, where software engineering is an
essential component, current educational system pays little
attention to software engineering. Indeed, most university-level
robotics courses that teach robotics algorithms cover little to
no software engineering topics [1], [2].

Robotics has gained attention as a medium to teach science
and engineering concepts [3], [4], and computer science is no
exception. Several introductory courses have taught computer
science using a robot, initially with a negative result [5] but
lately more positive results [6], [7]. This effort has, however,
been limited to introductory courses. Although Gustafson
proposed the idea of teaching software engineering using
robotics over 15 years ago [8], to the authors’ knowledge,
only one such course exists [9]. This paper presents a new
course that tries to address this gap in software engineering
and robotics education and evaluates the initial experience.

Robotics programming laboratory is a new, multidisci-
plinary, elective course for master’s-level students at ETH
Zurich. Open to students of computer science, electrical en-
gineering, and mechanical engineering, the course teaches
software engineering principles, concurrency, and architecture

through hands-on learning in robotics context. Independent
and interactive learning are at the core of our course. We give
each student a personal robot, use online tutorials, require both
independent and group work, host in-class demonstrations, and
encourage students to communicate via an online forum. To
understand the effect of concurrent software engineering and
robotics education, we conducted an exit survey and a survey
8 months later. Our analysis of the surveys and measuring
software quality of the students’ solutions reveal that the
course taught robotics well to everyone, but those with little
prior programming knowledge did not learn as much software
engineering. Based on these findings, the paper proposes an
improved course that addresses the issues identified in the
pilot course. The paper also reflects the initial experience on
andragogy, minimalism, and interactive learning.

This paper is organized as follows. After a brief introduction
and an overview of related work in Section I, the paper
continues with theory in Section II. Section III presents the
pilot course and Section IV evaluates how successfully the
pilot course addressed its objectives. Section V presents an
improved version of the course. The paper then discusses the
results of the pilot study in Section VI and presents threats to
validity in Section VII. Section VIII concludes the paper with
final remarks and future work.

II. THEORY

The theoretical frameworks for our paper are andragogy,
minimalism, and interactive learning. Andragogy and mini-
malism have been used to explain success in computer science
courses that use robots [10]. Interactive learning is hypothe-
sized to be more effective than constructive learning [11]. This
section briefly explains these theories.

A. Andragogy

Andragogy [12], [10] aims to explain how adults learn. It
theorizes that adults learn differently from children and should
be taught accordingly. In particular, it makes the following six
assumptions:

1) Adults have self-concept of a learner. Teachers should
encourage and nurture adults’ need to be self-directing.

2) Adults have prior experience. Teachers should employ
experiential techniques to enable adults to utilize their
accumulated experience and learn from experience.



3) Adults are ready to learn. Learning programs should
be organized around life-application categories and se-
quenced according to the learners’ need to learn.

4) Adults are problem-centered. Learning experiences
should be designed around competency-development
categories.

5) Adults need to know the importance and the benefits of
gained knowledge.

6) Adults are internally motivated, but external motivators
can increase the internal motivation.

B. Minimalism

Minimalism [13] assumes that people will reason creatively
and improvise when they are engaged in a task. The role of an
instructor is to create an environment for creative reasoning
and to give appropriate support when an error occurs. Its four
principles are:

1) to choose action-oriented approach by introducing the
task in the beginning,

2) to anchor tools in the task domain so that the task is
easy to understand,

3) to support the learner’s error recognition and recovery
while keeping the learner active and motivated, and

4) to support reading to do, study, and locate such that
every piece of information is self-contained.

C. Interactive learning

Chi [11] classifies different learning activities in terms of
observable overt activities and underlying learning processes.
The learning activities are passive, active, constructive, and
interactive. In passive learning, students enter the learning
environment with open mind and accept the information.
Active learning requires students to do something physically.
Constructive learning involves producing outputs that contain
ideas that go beyond the presented information. Interactive
learning requires dialoguing substantively on the same topic,
and not ignoring a partner’s contributions. She hypothesizes
that interactive activities are most likely to be better than
constructive, active, or passive activities.

III. PILOT COURSE

Robotics programming is a master’s-level, elective, labora-
tory course that gives 8-credits (240 hours of workload). The
course is open to computer science (CS), electrical engineering
(EE), and mechanical engineering (ME) students.

A. Course objectives

The main objectives of the course are that students gain
• basic software engineering principles and methods,
• common architectures in robotics,
• coordination and synchronization methods,
• how software engineering applies to robotics, and
• hands-on experience by programming a small robotic

system with aspects of sensing, control, and planning

TABLE I
LECTURE TOPICS AND SCHEDULE. TOPICS COVER SOFTWARE

ENGINEERING (SE) AND/OR ROBOTICS (R).

Wk Topic SE R
L1 1 Intro to SE and robotics x x
L2 2 ROS and Roboscoop x x
L3 3 SCOOP x
L4 4 Control and obstacle avoidance x
L5 5 Design patterns x
L6 6 Localization x
L7 7 Mapping x
L8 8 Modern SE Tools x
L9 9 Path planning x

L10 10 Object recognition x
L11 11 Software architecture in robotics x

No lecture (weeks 12 – 14)

B. Course structure

The course is 14 weeks long and has one lecture (2 hrs) and
one exercise session (2 hrs) a week. Each lecture introduces a
new software engineering and/or robotics topic, and exercise
sessions provide further assistance on the assignments. The
course has four graded assignments and no exam.

