
The Inverted Curriculum in Practice
Michela Pedroni

Department of Computer Science
ETH Zürich (Swiss Federal Institute of Technology)

8092 Zürich, Switzerland
michela.pedroni@inf.ethz.ch

Bertrand Meyer
Department of Computer Science

ETH Zürich (Swiss Federal Institute of Technology)
8092 Zürich, Switzerland

Bertrand.Meyer@inf.ethz.ch

ABSTRACT
Teaching introductory programming today presents considerable
challenges, which traditional techniques do not properly address.
Students start with a wide variety of backgrounds and prior
computing experience; to retain their attention it is useful to
provide graphical interfaces at the level set by video games; and
with the ever-increasing presence of computing in society the
stakes are higher, requiring a computing curriculum to introduce
students early to the issues of large systems. We address these
challenges through an “outside-in” approach, or “inverted
curriculum”, which emphasizes the reuse of existing components
in an example domain involving graphics and multimedia, a
gentle introduction to formal reasoning thanks to Design by
Contract techniques, and an object-oriented method throughout.
The new course has now been taught twice, with considerable
gathering of student data and feedback; we report on this
experience and its continuation.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented
programming; K.3.2 [Computers and Education]: Computer and
Information Science Education – Computer science education

General Terms
Design, Human Factors

Keywords
Inverted Curriculum, Objects-First, Pedagogy, CS1

1. INTRODUCTION
Over the past three years we have redesigned the ETH first-year
“Introduction to Programming” computer science course based on
novel ideas taking their root in “Inverted Curriculum” principles
[5]. The course relies on object-oriented, component-based
technology with Design by Contract, and on the reuse of a large
software framework built specifically for this project. It follows

an “outside-in” approach where software construction relies, right
from the start, on components. Students first discover the
components as consumers, through abstract interfaces and
contracts, before moving on to the producer perspective by
exploring and modifying the implementations.
To confront these principles with the results, and to make sure we
adapt what doesn’t work, we carefully track students’ reactions,
opinions and performance.
The approach is supported by extensive material available online
from the course page [14]: a textbook in progress [4]; course
slides, exercises and other materials; and video recordings of all
the lectures.
The new course has now been taught twice, providing enough
feedback to ascertain how it is working and draw lessons for the
future. We are currently teaching the third iteration. This paper
presents the principles and reports on the actual results.
Section 2 explains the challenges of teaching introductory
programming, which led to the design of our course. Section 3
describes this design. Section 4 introduces the concrete context
and setup of the course. Section 5 reports on the student
evaluations and feedback. Section 6 presents our conclusion and
discusses future work.

2. TEACHING INTRODUCTORY
PROGRAMMING
Teaching introductory programming today presents such
challenges that it is tempting to hijack the title of Dijkstra’s article
“On the Cruelty of Really Teaching Computing Science” [2] to
highlight a different form of cruelty: on teachers.
First, the stakes are getting ever higher. Globalization has led to
massive outsourcing, with the result that those of us educating
future software professionals in the industrialized world have a
responsibility to teach them durable skills. It is not enough to
present immediately applicable technology, for which a cheaper
programmer will always be available elsewhere. This is
sometimes difficult to explain to a constituency that tends to
judge from current job ads with their focus on specific technical
skills, but is our essential responsibility to the students.
Regardless of these economic and political aspects, programming
today is no longer a rare, specialized skill but, in an elementary
form, increasingly one of the “four R’s”. A large proportion of the
population gets exposed to computers, software, and some
rudimentary form of programming, for example through
spreadsheet macros or Javascript for Web pages. This raises the
second issue: defining precisely what we should teach to a future

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’06, March 3-5, 2006, Houston, Texas, USA.
Copyright 2006 1-59593-259-3/06/0003...$5.00.

Cite as follows: Michela Pedroni, Bertrand Meyer, The
Inverted Curriculum in Practice, to appear in Proceedings
of SIGCSE 2006, ACM, Houston, Texas, 1-5 March 2006.

