
Can Asynchronous Exceptions Expire?

Benjamin Morandi, Sebastian Nanz, Bertrand Meyer
Chair of Software Engineering, ETH Zurich, Switzerland

firstname.lastname@inf.ethz.ch
http://se.inf.ethz.ch/

Abstract—A multitude of asynchronous exception mecha-
nisms have been proposed. They specify where and when
an asynchronous exception propagates. We highlight another
aspect that has largely been overlooked: can an asynchronous
exception expire? We discuss scenarios where it is meaningful
for an asynchronous exception to expire. We further elaborate
on one of the scenarios, thereby outlining an asynchronous
exception mechanism for the SCOOP concurrency model.

Keywords-asynchronous exception; concurrent program-
ming; SCOOP

I. INTRODUCTION

Asynchronous exception mechanisms specify where an
exception propagates: in the supplier [3], in the client [1]–
[3], [7], [8], in a supervisor [9], or in a cooperation [5],
[10]. Few of them, however, treat the question whether it is
meaningful for an asynchronous exception to expire.

Expiration is not uncommon for synchronous exceptions:
in the context of synchronous calls with time-outs for
example, the synchronous call expires together with its
exception when the time is up. The following section show-
cases scenarios where expiring of exceptions is valid in the
asynchronous case as well.

II. SCENARIOS

End of a supplier: In µC++ [1], an asynchronous
exception expires when the supplier ends its execution. At
that point, the client can no longer communicate with the
supplier; hence the exception becomes meaningless and can
therefore expire with the supplier.

Cancellation: µC++ [1] also has a cancellation mecha-
nism. Once a client is no longer interested in the outcome of
a supplier, it can cancel the supplier; this causes the supplier
to clean-up and terminate. With the termination, any pending
exception expires because the client is no longer interested
in the outcome.

Futures: Asynchronous exceptions can expire in lan-
guages that have futures, such as ProActive [2] and Rintala’s
C++ extension [7]. A future represents a result that a supplier
is computing asynchronously. When the client needs the re-
sult, it accesses the future. This forces the client to wait until
the result is available or the supplier raises an exception. In
the latter case, the client propagates an exception. If the
client does not access the future, it never propagates the
exception. At some point the garbage collector disposes the

future, and hence the exception expires. This behavior makes
sense because when the client never uses the future, the
exception is irrelevant. The supplier must, however, clean
up by reverting its side effects.

Locks and Contracts: Expired exceptions are also
meaningful in languages that combine resource locking
with contracts, i.e., pre- and postconditions that specify a
routine’s behavior. A client can assume the postcondition
of an issued call as long as the client keeps a lock on the
supplier: while the client keeps the lock, it can be sure that
no other client modifies the supplier after the call; as soon as
the client gives up the lock, it no longer has any guarantees.
A client relies on a postcondition by synchronizing with the
supplier, while it can still assume the postcondition. Only
then does a supplier’s exception, i.e., a symbol for a failed
postcondition, matter. Consequently, an exception does not
matter anymore when the client can no longer assume the
postcondition, i.e., after unlocking the supplier. The supplier
must, however, clean up in reaction to an exception.

One question remains: does it make sense for a client
not to synchronize with a supplier? It does, for example,
when the client spawns multiple suppliers but only wants
the results from some of them. The suppliers could be per-
forming random searches with different seeds, and the client
is happy with the first result. In absence of a cancellation
mechanism, the client must ignore the second searcher by
not synchronizing with it. In this case, the client not only
ignores exceptions from the second searcher, but also normal
results.

The next section elaborates on the last scenario in the
context of the SCOOP concurrency model.

III. MECHANISM FOR A LANGUAGE WITH LOCKS AND
CONTRACTS

A. Overview of SCOOP

SCOOP [4], [6] is an object-oriented programming model
for concurrency, which combines resource locking with
contracts. Every object is associated with a processor, an
autonomous thread of control capable of executing actions
on objects. An object’s class describes the possible actions
as features.

A variable x belonging to a processor can point to an
object with the same handler (non-separate object), or to
an object on another processor (separate object). In the first



case, a feature call x.f is non-separate: x’s handler executes
the feature synchronously. In this context, x is called the
target of the feature call. In the second case, the feature call
is separate: the handler of x, i.e., the supplier, executes the
call asynchronously on behalf of the requester, i.e., the client.
The possibility of asynchronous calls is the main source of
concurrent execution. The asynchronous nature of separate
feature calls implies a distinction between a feature call and
a feature application: the client logs the call with the supplier
(feature call) and moves on; only at some later time will the
supplier actually execute the body (feature application).

To illustrate these concepts, consider an application that
explores a search space to find solutions to a problem. A
controller triggers two concurrent searchers; a log records
the solutions. In the following code for this example, note
that the keyword separate is a type system extension to
specify that an entity may reference an object on a different
processor.

class CONTROLLER feature
start (

first searcher: separate SEARCHER;
second searcher: separate SEARCHER;
log: separate LOG

)
do
−− Search concurrently.
first searcher.search; second searcher.search
−− Record the solutions.
log.add entry (first searcher, second searcher)

end
end

class SEARCHER feature
seed: INTEGER
solution: STRING

search
do
−− Get the seed from atmospheric noise.
seed := atmospheric noise
−− Search if possible; otherwise, fail.
if seed >= 0 then

solution := random solution (seed)
else raise exception
end

ensure not solution = Void −− The postcondition.
rescue seed := 0 −− Restore consistency.
end

invariant seed >= 0 −− The consistency criterion.
end

class LOG feature
add entry (

first searcher: separate SEARCHER;
second searcher: separate SEARCHER

)
do
−− Has the first searcher found a solution?
if not first searcher.solution.is empty then
−− Yes, he has. Log the first solution.
write (first searcher.solution)

else
−− No, he has not. Log the second solution.
write (second searcher.solution)

end
end

end

Locking requirements of a feature must be expressed in
the formal argument list: any target of separate type within
the feature must occur as a formal argument; the arguments’
handlers are locked for the duration of the feature execution,
thus preventing data races. For instance, in start, log is a
formal argument; the controller has exclusive access to the
log while executing start.