1) Lectures: The lecture topics are chosen to give students
balanced exposure to software engineering and robotics (Ta-
ble III-B1). The software engineering lectures address the first
three objectives: software engineering principles and methods
(L1, L5, L8), architecture (L2, L11), and concurrency (L2,
L3). The robotics lectures introduce algorithms through which
students apply their software engineering knowledge and gain
hands-on experience.

The software engineering lectures provide an overview of
various aspects of software engineering, with more emphasis
on topics and tools relevant for the course. The lecture topics
are as follows:

• Introduction to software engineering (L1): This lecture
introduces software engineering and discusses software
product and process. In particular, the lecture delves
into software quality factors and different software pro-
cesses. Mentioned software quality factors include reli-
ability, ease of use and learning, efficiency, extendibil-
ity, reusability, and portability. The software processes
include CMMI, Agile, Waterfall, Spiral, and Cluster.

• ROS (L2) and software architecture in robotics (L11):
These lectures present different robotics middlewares
and their architecture. The architecture lecture discusses
CARMEN [14] and its model-view-controller architec-
ture, MOOS [15] and its star topology with layered ar-
chitecture, Microsoft Robotics Studio [16], and ROS [17]
and its peer-to-peer architecture. In addition, as the course
uses ROS, we dedicate a one-hour lecture to ROS and
cover it in detail.

• Roboscoop (L2) and SCOOP (L3): These lec-
tures cover concepts of concurrency and its usage in
robotics. Simple Concurrent Object-Oriented Program-
ming (SCOOP) [18], [19] is an object-oriented program-
ming model for concurrency, and Roboscoop [20] is



a robotics framework built on top of SCOOP. SCOOP
guarantees the absence of common concurrency errors
such as data races, and it has been shown to be easier
to learn than Java threads [21]. In the SCOOP lectures,
students learn about four risks of concurrency – data
race, deadlock, starvation, and priority inversion – and
the SCOOP model. The Roboscoop lecture covers how
the framework extends SCOOP to bring easy concurrency
to robotics.

• Design patterns (L5): This lecture teaches design pat-
terns that are useful for the class, namely, observer, state,
strategy, and visitor. The observer pattern is extensively
used in ROS for communication. The state pattern is use-
ful for implementing the obstacle avoidance algorithm,
which consists of several states. The strategy pattern
enables different path planning strategies to be swapped
easily. The visitor pattern is useful for implementing
different predict and update methods in localization.

• Modern software engineering tools (L8): This lec-
ture covers IDEs, debuggers, refactoring tools, profil-
ers and performance analyzers, automatic testing tools,
and configuration management tools. The lecture teaches
best practices when working with these tools and gives
demonstrations of the tools. The demonstrations help stu-
dents combine and integrate the tools into their software
development process for better time and team manage-
ment.

The robotics lectures introduce students to essential algo-
rithms in robotics. The lectures cover the following:

• Control and obstacle avoidance (L4): This lecture
teaches about differential-drive robot, odometry compu-
tation, PID controller, and different bug algorithms for
obstacle avoidance.

• Localization (L6): This lecture introduces three differ-
ent localization algorithms, namely, Markov localization,
Kalman filter localization, and particle filter localization.

• Mapping (L7): This lecture covers occupancy grid
mapping and Simultaneous Localization and Mapping
(SLAM).

• Path planning (L9): This lecture teaches various graph
construction methods and path planning algorithms. The
graph construction methods include visibility graph,
Voronoi diagram, exact cell decomposition, and approx-
imate cell decomposition. The path planning algorithms
include deterministic algorithms such as Dijkstra’s algo-
rithm and A* search, randomized graph search algorithm,
and potential field path planning.

• Object recognition (L10): This lecture provides an
overview of object recognition process, from segmenta-
tion to feature extraction and classification, both for 2D
and 3D data.

The course follows no textbook; instead, we recommend
some books as references and utilize online tutorials. Rec-
ommended software engineering books are Object-Oriented
Software Construction [22], Design Patterns [23], and Pattern-

TABLE II
ASSIGNMENTS. SOME WERE COMPLETED INDIVIDUALLY (I) AND OTHERS

IN A GROUP (G) OF TWO.

Week Topic I G
A0 1 – 3 Setup (no grade) x
A1 4 – 6 Control and obstacle avoidance x
A2 7 – 10 Localization x
A3 11 – 12 Path planning x
A4 13 – 14 Search and rescue x

Fig. 1. Dolls and a rubber duck used for search and rescue.

Oriented Software Architecture Volume 2 [24]. Recommended
robotics books are Probabilistic Robotics [25] and Introduction
to Autonomous Mobile Robots [26]. In addition, we ask
students to follow the ROS tutorials 1 and the PCL tutorials 2.

2) Assignments: The course has one ungraded and four
graded assignments (Table II). The ungraded assignment gives
students time to get familiar with the working environment.
The four graded assignments require students to apply their
software engineering skills to robotics by implementing core
robotics algorithms from scratch. The assignments are com-
pleted either individually (A1, A2) or in a group of two
(A3, A4). Having both individual and group assignments
ensures that every student learns the basics and encourages
them to share their knowledge. For A3 and A4, we introduce
intermediate goals to aid the students’ time management.