mailto:pedroni@inf.ethz.ch
mailto:Meyer@inf.ethz.ch

professional. The ACM Curricula [9, 10] are helpful by clearly
specifying different types of programming education.
This growing presence of software in non-computer-science
endeavors leads to the third issue: the wide diversity of student
backgrounds. Our students cover the full spectrum, from some
who have barely touched a computer to those with extensive
programming experience, to the point of having written an e-
commerce site before they reach our first-year course. Section 5.2
gives a more precise view of the range of prior knowledge, based
on student surveys. What should the teacher do in the face of such
diversity? It is tempting to teach to the most advanced students
only, by assuming a fair amount of experience; but this shuts out
some who have the potential of becoming excellent computer
scientists, and simply haven’t had the opportunity or inclination
to work with computers yet. We should not either — at the other
extreme — bring everyone down to the lowest level; we must also
find a way to catch and keep the attention of the more
experienced students. The use of components, as detailed below,
is a major part of our solution to this issue. By giving students
access to high-quality software libraries, we let the novices take
advantage of the functionality through their abstract interfaces,
without needing to understand what’s inside. The more advanced
and intellectually curious ones can go inside the components,
understand how they work, use them as guidance for their own
goals, and eventually modify them.
The matter of maintaining students’ attention brings up the fourth
issue: quality of examples. The “Nintendo generation” [3] is
unlikely to be very impressed with the small, purely abstract
problems traditionally used for introductory programming. This
means that while we use —in the terminology of the ACM
Computing Curricula 2001 [10] — an objects-first approach
(rather than “functional-first” or “imperative-first”), we go
beyond “experimenting with [the notions of object and
inheritance] in the context of simple interactive programs”.
Students expect more than small programs which, after all, any
competent high-school student can learn to put together. Our
approach is based on Traffic [13], a large software library, which
provides advanced graphics, multimedia and interaction
capabilities, intended to reach the quality level of today’s video
games and animations.
These observations are closely related to the fifth issue: how to
teach the real challenges of professional software development.
At university level, at least in a computer science or software
engineering program, we can’t just teach programming in the
small. We have to prepare students for what professionals really
handle: large programs. Techniques that work well for
programming in the small are not sufficient in such contexts. How
do we introduce students to the actual challenges of today’s
industrial software? The usual answer [9] is that teaching must be
combined with practice, and that some issues only register when
students have had more experience. While this observation is
correct, it cannot be the full answer; even in a university context
we need to expose students as early as possible to large programs.
We address this challenge by confronting the students, from the
start, with a large amount of software — much larger at least than
anything that’s commonly used in introductory courses: the
Traffic library which (with the supporting libraries, EiffelBase,
Gobo, EiffelVision and EiffelMedia) approaches the 150,000-
line, 750-classes threshold.

Without the proper apparatus and method, beginning students
would drown in such an abundance of software. Modern
techniques of information hiding, data abstraction and especially
Design by Contract are essential here. This enables us both to
raise and answer the sixth issue: how do we introduce advanced
but essential principles of methodology without disconnecting
from the students? Such advice — to use abstraction, contracts
and software principles in general — can sound preachy and
unnecessary to them. Paradoxically, those who have already
programmed a bit and stand to benefit most from these
admonitions might be tempted to discard them since they know
from experience that it is somehow possible — on small
programs! — to reach an acceptable result without strict rules.
Rather than preaching, the best technique is to show that a
methodological principle such as the reliance on abstract
interfaces with contracts makes it possible to do something that
would otherwise be unthinkable: master the use of large amounts
of reusable software performing sophisticated and impressive
tasks, such as advanced graphics and animation. If an idea has
saved you from drowning, you won’t discard it as empty
theoretical advice.
There are more issues, such as how to avoid “Google-and-Paste
programming” [7], but the ones cited are already enough as
background for the design of the course discussed here.

3. COURSE PRINCIPLES
We now describe the principles underlying our course. They are
not specific to our environment; indeed a number of other
institutions have applied our ideas. ETH-specific elements and the
practical course setup are discussed separately in section 4.

3.1 Objects first
We use object-oriented concepts right from the start. Object
technology is based on the view that software development is
modeling systems. This is a natural, eminently teachable
approach, especially at the introductory level where one can
introduce classes that directly reflect things and concepts familiar
to the students — not just objects in the material sense of the
term, but also abstract notions such as “itinerary” (in a public
transportation application).
Object-oriented programming has largely captured the mindset of
the industry today, partly because it is both suitable for advanced
applications (it seems to be the only known approach that really
scales up) and based on easily understandable elementary
concepts. There is no reason to deprive our students from the best
known techniques and practices.

3.2 Components
As noted, we emphasize reuse from the start by giving students
access to a large library, Traffic, and applications relying on
Traffic — such as Flat Hunt described in section 3.6 —, all built
for our course on the basis of other Eiffel libraries.
Using components has numerous advantages. It enables students
to produce impressive applications from the start by relying on
the power of libraries — even if initially these applications are
really 10-line programs calling existing mechanisms. This takes
care of the issue of catching and retaining students’ interest. Most
importantly, it enables us to ingrain key principles of reuse and
abstraction into students’ minds right from the beginning,
teaching them that it’s good to rely on solid existing solutions.