Sometimes it is necessary to transfer the ownership of
locks between processors through the lock passing mech-
anism. In start, the log takes the searchers as arguments.
To be able to continue, the log requires the lock on the
searchers, currently owned by the controller. To resolve
the situation, the controller automatically passes the locks
and waits until the locks return; the feature call becomes
synchronous. There is another situation where a separate
feature call becomes synchronous: when a client expects a
result from a supplier, then the client must wait until the
supplier provides the result (wait by necessity).

B. Asynchronous Exception Mechanism

In the proposed asynchronous exception mechanism, a
supplier reacts to an exception by executing a rescue clause
to re-establish its consistency. A rescue clause for a fea-
ture appears after the rescue keyword; features without
this keyword have an implicit empty rescue clause. The
exception persists while the client is executing the feature
for which the supplier got locked. The client propagates the
exception when it executes a synchronous feature call; these
synchronization-based polling points are comprehensible
and have also been used in other languages such as Ada [8].
When a client passes a lock to another client, the exception
persists because the lock is still in place. Therefore, the next
client also propagates the exception during a synchronous
feature call. In case no client synchronizes until the supplier
gets unlocked, the exception expires.

To demonstrate the working of the mechanism, assume in
the example that the first searcher raises an exception and



lock

log processorsecond searcher processor

rescue

exception

controller processor first searcher processor

solution

rescue

exception with lock return

search

rescue

unlock

add_entry with lock passing

(a) The first searcher raises an exception.

lock

log processorsecond searcher processor

result

controller processor first searcher processor

solution

lock return

search

rescue

unlock

add_entry with lock passing

(b) The second searcher raises an exception.

Figure 1. The interactions between the controller, the searchers, and the log.

executes its rescue clause, as shown in Figure 1a. Because
the feature call to the first searcher is asynchronous, the con-
troller does not propagate the exception. In log.add entry,
the controller passes its locks to the log; the log calls the
first searcher synchronously and propagates the exception.
Assume now that the second searcher raises an exception
instead, as shown in Figure 1b. Again, the controller passes
its locks to the log; however, since the log does not call the
second searcher, the log does not propagate the exception.
After the controller gets back the passed locks, it unlocks the
searchers, and the exception expires. This behavior makes
sense because the controller does not rely on the second
searcher’s postcondition; hence the exception is irrelevant.
By executing its rescue clause, the second searcher makes
sure to re-establish its consistency.

For programs where exceptions must not be lost, the
mechanism has a safe mode, in which a client propagates any
pending exceptions just before unlocking the suppliers. This
mode, however, reduces the potential for concurrency: the
client can no longer asynchronously issue an unlock request
and then continue; it has to wait until the supplier finished.
For long-lived suppliers, this might not be convenient for
the client. For these cases, failures in suppliers can also be
handled entirely in the supplier’s rescue clause, for example
with a callback to the client.

IV. CONCLUSION

Expired exceptions are well-known in the context of
synchronous calls. For asynchronous calls, however, excep-
tion expiration is not yet a central concept, even though
there are benefits: by letting asynchronous exceptions expire,
concurrent systems can become more fault-tolerant. To high-
light this fact, we showed that expiration of asynchronous
exceptions is meaningful in a number of scenarios.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their detailed
comments. This work is part of the SCOOP project at ETH

Zurich, which has benefited from grants from the Hasler
Foundation, the Swiss National Foundation, Microsoft (Mul-
ticore award), and ETH (ETHIIRA).

REFERENCES

[1] P. A. Buhr, “µC++ annotated reference manual,” University
of Waterloo, Tech. Rep., 2011.

[2] D. Caromel and G. Chazarain, “Robust exception handling
in an asynchronous environment,” in Workshop on Exception
Handling in Object-Oriented Systems, 2005.

[3] C. Dony, C. Urtado, and S. Vauttier, “Exception handling
and asynchronous active objects: Issues and proposal,” in
Advanced Topics in Exception Handling Techniques, 2006,
pp. 81–100.

[4] B. Meyer, Object-Oriented Software Construction, 2nd ed.
Prentice-Hall, 1997.

[5] R. Miller and A. R. Tripathi, “The guardian model and
primitives for exception handling in distributed systems,”
IEEE Transactions on Software Engineering, vol. 30, no. 12,
pp. 1008–1022, 2004.

[6] P. Nienaltowski, “Practical framework for contract-based
concurrent object-oriented programming,” Ph.D. dissertation,
ETH Zurich, 2007.

[7] M. Rintala, “Handling multiple concurrent exceptions in C++
using futures,” in Advances in Exception Handling Tech-
niques, 2006, pp. 62–80.

[8] S. T. Taft and R. A. Duff, Ada 95 Reference Manual.
Springer, 1997.

[9] A. R. Tripathi and R. Miller, “Exception handling in agent-
oriented systems,” in Advances in Exception Handling Tech-
niques, 2000, pp. 128–146.

[10] J. Xu, B. Randell, A. B. Romanovsky, C. M. F. Rubira,
R. J. Stroud, and Z. Wu, “Fault tolerance in concurrent
object-oriented software through coordinated error recovery,”
in Symposium on Fault-Tolerant Computing, 1995, pp. 499–
508.