The four graded assignments are as follows:
• Control and obstacle avoidance (A1): This assign-

ment has two tasks – implementing a PID controller
for going to a goal and implementing the TangentBug
algorithm [27], an improved Bug obstacle avoidance
algorithm for robot with range sensors. For going to a
goal, the PID controller simply controls the angle to the
goal. For the TangentBug, the PID controller also controls
wall following by keeping a constant distance from the
closest obstacle.

• Localization (A2): This assignment requires students to
implement a particle filter localization algorithm. Given
a map and a goal location, students demonstrate how
their robot can go from initially unknown location to a
predefined location in the map.

• Path planning (A3): This assignment adds A* path
planner to their software. Students demonstrate how their
robot can go from a starting point to a goal while visiting

1http://wiki.ros.org/ROS/Tutorials
2http://pointclouds.org/documentation/tutorials/



intermediate stops on the way.
• Search and rescue (A4): Last assignment asks students

to implement an object recognition algorithm for recog-
nizing dolls and rubber ducks (see Figure 1) and to search
for them in the testing environment. Students take RGBD
data as input and use spin image as the feature for object
recognition.

3) Grading scheme: The grade depends on in-class demon-
stration (50%) and software quality (50%). Students submit
their software via their SVN repository and demonstrate in
class how accurately their implementation works on their
robot. For in-class demonstration, exact metric is defined for
each assignment. For software quality, percentage breakdown
of different components remains the same for all assignments.

In-class demonstration measures the following. In addition,
there is a deduction for dumping into obstacles:

• Control and obstacle avoidance (A1)
– distance to the goal
– wall following
– entering and existing obstacle avoidance state

• Localization (A2)
– distance to the goal

• Path planning (A3)
– distance to the goal

• Search and rescue (A4)
– object recognition accuracy (label and location)
– speed

Software quality [28] (50%) consists of the following:
• choice of abstraction and relations (30%)

– dependency inversion
– interface segregation
– option-operand separation

• correctness of implementation (40%)
• extendibility and reusability (20%)

– single responsibility
– open/closed principle
– hard-coded variable

• comments and documentation (10%)
4) Feedback: Instructive feedback improves students’ un-

derstanding of learning material [29]. The course therefore
provides in-class and individual feedback to students. The
feedback sessions, which are held after each assignment, focus
on software quality aspect of the assignments, i.e., choice of
abstraction and relations, correctness of implementation, ex-
tendibility and reusability, and comments and documentation.
The in-class sessions focus on mistakes that are frequent and
common in the submitted solutions. The individual sessions
delve into specific mistakes of each student and provide
suggestions for improvement. Each individual session lasts
15 minutes for individual assignments or half an hour for
group assignments. Through these immediate and detailed
sessions, the course supports the students’ error recognition
and recovery.

ROS .

Roboscoop .

Hardware

C++

Eiffel/SCOOP

(a) Software (b) Hardware

Fig. 2. Software and hardware setup

C. Software and Hardware

The course requires a laptop running Ubuntu and a robot
with a sensor. Every student receives a complete robotic set-
up for the semester. They can use either their own laptop or
borrow one from the teaching staff.

1) Software: The course uses object-oriented languages,
state-of-the-art robotics software, and popular software en-
gineering tools. Programming languages of the course are
Eiffel, SCOOP [19] – concurrency language built on Eiffel –
and C++. The assignments are either in Eiffel/SCOOP (A1)
or both in Eiffel/SCOOP and C++ (A2–A4). The main
robotics programming environments are Robot Operating Sys-
tem (ROS) [17] and Roboscoop [20]. ROS is a popular robotics
middleware, and Roboscoop is a robotics framework built
on SCOOP (Figure 2(a)). The course also uses Point Cloud
Library (PCL) [30] for object recognition. In terms of tools, we
use EiffelStudio and Eclipse as IDEs and SVN for the code
submission. Working with these software and tools ensures
that students gain relevant knowledge and experience, which
are readily applicable to robotics and software engineering.

2) Hardware: As with other successful computer science
courses with robots [7], our course gives every student a
robot and a sensor. Given limited budget and space, giving
personal robots would only be possible if the hardware is in-
expensive and portable. After considering various robots 3 and
sensors 4, we chose Thymio II, a small (11cm×11cm×5cm)
differential-drive mobile robot with infrared (IR) sensors, and
Carmine 1.09, a small (18cm×2.5cm×3.5cm) RGBD sensor
(Figure 2(b)). Both are ROS-compatible and affordable at 99
CHF (about 110 USD) for the robot and 200 USD for the
sensor. Since differential-drive and RGBD sensors are popular
in robotics, using the chosen hardware also gives our students
a taste of real, research robotics.

D. Class setting

1) Students: The course enrolment is limited to 16, and
the pilot course had 12 students. Of the 12, 11 students – four
CS, one EE, and six ME – completed the course successfully.
Two were bachelor’s students and nine were master’s students.
Three had completed their bachelor’s degree at ETH Zurich.
To understand their background, we conducted an in-class,
multiple-choice survey in the second week. Ten students filled

3Lego Mindstorm, iRobot Create, e-Puck
4Microsoft Kinect, web cam, omnidirectional camera



0

4

8

12

16
U

ni
qu

e 
us

er
s 

pe
r 

da
y

Fig. 3. Forum activity.

out the survey; one who did not fill out the survey was a
master’s student in computer science.

a) Background in computer science: Programming ex-
perience of eight students was limited to class assignments
or small projects, and two students had no object-oriented
programming experience. Our students knew C (six students),
C++ (six students), Java (five students), followed by C#, Pas-
cal, Eiffel, Matlab, FPC, PHP, and Python. Concurrency was
new to half of the students; the other half had used threading,
and some had additionally worked with mutex/semaphore,
monitor, or message passing.