3.3 Abstraction and contracts
For components to be “solid” requires that they come with clear
specifications. Eiffel’s contracts — specification elements
associated with software elements: routine preconditions and
postconditions, class invariants [6] — fill this role, together with
the associated abstraction techniques. They make the “outside-in”
approach possible: beginning students can quickly learn to be
successful “consumers” of components through reading their
contract forms [6]: abstract interfaces, including contracts,
extracted automatically from the software.

3.4 Order of topics
It is of course essential that students master all the traditional
building blocks: variables, assignment, control structures and
such. Where we differ from most existing curricula is in the order
of exposition. In line with the outside-in approach, we start with
what Maurice Wilkes called [11] the “outer” structure of the
programming language: in our case, class interfaces, objects,
features. We then progressively move to the “inner” structure.

3.5 Formality
Students need to understand that programming has a strong
mathematical foundation, but here too preaching is not effective
and some tact is required. We have seen curricula where students
first spend two semesters studying a formal theory of software
before being permitted to approach a keyboard. Since they have
keyboards anyway, this risks creating a definitive gap in their
minds between theory and practice, paradoxically reinforcing
“hacking” attitudes that formal methods are supposed to fight in
the first place. Another well-known approach is to use a
functional language such as Scheme [1], or a logic language,
distant from the techniques used in industry, to emphasize the
mathematical basis of programming. Here too the risk exists that
when students move to industry they will throw away what they
have learned, finding it irrelevant. We prefer to justify a certain
degree of formality — mathematically-based techniques for
constructing programs — in a practical context. This makes it
possible for students to write realistic programs, and to show them
how these techniques, rather than being just a theoretical pet
peeve of the professor, help them get these programs right. In
particular, we introduce loops as an approximation technique,
with the notion of loop invariant and loop variant as an integral
part of the concept from the beginning. Eiffel’s loop construct
with its variant and invariant clauses, along with the rest of its
Design by Contract mechanism, helps in this unobtrusive
introduction of partially formal techniques.

3.6 The software framework
Our course fundamentally relies, as noted, on a software
framework. The criteria for choosing an application domain
included the following:

• It must be something with which students are
immediately familiar.

• It must provide a rich base for complex algorithms and
data structures, and an open-ended source of examples
and exercises. In particular we are increasingly
coordinating with other courses such as “Data
Structures and Algorithms” and need to provide them
with continuing material.

• It should include multi-media and advanced graphics.

We chose traffic in a city, with almost endless potential for
modeling interesting concepts both simple and advanced, for
graphics, animation, simulation, algorithms, exercises, use in
other courses (for example “Data Structures and Algorithms”) and
extensions.
One such extension is games (which, in a university context, must
be non-violent). We built one: Flat Hunt, a kind of “Scotland
Yard” transposed to represent students chasing a real estate agent
who only wants to rent to more respectable customers (Figure 1).
Students projects produced many more.

Figure 1 A Flat Hunt screenshot

The requirements for the software itself are:

• It must be very well designed and implemented, with
non-cryptic interfaces (GUI and API) and
documentation. The framework is intended to be the
primary model and reference for the students, in their
process of learning by imitation; it must be impeccable
in both the large and the small.

• It must provide multiple layers of abstraction of the
domain to be used at different stages in the course.

For us, this has meant a software project of a size more
commonly found in industry (although not always with the same
quality requirements) than universities. Thanks to a grant from the
ETH education development office, complemented by a
Microsoft Curriculum grant, both gratefully acknowledged, we
have been able to bring this project to an acceptable stage. The
result, although still not ideal, is getting close to a level where we
will turn it into a public open-source project to which we hope
many universities will contribute.

4. PRACTICAL SETUP
We now describe the specifics of the course organization. The
first iteration of the new course was conducted in the winter
semester 2003-2004 with approximately 250 students and the
second the following year with about 180 students.

4.1 Course setup
The participants are future computer science graduates on their
way to a bachelor’s and (preferably) a master’s degrees. The
course is held in the first semester of the program and is the only
computer science course at that point. In the ETH tradition of

providing a strong general science and engineering education to
all students, the other courses are on logic, linear algebra,
analysis, probability and statistics.
The weekly schedule includes four (two times two) plenary
lectures by the professor and three exercise lessons by graduate
and doctoral student tutors, with a group size of about 25. The
duration of each lecture or lesson is 45 minutes.
The students are handed out weekly assignments from week 1 to
week 9 including up to two sit-in assignments (simulating the
exam). From week 10 to week 14 (semester end), students work
in teams of three on a programming project.