In terms of software engineering concepts 5 and tools,
design patterns was a familiar concept to four students, algo-
rithms and data structure also to four, followed by program-
ming paradigms and verification. Five students had never used
any configuration management tools. Three students had used
SVN, one of which had additionally used CVS. Two had used
Git. Five students had used a debugger, one a profiler, and no
one for automatic testing tools.

b) Background in robotics, control, and vision: Many
students had learned control theory (eight students) and kine-
matics (six students) or perception (three students). Only two
CS students had no prior knowledge of robotics. Five students
had programmed control algorithm for a real or a simulated
robot; the rest had no hands-on experience with any robotic
system. No one had used a robotics middleware.

Seven students knew signal processing, and some addi-
tionally knew detection/recognition and classification. Three
students had no knowledge of computer vision. Only four stu-
dents had some vision programming experience, three in object
detection/recognition and feature extraction or classification
and one in segmentation.

2) Teaching staff: Multidisciplinary cooperation can ad-
dress the challenges of teaching a multidisciplinary course [4].
The course is thus jointly taught by a professor in software
engineering and a lecturer in robotics. Two graduate students,
one in software engineering and the other in mechanical
engineering, assist the lecturers. Diversity in expertise enables
the teaching staff to better understand the students’ needs.

3) Interaction: The course promotes interaction among the
students via online forum, in-class demonstration, and group
work. We encourage students to post their questions in the

5One CS and one ME student skipped this particular question.

forum and answer them when they can. In the pilot class,
students posted 104 questions, 29 of which were answered
by the students. Of the 11 students, nine asked at least one
question and eight answered at least one question. On average,
our students spent 42.5 days online, viewed 103.6 posts
(questions and notes), and made 19.5 contributions (posts,
responses, edits, follow-ups, and comments to follow-ups).
Everyone made at least one contribution and used the forum
throughout the course (Figure 3). We noticed no correlation
between grade and forum usage.

In-class demonstration that is held at the end of each
assignment is another medium for interaction among the
students. Moreover, two of the four assignments are completed
in a group of two, and this furthers the interaction. As
predicted [29], seeing everyone’s work increased communi-
cation among the students and helped students learn from one
another. In terms of group work, three students found group
work easier than individual work while four pointed out both
advantages and drawbacks. Despite the division of labor, most
students felt that they understood their partner’s work because
of joint debugging and testing sessions. They shared their
knowledge and skills, and two found this experience of group
work relevant and realistic. Only two students were unhappy
with the experience, and they gave their weak partner as the
reason for dissatisfaction.

IV. RESULTS

This section evaluates how well the students of the pilot
course learned the five course objectives. To this end, we
conducted an exit and an 8-month survey, consisting of long-
answer questions, and analyzed the submitted software using
software quality metrics.

A. End of the semester

The exit-survey was conducted electronically at the end of
the semester, and all 11 students returned it in one week.

1) Software engineering principles and methods: The
course taught the students various software engineering tools –
IDE, debugger, profiler, refactoring features, and configuration
management system – and encouraged them to use these tools
to write correct, modular and well-documented software. To
analyze their progress, we measured software quality of the
students’ work. As metrics, we used those that are directly
related to modularity and documentation and also others
that capture common mistakes. The final set of metrics are
percentage of comments, percentage of routines with hard-
coded values, lack of parametrization, and number of SVN
commits.

We assume that comments improve understandability of
code and thus increase reusability. Therefore, we measured
the percentage of comments, i.e., the number of commented
lines divided by the number of lines of code, as a metric for
reusability. As the metric assumes that the code is clean, we
ignored the commented out code blocks and only counted real
comment lines. On average, there was a comment once every
six to ten lines of code (Figure 4). The percentage of comments



A1 A2 A3 A4
10%

20%

(a) Eiffel

A2 A3 A4
10%

20%

(b) C++

Fig. 4. % of comments.

was higher for the first assignment than the other assignments
in Eiffel. This may be because for the first assignment, many
students reused and modified the example code we provided at
the beginning of the semester. From A2 to A4, the percentage
of comments increased 1% in Eiffel and 1.7% in C++.

Lack of parametrization and occurrence of hard-coded val-
ues dropped significantly after the first feedback sessions.
From A1 to A2, the number of submitted solutions that
lacked parametrization dropped in Eiffel (Figure 5). Hard-
coded values and “magic numbers” were also prominent in A1,
but after our recommendation of using variables and language
support for constants, there was a drop in occurrence from A1
to A2 in Eiffel (Figure 6).

In terms of SVN, the students increased their activities
right before the deadline for A1 and A2 but used it more
consistently for A3 and A4 (Figure 7). This is partially due
to the introduction of intermediate goals and group work in
A3 and A4, and partially because they improved their time-
management skills as some noted in the exit survey. By A4,
our students worked more consistently, or at least, made more
regular commits, during the assignment.

According to the exit survey, our students used various soft-
ware engineering concepts and tools in the class. Mentioned
concepts include reusability (five students), object-oriented
programming (four students), documentation (three students),
abstraction (three students), concurrency (two students), and

A1 A2 A3 A4
0%

25%
50%
75%

100%

(a) Eiffel

A2 A3 A4
0%

25%
50%
75%

100%

(b) C++

Fig. 5. Lack of parametrization. N=11 for assignments 1 and 2. N=6 for
assignments 3 and 4.

A1 A2 A3 A4
10%

20%

(a) Eiffel

A2 A3 A4
10%

20%

(b) C++

Fig. 6. % of routines with hard-coded values.

0

10

20

30

40

50

To
ta

l c
om

m
it

s 
/ d

ay

Fig. 7. SVN repository usage.

genericity (one student). Tools included IDE (five students)
and debugger (three students).

2) Most common architectures in robotics: The course
exposed the students to different software architectures and
extensively used event-driven programming and publish-
subscribe pattern in ROS. In the exit survey, five students cor-
rectly explained the difference between ROS publish/subscribe
and ROS service communication models and four attempted
an answer that was either incomplete or not fully correct.
One person gave a completely wrong answer, and another one
skipped the question entirely.

3) Coordination and synchronization methods: The concur-
rency model the course uses is SCOOP. SCOOP has two main
synchronization mechanisms – wait conditions and wait by
necessity. When asked of these mechanisms in the exit survey,
only five students were able to answer the question. All five
students only mentioned wait conditions, and none mentioned
wait by necessity. The submitted code revealed that while
everyone used wait conditions, only one student also used wait
by necessity mechanism. The student became familiar with
wait by necessity only after receiving help from the teaching
staff, and thus may not have understood the mechanism fully.

4) How software engineering applies to robotics: Our
students improved their software engineer skills by completing
the four assignments. In the exit survey, seven students stated
that they changed their approach during the semester. They
now think and plan the architecture beforehand. One student
drew “a UML diagram before starting to write the code”.
Another found it “easier to write nice code” for the last
assignment “because code architecture was decided at the
beginning”. Four students made no change either because they
have always planned the interface first (three CS students) or
“due to being late with everything” (one student).

Four students expressed their appreciation for learning soft-
ware engineering for robotics. Seven students have increased
awareness of uncertainty in real systems, a key challenge
in robotics programming. Three pointed out debugging and
testing to be important.

5) Hands-on experience with a real robot: Most students
noticed additional challenges that come with a real system. By
the end of the semester, five students felt comfortable or more
comfortable working with a real system than before; working
with a real system “was one of the major reasons to visit this



course” for one student. Four students defined their experience
with a real robot as hard, complex and troublesome. One
of them, who has experience in game programming, thought
robotics would be similar, but “uncertainty in the real world
(made) things more complex”. Another said working with a
real system was difficult but more satisfying. Two students
made no remark.

B. Eight months later

To understand a longer-term effect of the course, we con-
ducted a short survey eight months later. Five (1 CS, 1 EE,
3 ME) of the 11 students returned the survey. They were two
top, one middle, and two below-average students.

1) Retained knowledge: Everyone stated that they remem-
ber the robotics algorithms they implemented, but few stated
that they also remember software engineering components.
Only one (EE student) said he remembers software engineer-
ing aspects, namely, concurrency and design patterns. The CS
student remembers software engineering as well, but this is
due to his prior knowledge.

2) Software engineering principles and tools: Three (all
ME students) have used or plan on using object-oriented
programming in their study or internship. The other two have
used design patterns, IDEs, configuration management tools,
and a debugger or a testing tool.

3) Benefits: Everyone stated that they appreciate gaining
practical, hands-on skills from the class. Most also appreciated
having better programming or software engineering skills. Two
mentioned that their knowledge in robotics has been helpful.
One student found the course especially helpful in securing
an internship. Another indicated that he is now “able to find
solution(s) online to some extent by (him)self”.

4) Complaints: The students complained about various
aspects of the course. Biggest complaints were the workload,
not having enough time to learn the basics, and using Eiffel
(2 students each). Other complaints were A0 being too long,
not implementing more algorithms, and using Roboscoop.

V. CURRENT COURSE

Based on the lessons we learned from the pilot course,
we introduced several changes to the course. Main changes
include shifting more lectures to the beginning of the semester,
introducing an intermediate goal to every assignment, having
both individual and group components in every assignment,
improving the integration of software engineering topics into
the course, and removing the ungraded assignment.

A. Lectures

Current course covers the same content as the pilot course
(see Section III-B1), but the lecture schedule has changed to
provide more information in the first third of the semester
(Table III). Although the course still runs with two 2-hour
sessions a week over 14 weeks, it no longer follows “one
lecture and one exercise session a week” format. Instead,
more lectures are held in the beginning of the semester and
the beginning of each assignment phase, and more exercise

TABLE III
LECTURE TOPICS AND SCHEDULE. TOPICS COVER SOFTWARE

ENGINEERING (SE) AND/OR ROBOTICS (R).

Wk Topic SE R
L1 1 Intro to SE and robotics x x
L2 2 ROS and Roboscoop x x
L3 - Control x
- - Modern SE Tools 1 x

L4 3 SCOOP x
L5 - Obstacle avoidance x
- - Modern SE Tools 2 x

L6 4 Design patterns x
5 No lecture

L7 6 Path planning x
7 No lecture

L8 8 Object recognition x
L9 9 Software architecture in robotics x

10 No lecture
L10 11 Localization and mapping x

12 – 14 No lecture

TABLE IV
ASSIGNMENTS. EVERY ASSIGNMENT HAS INDIVIDUAL COMPONENT (I)

AND GROUP COMPONENT (G).