4.2 Student body
Students fill in a questionnaire describing their prior computer
and programming knowledge. The outcome (see the table in 5.2
below) confirms the diversity of the students. 22% in the first
session and 14% in the second session started their computer
science study without any programming experience. The
percentage that did know some O-O programming before starting
the course increased significantly between the two sessions from
35% to 44%. Correspondingly, the group of students that have
worked with programs of more than 100 classes — a sizable
experience for supposed novices — grew from 5% to 10%.
This trend has continued in the current third session (2005-2006)
and seems indicative of a more general phenomenon: that “after
the Internet bubble burst” we get proportionally more students
attracted to computer science by genuine interest.

4.3 Course material
A new introductory programming textbook, “Touch of Class” [4],
directly supports the course, most of the lectures being close to
some of the material from one of its chapters. The textbook is in
progress and currently available on line. In the first session, many
chapters were being written as the course progressed, making it
often uncomfortable for students. At present most of the material
actually covered is present in the text.
All slides used in class are available on the Web, as well as
exercises and other material. The Traffic software and the free
EiffelStudio environment are also available for download. In
addition, all lectures are recorded on video and put on the Web
shortly after being presented. Students greatly appreciate the
possibility of going over the material again at home.

4.4 Grading and exercises
There is no grading during the course, only the requirement of
doing the homework, “classroom exercises” (mock exams) and
project — not necessarily successfully, but showing effort — to
get a certificate allowing participation in the exam, held after the
year. We do correct assignments and provide constant feedback to
the students; this simply has no effect on their final grades.
To the professor in charge (BM), coming from the US system,
this ETH rule was initially a shock. In fact it has turned out to be
tremendously helpful, enabling us to do our best teaching job
without constant student obsession on grades. The course is in
fact highly selective (in the terminology of [9] it is “filter” as
much as “funnel”, if only because of the absence of an entrance
exam), but students can take a reasoned, long-term approach to
learning programming.

5. STUDENT FEEDBACK
5.1 Nature of data and collection method
We systematically track students’ performance and gather their
assessments of our own performance. The experience of the first
session led us to new ideas of things to ask about the second time
around. Here are some of the elements we collect.
Initial questionnaires ask students, at the beginning of the
semester, to describe their previous experience, in particular any
prior exposure to programming and programming languages.
Assignment questionnaires accompany every assignment, and
must be filled for the assignment to be accepted. They include
questions about the assignment itself (how difficult, how useful,
what was hardest, time spent etc.). They help us “feel the
temperature” of students and enable tutors to give feedback and
support on specific topics.
Official end-of-semester course evaluations conducted by the
ETH administration and the Department of Computer Science
cover general student satisfaction with the course, difficulty of the
course, any cross-cuttings with other courses etc.
In addition, an ongoing study by Marie-Hélène Ng Cheong Vee
from the University of London, applied both to our course and a
similar course there, tracks actual student performance in the
programming exercises by recording errors and solution paths
thanks to an option of the Eiffel compiler [8].

5.2 Initial student knowledge
Tables 1 and 2 summarize some results of the initial
questionnaire. The higher percentage of students with prior
programming knowledge in the second session — in particular the
percentage of students that have worked with large programming
projects — is also reflected in a higher average of years of using
computers. The same applies to the percentage of students having
worked in a job where programming was a substantial part (24%
in 2003/04 and 32% in 2004/05). As noted this is part of a clear
trend, continuing in 2005/06.

 2003/04 2004/05

No programming experience 22% 14%

No object-orientation 38% 33%

Small projects 35% 43%

Some
exper-
ience

Some
O-O

Large projects
(>= 100 classes)

5% 10%

Table 1 Programming experience

Table 2 Computer usage

5.3 Overall student satisfaction
An important indicator for the quality of the method is student
satisfaction. The official evaluation of the course shows that it
was very successful with the students. The average grade 4.0 (out
of 5) reached in winter semester 2003/04 was even slightly
improved in 2004/05 with an average grade of 4.1. This is toward

 2003/04 2004/05

One year and less 1% 1%

Two to four years 6% 1%

Five to nine years 55% 35%

Ten years and more 38% 63%

the top of student course evaluations for first- and second-year
courses in the Computer Science department and is significantly
higher than the grade obtained by previous versions of the course.