Week Topic I G
A1 1 – 5 Setup and control x

Obstacle avoidance x
A2 6 – 8 Path planning in simulation x

Path planning with robot x
A3 8 – 10 Object recognition x

Object recognition with robot x
A4 11 – 14 Localization in simulation x

Search and rescue x

sessions are held towards the end of each assignment phase.
This change ensures that students get essential knowledge
as soon as possible and enables them to get started on the
assignments early.

Main changes in the schedule are the order of tools and lo-
calization/mapping lecture. The new schedule has the modern
software engineering tools lecture as two one-hour lectures
in the beginning of the semester and the localization and
mapping lecture at the end of the semester. Current course
gives the software engineering tools lecture early because the
lecture teaches tools that are useful throughout the course but
are new to students. Having the lecture early ensures that
students get a proper introduction to these tools before using
them. The lecture is divided into two so that students have
the time to try the tools before delving into them deeper. For
the localization and mapping lecture, the decision to move
them to the end came because the students in our pilot course
found it to be the hardest to implement. Having to implement
the algorithm earlier in the semester meant that they had to
improve their software engineering skills while tackling this
challenging algorithm. Moving the topic to the end would
give students enough time to acquire software engineering
knowledge and experience that are necessary to handle the
task more smoothly.



B. Assignments

Assignments have the same content as those in the pilot
course (see Section III-B2) but different schedule and individ-
ual/group work allocation. Main reasons for the changes are to
distribute the workload more evenly throughout the semester
and to minimize the gap between stronger and weaker students
in group work. For the former goal, the ungraded assignment
is now part of the first assignment and localization is moved
to the last assignment. Through these changes, we hope to
motivate students to get familiar with the working environment
earlier and to prepare them well for the last, most challenging
assignment. For the latter goal of preparing students evenly,
every assignment now has both individual component and
group component. Individual component requires students to
implement core algorithms while group component, completed
in a group of two or three, asks them to extend the algorithms
to handle more complex scenarios. As everyone must complete
the individual component and demonstrate it in class before
they start working on the group component, fewer groups
would face problems that stem from a weaker member.

C. Grading scheme

Having equal emphasis on in-class demonstration (50%) and
software quality (50%) remains the same. The only change
brought to the grading scheme is the metric for the in-class
demonstration portion. In the pilot course, all assignments
except for the last one gave a demonstration grade based on an
absolute scale. This proved to be problematic as some students
found full-credit performance unattainable and subsequently
gave up on doing their best. In the current course, the
performance is measured relative to the best performance,
i.e., the person or group who performs best gets full credit
and others get grades relative to it. This would bring out
students’ competitiveness and result in overall performance
improvement.

In-class demonstration measures the following. As in the
pilot course, bumping results in a deduction:

• Control and obstacle avoidance (A1)
– Individual: go to goal
∗ distance to the goal

– Group: obstacle avoidance
∗ distance to the goal
∗ wall following
∗ transition in and out of wall following mode

• Path planning (A2)
– Individual: path planning in simulation
∗ different robot sizes
∗ 4-connected and 8-connected map

– Group: path planning with a real set-up
∗ distance to the goal
∗ time to completion

• Object recognition (A3)
– Individual: object recognition
∗ correct labeling and bounding box

– Group: object recognition with a moving robot
∗ object recognition (label and location)
∗ time to completion

• Search and rescue (A4)
– Individual: localization with recorded data
∗ predict, update, and resample steps
∗ stability of localization

– Group: search and rescue
∗ object recognition (label and location)
∗ distance to the final goal
∗ time to completion

D. Improved integration of software engineering and robotics

One change we specifically paid attention to is the inte-
gration of software engineering and robotics. To this end, we
introduce more live demonstrations and code snippets to the
lectures so that we can better teach students how an algorithm
can be implemented in software. In addition, we offer more
practical help for the assignments during the exercise sessions
in both robotics and software engineering. For instance, we
make it clear that having a separate PID controller class
is more flexible and reusable than having it integrated into
go to goal controller. Although this may seem unnecessary
extra work at first, as students implement obstacle avoidance,
usefulness of the class becomes clear. We also increase the
frequency of feedback sessions to twice per assignment;
students now get feedback after each individual assignment
and group assignment. Frequent interactive communication
allows students to learn software engineering from their own
experience and resolves questions earlier on.

VI. DISCUSSION

This section discusses the results and reflects the experience
on andragogy, minimalism, and interactive learning.

A. Achieving the course objectives

Background survey revealed that our CS students had
limited knowledge of robotics and our non-CS students had
limited knowledge of software engineering. In fact, most
non-CS students found object-oriented programming difficult.
Teaching such a bimodal course proved to be challenging
as every content had to be easy enough for beginners and
interesting enough for advanced students.

We observed that most non-CS students acquired only basic
software engineering skills during the semester and failed to
utilize it since the semester ended (Section IV-B). Over the
course of the semester, the students’ software improved in
quality, namely, modularity and documentation. The students
also learned basic software engineering principles and utilized
software engineering tools (Section IV-A1). On the other
hand, many students did not learn much of architecture (Sec-
tion IV-A2) nor concurrency (Section IV-A3) despite using
them throughout the semester. This may partially be due to
the fact that the SCOOP lecture ended up focusing more on
the basics of Eiffel and the ROS and the architecture lectures



were too advanced for beginners. Consequently, we predict
that our students managed to program without understanding
the concepts behind the mechanisms they used.

In robotics, most students learned how to apply software
engineering in robotics and some understood the importance
of testing (Section IV-A4). Many also learned about uncer-
tainty in real systems and improved their hands-on skills
(Section IV-A5). Eight months after the course ended (Sec-
tion IV-B), our students still remembered what they imple-
mented and appreciated the knowledge and experience gained
in the course. Our students desired to spend both more and less
time with the basics and implement more robotic algorithms
with reduced workload. Meeting these conflicting demands
remains a challenge.

B. Andragogy
As in other robotics courses [10], our course had elements of

andragogy. First, we promoted the students having ownership
of work by giving every student a robot and encouraging
them to learn from online tutorials and actively participate in
the online forum. Our students gradually became independent
learners, actively seeking and giving help online and offline
(Section III-D3). One student remarked that his research skill
has improved in our class.

Second, prior experience played an important role. Although
our students were initially shocked that the others did not know
what they found so basic, they gained an appreciation for each
other’s expertise and exchanged their knowledge more actively.
In general, our ME students struggled with programming
but did better with calibration while our CS students found
programming easy but struggled with the uncertainty in real
systems. Our one EE student had the easiest time as he had
more programming experience than ME students and more
hardware experience than CS students.

Third, using well-established software and hardware made
our course relevant. In particular, using ROS was exciting to
many as they discovered how big it is in robotics. Everyone
found the course useful, and most enjoyed working with a real
system and learning ROS.

Fourth, in emphasizing hands-on learning and requiring in-
class demonstrations, the course was performance-centered.
With individualized feedback and observation of peer’s work,
the students improved their skills over time. Many appreciated
the hands-on experience and retained their knowledge.

Fifth, our students were excited to work with a real robot,
and as they came to understand the benefits of tools we used,
they also came to appreciate our decision. SVN in particular
was not well-received in the beginning, but with group work,
the students came to see its usefulness.

Lastly, as an elective course, only intrinsically motivated
students took the course. Hands-on learning with a robot was
definitely attractive to many, and multidisciplinary aspect made
the course approachable to various students.

C. Minimalism
Our course also had elements of minimalism. First, the

course took action-based approach. Every assignment, which

is given at the beginning of each phase, required an imple-
mentation of one specific algorithm. Lecture topics for each
phase were chosen accordingly so that students could complete
the assigned task. Second, the course anchored the tools in
robotics programming by using popular robotics hardware and
software and utilizing online tutorials. Third, we encouraged
our students to be independent learners and supported them
when needed via the exercise sessions, online forum, and
individual feedback sessions. Lastly, although we did not
follow a textbook, we pointed out specific chapters of the
recommended books (Section III-B1), gave papers to read, and
wrote a short tutorial as needed.

D. Interactive learning

Our course promoted interaction among the students via
the online forum, in-class demonstration, and group work. The
students became increasingly active in sharing their knowledge
with others via online forum, and more students communicated
with one another during the demonstration. Group work had
a mixed review depending on the difference in knowledge
between the group members. Although we did not evaluate
the effect of the interactive environment, we hope that it was
positive as hypothesized [11]; one student remarked that he
“enjoyed the open, positive atmosphere among the students”.

VII. THREATS TO VALIDITY

There are several limitations and threats to validity of this
study. An obvious limitation of the study is that data are
drawn from a single course offering at one university. While
the pilot study provides some understanding of the effect
of teaching software engineering in a robotics programming
course, a longer and broader study is necessary to generalize
the claim. In addition, the pilot study’s small data size limits
generalization of the results. More fundamentally, as it is
uncommon for computer science students to take robotics
courses and mechanical engineering students to take computer
science courses, effectiveness of our course compared to two
separate courses – a robotic and a software engineering course
– is unclear.

The study contains several potential sources of bias. First, as
an elective course, no student was required to take the course.
Our students may have been more motivated to learn about
software engineering in robotics setting than regular students,
and this may bias our results towards better learning outcome.
Second, the authors designed, implemented, and executed the
course described in the paper. Even though we tried to be
neutral in analyzing data, the results may nonetheless be biased
towards success. Third, as the students got to know the authors
very well by the end of the pilot course, their exit and 8-
month survey responses may have been influenced by their
feeling towards the authors. In fact, for the exit survey, top
third of the students gave longer and more-detailed responses
than most other students. Consequently, their opinions are
better represented in the qualitative analysis. This may also
bias towards better results. For the 8-month survey, however,
the five responses were evenly distributed across the grades.



In our analysis, we assumed that the submitted solutions
and the survey responses capture the students’ understanding
of software engineering. In reality, correlation between the
submitted code and the students’ knowledge is not clear. Many
students found the course challenging and time-consuming and
tried to optimize the way they spend their time. Consequently,
the software they submitted is not necessarily representative of
what they actually learned in class. Due to time limitation, the
students may not have applied everything they have learned
but instead only those that result in a higher grade for the
effort. Also, the last two assignments were completed in a
team of two students, and it is not clear how the knowledge
of two students maps to a single piece of software.

VIII. CONCLUSION

This paper reported a new, multidisciplinary robotics pro-
gramming course and evaluated it with respect to its objectives
using surveys and software quality metrics. It then presented
an improved course that addresses the challenges identified
in the pilot course. Although our students found concurrent
software engineering and robotics education beneficial, the
pilot course was only successful in teaching robotics and
had limited success in teaching software engineering. Current
course tries to minimize the learning curve by providing rele-
vant information earlier and giving feedback more frequently.