5.4 Satisfaction with the software
The software used for the course — Traffic in the first session,
Flat Hunt running on top of Traffic the next year — gets a
significantly lower appreciation than the course as a whole,
although it improved from 2.7 to 2.9 in the second iteration.
Student satisfaction with the software must reach the same level
as for the rest of the course, if only because Traffic is at the center
of the approach. The results are, however, not hard to explain:
Traffic is a major software project of the kind not commonly
attempted in universities. The first version was a proof of concept.
It is not surprising that it did not meet the students' expectations.
We have chosen to emphasize graphics and animation because it's
the best way to capture the interest of students who have grown
up with video games. But for that very reason their expectations
are high.
The students' overall experience is highly positive as evidenced
by the final grade. Clearly Traffic is a key part of that
appreciation even if the students, irritated by some aspects of
Traffic, give the product itself a still insufficient grade.

6. CONCLUSION AND FUTURE WORK
The course Introduction to Programming is so far a success. The
Inverted Curriculum seems to be appreciated by the students, in
particular the ability to work on “real” applications right from the
start.
Much work remains; the development of a system architecture
and class interfaces of professional quality, providing advanced
functionality, and yet simple enough to be approachable by total
beginners, is a constant balancing act. The next sessions will
benefit from the following changes and improvements:

• 3D graphics and sound; the newer versions of Traffic
use EiffelMedia [12], a powerful multimedia library
developed in our group.

• Simplified class interfaces and system architecture,
through the division into several layers of functionality.

Additionally, the evaluation process needs to be further improved
to provide us with more feedback on the approach:

• As the students having taken the new course move into
higher semesters, we continue to track them. They will
fill a questionnaire about their retrospective impressions
of the approach; and we are coordinating with our
colleagues teaching downstream courses to assess these
students’ programming performance.

• We will develop an end-of-semester questionnaire to let
us better correlate initial programming knowledge with
satisfaction with the approach.

• We intend to develop a method of comparing the
Inverted Curriculum approach to other approaches.

7. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and Interpretation

of Computer Programs. MIT Press, Cambridge, MA, USA,
1996.

[2] E. W. Dijkstra. On the cruelty of really teaching computing
science. December 1988.

[3] M. Guzdial and E. Soloway. Teaching the nintendo
generation to program. Commun. ACM, 45(4), 2002.

[4] B. Meyer. Touch of class: Learning to program well with
object technology and design by contract. To be published,
draft versions currently available from se.ethz.ch/touch.

[5] B. Meyer. Towards an object-oriented curriculum. Journal of
Object-Oriented Programming, 6(2):76–81, May 1993.
Revised version in TOOLS 11 (Technology of Object-
Oriented Languages and Systems), eds. R. Edge, M. Singh
and B. Meyer, Prentice Hall, Englewood Cliffs (N.J.), 1993,
pages 585-594.

[6] B. Meyer. Object-Oriented Software Construction. Prentice-
Hall, 2nd edition, 1997.

[7] B. Meyer. The outside-in method of teaching introductory
programming. In Manfred Broy and Alexandre V. Zamulin,
eds., Ershov Memorial Conference, volume 2890 of Lecture
Notes in Computer Science, pages 66–78. Springer, 2003.

[8] M. Ng Cheong Vee, B. Meyer, K.L. Mannock. Empirical
study on novice errors and error paths. Available at
se.ethz.ch/~meyer/publications/teaching/novices.pdf.

[9] The Joint Task Force for Computing Curricula 2005.
Computing curricula 2005 (draft). April 4 2005. Available
online at: www.acm.org/education/Draft_5-23-051.pdf.

[10] The Joint Task Force on Computing Curricula. Computing
curricula 2001 (final report). December 2001. Available at:
www.acm.org/sigcse/cc2001.

[11] M. V. Wilkes. The outer and inner syntax of a programming
language. The Computer Journal, 11(3):260–263, November
1968.

[12] EiffelMedia project page: eiffelmedia.origo.ethz.ch.
[13] Traffic project page: se.ethz.ch/traffic.
[14] ETH “Introduction to Programming” course page:

se.ethz.ch/teaching/ws2005/0001/english_index.html.

http://www.acm.org/education/Draft_5-23-051.pdf
http://www.acm.org/sigcse/cc2001
http://se.ethz.ch/touch
http://se.ethz.ch/~meyer/publications/teaching/novices.pdf
http://eiffelmedia.origo.ethz.ch
http://se.ethz.ch/traffic
http://se.ethz.ch/teaching/ws2005/0001/english_index.html