Next step of this research is more thorough evaluation of
the course. Due to limited budget and resources, we can only
offer the course to 16 students at a time. Subsequently, the
data collected from the pilot study are too small to draw
any concrete conclusion. We continue to offer the course and
collect more data to better understand the effect of this course
on students’ learning of software engineering and robotics.

ACKNOWLEDGMENT

This work was partially supported by the European Re-
search Council under the European Unions Seventh Frame-
work Programme (ERC Grant agreement no. 291389), the
Hasler Foundation under the SmartWorld programme, and
ETH under the Innovedum fund.

REFERENCES

[1] J.-F. Lalonde, C. Hartley, and I. Nourbakhsh, “Mobile robot program-
ming in education,” in ICRA, 2006.

[2] N. Correll, R. Wing, and D. Coleman, “A one-year introductory robotics
curriculum for computer science upperclassmen,” Transactions on Edu-
cation, vol. 56, no. 1, pp. 54–60, 2013.

[3] R. D. Beer, H. J. Chiel, and R. F. Drushel, “Using autonomous robotics
to teach science and engineering,” Commun. ACM, vol. 42, no. 6, pp.
85–92, Jun. 1999.

[4] J. B. Weinberg, G. L. Engel, K. Gu, and C. S. Karacal, “A multidis-
ciplinary model for using robotics in engineering education,” in ASEE
Annual Conference and Exposition, 2001.

[5] B. Fagin and L. Merkle, “Measuring the effectiveness of robots in
teaching computer science,” ACM SIGCSE Bulletin, vol. 35, no. 1, pp.
307–311, Jan. 2003. [Online]. Available: http://doi.acm.org/10.1145/
792548.611994

[6] J. Summet, D. Kumar, K. O’Hara, D. Walker, L. Ni, D. Blank, and
T. Balch, “Personalizing cs1 with robots,” SIGCSE Bull., vol. 41, no. 1,
pp. 433–437, Mar. 2009.

[7] M. M. McGill, “Learning to program with personal robots: Influences
on student motivation,” ACM Transactions on Computing Education,
vol. 12, no. 1, pp. 4:1–4:32, Mar. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2133797.2133801

[8] D. Gustafson, “Using robotics to teach software engineering,” in 28th
Annual Frontiers in Education Conference, 1998, vol. 2, 1998, pp. 551–
553.

[9] “Software engineering in robotics,” 2014, accessed. [Online]. Available:
http://www.cc.gatech.edu/∼hic/8803-SER-10

[10] M.-I. Koski, J. Kurhila, and T. A. Pasanen, “Why using robots to teach
computer science can be successful theoretical reflection to andragogy
and minimalism,” in Proceedings of the 8th International Conference on
Computing Education Research, ser. Koli ’08. New York, NY, USA:
ACM, 2008, pp. 32–40.

[11] M. T. Chi, “Active-constructive-interactive: A conceptual framework for
differentiating learning activities,” Topics in Cognitive Science, vol. 1,
no. 1, pp. 73–105, 2009.

[12] M. Knowles, The Modern Practice of Adult Education: from Pedagogy
to Andragogy. Prentice Hall, 1980, ch. What is Andragogy?, pp. 40–59.

[13] J. M. Carroll, Ed., Minimalism beyond the Nurnberg funnel. MIT Press,
1998, ch. Reconstructing Minimalism.

[14] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The carnegie mellon navigation
(CARMEN) toolkit,” in Proceedings of 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3, Oct 2003, pp.
2436–2441.

[15] P. Newman, “Moos - mission orientated operating suite,” Department of
Ocean Engineering, MIT, Tech. Rep., 2006.

[16] J. Jackson, “Microsoft robotics studio: A technical introduction,” IEEE
Robotics Automation Magazine, vol. 14, no. 4, pp. 82–87, Dec 2007.

[17] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,”
in 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2009.

[18] P. Nienaltowski, “Practical framework for contract-based concurrent
object-oriented programming,” Ph.D. dissertation, ETH Zurich, 2007.

[19] B. Morandi, “Prototyping a concurrency model,” Ph.D. dissertation, ETH
Zurich, 2014.

[20] A. Rusakov, J. Shin, and B. Meyer, “Simple concurrency for robotics
with the Roboscoop framework,” in 2014 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2014.

[21] S. Nanz, F. Torshizi, M. Pedroni, and B. Meyer, “Design of an empirical
study for comparing the usability of concurrent programming lan-
guages,” in Proceedings of 2011 International Symposium on Empirical
Software Engineering and Measurement. IEEE Computer Society, 2011,
pp. 325–334.

[22] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice-
Hall, 1997.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[24] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture Volume 2: Patterns for Concurrent and Networked
Objects. John Wiley & Sons, 2000.

[25] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2005.

[26] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots, 2nd ed. Cambridge, MA, USA: MIT Press,
2011.

[27] I. Kamon, E. Rimon, and E. Rivlin, “Tangentbug: A range-sensor-based
navigation algorithm,” The International Journal of Robotics Research,
vol. 17, no. 9, pp. 934–953, 1998.

[28] B. Meyer, Object-oriented software construction. Prentice hall New
York, 1988, vol. 2.

[29] J. Ormrod, Human Learning, 5th ed. Pearson/Merrill Prentice Hall,
2008.

[30] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation, Shanghai,
China, May 9-13 2011.


